
Hindawi Publishing Corporation
Advances in Software Engineering
Volume 2010, Article ID 820103, 12 pages
doi:10.1155/2010/820103

Research Article

Exploring the Eradication of Code Smells: An Empirical and
Theoretical Perspective

S. Counsell,1 R. M. Hierons,1 H. Hamza,1 S. Black,2 and M. Durrand3

1 Department of IS and Computing, Brunel University, Uxbridge UB8 3PH, UK
2 Department of Information and Software Systems, University of Westminster, Harrow Campus, London HA1 4TP, UK
3 change-s.com, Westminster Borough, London, UK

Correspondence should be addressed to S. Counsell, steve.counsell@brunel.ac.uk

Received 2 September 2010; Revised 31 December 2010; Accepted 31 December 2010

Academic Editor: Giulio Concas

Copyright © 2010 S. Counsell et al. This is an open access article distributed under the Creative Commons Attribution License,
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Code smells reflect code decay, and, as such, developers should seek to eradicate such smells through application of “deodorant”
in the form of one or more refactorings. However, a relative lack of studies exploring code smells either theoretically or empirically
when compared with literature on refactoring suggests that there are reasons why smell eradication is neither being applied in
anger, nor the subject of significant research. In this paper, we present three studies as supporting evidence for this stance. The
first is an analysis of a set of five, open-source Java systems in which we show very little tendency for smells to be eradicated by
developers; the second is an empirical study of a subsystem of a proprietary, C# web-based application where practical problems
arise in smell identification and the third, a theoretical enumeration of smell-related refactorings to suggest why smells may be left
alone from an effort perspective. Key findings of the study were that first, smells requiring application of simple refactorings were
eradicated in favour of smells requiring more complex refactorings; second, a wide range of conflicts and anomalies soon emerged
when trying to identify smelly code; an interesting result with respect to comment lines was also observed. Finally, perceived
(estimated) effort to eradicate a smell may be a key factor in explaining why smell eradication is avoided by developers. The
study thus highlights the need for a clearer research strategy on the issue of code smells and all aspects of their identification and
measurement.

1. Introduction

Bad code smells are a concept described in Fowler [1] to
denote code that “screams out” to be refactored. In other
words, it reflects code that is decaying and, unless eradicated,
is likely to be the cause of frequent future maintenance,
potential faults, and associated testing overheads. Left
unchecked and free to fester over time, smells can soon
become “stenches” with the potential for relatively high fault-
proneness, added maintenance demands, and extratesting
as outcomes. An evolving system left to decay is a problem
“stored-up” and growing in size for a later date. Eradication
of a smell is usually achieved through application of a single,
or set of, refactoring/s, and twenty-two different code smells
are described by Fowler in [1] together with the refactorings
that are needed to remedy those smells. While the related
topic of refactoring has been the subject of a significant

number of research and other studies [2–9], the empirical
and theoretical study of code smells seems to have been
largely overlooked by the research community. Even the
terminology used in code smell research has yet to find a
firm footing and general acceptance. And yet, the problem
of code smells has strong industrial resonance—decaying
systems consume vast developer resources.

In this paper, we describe three studies of supporting
evidence to justify our stance that a fresh look needs to be
made of the area, the scope for research in the area, and
the benefits that analysis of code smells could provide. The
first presents a “smell-to-refactoring” theoretical justification
for why some smells may be prohibitive for developers to
remedy based on the number of related refactorings required
to eradicate a smell; in other words, we suggest that the
necessary effort required for smell eradication might itself be
prohibiting factor. The second is a study of multiple versions

CORE Metadata, citation and similar papers at core.ac.uk

Provided by Brunel University Research Archive

https://core.ac.uk/display/338023?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

2 Advances in Software Engineering

of five, Java open-source systems (OSSs) [2] from which
extracted refactorings, when reverse engineered, showed
little empirical propensity on the part of the OSS developers
to eradicate smells. Finally, we describe an empirical exami-
nation of two versions of a proprietary C#, web-based system
in which we point to why even identifying simple smells
such as “large” classes and “long” methods [1] pose practical
difficulties and raise both conflicts and anomalies. Results
showed that perceived (estimated) effort to eradicate a smell
may be a key factor in explaining why smell eradication
is avoided by developers. Only limited evidence of smell
eradication by developers and a wide range of practical
problems soon emerged when trying to identify “smelly”
code from proprietary C# code. The remainder of the paper is
organized as follows. In Section 2, we present the motivation
for the work. We then present each of the three studies in the
order described with supporting data (Sections 3, 4, and 5,
resp.) and describe threats to study validity in Section 6. We
then finalize with conclusions and future work (Section 7).

2. Motivation/Related Work

The research in this paper is motivated by one overarching
research question: why, if the eradication of code smells
provides such obvious potential, theoretical benefits and is
a problem that all code might suffer from as it evolves,
has the same topic received such little research attention?
This question itself induces a range of other questions and
motivating factors. First, what role does human judgment
and motivation for eradicating smells fulfill in the identifi-
cation of smells? In other words, are developers interested
in smell eradication? It is clear that the choice of what a
“large” class or “excessive” coupling constitutes is subjective
and this might lie at the heart of why developers are
reluctant to address code smells. Second, what anomalies
and inconsistencies arise when we attempt to “sniff out”
smells from systems? That is, if we consciously search out
code smells, what practical problems arise? Third, we need
to consider the opportunity cost of choosing to eradicate one
code smell over another. Developer time is limited, and there
is a high opportunity cost of any smell eradication effort.
Fourth, what theoretical considerations become important
for the practical eradication of code smells? The activity of
eradicating a single smell can, in theory, require a range
of subactivities, depending on smell “complexity.” Finally,
we cannot discount from our discussion the burden that
increased testing places on the developer. Just as when a
developer undertakes a simple refactoring, for every smell
eradicated there is a need to test the resulting code to ensure
it has retained its “semantics”; eradication of a smell poses a
similar challenge.

In terms of related work, research into code smells
started promisingly with several industry-oriented studies,
but seems to have petered out more recently. While smells
are widely acknowledged as a problematic aspect of software
development, very little research work has focused on code
smells, their analysis and even less on the empirical study
of smells from industrial, proprietary code. Two notable,

seminal studies of code smells were undertaken by Mäntylä
et al. [10] and Mäntylä and Lassenius [11, 12] who conducted
an empirical study of industrial developers and their opinion
of smells in evolving structures. The study gave insights into
which smells developers most “understood” and hence they
would be most likely to eradicate—the “Large Class” smell
[1] featured prominently. A well-known “taxonomy” for
allocating code smell was also proposed by Mäntylä in [13];
in subsequent work, Mäntylä and Lassenius also describe
mechanisms for making refactoring decisions based on smell
identification [11]. Recent research by Khomh et al. explored
code smells using a Bayesian network approach [14] and
from looking at changes made to a system as a basis for
smell identification [15]. Counsell et al. established a link
between refactoring and code smells in terms of the in- and
out-degrees of a dependency diagram [2] supported with
empirical OSS data.

