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Abstract. It is considered good software design practice to organize
source code into modules and to favour within-module connections (co-
hesion) over between-module connections (coupling), leading to the oft-
repeated maxim ”low coupling/high cohesion”. Prior research into net-
work theory and its application to software systems has found evidence
that many important properties in real software systems exhibit approx-
imately scale-free structure, including coupling; researchers have claimed
that such scale-free structures are ubiquitous. This implies that high
coupling must be unavoidable, statistically speaking, apparently contra-
dicting standard ideas about software structure. We present a model that
leads to the simple predictions that approximately scale-free structures
ought to arise both for between-module connectivity and overall con-
nectivity, and not as the result of poor design or optimization shortcuts.
These predictions are borne out by our large-scale empirical study. Hence
we conclude that high coupling is not avoidable—and that this is in fact
quite reasonable.

1 Introduction

We have long heard the maxim of “high cohesion/low coupling” in soft-
ware design. It is generally believed that high coupling—that is, high levels
of between-module connectivity—particularly signals poor design, as it leads
to greater difficulties in modification, comprehension, and parallel develop-
ment [31,2,28,32,38,17]. Unfortunately, while software can be poorly created with
definitely excessive coupling, it is not immediately clear whether high coupling
can be definitively eliminated in all circumstances.

Analysis of complex networks has revealed the presence of (approximately)
scale-free structure in networks from a wide variety of fields [27]. A scale-free
network is one that has a power-law degree distribution [1,3], characterized by
having a majority of nodes involved in few connections and a few nodes involved
in many connections. Roughly speaking, an approximately scale-free distribu-
tion would manifest itself as a straight line on a log–log plot of the connection
degree histogram (i.e., number of connections vs. frequency of nodes). Evidence
suggests that other distributions produce similar network characteristics [19,8]
and that these distributions exist for various relations in procedural and object-
oriented software systems [37,26,24,30,35,4,18,15,17,9,23,6,16,14,36,12]. This set
of distributions are known as heavy-tailed to differentiate the decay character-
istic of their probability mass function from that of typical exponential decay;
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a significant probability of occurrence exists even at several standard deviations
above the mean [8].

While the application of complex networks to the analysis of software has seen
much work, it overlooks a surprising consequence of the observed phenomena:

The presence of any heavy-tailed distribution describing the degree counts
in the connectivity network means that there must be nodes that are
highly coupled, and even nodes that are very highly coupled, relative to
the mean level for each system.

Given the specific distributions observed empirically, highly coupled nodes are
commonplace even in an absolute sense.

This is a paradox. We are all well aware that high coupling is something
to be avoided. Yet, the mechanics of heavy-tailed distributions are such that—
should they be found to be as universal as claimed—high coupling apparently
must be present. Possible immediate explanations present themselves: perhaps
the systems from which the empirical data were collected were poorly designed
and thus the conclusions not indicative of good practice; perhaps the researchers
made some serious mistake in the data collection or analysis, such as not actually
looking at “real” coupling; perhaps we are witnessing an effect from well-known,
practical optimizations; perhaps we have to accept that high coupling is actually
necessary after all.

To resolve this paradox, we begin (in Section 2) by examining the previous
work in network theory, especially as it has been applied to software systems;
we find some weaknesses in the generality of the empirical results and a few
questionable premises and conclusions, but nothing so serious as to resolve the
paradox. Next, we present (in Section 3) a model, based largely on existing ideas,
for why (approximate) scale-free structure should arise in overall connectivity
and thus more specifically in between-module connectivity. These simple predic-
tions are then tested in an empirical study, run against 97 open source software
systems (the Qualitas Corpus [33]) written in the Java programming language,
across granularities ranging from the statement level to the package level. The
design of the study and the experimental apparatus are described in Section 4,
while the results are analyzed in Section 5. Remaining issues and observations
are discussed in Section 6.

This paper makes three contributions: (1) a demonstration that overall con-
nectivity follows a heavy-tailed distribution across the spectrum of granularity
for a large number of open-source systems—regardless of maturity, degree of ac-
tive support, and level of use; (2) a demonstration that between-module connec-
tivity ubiquitously follows a heavy-tailed distribution—and thus highly-coupled
nodes are ubiquitous; and (3) an explanatory model as to why having some areas
of high coupling is consistent with good software design practices.

2 Scale-Free Structure and Its Application to Software

There has been considerable interest in the study of the structure of net-
works [27], due especially to the observation that networks derived from “real”



phenomena (as opposed to phenomena derived from the simulation of mathe-
matical models) have a degree distribution that follows a power law [1,3,13]. This
is in contrast to networks generated using the algorithmic techniques defined by
Erdős and Rényi, which possess a Poisson degree distribution [11].

