4,351 research outputs found

    Exploring the eradication of code smells: An empirical and theoretical perspective

    Get PDF
    This article has been made available through the Brunel Open Access Publishing Fund - Copyright @ 2010 Hindawi Publishing CorporationCode smells reflect code decay, and, as such, developers should seek to eradicate such smells through application of “deodorant” in the form of one or more refactorings. However, a relative lack of studies exploring code smells either theoretically or empirically when compared with literature on refactoring suggests that there are reasons why smell eradication is neither being applied in anger, nor the subject of significant research. In this paper, we present three studies as supporting evidence for this stance. The first is an analysis of a set of five, open-source Java systems in which we show very little tendency for smells to be eradicated by developers; the second is an empirical study of a subsystem of a proprietary, C# web-based application where practical problems arise in smell identification and the third, a theoretical enumeration of smell-related refactorings to suggest why smells may be left alone from an effort perspective. Key findings of the study were that first, smells requiring application of simple refactorings were eradicated in favour of smells requiring more complex refactorings; second, a wide range of conflicts and anomalies soon emerged when trying to identify smelly code; an interesting result with respect to comment lines was also observed. Finally, perceived (estimated) effort to eradicate a smell may be a key factor in explaining why smell eradication is avoided by developers. The study thus highlights the need for a clearer research strategy on the issue of code smells and all aspects of their identification and measurement.The research in this paper was supported by a grant from the UK Engineering and Physical Sciences Research Council (EPSRC) (Grant no: EP/G031126/1

    Mutation testing on an object-oriented framework: An experience report

    Get PDF
    This is the preprint version of the article - Copyright @ 2011 ElsevierContext The increasing presence of Object-Oriented (OO) programs in industrial systems is progressively drawing the attention of mutation researchers toward this paradigm. However, while the number of research contributions in this topic is plentiful, the number of empirical results is still marginal and mostly provided by researchers rather than practitioners. Objective This article reports our experience using mutation testing to measure the effectiveness of an automated test data generator from a user perspective. Method In our study, we applied both traditional and class-level mutation operators to FaMa, an open source Java framework currently being used for research and commercial purposes. We also compared and contrasted our results with the data obtained from some motivating faults found in the literature and two real tools for the analysis of feature models, FaMa and SPLOT. Results Our results are summarized in a number of lessons learned supporting previous isolated results as well as new findings that hopefully will motivate further research in the field. Conclusion We conclude that mutation testing is an effective and affordable technique to measure the effectiveness of test mechanisms in OO systems. We found, however, several practical limitations in current tool support that should be addressed to facilitate the work of testers. We also missed specific techniques and tools to apply mutation testing at the system level.This work has been partially supported by the European Commission (FEDER) and Spanish Government under CICYT Project SETI (TIN2009-07366) and the Andalusian Government Projects ISABEL (TIC-2533) and THEOS (TIC-5906)

    Evaluating Maintainability Prejudices with a Large-Scale Study of Open-Source Projects

    Full text link
    Exaggeration or context changes can render maintainability experience into prejudice. For example, JavaScript is often seen as least elegant language and hence of lowest maintainability. Such prejudice should not guide decisions without prior empirical validation. We formulated 10 hypotheses about maintainability based on prejudices and test them in a large set of open-source projects (6,897 GitHub repositories, 402 million lines, 5 programming languages). We operationalize maintainability with five static analysis metrics. We found that JavaScript code is not worse than other code, Java code shows higher maintainability than C# code and C code has longer methods than other code. The quality of interface documentation is better in Java code than in other code. Code developed by teams is not of higher and large code bases not of lower maintainability. Projects with high maintainability are not more popular or more often forked. Overall, most hypotheses are not supported by open-source data.Comment: 20 page

    Proactive Empirical Assessment of New Language Feature Adoption via Automated Refactoring: The Case of Java 8 Default Methods

