
Texas A&M University-San Antonio Texas A&M University-San Antonio

Digital Commons @ Texas A&M University- San Antonio Digital Commons @ Texas A&M University- San Antonio

Computer Science Faculty Publications College of Business

2013

Impact of Programming Features on Code Readability Impact of Programming Features on Code Readability

Y. Tashtoush

Z. Odat

Izzat M. Alsmadi
Texas A&M University-San Antonio, ialsmadi@tamusa.edu

M. Yatim

Follow this and additional works at: https://digitalcommons.tamusa.edu/computer_faculty

 Part of the Computer Sciences Commons

Repository Citation Repository Citation
Tashtoush, Y.; Odat, Z.; Alsmadi, Izzat M.; and Yatim, M., "Impact of Programming Features on Code
Readability" (2013). Computer Science Faculty Publications. 16.
https://digitalcommons.tamusa.edu/computer_faculty/16

This Article is brought to you for free and open access by the College of Business at Digital Commons @ Texas
A&M University- San Antonio. It has been accepted for inclusion in Computer Science Faculty Publications by an
authorized administrator of Digital Commons @ Texas A&M University- San Antonio. For more information, please
contact deirdre.mcdonald@tamusa.edu.

https://digitalcommons.tamusa.edu/
https://digitalcommons.tamusa.edu/computer_faculty
https://digitalcommons.tamusa.edu/business
https://digitalcommons.tamusa.edu/computer_faculty?utm_source=digitalcommons.tamusa.edu%2Fcomputer_faculty%2F16&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/142?utm_source=digitalcommons.tamusa.edu%2Fcomputer_faculty%2F16&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.tamusa.edu/computer_faculty/16?utm_source=digitalcommons.tamusa.edu%2Fcomputer_faculty%2F16&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:deirdre.mcdonald@tamusa.edu

International Journal of Software Engineering and Its Applications

Vol.7, No.6 (2013), pp.441-458

http://dx.doi.org/10.14257/ijseia.2013.7.6.38

ISSN: 1738-9984 IJSEIA

Copyright ⓒ 2013 SERSC

Impact of Programming Features on Code Readability

Yahya Tashtoush1, Zeinab Odat2, Izzat Alsmadi3 and Maryan Yatim4
1, 2, 4JUST Uni.
3Yarmouk Uni.

1yahyat@just.edu.jo
3ialsmadi@yu.edu.jo

Abstract
Readability is one important quality attributes for software source codes. Readability has

also significant relation or impact with other quality attributes such as: reusability,
maintainability, reliability, complexity, and portability metrics. This research develops a
novel approach called Impact of Programming Features on Code Readability (IPFCR), to
examine the influence of various programming features and the effect of these features on
code readability. A code Readability Tool (CRT) is developed to evaluate the IPFCR
readability features or attributes.

In order to assess the level if impact that each one of the 25 proposed readability features
may have, positively or negatively on the overall code readability, a survey was distributed to
a random number of expert programmers. These experts evaluated the effect of each feature
on code readability, based on their knowledge or experience. Expert programmers have
evaluated readability features to be ordered then classified into positive and negative factors
based on their impact on code readability or understanding. The survey responses were
analyzed using SPSS statistical tool. Most of proposed code features showed to have
significantly positive impact on enhancing readability including: meaningful names,
consistency, and comments. On the other hand, fewer features such as arithmetic formulas,
nested loops, and recursive functions showed to have a negative impact. Finally, few features
showed to have neutral impact on readability.

Keywords: Code readability; Software quality; Reusability, Maintainability

1. Introduction

Code Readability can be defined as a human judgment on how easy it is to understand a
program source code [1], the ratio between lines of code and number of commented lines [2],
writing to people not to computers [3], making a code locally understandable without
searching for declarations and definitions [4], and also, the average number of right answers
to a series of questions about a program in a given length of time [5]. Definitions show clearly
that such quality attribute is related to some other attributes such as: understandability,
usability, reusability, complexity, or maintainability.

Although readable code is less erroneous [3], more reusable [3, 6], easier to maintain [7],
quicker to modify [8, 9], and more consistent [3], code readability is not easy to measure by a
deterministic function same as maintainability, reliability, and reusability. Moreover, a source
code may be considered a readable one for a programmer but it might not be for another, and
that was the inspiration of this research which examines readability through studying several
code features that affect readers’ understanding of an existing source code. Studying the
Impact of Programming Features on Code Readability

International Journal of Software Engineering and Its Applications

Vol.7, No.6 (2013)

442 Copyright ⓒ 2013 SERSC

The main goal this paper is to develop a tool that can automatically collect different
readability attributes. We then want to see the value of those low level readability attributes
and their ability or level of impact on the overall readability.

