1,379 research outputs found

    The use of computational geometry techniques to resolve the issues of coverage and connectivity in wireless sensor networks

    Get PDF
    Wireless Sensor Networks (WSNs) enhance the ability to sense and control the physical environment in various applications. The functionality of WSNs depends on various aspects like the localization of nodes, the strategies of node deployment, and a lifetime of nodes and routing techniques, etc. Coverage is an essential part of WSNs wherein the targeted area is covered by at least one node. Computational Geometry (CG) -based techniques significantly improve the coverage and connectivity of WSNs. This paper is a step towards employing some of the popular techniques in WSNs in a productive manner. Furthermore, this paper attempts to survey the existing research conducted using Computational Geometry-based methods in WSNs. In order to address coverage and connectivity issues in WSNs, the use of the Voronoi Diagram, Delaunay Triangulation, Voronoi Tessellation, and the Convex Hull have played a prominent role. Finally, the paper concludes by discussing various research challenges and proposed solutions using Computational Geometry-based techniques.Web of Science2218art. no. 700

    Reliable cost-optimal deployment of wireless sensor networks

    Get PDF
    Wireless Sensor Networks (WSNs) technology is currently considered one of the key technologies for realizing the Internet of Things (IoT). Many of the important WSNs applications are critical in nature such that the failure of the WSN to carry out its required tasks can have serious detrimental effects. Consequently, guaranteeing that the WSN functions satisfactorily during its intended mission time, i.e. the WSN is reliable, is one of the fundamental requirements of the network deployment strategy. Achieving this requirement at a minimum deployment cost is particularly important for critical applications in which deployed SNs are equipped with expensive hardware. However, WSN reliability, defined in the traditional sense, especially in conjunction with minimizing the deployment cost, has not been considered as a deployment requirement in existing WSN deployment algorithms to the best of our knowledge. Addressing this major limitation is the central focus of this dissertation. We define the reliable cost-optimal WSN deployment as the one that has minimum deployment cost with a reliability level that meets or exceeds a minimum level specified by the targeted application. We coin the problem of finding such deployments, for a given set of application-specific parameters, the Minimum-Cost Reliability-Constrained Sensor Node Deployment Problem (MCRC-SDP). To accomplish the aim of the dissertation, we propose a novel WSN reliability metric which adopts a more accurate SN model than the model used in the existing metrics. The proposed reliability metric is used to formulate the MCRC-SDP as a constrained combinatorial optimization problem which we prove to be NP-Complete. Two heuristic WSN deployment optimization algorithms are then developed to find high quality solutions for the MCRC-SDP. Finally, we investigate the practical realization of the techniques that we developed as solutions of the MCRC-SDP. For this purpose, we discuss why existing WSN Topology Control Protocols (TCPs) are not suitable for managing such reliable cost-optimal deployments. Accordingly, we propose a practical TCP that is suitable for managing the sleep/active cycles of the redundant SNs in such deployments. Experimental results suggest that the proposed TCP\u27s overhead and network Time To Repair (TTR) are relatively low which demonstrates the applicability of our proposed deployment solution in practice

    Coverage and Energy Analysis of Mobile Sensor Nodes in Obstructed Noisy Indoor Environment: A Voronoi Approach

    Full text link
    The rapid deployment of wireless sensor network (WSN) poses the challenge of finding optimal locations for the network nodes, especially so in (i) unknown and (ii) obstacle-rich environments. This paper addresses this challenge with BISON (Bio-Inspired Self-Organizing Network), a variant of the Voronoi algorithm. In line with the scenario challenges, BISON nodes are restricted to (i) locally sensed as well as (ii) noisy information on the basis of which they move, avoid obstacles and connect with neighboring nodes. Performance is measured as (i) the percentage of area covered, (ii) the total distance traveled by the nodes, (iii) the cumulative energy consumption and (iv) the uniformity of nodes distribution. Obstacle constellations and noise levels are studied systematically and a collision-free recovery strategy for failing nodes is proposed. Results obtained from extensive simulations show the algorithm outperforming previously reported approaches in both, convergence speed, as well as deployment cost.Comment: 17 pages, 24 figures, 1 tabl