Olbrich et al. [16] describe the study of two open-source
systems over several years of development and focuse on
two code smells in particular (the “God class” and “Shotgun
Surgery” smells); different change behavior was observed
for classes “infected” by code smells. More recently, Olbrich
et al. [17] explore the change and fault proneness of “God”
and “Brain” classes for systems ranging between seven and
ten years old. Results showed that both smells were more
fault and change prone, but when normalized for size were
actually (and counter intuitively) less fault prone. Li and
Shatnawi [18] investigated the link between bad smells and
class error probability in an open-source system—some
evidence to support high fault rates in smell code was
reported. Van Emden and Moonen [19] investigated how the
quality of code could be automatically assessed by checking
for the presence of code smells and illustrated the feasibility
of their approach through jCOSMO, a prototype code smell
tool. A set of design flaws, including recognized code smells
and a strategy, based on metrics for detecting those design
flaws was described by Marinescu [20]. The mechanism was
validated empirically. The same author refines that earlier
work in [21]. Finally, Hamza et al. [22] provide an in-depth
deconstruction of both Fowler’s and Kerievsky’s code smells
[5] in an attempt to determine their overlap. While these
studies have provided a basis for the area of code smells and
the study of code smells, a range of open research issues
persist. In the next three sections, we describe two empirical
studies and one theoretical study (in that order) which
question the viability of approaches to smell identification
and eradication.

3. Refactorings Per Smell

3.1. Data Analysis. As a first part of our smell analysis, we
describe the potential cost in time and effort of undertaking
each of the 22 code smells. The basis of the analysis is that
in Sections 4 and 5 we will see evidence of how limited
smell eradication appears to be (Section 4) and some of the
difficulties which arise when we attempt to sniff out code
smells (Section 5). In this section, we provide a concrete
suggestion as to why this might be the case. Earlier, we

Advances in Software Engineering 3

stated how each of the code smells proposed by Fowler [1]
could be eradicated by application of one or more other
refactorings. Most refactorings (as well as having its own
steps to completion) require other related refactorings to
be undertaken in a nested relationship. Put another way,
refactoring X might require refactoring Y, which in turn
might require refactoring Z. Each of X, Y, and Z may also
have other nested refactorings. All of X, Y, and Z can be
extracted from Fowler’s text as remedies for each of the
smells. We can then posit that a factor inhibiting a developer
addressing a code smell is the total number of refactorings
that might need to be undertaken after following the “chains,
induced by each of X, Y, and Z and used to remedy that
smell. As part of our analysis, we therefore enumerated the
refactorings that each of the smells induced, and this was
achieved using a bespoke tool. Table 1 gives the 22 code
smells listed in Fowler [1].

Figure 1 shows the potential number of refactorings that
each of the 22 code smells requires. It is interesting that
the smells observed in Section 4 are smells with relatively
higher numbers of associated refactorings. The Large Class
smell (number 10) has 40 associated refactorings. One of
the reasons why this smell requires so many refactorings
is due to requirement for the movement of methods to
new class/classes and associated dependencies which, as we
stated earlier, destroys class cohesiveness and forces the
unpicking of all dependencies between methods. The Long
Method smell (number 12) has 20 associated refactorings
and the Lazy Class (number 11) 15 associated refactorings.
As interestingly, these were the smells that we found difficult
to tangibly identify from the ITWeb subsystem. On the other
hand, the smells that we identified to be eradicated from the
five OSS have relatively fewer required refactorings. Smell
1 actually has only 2 associated refactorings, and smell 16
has only 4 associated refactorings. Smells 7, 8, and 19 and
20 have relatively more associated refactorings overall but
then again, we have no firm evidence that these were actually
eradicated. Finally, the switch statement (smell 21) identified
in one ITWeb class requires 16 separate refactorings in order
to be eliminated—a relatively difficult smell to eradicate.

It would seem that developers might well eradicate smells,
but they tend to be smells that require little effort when com-
pared with others. Interestingly, and on a final note, in the
developer survey carried out by Mäntylä [13], the Long
Method smell stood out as the smell many developers
“understood” the workings of most. In other words, con-
ceptually speaking, developers know exactly what this smell
arises from, the problems that it might pose and, more
than likely, the means of eradicating this smell. One would
therefore think that a greater understanding of a smell would
imply that developers would naturally be more likely to want
to eradicate that smell. However, we see that from Figure 1,
the Long Method smell (smell 12) requires a relatively high
amount of effort for its eradication. We therefore suggest that
the effort required for the Long Method smell is a prohibiting
factor for developers who might consider eradicating these
smells. The lesson is that just because a smell is easy to
understand does not mean it is easy to eradicate.

Table 1: Code smells and their description.

Smell Description

(1) Alternative classes with
different interfaces

Two classes appear different on the
outside, but are similar on the
inside

(2) Comments
Comments should describe why the
code is there not what it does

(3) Data class
Classes should not contain just data,
they should contain methods as well

(4) Data clumps
Data that belong together should be
amalgamated rather than remain
separated

(5) Divergent change
Changes to code should be kept
local; too many diverse changes
indicate poor structure

(6) Duplicated code
Eradicate duplicated code whenever
possible

(7) Feature Envy
Class features that use other class”
features should be moved those
other classes

(8) Inappropriate intimacy
Classes should not associate with
other classes excessively

(9) Incomplete library class
Avoid adding a method you need
(and which does not exist in a
library class) to a random class

(10) Large class A class has too many methods

(11) Lazy class
A class is doing too little to justify
its existence

(12) Long method
A method is too large; it should be
decomposed

(13) Long parameter list A method has too many parameters

(14) Message chains Avoid long chains of message calls

(15) Middle man
If a class is delegating too much
responsibility, should it exist?

(16) Parallel inheritance
hierarchies

When you make a subclass of one
class, you need to make a subclass of
another

(17) Primitive obsession Overuse of primitive types in a class

(18) Refused bequest
If inherited behavior is not being
used, is inheritance necessary?