Nowadays, most software codes are written by distant teams. Developers may frequently
join or leave software companies. It’s very important for source codes to be understandable so
it can be easily adapted. Such codes are library functions and packages in programming
languages such as: C++, C#, and Java. Each programmer may want to review code and adapt
it according to his/her own needs; so readability is needed. Furthermore, the ability of reading
and understanding a program written by others is a critical job. Software programming
companies depend on team work instead of one programmer, so each one will write a
fragment as part of a team effort. In addition, tailoring a ready code would be very difficult to
specify tasks then modify them (e.g., some programs may have thousands of lines of code
such as network protocols).

Programming courses are taught through various techniques and exercises introduced to
students to ensure their skills. Thus, instructors should insure that these exercises are given
clear and understandable to students, in order to get clear answers. On the other hand,
students should submit clear and readable answers in order for instructors to review and
correct. Moreover, programmers may forget variables purposes when using meaningless
names, or forget functional purposes when omitting comments. Thus, using unreadable
program codes may lead to code misunderstanding.

Software quality is a comprehensive characteristic of the whole software life cycle, defined
as what software product should be and what it must contain. The quality of software is
defined by several characteristics such as: software maintainability, reliability, reusability,
testability, and readability. Literature reviews have referred to maintainability and testability
as the main quality factors [3], also, readability has always been the reason behind
maintainable code, and, software quality has to be improved in all dimensions; so code
readability is a priority.

The rest of the paper is organized as follows. Section 2 presents readability and related
work. Section 3 discusses the Impact of Programming Features on Code Readability (IPFCR)
approach and how it works. Section 4 presents the methodology and experiment of the
approach. Section 5 improves the CRT tool and represents the results of the research.
Conclusion of the research is given in section 6. Finally, Section 7 presents the future work.

2. Documentation and Code Readability

Readability in software products contains documentation and source code
readability.

2.1. Documentation Readability

Documentation readability means a detailed system description which will be shared
between software engineering team and customer, to hold proper understanding for the
system; it plays a key role especially in large systems. Many requirements are
associated in system documentation [10, 11]; it should be an information repository
system to be used by maintenance engineers, it should provide information for
managers to help them in planning, it also should contain the budget and schedule for
software development process, and finally it should tell users how to use and administer
the system.

International Journal of Software Engineering and Its Applications

Vol.7, No.6 (2013)

Copyright ⓒ 2013 SERSC 443

The software documentation must be understandable for programmer and customer
who are not professionals. In agile software, developers focus on working software over
comprehensive documentation with customer collaboration and contract negotiation, in
other words it means that documentation must be readable in all versions to give
customers the ability for understanding software specifications and so adapting it.

Unreadable documentation may cause documentation errors and omissions which can
lead to errors by end-users and consequent system failures which will complicate using
or maintenance activities. Although some studies are concerned with source code
readability, they neglected documentation readability (e.g., [6]). This is because
readability in both cases takes different features to be measured. While both
documentation and code may share many common readability features, some aspects
maybe unique for each one of them.

2.2. Source Code Readability

Code readability is usually connected with comments and naming standards. While
those are two major factors that impact readability, there are also some other aspects to
consider.

One of the new concepts that appear in relation with software quality and readability
is the refactoring process. It means changing code structure externally without affecting
internal behavior to improve readability, flexibility, and enable easier modifications
[12-14]. Refactoring often aims to add new non functional objectives for code, without
affecting its main purpose by testing the code frequently.

In [15] the author defines “improving code readability” as the first advantage for
code refactoring. The survey briefly explains code refactoring techniques such as: field
encapsulation, type generalization, or methods renaming. Refactoring advantages
include: improving readability, maintainability, less complexity, and reusability.

3. Related Work

The main title (on the first page) should begin 1 3/16 inches (7 picas) from the top edge of
the page, centered, and in Times New Roman 14-point, boldface type. Capitalize the first
letter of nouns, pronouns, verbs, adjectives, and adverbs; do not capitalize articles, coordinate
conjunctions, or prepositions (unless the title begins with such a word). Please initially
capitalize only the first word in other titles, including section titles and first, second, and
third-order headings (for example, “Titles and headings” — as in these guidelines). Leave
two blank lines after the title.

Readability research is not only used for code readability. Documents, web-pages, or any
form of text may be subjective to such evaluation or tests. Hence, there are some readability
metrics that are used to evaluate natural language in general regardless of the purpose that the
language is used for.