    The VF-PSO optimization algorithm for coverage and deployment of underwater wireless sensor network

    Get PDF
    Coverage is a factor to reflect the network service quality of the Underwater Wireless Sensor Network (UWSN). Existing UWSN has problems of void-hole and low coverage, which is reducing UWSN lifetime and ability to monitor deployment areas. To improve network coverage and network lifetime, a coverage optimization method based on virtual force and particle swarm optimization (VF-PSO) is proposed in this article. By action of virtual force, the underwater mobile nodes would move to a better position to improve network coverage in this method. For the VF-PSO algorithm, the virtual force can guide the optimization of particles and accelerate the convergence of particles to the global optimal solution. This algorithm could not only optimize the movement trend of nodes to maximize the coverage ratio but also adjust the node distance threshold to reduce the network coverage redundancy. Simulation presents that compared with other typical algorithms, VF-PSO can improve the network connectivity and coverage of the UWSN area, and effectively avoid the network void-hole problem

    Energy-Efficient Node Deployment in Static and Mobile Heterogeneous Multi-Hop Wireless Sensor Networks

    Full text link
    We study a heterogeneous wireless sensor network (WSN) where N heterogeneous access points (APs) gather data from densely deployed sensors and transmit their sensed information to M heterogeneous fusion centers (FCs) via multi-hop wireless communication. This heterogeneous node deployment problem is modeled as an optimization problem with total wireless communication power consumption of the network as its objective function. We consider both static WSNs, where nodes retain their deployed position, and mobile WSNs where nodes can move from their initial deployment to their optimal locations. Based on the derived necessary conditions for the optimal node deployment in static WSNs, we propose an iterative algorithm to deploy nodes. In addition, we study the necessary conditions of the optimal movement-efficient node deployment in mobile WSNs with constrained movement energy, and present iterative algorithms to find such deployments, accordingly. Simulation results show that our proposed node deployment algorithms outperform the existing methods in the literature, and achieves a lower total wireless communication power in both static and mobile WSNs, on average

    Scale-free topology optimization for software-defined wireless sensor networks: A cyber-physical system

    Get PDF
    Due to the limited resource and vulnerability in wireless sensor networks, maximizing the network lifetime and improving network survivability have become the top priority problem in network topology optimization. This article presents a wireless sensor networks topology optimization model based on complex network theory and cyber-physical systems using software-defined wireless sensor network architecture. The multiple-factor-driven virtual force field and network division–oriented particle swarm algorithm are introduced into the deployment strategy of super-node for the implementation in wireless sensor networks topology initialization, which help to rationally allocate heterogeneous network resources and balance the energy consumption in wireless sensor networks. Furthermore, the preferential attachment scheme guided by corresponding priority of crucial sensors is added into scale-free structure for optimization in topology evolution process and for protection of vulnerable nodes in wireless sensor networks. Software-defined wireless sensor network–based functional architecture is adopted to optimize the network evolution rules and algorithm parameters using information cognition and flow-table configure mode. The theoretical analysis and experimental results demonstrate that the proposed wireless sensor networks topology optimization model possesses both the small-world effect and the scale-free property, which can contribute to extend the lifetime of wireless sensor networks with energy efficiency and improve the robustness of wireless sensor networks with structure invulnerability

    Relocation Strategies for Mobile Sensor Networks in Emergency Coverage Situations

    Get PDF
    The focus of this thesis is directed towards developing distributed coordination protocols for a group of agents (mobile sensors) deployed to cover an area of interest. It is assumed that sensors are subject to an alert message at any point in time, which is issued in an emergency situation. Such an emergency event is formulated as an abrupt change in the coverage priority of specific regions in the field. In the normal situation, a protocol is used to move the mobile sensors in the plane in such a way that the overall sensing coverage is increased. Then, as soon as an alert message is issued, sensors that receive the information communicate with their neighbors to inform them of the message. An appropriate number of sensors are subsequently tasked to further improve the coverage of the specified area by adjusting their positions iteratively to increase the coverage of the alert area. Two types of algorithms are developed, where the first one is mainly focused on the alert area coverage, and the second one aims to also cover the rest of the field as much as possible. The algorithms are Voronoi-based, and are guaranteed to increase the desired sensing coverage at each iteration. Some examples and comparative results are provided to demonstrate the effectiveness of the proposed algorithms