(19) Shotgun surgery
Avoid cascading changes; limit the
number of classes that need to be
changed

(20) Speculative generality
Code should not be added for “just
in case” scenarios—it should solve
current problems

(21) Switch statements
Polymorphism should be used
instead of large switch statements

(22) Temporary field
Classes should not contain
unnecessary fields

4. Open-Source Systems

4.1. Data Analysis. As a second part of our smell analysis, we
use data from five, open-source Java systems as an empirical
basis. These systems have been the basis of other empirical
studies [2, 3, 23]. The criteria for initially choosing those

4 Advances in Software Engineering

0

5

10

15

20

25

30

35

40

45

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22
Smell

N
u

m
be

r
of

re
fa

ct
or

in
gs

Figure 1: Code smells and their refactorings.

systems reported at length in those studies were that they
had to be entirely Java systems and to have evolved over a
minimum number of versions. From the same five systems
we extracted a set of fourteen specific refactorings. The five
systems studied were as follows.

(1) Antlr a framework for constructing compilers and
translators using a source input of Java, C++ or C#.
Antlr began with 153 classes and 31 interfaces. The
latest version had 171 classes and 31 interfaces (five
versions were studied).

(2) PDFBox a Java PDF library allowing access to com-
ponents found in a PDF document. The initial system
had 135 classes and 10 interfaces; the latest version of
six had 294 classes and 52 interfaces.

(3) Velocity a template engine allowing web designers to
access methods defined in Java. Velocity began with
224 classes and 44 interfaces. At the ninth version, it
had 300 classes and 80 interfaces (nine versions were
studied).

(4) Tyrant a graphical-based, fantasy adventure game,
incorporates landscapes, dungeons and towns. The
system began with 112 classes and 5 interfaces. At the
ninth version, it had 138 classes and 6 interfaces (nine
versions were studied).

(5) HSQLDB a relational database application support-
ing SQL. HSQLDB started with 52 classes and 1
interface. The latest version had 254 classes and 17
interfaces (four versions were studied).

The basis on which the initial study rests is that, to eradicate
a smell, a specific set of refactorings need to be applied.
Occurrences of fourteen specific refactorings were automat-
ically extracted from multiple versions of these systems as
part of an earlier study documented in [2]. The fourteen
refactorings were chosen by two industrial developers as
those most likely to be undertaken on a day-to-day basis and
therefore ranged across OO concepts such as encapsulation
and inheritance. Simpler refactorings for renaming/moving
fields and methods were also included for the same reason.
The refactorings were extracted by a bespoke tool and (in
ascending order of frequency found in the five systems
together with a brief description of each) are as follows.

(a) Encapsulate Downcast. “A method returns an object
that needs to be downcast by its callers” [1]. (This was
the least frequently applied refactoring.)

(b) Push Down Method. “Behavior on a superclass is
relevant only for some of its subclasses” [1].

(c) Extract Subclass. A class has features used only in
some instances—a subclass for that subset of features
is created.

(d) Encapsulate Field. A field is made private.

(e) Hide Method. A method is made private.

(f) Pull Up Field. “Two subclasses have the same field.
Move the field to the superclass” [1].

(g) Extract Superclass. Two classes have similar features.
A superclass is created and common features moved.

(h) Remove Parameter. Parameter is unused by a
method.

(i) Push Down Field. “A field is used only by some
subclasses. Move the field to those subclasses” [1].

(j) Pull Up Method. Methods with identical results are
moved to the superclass.

(k) Move Method. A method is moved to another class.

(l) Add Parameter. A parameter is added to a method.

(m) Move Field. A field is moved to another class.

(n) Rename Method. (This was the most frequently
applied refactoring.)

4.2. Research Question. As part of the smell analysis, we
first pose the question: given the set of refactorings extracted
from the five systems, which combination of those refactorings,
applied to the versions of the five systems, have been used
to remedy code smells? In other words, from the data we
collected on refactorings, do developers actually refactor
(whether consciously or otherwise) to remedy smells and, if
so, to what extent? The total set of 891 refactorings extracted
by the tool over all versions of all systems was thus analyzed
on a version-by-version basis to determine which smells
they eradicated. The list of refactorings required for the
reverse engineering process (i.e., to eradicate each smell)
was provided in Fowler [1], and Table 1 gives the full list
of 22 code smells. The process of deciding whether a smell
had been entirely remedied required an exact match to be
found between the list of refactorings specified by Fowler (to
eradicate that smell) and a subset of refactorings extracted
from the same version of a system. For a partial eradication,
only a partial match between the extracted refactorings and
that subset required to eradicate a smell was required. The
smell analysis presented is based on only the refactorings
extracted by the tool. The data on which refactorings had
been extracted was analyzed using a spreadsheet, in which
the frequency of each of the 15 refactorings was output on
a version-by-version basis for each of the five systems. A
sample of the set of 15 refactorings extracted was validated
by the tool developers when the tool was run against the
source code. This involved manual checking of the output

Advances in Software Engineering 5

(i.e., the refactorings) against the Java source code. We thus
have confidence in the correctness of the data and in
the identification of the smells that we have identified as
eradicated or partially eradicated.

Table 2 shows the five systems and the versions in each
of the systems where some evidence of remedying of smells
was found. For example, in versions 3 and 6 of the PDFBox
system, a combination of refactorings was found to remedy
smells 1 and 16. Column 3 of the table shows which smells
were entirely remedied through application of refactorings.
Column 4, on the other hand, shows the smells which might
have been remedied.

Table 2 shows that we can only identify two smells as
definitely having been remedied (i.e., smell 1 and 16). Smell
1 is “Alternative Classes with Different Interfaces.” This smell
occurs when two classes have a similar internal content but
different external composition (i.e., in the parameter list).
They should be amalgamated to present a common interface.
Smell 16 is “Parallel Inheritance Hierarchies” where two
separate inheritance hierarchies grow dependently and where
creating subclasses in one requires subclasses to be created
in the other. It is also worth noting that unexpectedly,
later versions of the five systems did not show any greater
propensity for smell eradication than earlier versions. This
was surprising, since we might expect smells to worsen as a
system evolved.

From Table 2, we see that following our analysis, only six
of the remaining twenty smells might have been remedied
according to column 4 (i.e., smells 3, 7, 8, 10, 19, and 20).
Some of the fourteen refactorings identified from the systems
have also been identified as “core” refactorings (i.e., are
likely to be used frequently in multiple code modification
scenarios). The “Move Method,” “Move Field,” and “Add
Parameter” refactorings are typical examples [2]. These
would be refactorings that we might expect a developer to
apply as part of regular software maintenance and to be
unconnected with conscious, intentional refactoring; it is
difficult to know whether the developer actually set out to
refactor or whether it was a byproduct of the day-to-day
maintenance processes.