There are then some popular metrics or tests to evaluate words or statements’ readability.
The most popular tests are Flesch Reading Ease and the Flesch-Kincaid [16]. The readability
grading level depends on several factors such as: word length, sentence length, word form,
and syllables or letters. They state that shortening the sentences and words will make it easier
for reader to understand the text if compared with long statements. A new and improved
model for readability is used in [17], that includes checking code readability with the usage of
previous text readability test. In the Flesch Reading Ease test (FRES), high scores indicate a
document that is easier to read. Lower scores indicate a document that is more difficult to
read. The formula for (FRES) test is:

International Journal of Software Engineering and Its Applications

Vol.7, No.6 (2013)

444 Copyright ⓒ 2013 SERSC

EQ. 1: R.E: = 206.835 - (0.846 *wl) - (1.015 * sl)
Where:
R.E. = Reading Ease
wl = Word Length
sl = Average Sentence Length

The model uses characters instead of alphabets, keywords and identifiers are used instead

of words, blocks are equivalent to paragraphs, statements are equivalent to sentences, and
modules are equivalent to chapters.

In 1997, Chung Yung proposed a model that integrates software science metrics with code
complexity, respecting the readability of the algorithm implemented [18]. For the program
source code, author proposed four metrics which are; the number of unique operators, the
number of unique operands, the total number of operator occurrences, and the total number of
operand occurrences. The operands are the variables or constants, and the operators are the
symbols or combinations of symbols that affect the values or ordering of operands [19]. The
motivation is the correlation between software readability and maintainability.

Buse and Weimer in “Learning a Metric for Code Readability” [1] constructed an
automated readability tool. They investigated human annotators to judge selected snippets
(short codes) of Java code, and then compared results with their measure. Their tool was able
to achieve 80% readability prediction accuracy. Correlation between readability and two other
software quality metrics was studied, which are: Bugs or faults detection and code evolution
or changes. Choosing of fine grained codes neglects the effect of code volume. They used
snippets and studied code features line by line. In this vision, code volume is the first feature
that has a direct effect on readability; large codes will not be easy as small ones; 5 or 6 lines
for example. Readability features collected from literature studies depend on coding style and
complexity.

A new de-compilation mechanism was proposed to achieve high readable decompiled
source codes [20]. Decompilation is the process of transferring binary code into high level
source codes such as IDA Hex rays, Boomerang, and Dcc. In all these tools, poor readability
was found via low accuracy in identifying variables, functions, and structures. Most
challenges were related to: information recovery and flow graph building, especially for loops
and condition statements. Their new algorithm focused on challenges to produce a high
readable code. The model was able to achieve a high readable source code by identifying
parameters and variables, removing redundant variables, analyzing data dependency and
flow, and extract structures.

Cowan proposed a new approach enhancing code readability to benefit reengineering
technologies, which are using SGML (Standard Generalized Markup Language), to embed
semantic and syntax with program code, which uses code visualization and text database [21].
The goal of code visualization is to connect the mental image of code writer to the mental
image of program reader [22].

The researcher in “Improving Software Quality through the Development of Code
Readability” [23] developed a new and effective automated readability measure which can
calculate the readability and complexity of the software better than human judgments. The
researcher gathered a number of snippets from open source codes over the internet, and relied
on professional programmers to judge these snippets and to value their complexity based on
some given features like keywords, comments, loops, lines, etc.

Philip A. Relf [24] implemented an empirical study on a group of programmers – students

and experts – to study the effect of naming styles on source code readability and

International Journal of Software Engineering and Its Applications

Vol.7, No.6 (2013)

Copyright ⓒ 2013 SERSC 445

maintainability. The study investigated and collected nineteen rules for meaningful identifier
naming styles, and produced a Java code editor which has the ability to check identifier
names.

Using of meaningful names has been also studied in [25] and authors tried to correlate their
results with the tool: FinBugs, software quality metrics tool for Java codes. Authors expanded
their research by studying more relations with more quality metrics. They conducted research
on fine grained parts, which are Java methods [26]. They use identifiers naming guidelines
with some adoption; Buse and Weimers’ readability metrics [1] as readability method, and
Cyclomatic complexity as controversial metric. They implement previous metrics on several
Java open source codes, and then claim that poor quality identifiers names cause a less
readable and less maintainable source code, and thus poor quality software.

In [27], the researchers developed a new and automatic system to add blank lines into
source code in order to improve code readability and locate points for internal documentation.
They developed a tool, SEGMENT, which “inputs a Java method, and outputs a segmented
version that separates meaningful blocks by blank line insertions. Not only can the output
segmentation help in readability, it can provide hints for where to place internal comments.”
The system evaluation showed that the automatic inserted blank lines are as good as the blank
lines inserted by programmers and developers. Moreover, the evaluation showed that the
system uses vertical spacing in places where programmers think it is better to use.