    Distributed navigation of multi-robot systems for sensing coverage

    Full text link
    A team of coordinating mobile robots equipped with operation specific sensors can perform different coverage tasks. If the required number of robots in the team is very large then a centralized control system becomes a complex strategy. There are also some areas where centralized communication turns into an issue. So, a team of mobile robots for coverage tasks should have the ability of decentralized or distributed decision making. This thesis investigates decentralized control of mobile robots specifically for coverage problems. A decentralized control strategy is ideally based on local information and it can offer flexibility in case there is an increment or decrement in the number of mobile robots. We perform a broad survey of the existing literature for coverage control problems. There are different approaches associated with decentralized control strategy for coverage control problems. We perform a comparative review of these approaches and use the approach based on simple local coordination rules. These locally computed nearest neighbour rules are used to develop decentralized control algorithms for coverage control problems. We investigate this extensively used nearest neighbour rule-based approach for developing coverage control algorithms. In this approach, a mobile robot gives an equal importance to every neighbour robot coming under its communication range. We develop our control approach by making some of the mobile robots playing a more influential role than other members of the team. We develop the control algorithm based on nearest neighbour rules with weighted average functions. The approach based on this control strategy becomes efficient in terms of achieving a consensus on control inputs, say heading angle, velocity, etc. The decentralized control of mobile robots can also exhibit a cyclic behaviour under some physical constraints like a quantized orientation of the mobile robot. We further investigate the cyclic behaviour appearing due to the quantized control of mobile robots under some conditions. Our nearest neighbour rule-based approach offers a biased strategy in case of cyclic behaviour appearing in the team of mobile robots. We consider a clustering technique inside the team of mobile robots. Our decentralized control strategy calculates the similarity measure among the neighbours of a mobile robot. The team of mobile robots with the similarity measure based approach becomes efficient in achieving a fast consensus like on heading angle or velocity. We perform a rigorous mathematical analysis of our developed approach. We also develop a condition based on relaxed criteria for achieving consensus on velocity or heading angle of the mobile robots. Our validation approach is based on mathematical arguments and extensive computer simulations

    Swarm Robotics

    Get PDF
    Collectively working robot teams can solve a problem more efficiently than a single robot, while also providing robustness and flexibility to the group. Swarm robotics model is a key component of a cooperative algorithm that controls the behaviors and interactions of all individuals. The robots in the swarm should have some basic functions, such as sensing, communicating, and monitoring, and satisfy the following properties

    Context-awareness for mobile sensing: a survey and future directions

    Get PDF
    The evolution of smartphones together with increasing computational power have empowered developers to create innovative context-aware applications for recognizing user related social and cognitive activities in any situation and at any location. The existence and awareness of the context provides the capability of being conscious of physical environments or situations around mobile device users. This allows network services to respond proactively and intelligently based on such awareness. The key idea behind context-aware applications is to encourage users to collect, analyze and share local sensory knowledge in the purpose for a large scale community use by creating a smart network. The desired network is capable of making autonomous logical decisions to actuate environmental objects, and also assist individuals. However, many open challenges remain, which are mostly arisen due to the middleware services provided in mobile devices have limited resources in terms of power, memory and bandwidth. Thus, it becomes critically important to study how the drawbacks can be elaborated and resolved, and at the same time better understand the opportunities for the research community to contribute to the context-awareness. To this end, this paper surveys the literature over the period of 1991-2014 from the emerging concepts to applications of context-awareness in mobile platforms by providing up-to-date research and future research directions. Moreover, it points out the challenges faced in this regard and enlighten them by proposing possible solutions
    corecore