The results from Table 2 highlight the relative complexity
of some smells over others, but the overriding message seems
to be that only a small subset of smell eradications, from a
small subset of the total number of versions from the five
systems (13 versions from 33), were attempted. This claim
has to be qualified with the caveat that we have no knowledge
of whether any smell had been eradicated deliberately by the
developer or whether the two refactorings were applied in
combination at the same time to achieve the objective of
smell eradication.

4.2.1. Smell Decomposition. Each of the six smells in Table 2
has a set of refactorings that need to be considered and
then applied in order that they can be eradicated. For
example, consider smell 1 “Alternative Classes with Different
Interfaces.” According to the Fowler mechanics, repeated
application of the “Move Method” and “Rename Method”
refactorings will remedy this smell. Equally, the “Parallel

Table 2: Smells eradicated (and partially eradicated).

System Version Smell remedied “Partial” smells
remedied

Antlr 2 1, 16 7, 8, 19, 20

PDFBox
3 1, 16 7, 8, 19, 20

6 1, 16 3, 7, 8,19, 20

Velocity

2 1, 16 3, 7, 8, 19

3 1, 16 3, 7, 8, 19

5 1, 16 3, 7, 8, 19

6 1, 16 7, 8, 19

9 1 20

Tyrant
7 1 20

8 1 3, 20

HSQLDB
1 1, 16 7, 8, 19, 20

2 1, 16 7, 8, 10, 19, 20

3 1, 16 7, 8, 10, 19, 20

Inheritance Hierarchies” smell (smell 16) occurs when two
separate inheritance hierarchies grow in a dependent fashion
such that creating subclasses in one requires subclasses to
be created in the other. Repeated application of the “Move
Method” and “Move Field” refactorings would remedy this
smell. It is the fact that these two smells require a rela-
tively small number of frequently applied and overlapping
refactorings (i.e., from the set of 14 extracted) that possibly
account for the result in Table 2. All three refactorings (i.e.,
Move Method, Move Field, and Rename Method) appear in
the top five refactorings from the list in Section 4.1. In other
words, if the developer did set out to eradicate either of the
two aforementioned smells, it may simply be because they
only required the application of a set of two, relatively simple
refactorings (and those that a developer regularly carried
out) in each case.

Table 3 shows the total set of refactorings necessary to
eradicate each of the six smells that were only partially reme-
died and illustrates that the frequently applied refactorings
were, again, a common feature of the eradication process
(i.e., Move Field, Move Method, and Rename Method appear
often). The extent to which smells were only partially
remedied is best illustrated with an example. From Table 3,
code smell 10 (i.e., Large Class) requires the application of
four refactorings in order to be eradicated. These four are
“Extract Class,” “Extract Subclass,” “Extract Interface,” and
“Replace Data Value with Object”. Only evidence of one of
these four, namely, the “Extract Subclass” refactoring, was
found from the extraction of refactorings by our tool. In
other words, for this smell (and for many of the other five
smells in Table 3) only a small minority of the required
refactorings for eradication of smells were found to have
been applied. The question arises as to why these smells
were not totally eradicated? The “Large Class” smell (which
occurs when a class is trying to do too much) requires
the application of four refactorings; the first of these is
“Extract Class” which decomposes a class into two or more
separate classes. The “Extract Subclass” refactoring accounts

6 Advances in Software Engineering

Table 3: Smells that were partially remedied.

Code smell Name Refactorings

3 Data Class

Move Method

Encapsulate Field

Encapsulate Collection

7 Feature Envy

Move Method

Move Field

Extract Method

8 Inappropriate
Intimacy

Move Method

Move Field

Change Bidirectional Association
to Unidirectional

Replace Inheritance with
Delegation

Hide Delegate

10 Large Class

Extract Class

Extract Subclass

Extract Interface

Replace Data Value with Object

19 Shotgun Surgery

Move Method

Move Field

Inline Class

20 Speculative
Generality

Collapse Hierarchy

Inline Class

Remove Parameter

Rename Method

for the case when the class being decomposed requires the
creation of at least one subclass; the same rule applies to the
“Extract Interface” refactoring in terms of decomposition of
interfaces. The “Replace Data Value with Object” refactoring
occurs when a data item needs additional data or behavior;
the data item should be turned into an object. Each of
these four refactorings required to eradicate the “Large
Class” smell thus require significant effort to apply since
they require either structural changes to the code or the
introduction of objects to the system. While we did not
collect all four refactorings, we suggest that the high-level
structural nature of these refactorings was the reason why
developers avoided their use in smell eradication.

The overriding message from the data in Tables 2 and
3 appears to be that while we can identify some evidence
that refactorings associated with smells are undertaken, those
refactorings appear to be ones that a developer might be
liable to undertake anyway without any thought given to the
eradication of any smell. For example, a developer might
rename or move a method as part of general maintenance
activity or in response to a fault fix. We are therefore skeptical
about the claim that developers actively seek out code smells.
The opposite may actually be the case; developers may
actively avoid code smells because they are relatively difficult
to tackle.

4.2.2. The Remaining Smells. Smell 3 “Data Class” is a
class that has fields and getting and setting methods for

those fields and are therefore merely data holders for other
classes. This implies that they only exist to be manipulated
by other classes. Smell 7 is “Feature Envy,” which occurs
when the methods of one class use the methods of another
class excessively. Smell 8, “Inappropriate Intimacy,” arises
when two classes are coupled excessively to each other. The
“Shotgun Surgery” smell arises when a change in one class
requires cascading changes in several other classes. “Specula-
tive Generality” arises when a developer adds functionality
in the belief that it will be needed later on. We note that
Mäntylä’s taxonomy [13] rates this smell alongside duplicate
code and dead code in terms of the harmful effect it might
have on a system. While all of these smells require at least one
simple refactoring, they also require the application of at least
one “complex” refactoring. We suggest that the complexity of
eradicating a smell (in some cases) is a factor in developers
avoiding smell eradication.

5. A C# Proprietary System

5.1. An Aggressively Refactored System. The final part of our
analysis is exploration of a C# subsystem for a web-based,
loans system providing quotes and financial information for
online customers; henceforward and for system anonymity
we will refer to this system as simply “ITWeb.” We examined
two versions of one of its subsystems. The first, an early
version, comprised 401 classes. A later version (henceforward
version n) had been the subject of a significant refactoring
effort to amalgamate, minimize as well as optimize classes—
we were given no information as to which version it
represented; it comprised 101 classes only and had thus been
reduced in size by 300 classes through a process of aggressive
refactoring (through merging of classes and optimization of
others). For the purposes of this second analysis, we focused
on four smells which, arguably, should be easily identifiable
from the source code via simple metrics. These were as
follows.