4. IPFCR Approach

Author names and affiliations are to be centered beneath the title and printed in Times New
Roman 12-point, non-boldface type. Multiple authors may be shown in a two or three-column
format, with their affiliations below their respective names. Affiliations are centered below
each author name, italicized, not bold. Include e-mail addresses if possible. Follow the author
information by two blank lines before main text.

We tried to extract several readability related features from the source code that can be
automatically collected.

The main concern of The Impact of Programming Features on Code Readability (IPFCR)
approach is to generate exact readable values for Java codes by defining their features. A
survey was distributed to gather programmers’ satisfaction of each readable feature through
scaling their assessments from (1-5). These evaluations were analyzed to create the weighting
factors for our readability metrics’ tool, called Code Readability Tool (CRT). Figure 1 shows
the workflow of the IPFCR approach.

The IPFCR workflow starts by gathering the survey responses and analyzing them. Users
or experts’ surveys or opinions are used to weight the readability features. The readability
features are specified through parsing Java codes by the CRT tool. For each feature there’s a
dedicated formula that uses previous features weights (values). The summation of all those
formulae values represents then the readability Value.

Meaningful Names for Classes, Methods, Variables, etc.

One of the importance issues that are usually tackled in readability evaluation is the
selection of names for program components: Packages, classes, methods, variables, etc.
Coding standards and naming conventions use some rules for names in code components.
However and in order to judge whether those names are (meaningful) or not, which is
something partially subjective, users may give conflicting opinions on those names. This
process can be further complex if a tool needs to automatically judge such readability issue.
In general, there are some basic assessment issues that can be easily evaluated (e.g., name

International Journal of Software Engineering and Its Applications

Vol.7, No.6 (2013)

446 Copyright ⓒ 2013 SERSC

should not be less than 3 letters). However, some more subjectively aspects related to judging
whether the name is meaningful or not can be hard to automate or detect by a tool. For
example, the general meaning of “meaningful names” is that names should reflect purpose of
using such code component. In order to evaluate the fitness or relevancy of the name to the
scope, natural language processing maybe used to study the relation between names in the
same component or containers. Such issue may also be challenged by the fact the
components’ names may contain parts of more than one word connected together in a special
way (e.g., calAveValues). The example shows three words connected together, abbreviated in
a special way that may not be understood by a parser or language processor that looks for
words in the dictionary. The correct divisions of methods and their responsibilities may also
share to this issue. For example, cohesion is a design quality aspect that stresses that a
component should contain only inner related items. As such method names for example
should not include (and) which may indicate mixing more than one function together that
should be separated.

As such, meaningful names evaluation applied in the algorithms below depends only on
the number of letters’ count. “Choosing good names takes time but saves more than it takes “.
This is a quote from a very good book that talks about code readability (Clean code by Robert
Martin, [31]).

The features that were proposed, developed and collected will be explained in the next
paragraphs. In each formula, the weight factor is the one that is averaged as the output from
experts’ assessment.

• AVMN

EQ. 2: AVMN = (VMN / V) * MNW

Where:
AVMN: Average Variables with Meaningful Names
VMN: Number of Variables with Meaningful Names
V: Number of Variables
MNW: Meaningful Names Weight

• AFMN: Average Function with Meaningful Names

EQ. 3: AFMN = (FMN / F) * MNW

Where:
AFMN: Average Function with Meaningful Names
FMN: Number of Functions with Meaningful Names
F: Number of Functions
MNW: Meaningful Names Weight

• WLC: White lines per code line

EQ. 4: WLC = (BL1 / BL2) * SW

Where:
WLC: White lines per code line
BL1: Number of Places which have a Blank Line
BL2: Number of Places which Blank lines are necessary

International Journal of Software Engineering and Its Applications

Vol.7, No.6 (2013)

Copyright ⓒ 2013 SERSC 447

SW: Spacing Weight

• Indents

EQ. 5: I = (I1/ I2) * IW

Where:
I: Indents
I1: Number of Places which have Indents
I2: Number of Places which Indents are needed
IW: Indent Weight

• CM

EQ. 6: Cm = (Cml/CL) + (Cml / 0.2 * CW)

Where:
Cm: Comments
Cml: Number of Comments Lines
CL: Number of Code lines
CW: Comment Weight

• Scope

EQ. 7: S = (MSV / MaxSV) * SpW

Where:
S: Scope
MSV: Median Scopes Volumes
MaxSV: Maximum Scopes Volume
SpW: Scopes Weight

• Lines Length

EQ. 8: LL = (MLL / MaxLL) * LLW

Where:
LL: Line Length
MLL: Median Lines Length
MaxLL: Maximum Line Length
LLW: Line Length Weight

• Arithmetic Formulas

EQ. 9: ArF = ℮ ^ - (Fn / CL) * FW

Where:
ArF: Arithmetic Formulas
Fn: Number of Formulae

International Journal of Software Engineering and Its Applications

Vol.7, No.6 (2013)