    Full text link
    Programming languages and platforms improve over time, sometimes resulting in new language features that offer many benefits. However, despite these benefits, developers may not always be willing to adopt them in their projects for various reasons. In this paper, we describe an empirical study where we assess the adoption of a particular new language feature. Studying how developers use (or do not use) new language features is important in programming language research and engineering because it gives designers insight into the usability of the language to create meaning programs in that language. This knowledge, in turn, can drive future innovations in the area. Here, we explore Java 8 default methods, which allow interfaces to contain (instance) method implementations. Default methods can ease interface evolution, make certain ubiquitous design patterns redundant, and improve both modularity and maintainability. A focus of this work is to discover, through a scientific approach and a novel technique, situations where developers found these constructs useful and where they did not, and the reasons for each. Although several studies center around assessing new language features, to the best of our knowledge, this kind of construct has not been previously considered. Despite their benefits, we found that developers did not adopt default methods in all situations. Our study consisted of submitting pull requests introducing the language feature to 19 real-world, open source Java projects without altering original program semantics. This novel assessment technique is proactive in that the adoption was driven by an automatic refactoring approach rather than waiting for developers to discover and integrate the feature themselves. In this way, we set forth best practices and patterns of using the language feature effectively earlier rather than later and are able to possibly guide (near) future language evolution. We foresee this technique to be useful in assessing other new language features, design patterns, and other programming idioms

    Can we avoid high coupling?

    Get PDF
    It is considered good software design practice to organize source code into modules and to favour within-module connections (cohesion) over between-module connections (coupling), leading to the oft-repeated maxim "low coupling/high cohesion". Prior research into network theory and its application to software systems has found evidence that many important properties in real software systems exhibit approximately scale-free structure, including coupling; researchers have claimed that such scale-free structures are ubiquitous. This implies that high coupling must be unavoidable, statistically speaking, apparently contradicting standard ideas about software structure. We present a model that leads to the simple predictions that approximately scale-free structures ought to arise both for between-module connectivity and overall connectivity, and not as the result of poor design or optimization shortcuts. These predictions are borne out by our large-scale empirical study. Hence we conclude that high coupling is not avoidable--and that this is in fact quite reasonable

    Impact of Programming Features on Code Readability

    Get PDF
    Readability is one important quality attributes for software source codes. Readability has also significant relation or impact with other quality attributes such as: reusability, maintainability, reliability, complexity, and portability metrics. This research develops a novel approach called Impact of Programming Features on Code Readability (IPFCR), to examine the influence of various programming features and the effect of these features on code readability. A code Readability Tool (CRT) is developed to evaluate the IPFCR readability features or attributes. In order to assess the level if impact that each one of the 25 proposed readability features may have, positively or negatively on the overall code readability, a survey was distributed to a random number of expert programmers. These experts evaluated the effect of each feature on code readability, based on their knowledge or experience. Expert programmers have evaluated readability features to be ordered then classified into positive and negative factors based on their impact on code readability or understanding. The survey responses were analyzed using SPSS statistical tool. Most of proposed code features showed to have significantly positive impact on enhancing readability including: meaningful names, consistency, and comments. On the other hand, fewer features such as arithmetic formulas, nested loops, and recursive functions showed to have a negative impact. Finally, few features showed to have neutral impact on readability

    Coming: a Tool for Mining Change Pattern Instances from Git Commits

    Full text link
    Software repositories such as Git have become a relevant source of information for software engineer researcher. For instance, the detection of Commits that fulfill a given criterion (e.g., bugfixing commits) is one of the most frequent tasks done to understand the software evolution. However, to our knowledge, there is not open-source tools that, given a Git repository, returns all the instances of a given change pattern. In this paper we present Coming, a tool that takes an input a Git repository and mines instances of change patterns on each commit. For that, Coming computes fine-grained changes between two consecutive revisions, analyzes those changes to detect if they correspond to an instance of a change pattern (specified by the user using XML), and finally, after analyzing all the commits, it presents a) the frequency of code changes and b) the instances found on each commit. We evaluate Coming on a set of 28 pairs of revisions from Defects4J, finding instances of change patterns that involve If conditions on 26 of them
    corecore