(1) Large Class. A class is trying to do too much, iden-
tified by a relatively large number of methods. Such
a class is difficult to maintain and thus should be
refactored—the class should be decomposed into two
or more classes.

(2) Long Method. A method is doing too much, identi-
fied by its large number of executable statements. In
the same way that as that for Large Class. The method
should be decomposed into two or more methods.

(3) Lazy Class. A class is not doing enough to justify its
existence, identified by a small number of methods
and/or executable statements; it should be merged
with its nearest, related class.

(4) Comments. There are conflicting opinions on the
role that comments play in code from a smell
perspective. Large numbers of comments in theory
are useful, but, on the other hand might suggest that
the relevant code is overly complex and thus needs
significant explanation; an alternative viewpoint is
that the code has been modified significantly and

Advances in Software Engineering 7

the comments reflect the activity around a method
or methods of a class over the course of its lifetime.
Excessive comments should be treated with care—
they may be a smell indicating problematic code.

The SourceMonitor tool [24] was used to extract a set of
smell-relevant metrics [25] from each version.

Metric 1 (Average Methods per Class). It is defined as the
average methods per class for all class, interface, and struct
methods. It is computed by dividing the total number of
methods by the total number of classes, interfaces, and
structs.

Metric 2 (Average Statements per Method). The total num-
ber of statements found inside a class divided by the number
of methods.

Metric 3 (Average Calls per Method). The average number
of calls to other methods inside all methods in a class
(i.e., intracoupling). This metric does not include calls to
methods of other classes in the same way that, for example,
the Coupling between Objects metric of Chidamber and
Kemerer does [26].

Metric 4 (Average Class Complexity). It is defined as the
sum of the complexities of the methods in a class divided
by the number of methods and is in line with the definition
provided by McConnell [27]. The complexity of a method is
the count of the number of unique paths through a method.
Each method therefore has a minimum complexity of “1” if it
comprises just one path. A value of “1” is added to the value
of the metric for each branch statement (if, else, for, while,
etc.; a “1” is also added for each “||” or “&” operator in an
“if” or “while” statement).

Metric 5 (Percentage Comments). This metric reflects the
percentage of lines of code accounted for by comments.

For each of these four metrics individual class values
were also collected (i.e., the methods, statements, calls per
method, complexity, and comments per class). We note that
in several cases, a file can contain more than one class, in
which case the average reported is that for the set of classes
rather than the individual class.

5.2. Research Question. The research question on which
we analyze ITWeb is as follows. Can we expect the four
aforementioned code smells to occur frequently in a system
when we deliberately set out to “sniff” them? Moreover, we
might expect that since the system was aggressively refactored
from version 1 to n, we might find less occurrences of the set
of smells in the later version than in the earlier. Table 4 shows
the summary data for versions 1 and n for the ITWeb system.
We see that the average number of methods, average size
(statements) of methods, average calls per method, average
complexity decrease from version 1 to version n suggesting
that the extensive refactoring that occurred between version
1 and n succeeded in reducing both class size and complexity.
Percentage of comments also decreased from version 1 to

version n, suggesting that developers deemed the removal of
comments as a necessary aspect of the refactoring process.
The question that arises is whether and/or to what extent
either version presented opportunities for smell eradication?
We explore each of the four listed smells in the order
described to find out.

5.2.1. Large Class. To identify occurrences of the Large Class
(LC) smell in version 1, one way of achieving this would be to
order classes on descending Average Methods per Class and
refine the search from there. By doing this, we find that the
class with the largest number of methods is a sealed C# class
(i.e., it cannot be inherited) called ��������	�

�	��.
This is an architectural, pattern-based class, essential for the
coordination of ITWeb, and contains 80 methods. (Fowler
defines the page controller pattern as “An object that handles
a request for a specific page or action on a website”.) Inspec-
tion of the code for this class revealed that each method
handled one of a number of functionally cohesive requests
for web page details. For example, there were methods to
����������������
, �������
������������
, and
�����	���	������������
, and so forth. The aver-
age complexity of this class was 2.08, well below the
average complexity for version 1. The number of calls
per method was 4.5, well above the average. This last
metric presents a conflict: a strong interdependence and
coupling between the methods in this class is generally
considered to contribute positively to the cohesiveness of
the class, but equally would pose a huge problem if we
wanted to decompose the class. The classes with the second
and third largest numbers of methods are Controller and
Navigation-based classes (�������������	�

�	��
and ������������	��, resp.), again with similar func-
tionality to ��������	�

�	��.

Ordering version n in the same way, we find that the
maximum number of methods is 12 and belongs to a
class called ���
���������.This is another architectural,
pattern-based Data Transfer Object (DTO) [28]. A DTO
wraps up data for transfer between two processes, possibly
over a network, to prevent the overhead of multiple (remote)
calls. Inspection of the code for this class confirmed that
each of the 12 methods contained only a single “get” and
“set” method. The average complexity of this class was 1, well
below the average complexity for the subsystem of 1.13, and
the number of calls per method was zero. In contrast to being
classified as a smell, this class is a key element of the system
architecture and has desirable properties only. The median
of class size was 3 for this version, reinforcing the difficult
question as to “which class to choose for eradication?” The
problems that arise with the LC smell are therefore (a)
deciding on what exactly constitutes a “large” class (a largely
arbitrary choice) and (b) the fact that coupling between
methods adds to class cohesion [29], yet makes an LC smell
eradication more problematic due to dependencies. Figures
2(a) and 2(b) show the distribution of average methods per
class in version 1 (Figure 2(a)) and version n (Figure 2(b)),
respectively. The scale on the y-axis is an indication of the
extent to which the average number of methods per class was
reduced as a direct result of the refactoring effort. Only one

8 Advances in Software Engineering

Table 4: Summary Data for ITWeb.

Version Classes Ave. no. methods Ave. statements/method Ave. calls/method Ave. complexity %Comments

1 401 5.59 4.03 2.24 1.70 4.0

N 101 3.35 1.79 1.29 1.13 0.3

0
10
20
30
40
50
60
70
80
90

0 50 100 150 200 250 300 350

Class

M
et

h
od

s/
cl

as
s

(a)

Class

M
et

h
od

s/
cl

as
s

0

2

4

6

8

10

12

14

0 10 20 30 40 50 60 70

(b)

Figure 2: (a) Methods/class (version 1). (b) Methods/class (version n).

class in version n has an average number of methods above
10. This compares with 45 values exceeding that value in
version 1.