448 Copyright ⓒ 2013 SERSC

CL: Number of Code Lines
FW: Formulas Weight

• Average of If-else

EQ. 10: AvIe = (IeS / CL) * IeW

Where:
AvIe: Average If-else
IeS: Number of “If” Statements
CL: Number of Code Lines
IeW: If else Weight

• Nested If

EQ. 11: Ni = ℮ ^ (-MaxNiD) * NiW

Where:
Ni: Nested If
MaxNiD: Maximum Nested If Depth
NiW: Nested If Weight

• Average For loop

EQ. 12: AvFL = (FL/ L) * FLW

Where:
AvFL: Average For loop Between Other Types
FL: Number of "For" Loop
L: Number of Other Loops
FLW: For Loop Weight

• Nested Loop

EQ. 13: (NL) = ℮ ^ (- MaxNLD) * NLW

Where:
NL: Nested Loop
MaxNLD: Maximum Nested Loop Depth
NLW: Nested Loop Weight

• Recursive Functions

EQ. 14: RF = ℮ ^ (- R) * RW

Where:
RF: Recursive Functions
R: Number of Recursive
RW: Recursive Weight

International Journal of Software Engineering and Its Applications

Vol.7, No.6 (2013)

Copyright ⓒ 2013 SERSC 449

• Arrays

EQ. 15: Ar = (A / Is) * AW

Where:
Ar:Arrays
A: Number of Arrays
Is: Number of Identifiers
AW: Arrays Weight

• Class Distribution

EQ. 16: CD) = (MCV / MaxCV) * CW

Where:
CD: Class Distribution
MCV: Median Classes Volume
MaxCV: Maximum Class Volume
CW: Class Weight

• Inheritance

EQ. 17: In = (InC / C) * InW

Where:
In: Inheritance
InC: Number of Inherited Classes
C: Number of Classes
InW: Inheritance Weight

• Overriding

EQ. 18: Or = (PVFD/ FD) * OrW

Where:
Or: Overriding
PVFD: Number of functions inherited from Pure Virtual Functions Declarations
FD: All Function Declarations
OrW: Overriding Weight

• Consistency

EQ. 19: Cn = (Com / LSc) * CnW

Where:
Cn: Consistency
Com: Number of Commas
LSc: Number of Lines in the source code
CnW: Consistency Weight

International Journal of Software Engineering and Its Applications

Vol.7, No.6 (2013)

450 Copyright ⓒ 2013 SERSC

After analyzing the survey, readability features are evaluated to get a crisp feature weight.
The survey is created online. We built a list of experts searching through the Internet and

contacting candidate experts until we have confirmed the participation of a significant number
of experts located in different companies, countries or programming areas and languages.

The SPSS statistics tool is used to analyze the survey responses and produce the features’
weight. CRT parses a Java code to specify its features, and then a specific formula is applied
for each feature using weights to calculate the final readability value.

SPSS statistical set of tests presented efficient responses analysis. It has been assumed that
personal information has a notable effect on people's evaluation; therefore it was included in
the survey. The most useful information value was produced by integrating respondents’
experiences with their jobs stated as (F measure). Based on this value, readability features
were classified into positively impacting factors and negatively impacting ones in relation
with feature impact on readability in general.

Figure 1. IPFCR Approach Workflow

5. Methodology
This research aims to check readability as a restricted value to be a useful indicator

for code quality. This is accomplished by evaluating low level readability features in
the source code then calculating how much each feature affects the readability quality
factor based on a mixture of formulas collected from the source code and weights on
each feature formula provided by experts.

Experts’ Based Metrics’ Weighting

There is a need to evaluate the importance of each one of the 22 collected readability
related attributes on readability metric. Since readability is highly subjective and is
judged by experts or users, we decided to give weights to the different collected
attributes based on experts’ judgments. A survey is then conducted that include
questions related to the twenty two attributes and experts’ opinions on the impact of
such attributes on code readability. The survey responses of 141 random annotators at
several software developing companies are assembled. A web based survey or
questionnaire is built and requests were sent to candidates based on their expert and
skills in the field of programming or software engineering.

International Journal of Software Engineering and Its Applications

Vol.7, No.6 (2013)

Copyright ⓒ 2013 SERSC 451

Readability features are gathered from literature researches. Then the study forms an
online questionnaire aims to evaluate the effect of each readability feature by getting
responses from professional people depending on their years of experience in a specific
job related to programming. Twenty three questions were asked in the feature survey,
one for each feature.

