500 research outputs found

    Offloading Decisions in a Mobile Edge Computing Node with Time and Energy Constraints

    Get PDF
    This article describes a simulated annealing based offloading decision with processing time, energy consumption and resource constraints in a Mobile Edge Computing Node. Edge computing mostly deals with mobile devices subject to constraints. Especially because of their limited processing capacity and the availability of their battery, these devices have to offload some of their heavy tasks, which require a lot of calculations. We consider a single mobile device with a list of heavy tasks that can be offloadable. The formulated optimization problem takes into account both the dedicated energy capacity and the total execution time. We proposed a heuristic solution schema. To evaluate our solution, we performed a set of simulation experiments. The results obtained in terms of processing time and energy consumption are very encouraging

    Cloudlet computing : recent advances, taxonomy, and challenges

    Get PDF
    A cloudlet is an emerging computing paradigm that is designed to meet the requirements and expectations of the Internet of things (IoT) and tackle the conventional limitations of a cloud (e.g., high latency). The idea is to bring computing resources (i.e., storage and processing) to the edge of a network. This article presents a taxonomy of cloudlet applications, outlines cloudlet utilities, and describes recent advances, challenges, and future research directions. Based on the literature, a unique taxonomy of cloudlet applications is designed. Moreover, a cloudlet computation offloading application for augmenting resource-constrained IoT devices, handling compute-intensive tasks, and minimizing the energy consumption of related devices is explored. This study also highlights the viability of cloudlets to support smart systems and applications, such as augmented reality, virtual reality, and applications that require high-quality service. Finally, the role of cloudlets in emergency situations, hostile conditions, and in the technological integration of future applications and services is elaborated in detail. © 2013 IEEE

    Deep Reinforcement Learning for Vehicular Edge Computing: An Intelligent Offloading System

    Get PDF
    The development of smart vehicles brings drivers and passengers a comfortable and safe environment. Various emerging applications are promising to enrich users' traveling experiences and daily life. However, how to execute computing-intensive applications on resource-constrained vehicles still faces huge challenges. In this article, we construct an intelligent offloading system for vehicular edge computing by leveraging deep reinforcement learning. First, both the communication and computation states are modelled by finite Markov chains. Moreover, the task scheduling and resource allocation strategy is formulated as a joint optimization problem to maximize users' Quality of Experience (QoE). Due to its complexity, the original problem is further divided into two sub-optimization problems. A two-sided matching scheme and a deep reinforcement learning approach are developed to schedule offloading requests and allocate network resources, respectively. Performance evaluations illustrate the effectiveness and superiority of our constructed system

    Mobile Edge Computing

    Get PDF
    This is an open access book. It offers comprehensive, self-contained knowledge on Mobile Edge Computing (MEC), which is a very promising technology for achieving intelligence in the next-generation wireless communications and computing networks. The book starts with the basic concepts, key techniques and network architectures of MEC. Then, we present the wide applications of MEC, including edge caching, 6G networks, Internet of Vehicles, and UAVs. In the last part, we present new opportunities when MEC meets blockchain, Artificial Intelligence, and distributed machine learning (e.g., federated learning). We also identify the emerging applications of MEC in pandemic, industrial Internet of Things and disaster management. The book allows an easy cross-reference owing to the broad coverage on both the principle and applications of MEC. The book is written for people interested in communications and computer networks at all levels. The primary audience includes senior undergraduates, postgraduates, educators, scientists, researchers, developers, engineers, innovators and research strategists

    Optimization of vehicular networks in smart cities: from agile optimization to learnheuristics and simheuristics

    Get PDF
    Vehicular ad hoc networks (VANETs) are a fundamental component of intelligent transportation systems in smart cities. With the support of open and real-time data, these networks of inter-connected vehicles constitute an ‘Internet of vehicles’ with the potential to significantly enhance citizens’ mobility and last-mile delivery in urban, peri-urban, and metropolitan areas. However, the proper coordination and logistics of VANETs raise a number of optimization challenges that need to be solved. After reviewing the state of the art on the concepts of VANET optimization and open data in smart cities, this paper discusses some of the most relevant optimization challenges in this area. Since most of the optimization problems are related to the need for real-time solutions or to the consideration of uncertainty and dynamic environments, the paper also discusses how some VANET challenges can be addressed with the use of agile optimization algorithms and the combination of metaheuristics with simulation and machine learning methods. The paper also offers a numerical analysis that measures the impact of using these optimization techniques in some related problems. Our numerical analysis, based on real data from Open Data Barcelona, demonstrates that the constructive heuristic outperforms the random scenario in the CDP combined with vehicular networks, resulting in maximizing the minimum distance between facilities while meeting capacity requirements with the fewest facilities.Peer ReviewedPostprint (published version
    • …
    corecore