We conducted an 80/20 analysis of the values in each of
Figures 2(a) and 2(b) to determine the distribution changes
that had taken place from version 1 to version n [30]. For
Figure 2(a), 80% of values were found in approximately
136 (33%) of the 401 classes in total. For Figure 2(b), 80%
of values were found in approximately 55 (approximately
54%) of the 101 classes, emphasizing the positive change in
distribution of the values in the later version and a more
even distribution as a result of the refactoring process. A
short “head” and “long” tail are therefore less evident in the
later version than in the former. The standard deviation of
the values in Figure 2(a) is 8.61, compared with just 2.26 for
Figure 2(b).

We note that the scale on the x-axis of Figures 2(a) and
2(b) represent files, within which more than one class may
be housed (this explains the value of 350 and 70 on the
respective axes and does not reflect the number of classes).

5.2.2. Long Method. If we now turn to the Long Method
(LM) smell, one way of identifying such a smell is to order
the set of classes in each version on Statements per Method
and then refine the search from there. If we order version 1
in this way, we find that the class �����	�����������
contains the method with the highest number of statements.
Inspection of the code revealed this method to contain one
large switch statement comprising 340 statements. The switch
statement is actually a smell itself (see Table 1, number
21), since OO suggests the use of the more appropriate
OO facet of polymorphism instead of large decision control
constructs [1]. However, we see no value in decomposing
this method since for a web application switch statements
effectively represent user interface choice (an essential aspect
for guiding the online process).

Doing the same for version n, we found that the
largest method was again a DTO class called ���������

containing just one method. Inspection of the code revealed
the method to be a set of similar, executable statements for
returning a code to the main program depending on the
values of user-filled fields (e.g., combinations of company
name seeking online quotes, company logo, payment details,
and payment rates). The average complexity of this class was
5, well above the average (1.13). However, the very nature
of each method (comprising multiple “if” statements) does
contribute to complexity as we have defined it. That said
however, we see no obvious benefits to simplifying code
complexity where the purpose of the code is obvious and
essential to the workings of the system.

Three overriding messages from the LM analysis emerge.
First, by necessity, some methods (often the longest) exist
for a good reason. Second, searching out one smell can
often lead to the identification of other, potentially more
harmful smells. One aspect of the analysis presented is that
by avoiding some smells, we may inadvertently miss others.
Moreover, we have to consider the possibility that smells are
created due to eradication of others; in the same vein, a study
by Pietrzak and Walter used knowledge of already detected
smells and the interrelationships between smells to detect
further smell types [31]. Finally, necessary complexity and
how that manifests in code is often infeasible to remove when
existing code communicates the purpose of the code.

Figure 3(a) shows the distribution of statements per
method for version 1 of the ITWeb system; Figure 3(b) shows
the same distribution for version n of the same system. As
per the values in Figures 2(a) and 2(b), the contrast between
the two set of values is marked in terms of the reduction
shown in the second of the figures. The maximum value
in Figure 3(b) is 8.33 compared with 38.63 in version 1
(Figure 3(a)). An 80/20 analysis of the values in each of
Figures 3(a) and 3(b) revealed that for Figure 3(a), 80%
of values were found in approximately 113 (approximately

Advances in Software Engineering 9

0 50 100 150 200 250 300 350

Class

5

10

15

20

25

30

35

40

45

0

St
at

em
en

ts
/m

et
h

od

(a)

Class

0 10 20 30 40 50 60 70
0

1

2

3

4

5

6

7

8

9

St
at

em
en

ts
/m

et
h

od

(b)

Figure 3: (a) Statements/method (version 1). (b) Statements/method (version n).

public enum Fulfilment Type

{
None= 9, Site= 11, Ref= 12, BkrRef= 13

}

Figure 4: Enumerated Type.

28%) of the 401 classes in total. For Figure 3(b), 80% of
values were found in 23 (approximately 22%) of the 101
classes, emphasizing the change in distribution of the values
in the later version and the need for fewer statements per
method in the system as a whole. This is supported through
the standard deviation with values in Figure 3(a) of 4.82,
compared with 1.92 for Figure 3(b).

5.2.3. Lazy Class. If we now turn to the Lazy Class smell,
one route to its identification would be to order classes on
statements (ascending) and work downwards thereafter. If we
order version 1 in this way, we find that 16 classes had just
a single statement. Many of these classes were single, type-
based classes similar to that shown in Figure 4. Many other
small classes with 3 statements were collection-based classes
(38 classes fell into this category) which returned values
from a collection, based on a parameter index value passed.
In other words, each of these had a specific and cohesively
tight functionality and would not, at first impressions, be
candidates for amalgamation into other classes.

The complexity of such classes was also found to be
slightly lower than average (typically 1.67 compared with
1.70 overall). Again as per the Large Class smell, we note
a conflict between the need for a class to remain cohesive
(and hence reasonably small) and the search for lazy (small)
classes. Put another way, detecting lazy classes may be flawed
by definition. For version n, the class with smallest number
of statements was �	����������
 ���
��, comprising
2 statements; this is an empty class. The next smallest is class
������	������������ which contains 3 statements
comprising an enumerated data type only. Interestingly, 3 of
the 10 smallest classes are “view” interfaces and not classes.

5.2.4. Comments. One strategy for identifying classes with
large numbers of comments would be to list all classes on

ascending percentage of comment lines and examine the
code in the resultant classes. By doing this for version 1, we
find that four classes all comprise exactly 69% comments.
Inspection of the code revealed that none of these classes
contained any methods or any other features associated with
the OO paradigm. Each of these classes in fact revealed
no executable C# code. The files contained information
on assembling .net version information and standards for
creating new versions of code. The files contained mostly
comment lines surrounding that assembly information. The
class with the next highest number of comment lines was
a class with 55% of comments and represented the initial
page requirements for the ITWeb application. For example,
the questions that a user had to answer before receiving
a quote were an integral part of this class. Intenestingly,
inspection of the code in the class revealed old code to
have been commented out rather than deleted. In other
words, the high percentage of comments was not attributed
to comments in the true spirit of the word, but to code that
was no longer needed. There were only seven “live” methods
in the class, with very few comments associated with these
methods.

For version n, the maximum percentage of comments
amongst the set of 101 classes was just 5.1%, and this
belonged to a class called ��	�����		�	!���
�	��.
Inspection of the code for this class showed a very sparse
distribution of comments, as might be expected from the
percentage of comments it contains and the aggressive nature
of the refactoring for the system as a whole. Only 10 of the
101 classes had a percentage number of comments above
zero, and seven of those ten classes contained less than
1% comments. It appears that the process of refactoring
(from version 1 to n) caused a dramatic reduction in the
level of comments in the subsystem. All “commented out”
lines of code had also disappeared from the system. It
is also interesting that 91 classes in version n had zero
comments. Discussions with the project leader suggest that
the refactored subsystem had become a stable part of
the overall system, experienced very few faults, and thus
required little maintenance. Figure 5(a) shows the percentage
comments for the classes in version one and in Figure 5(b)
the same distribution for version n of the same system. The
contrast between the range of comments in version 1 and

10 Advances in Software Engineering

C
om

m
en

ts
(%

)

0

10

20

30

40

50

60

70

80

0 50 100 150 200 250 300 350

Class

(a)

0

1

2

3

4

5

6

C
om

m
en

ts
(%

)

Class

0 10 20 30 40 50 60 70

(b)

Figure 5: (a) Percentage comments (version 1). (b) Percentage comments (version n).