Figure 2. ANOVA Test (F) Measure for Factors with Experience and Job

Respondent quantifies feature effect, to be the feature weight, using result analysis
and evaluation scale. Survey results the analysis using SPSS tool with several statistical
analysis tests such as: frequency, reliability, descriptive statistics, and ANOVA test.

To weight each feature and to avoid any possible bias in one or more experts, the
research uses ANOVA comparative test between questions and job experience. These
two factors have a large effect on peoples’ evaluations as mentioned in Figure 2, so we
used a value (F) from ANOVA test to weight factors. (F) Is the degree of homogeneity
between mean values for each question, and mean values of job experience, and it is
expressed by the following equation:

EQ. 20: F= BSSM / WSSM

Where:
BSSM: Mean Square Between values in the feature

WSSM: Mean Square Within values in the feature

Merging the impact of job experience with each factor evaluation is accomplished by

using ANOVA test. Meaningful names, consistency, code lines, and comments are
shown to have a positive impact on whole readability value. On the other hand,
arithmetic formulas, nested loops, and recursive functions, have different impact (F

International Journal of Software Engineering and Its Applications

Vol.7, No.6 (2013)

452 Copyright ⓒ 2013 SERSC

measure) values, which mean negative impact. For each feature, the research develops a
formula to check features’ effect on code readability value using the previous weights.

IPFCR approach, used in this research, is built on readability features collected from
programming studies in the literatures. The tool begins by searching for code features,
and depends on factors’ formula with defined weights. Then features effects will be a
deterministic value. Table 1, shows the features used in this research with brief
formulae and how the feature effect is calculated from the code by its average,
maximum, and median.

6. CRT and Results

Readability Tool (CRT) is implemented using C# language. It evaluates readability
of Java codes to develop a new readability metric based on collected features. The tool
has the following operations: Import Java file, analyze parsed code, scopes and
functions details, generate detail report, and update with weight values.

Table 1. Readability Features Formulae

 Factor Average Median Maximum
1 Meaningful Names *

2 Comments *
3 Spacing
4 Indents
5 Short Scopes * *

6 Line Length
distribution

 * *

7 Identifier name
length

 * *

8 Arithmetic formulas *

9 Identifier frequency * *

10 If-else *
11 Nested if *
12 Switch *
13 For loop * of loops
14 While loop *of loops
15 Do – while *of loops
16 Nested loop *
17 Recursive *
18 Arrays * of identifiers
19 Classes distribution * *
20 Inheritance *
21 Overriding *
22 Consistency *

International Journal of Software Engineering and Its Applications

Vol.7, No.6 (2013)

Copyright ⓒ 2013 SERSC 453

CRT is tested by trying the usage of most system functions to ensure correct behavior
and test the use cases of the tool. During first testing phase, three different Java codes
were tested, taken form Java code websites. Several versions of each code were used to
focus on one or two features. Note that each version was compared with its previous.
The first code used was an implementation for Dijkstra shortest path algorithm with 80
lines of code, taken from [28]. The comparison of Dijikstra code versions is shown in
Figure 4.

Figure 3 shows that the maximum value of readability was recorded when the nested-
if-statement was removed. Afterwards the value started to decrease until it reached the
minimum score when unbalanced classes were examined.

Features dependencies cause various changes in other values, for example, using
meaningful names leads to longer name length, also the use of while-loop instead of
for-loop affects scopes value and code lines. Moreover, noticed that using overriding
did not affect the readability value taken from previous version, because other features
have also been changed.

The second code was (SudokuPuzzel.Java); implementation of Sudoku puzzle game
with code volume of 100 lines, taken from [29], its readability values are shown in
Figure 4 which shows that the original code has a recursive call with the least
readability value, but readability has increased to maximum by omitting its use. The use
of comments, spacing, meaningful names and overriding raised the code readability
result; on the other hand, class distribution feature had a negative effect by decreasing
the value

The third code was date and time utility program with 112 code lines [30]. This
program demonstrates the common use of Date functionality in Java programming
scenarios. Several code versions have been studied to produce values in Figure 5 which
shows that the original code has the least readability value, which begins continuously
increasing with adding comments, meaningful names, indents and spacing, inheritance,
and overriding.

As noticed in the 3 examples, the use of unbalanced classes decreases the code
readability value. Features with positive impact on code readability contribute in raising
the CRT value, unlike those with a negative impact. Second testing phase was studying
fifty Java codes in order to examine the changes in readability based on each code
feature. The 50 Java code sample approved CRT assumption which deals with object
oriented technique. The code should contain almost all features in order to get an
accurate readability value, the code with 42 lines scored the maximum readability value
as shown in Figure 6. It is obvious in Figure 7 that readability value is not clearly
decreasing by Line of Code (LOC) feature which approves its small impact.