0 50 100 150 200 250 300 350

Class

5

10

15

20

25

30

35

40

0

D
oc

s
(%

)

(a)

0
1
2
3
4
5
6
7
8
9

Class
0 10 20 30 40 50 60 70

D
oc

s
(%

)

(b)

Figure 6: (a) Percentage Docs (version 1). (b) Percentage Docs (version n).

version n is clear from the two figures in terms of the low
percentages in Figure 5(b).

We conducted an 80/20 analysis of the values in each of
Figures 5(a) and 5(b) to determine the distribution changes
that had taken place from version 1 to n. For Figure 5(a), 80%
of values were found in 56 (approximately 14%) of the 401
classes in total. For Figure 5(b), 80% of values were found in
6 (approximately 10.34%) of the 101 classes. A marginally
shorter head and a longer tail are therefore evident in
Figure 5(b). However, that said, the standard deviation of
the values in Figure 5(a) is 9.76, compared with just 0.83
for Figure 5(b). This result for comments illustrates that
as a result of aggressive refactoring, fewer comments were
needed in the refactored version of the system; the standard
deviation values suggest that the variation in numbers of
comment lines in classes was also less as a result. In other
words, one side-effect of refactoring might have been less
complex code and the need for fewer comments in fewer
classes as a result.

It would appear that, of the four smells that we have
considered, reduction in number of comments may be a clear
“byproduct of aggressive refactoring effort. It would also
seem that addition of comments (based on the high number
of zero-values from Figure 5(b)) was not a consideration for
the refactored subsystem. We also have to consider the “doc”
comments in each version (these are automatically created
through the inclusion of XML tags in the source code). The
compiler will search for all XML tags in the source code and

create an XML documentation file accordingly. Figure 6(a)
shows the percentage of “Doc” comment lines in the classes
of version 1 and Figure 6(b) that for version n. To complete
our analysis, we analysed the occurrence of “Doc” comments
on an 80/20 basis for Figures 6(a) and 6(b). For version 1, 66
of classes comprised 80% of the percentage Docs (approxi-
mately 16%) of the 401 classes. For version n, 1 single class
contained 100% of all Docs as can be seen from Figure 6(b).
All remaining 100 classes comprised zero Docs. The result
reflects the nature of the refactoring effort invested and the
reduction in both percentage comments (Figures 5(a) and
5(b)) and Docs that the aggressive refactoring policy
induced.

6. Threats to Validity

Several criticisms or threats could be leveled at the study.
First, the analysis presented makes the assumption that a
developer has no sense of the effort required to eradicate a
smell, in other words, that a developer is oblivious to the
presence of smells, and their eradication. This stance might
be naı̈ve on our part. A developer might be able to detect
a smell; the same developer might also be well aware of the
relative advantages of leaving that smell to become a “stench”
or to eradicating that smell. Developers also have to make
difficult choices as to how they allocate their time. We have
no evidence that developers actively avoid smells. Second,
there may be many other types and flavors of code smell that

Advances in Software Engineering 11

a developer would consider eradicating before those listed
in Table 1. We cannot assume that the 22 smells listed in
Fowler [1] are necessarily the definitive set of smells. That
said, we see this work as a worthwhile start to establishing
the parameters through which code smells on a longitudinal
basis [32] can be properly and fully explored. Third, we
cannot discount the extent to which in the empirical studies
presented tools were used to identify the source of code
smells. In the case of the ITWeb subsystem, we know of no
tools used in the process of smell eradication. Future work
will focus on exploring two issues: we intend exploring the
test implications of smells and second, on validating the
practical and theoretical results with industrial developers
and on a range of open-source systems [33]. Finally, as
an emerging and developing area, we see potential for a
systematic code smell literature review to assess the state-of-
the-art and establish key research themes.

7. Conclusions/Future Work

In this paper, we have described three studies based on code
smells, two of an empirical nature and one a theoretical
analysis which attempts to place those studies in context.
First, we provided a theoretical suggestion as to why
eradicating smells might be problematic. The second study
tried to establish whether developers eradicated smells based
on the refactorings applied to five open-source systems.
The final study was of a proprietary C# system where
aggressive refactoring had taken place and a large reduction
in system size had been experienced. The key findings of
the study presented are as follows; first, no evidence of
widespread eradication of smells was found; evidence of
simple refactorings in favor of more “complex” refactorings
was found. Developers might either be unaware that they
are actually eradicating smells or simply avoid complex
smells (if empirical data extracted from systems is used as
a guide). Second, a wide range of conflicts, contradictions,
and anomalies soon emerge when we first try to identify
code that smells. This makes the task of identifying “real”
smells problematic and possibly prohibitive. Finally, the
projected effort in terms of related refactorings that need to
be undertaken to eradicate a smell may also be a prohibiting
factor. We urge more studies on smells, and to assist in a small
way, the data from studies 1 and 3 can be made available
upon request of the lead author.

Acknowledgments

The authors thank the anonymous reviewers for their com-
ments which have contributed significantly to improvements
in the paper. The research in this paper was supported by
a grant from the UK Engineering and Physical Sciences
Research Council (EPSRC) (Grant no.: EP/G031126/1).

References

[1] M. Fowler, Refactoring (Improving the Design of Existing Code),
Addison Wesley, 1999.

[2] S. Counsell, Y. Hassoun, G. Loizou, and R. Najjar, “Common
refactorings, a dependency graph and some code smells:
an empirical study of java OSS,” in Proceedings of the 5th
ACM-IEEE International Symposium on Empirical Software
Engineering (ISESE ’06), pp. 288–296, Rio de Janeiro, Brazil,
September 2006.

[3] S. Counsell, “Is the need to follow chains a possible deterrent
to certain refactorings and an inducement to others?” in
Proceedings of the 2nd International Conference on Research
Challenges in Information Science (RCIS ’08), pp. 111–122,
Marrakech, Morocco, June 2008.

[4] S. Demeyer, S. Ducasse, and O. Nierstrasz, “Finding refactor-
ings via change metrics,” in Proceedings of the ACM Conference
on Object-Oriented Programming Systems, Languages, and
Applications (OOPSLA ’00), pp. 166–177, Minneapolis, Minn,
USA, October 2000.

[5] J. Kerievsky, Refactoring to Patterns, Addison-Wesley, 2005.
[6] T. Mens and A. van Deursen, “Refactoring: emerging trends

and open problems,” in Proceedings 1st International Work-
shop on REFactoring: Achievements, Challenges, and Effects
(REFACE ’03), Univ. of Waterloo, 2003.

[7] T. Mens and T. Tourwé, “A survey of software refactoring,”
IEEE Transactions on Software Engineering, vol. 30, no. 2, pp.
126–139, 2004.

[8] R. Najjar, S. Counsell, G. Loizou, and K. Mannock, “The
role of constructors in the context of refactoring object-
oriented software,” in IEEE European Conference on Software
Maintenance and Reengineering, pp. 111–120, Benevento, Italy,
March 2003.

[9] W. Opdyke, Refactoring object-oriented frameworks, Ph.D.
thesis, Univ. of Illinois, 1992.

[10] M. V. Mäntylä, J. Vanhanen, and C. Lassenius, “Bad smells—
humans as code critics,” in Proceedings of the 20th IEEE
International Conference on Software Maintenance (ICSM ’04),
pp. 399–408, Chicago, Ill, USA, September 2004.

[11] M. V. Mäntylä and C. Lassenius, “Subjective evaluation of
software evolvability using code smells: an empirical study,”
Empirical Software Engineering, vol. 11, no. 3, pp. 395–431,
2006.

[12] M. V. Mäntylä and C. Lassenius, “Drivers for software
refactoring decisions,” in Proceedings of the 5th ACM-IEEE
International Symposium on Empirical Software Engineering
(ISCE ’06), pp. 297–306, Rio de Janeiro, Brazil, September
2006.

[13] M. Mäntylä, Bad smells in software–a taxonomy and an
empirical study, M.S. thesis, Helsinki University of Technology,
Software Business and Engineering Institute, 2003.

[14] F. Khomh, S. Vaucher, Y.-G. Guéehéeneuc, and H. Sahraoui,
“A bayesian approach for the detection of code and design
smells,” in Proceedings 9th International Conference on Quality
Software (QSIC ’09), C. Byoung-ju, Ed., pp. 305–314, August
2009.

[15] F. Khomh, M. Di Penta, and Y.-G. Guéhéneuc, “An exploratory
study of the impact of code smells on software change-
proneness,” in Proceedings 16th Working Conference on Reverse
Engineering (WCRE ’09), pp. 75–84, Antwerp, Belgium,
October 2009.

[16] S. Olbrich, D. S. Cruzes, V. Basili, and N. Zazworka, “The
evolution and impact of code smells: a case study of two open
source systems,” in Proceedings of the 3rd International Sym-
posium on Empirical Software Engineering and Measurement
(ESEM ’09), pp. 390–400, Lake Buena Vista, Fla, USA, October
2009.

12 Advances in Software Engineering

[17] S. M. Olbrich, D. S. Cruzes, and D. I. K. Sjoberg, “Are all code
smells harmful? A study of God Classes and Brain Classes in
the evolution of three open source systems,” in Proceedings of
IEEE International Conference on Software Maintenance (ICSM
’10), Timisoara, Romania, September 2010.

[18] W. Li and R. Shatnawi, “An empirical study of the bad smells
and class error probability in the post-release object-oriented
system evolution,” Journal of Systems and Software, vol. 80, no.
7, pp. 1120–1128, 2007.

[19] E. Van Emden and L. Moonen, “Java quality assurance by
detecting code smells,” in Proceedings of the 9th Working
Conference on Reverse Engineering (WCRE ’02), Richmond, Va,
USA, 2002.

[20] R. Marinescu, “Detection strategies: Metrics-based rules for
detecting design flaws,” in Proceedings of the 20th IEEE
International Conference on Software Maintenance (ICSM ’04),
pp. 350–359, Chicago, Ill, USA, September 2004.

[21] R. Marinescu, “Measurement and quality in object-oriented
design,” in Proceedings of the 21st IEEE International Con-
ference on Software Maintenance (ICSM ’05), pp. 701–704,
September 2005.

[22] H. Hamza, S. Counsell, G. Loizou, and T. Hall, “Code smell
eradication and associated refactoring,” in Proceedings of the
European Computing Conference (ECC ’08), Malta, September
2008.

[23] S. Counsell and S. Swift, “Refactoring steps, java refactorings
and empirical evidence,” in Proceedings of the 32nd Annual
IEEE International Computer Software and Applications Con-
ference, pp. 176–179, Turku, Finland, August 2008.

[24] SourceMonitor Tool, http://www.campwoodsw.com/sourcem-
onitor.html.

[25] N. Fenton and S. Pfleeger, Software Metrics: A Rigorous and
Practical Approach, International Thomson Press, London,
UK, 2002.

[26] S. R. Chidamber and C. F. Kemerer, “Metrics suite for object
oriented design,” IEEE Transactions on Software Engineering,
vol. 20, no. 6, pp. 476–493, 1994.

[27] S. McConnell, Code Complete: A Practical Handbook of Soft-
ware Construction, Microsoft Press, 2004.

[28] M. Fowler, Patterns of Enterprise Application Architecture,
Addison Wesley, 2003.

[29] S. Counsell, S. Swift, and J. Crampton, “The interpretation and
utility of three cohesion metrics for object-oriented design,”
ACM Transactions on Software Engineering and Methodology,
vol. 15, no. 2, pp. 123–149, 2006.

[30] R. Wheeldon and S. Counsell, “Power law distributions in
class relationships,” in Proceedings of the 3rd IEEE International
Workshop on Source Code Analysis and Manipulation, pp. 45–
54, Amsterdam, The Netherlands, 2003.

[31] B. Pietrzak and B. Walter, “Leveraging code smell detection
with inter-smell relations,” in Proceedings of the 7th Interna-
tional Conference on Extreme Programming and Agile Processes
in Software Engineering (XP ’06), vol. 4044 of Lecture Notes in
Computer Science, pp. 75–84, Oulu, Finland, June 2006.

[32] C. F. Kemerer and S. Slaughter, “An empirical approach to
studying software evolution,” IEEE Transactions on Software
Engineering, vol. 25, no. 4, pp. 493–509, 1999.

[33] T. T. Dinh-Trong and J. M. Bieman, “The FreeBSB project:
a replication case study of open source development,” IEEE
Transactions on Software Engineering, vol. 31, no. 6, pp. 481–
494, 2005.