But, readability value is clearly increasing by meanin 9gful and comments values for
50 Java sample Codes. Their positive impact was approved by ordering readability
values of those factors’ values as Figures 7 and 8 respectively. On the other hand,
ordering readability values by nested loop and recursive factors shows their negative
impact which decreases the readability value. So the negative impact was approved for
those factors use, as shown in Figures 9 and 10 respectively.

International Journal of Software Engineering and Its Applications

Vol.7, No.6 (2013)

454 Copyright ⓒ 2013 SERSC

Figure 3. (Dijkstra.Java) Readability Values

Figure 4. (Sudoku.Java) Readability Values

Figure 5. (DateAndTimeUtility.Java) Readability Values

Figure 6. CRT Value for 50 Java Codes Ordered by LOC

International Journal of Software Engineering and Its Applications

Vol.7, No.6 (2013)

Copyright ⓒ 2013 SERSC 455

Figure 7. CRT Value for Codes Sample Ordered by (Meaningful Names)

Figure 8. CRT Value for Codes Sample Ordered by (Comments) Factor

Figure 9. CRT Value for Codes Sample Ordered by (Nested Loop) Factor

Figure 10. CRT Value for Codes Sample Ordered by (Recursive) Factor

7. Conclusion and Future Work
In this paper, a tool is developed to parse several low level readability features

automatically from software source codes. For each one of the collected feature, a weight of
that feature to express its level of impact on readability in general is added to the feature
formula to be adjusted by human experts. Those programming human experts were asked to
express their opinion throw a nominal level on the level of impact each feature may have an
impact on code readability.

The survey responses of 141 random annotators or experts at several software developing
companies were analyzed by the SPSS tool. Experts are selected to vary in country or

International Journal of Software Engineering and Its Applications

Vol.7, No.6 (2013)

456 Copyright ⓒ 2013 SERSC

location, nature of Software Company, age, etc., to offset any possible bias in results.
Readability features were weighted using ANOVA comparative test.

Features of high positive impact in improving readability include: meaningful names,
comments, and consistency. Whereas, recursive functions, nested loops and arithmetic
formulas were found to be of a negative impact on the general readability attribute. Others,
such as, short scopes, identifier name length, identifier frequency, inheritance, overriding, if-
else statement, switch statement, loops (for, while, do-while), and array were found to have
no major effect on readability.

Future extensions of this work should extend the readability features to include more
semantic aspects that may have better indication of code readability despite acknowledging
the fact that such features can be complex to formulate and collect automatically by tools
from the source code.

References
[1] R. P. L. Buse and W. R. Weimer, “Learning a metric for code readability”, Software Engineering, IEEE

Transactions, doi:10.1109/tse.2009.70, vol. 36, no. 4, (2010), pp. 546-558.
[2] E. Collar and R. Valerdi, “Role of software readability on software development cost”, Proceedings of the

21st Forum on COCOMO and Software Cost Modeling, Herndon, VA, (2006) October.
[3] R. Fitzpatrick, “Software quality: definitions and strategic issues”, Reports, (1996), pp. 1.
[4] K. Tokuno and S. Yamada, “Markovian Software Reliability Measurement with a Geometrically Decreasing

Perfect Debugging Rate”, IJMTM, (2003), pp. 71-80.
[5] R. Land, “Measurements of software maintainability”, Proceedings of ARTES Graduate Student Conference,

ARTES, (2002), pp. 1-7.
[6] A. Holliday, “Coding Format and Style”, handout contains guidelines for coding format, (2008).
[7] J. Prothero, “Usability Best Practices”, White Paper from JackBe Corporation, (2006), pp. 20-26.
[8] T. Tenny, “Program readability: Procedures versus comments”, Software Engineering, IEEE Transactions on,

doi>10.1109/32.6171, vol. 14, no. 9, (1988), pp. 1271-1279.
[9] C. A. Cunha, J. L. Sobral and M. P. Monteiro, “Reusable aspect-oriented implementations of concurrency

patterns and mechanisms”, Proceedings of the 5th international conference on Aspect-oriented software
development, (2006), pp. 134-145.

[10] I. Sommerville, http://powershow.com/view/946f1-zM1O/Software_Documentation_Written_By_Ian_
Sommerville_flash_ppt_presentation. [Accessed 07 December 12], (2001).

[11] A. Mobasseri, “Improving Readability”, 06-csrs2008-ArminMobasseri.pdf, (2008).
[12] J. Viljamaa, “Refactoring I - Basics and Motivation”, Helsinki, Seminar on Programming Paradigms, (2000).
[13] E. Murphy-Hill and A. Black, “Breaking the barriers to successful refactoring”, Software Engineering,

ICSE’08. ACM/IEEE 30th International Conference, (2008), pp. 421-430.
[14] S. Counsell and E. Nasseri, “System Evolution at the Attribute Level: an Empirical Study of Three Java OSS

and their Refactorings”, Journal of Computing and Information Technology, vol. 18, no. 2, (2010).
[15] S. Kansal, “Refactor Code: A Review”, IJCSt, (2011), pp. 2-4.
[16] Wikipedia. 2012. Flesch–Kincaid readability test. [ONLINE] Available at:

http://en.wikipedia.org/wiki/Flesch%E2%80%93Kincaid_readability_test. [Accessed 03 December 12],
(2012).

[17] N. Abbas, “Properties of ‘Good’ Java Examples”, Umea’s 13th Student Conference in Computer Science,
(2009), pp. 1.

[18] C. Yung, “Simplified readability metrics”, Information Systems Working Papers Series, (1997).
[19] M. Halstead, “Guest Editorial on Software Science”, IEEE Trans. on Sofhoare Engineering, (1979), pp. 70-

75.
[20] G. Chen, “A Refined Decompiler to Generate C Code with High Readability”, ACM, Proceedings of the 17th

Working Conference on Reverse Engineering, (2010).
[21] D. Cowan, “Enhancing Code for Readability and Comprehension Using SGML”, IEEE Trans.

NeuralSystems and Rehabilitation Engineering, International Conference on Software Maintenance, (1994),
pp. 19-23.

[22] R. Baecker and A. Marcus, “Human Factors and Qpography for More Readable Programs”, Addison-Wesley,
Reading MA, ISBN 0-201-10745-7, (1990).

International Journal of Software Engineering and Its Applications

Vol.7, No.6 (2013)

Copyright ⓒ 2013 SERSC 457

[23] X. Wang, L. Pollock and K. Vijay-Shanker, “Automatic segmentation of method code into meaningful
blocks to improve readability”, Reverse Engineering (WCRE), 2011 18th Working Conference, pp. 35-44,
(2011).

[24] P. Relf, “Tool Assisted Identifier Naming for Improved Software Readability: An Empirical Study”, IEEE
Trans. Empirical Software Engineering. International Symposium, (2005), pp. 112-122.

[25] S. Butler, M. Wermelinger, Y. Yu and H. Sharp, “Relating identifier naming flaws and code quality: an
empirical study”, IEEE Trans. Proc. of the Working Conf. on Reverse Engineering, (2009).

[26] S. Butler, M. Wermelinger, Y. Yu and H. Sharp, “Exploring the influence of identifier names on code quality:
an empirical study”, Software Maintenance and Reengineering (CSMR), 2010 14th European Conference on,
(2010), pp. 156-165.

[27] P. Sivaprakasam and V. Sangeetha, “An accurate model of software code readability” International Journal
of Engineering, vol. 1, no. 6, (2012).

[28] vogella. 2009. Dijkstra's shortest path algorithm in Java. [ONLINE] Available at:
http://www.vogella.com/articles/JavaAlgorithmsDijkstra/article.html. [Accessed 06 December 12], (2012).

[29] heimetli. 2008. Backtracking to solve a sudoku puzzle. [ONLINE] Available at:
http://www.heimetli.ch/ffh/simplifiedsudoku.html. [Accessed 06 December 12], (2012).

[30] freeJavaguide. 2008. date and time utility program . [ONLINE] Available at:
http://www.freeJavaguide.com/Javasource4.htm. [Accessed 06 December 12], (2012).

[31] R. Martin, “Clean Code, A handbook of Agile Software Craftsmanship”, Prentice Hall, (2009).

Authors

Yahya Tashtoush, is an assistant professor in the computer science
department at JUST University. He got his phd in 2006 from University
Of Alabama In Huntsville, B.sc and MS from JUST University. His main
research interests are in software engineering in general and software
metrics in particular.

Zeinab Odat, is a recent master graduate from Jordan University of
Science and Technology, Computer Science Department, Her main
interests are in software metrics.

Izzat Alsmadi, is an associate professor in the department of
computer information systems at Yarmouk University in Jordan. He
obtained his Ph.D degree in software engineering from NDSU (USA).
His second master in software engineering from NDSU (USA) and his
first master in CIS from University of Phoenix (USA). He had B.sc
degree in telecommunication engineering from Mutah university in
Jordan. He has several published books, journals and conference articles
largely in software engineering and information retrieval fields.

Maryan Yatim, is a recent master graduate from Jordan University of
Science and Technology, Computer Science Department, Her main
interests are in software metrics.

International Journal of Software Engineering and Its Applications

Vol.7, No.6 (2013)

458 Copyright ⓒ 2013 SERSC

	Impact of Programming Features on Code Readability
	Repository Citation

	Impact of Programming Features on Code Readability
	Abstract