2.1 Power-law distributions

In networks that possess a power-law degree distribution, the probability that a
node x has the degree deg(x) is proportional to deg(x)−α where α > 1: i.e.,

p(deg(x)) = C deg(x)−α, (1)

for some normalization constant C chosen to satisfy
∑∞
y=1 C y

−α = 1 (because
of the definition of probability mass function). In most power-law distributions
encountered in practice, 2 ≤ α ≤ 3, but this is not always the case [8]. From
such distributions, two key connectivity characteristics emerge:

1. The mean connectivity is low relative to the range because the distribution
is left-skewed. This indicates that most of the nodes in the system have low
connectivity.

2. The range of connectivity has the potential to be several orders of magnitude
greater than the mean, depending on the size of the network. Thus, nodes
will be present that exhibit high degrees of connectivity with respect to the
mean; these nodes will reside in the heavy tail of the distribution.

Networks with a power-law degree distribution are called scale-free [1,3], due to
the fact that they are self-similar at “all” scales.

Transforming Equation 1 to take the logarithms of each side, we arrive at:

log(p(deg(x))) = −α log(deg(x)) + log(C), (2)

which presents itself as a straight line on a log–log plot of deg(x) versus p(deg(x))
(practically, the frequency observed in empirical data). One is thus tempted to
perform a linear regression to the log–log plot to determine the parameters of
the model. Strictly speaking, this is not a statistically valid procedure for a
variety of reasons [8], not least of which is the fact that data drawn from many
different distributions can lead to a roughly straight line on a log–log plot. For
our purposes, it is enough to note that any of these heavy-tailed distributions lead
to an inevitable consequence: the probability is surprisingly large that there exist
data points in the heavy tail that are multiple standard deviations away from
the mean. The lack of such points would actually invalidate the claim that the
data follows a heavy-tailed distribution, as an approximately straight line would
not be observed on the log–log plot.

It is well-observed [8] that, for values below some threshold deg(x) = dmin, the
power law breaks down because there is some minimum natural scale preventing
the behaviour from continuing all the way to 0.



2.2 Empirical findings

There have been several investigations into the structure of software systems that
have revealed the presence of power-laws and other heavy-tailed distributions.
Wheeldon and Counsell [37] examined power-laws in the class coupling relation-
ships within 3 industrial systems for the purpose of using power-law distributions
to predict coupling patterns. They examined 5 different class-coupling relation-
ships (inheritance, interface, aggregation, parameter type, and return type) and
concluded that not only does each have a power-law distribution but the rela-
tionships are independent of each other. Wheeldon and Counsell do not include
coupling as a result of method invocation, and no analysis occurs below the class
level.

Myers [26], Marchesi et al. [24], Potanin et al. [30], and Gao et al. [12] ob-
served power-laws in both the in-degree and out-degree distributions of modules
in a total of 26 different software systems. Baxter et al. [4] examined 56 systems—
many of which are also contained in the Qualitas Corpus [33]—for a large set of
measures including some coupling measures, but considered them independently
from one another. They observed log-normal out-degree distributions, and some
specific coupling measures did not match a heavy-tailed distribution in some
instances, perhaps hinting at a lack of universality. Jing et al. [18] found power-
laws in the measures weighted methods per class (WMC) and coupling between
objects (CBO) for 4 open-source software systems. Concas et al. [9] examined 10
properties of 3 software systems and found those properties to have both Pareto
and log-normal distributions. Ichii et al. [16] examined 4 measures (including
two variants of WMC) on 6 systems, finding that in-degree follows a power law
while out-degree follows some other heavy-tailed distribution. Louridas et al. [23]
found power-laws present in the dependencies of software libraries, applications,
and system calls in the Linux and FreeBSD operating systems and concluded
that power-laws are ubiquitous in software systems.

None of the aforementioned investigations considered software systems at the
level of statements and variables, limiting the generality of the findings. Some
of the investigations did not explicitly plan to investigate coupling. Myers [26]
considered only inheritance and aggregation relationships. Concas et al. [9] fo-
cused mostly on size measures, but did include a count of method invocations
between classes, which they found to conform to a power-law; however, they did
not examine other forms of coupling. Gao et al. [12] considered method–method
interaction, thereby excluding other class-level coupling measures.

Hyland-Wood et al. [15] examined coupling relationships at differing levels of
granularity (package, class, and method level, but not statement level) for 2 sep-
arate open source projects over a 15 month period and concluded that scale-free
properties were present at all levels of analysis for each snapshot although they
note that these properties were approximate in most cases. While demonstrating
the relationship of scale-free structure between differing levels of granularity, this
study’s lowest level of analysis was that of methods.

Vasa et al. [36] noted that many software metrics have a skewed distribution,
which makes the reporting of data using central tendency statistics unreliable.



To address this, they recommend adopting the use of the Gini coefficient, which
has been used in the field of economics to characterize the relative equality of
distributions. They examined 46 systems on a variety of measures, where two
of the measures are related to coupling (in-degree count and out-degree count).
Their findings appear to mimic the findings of Myers [26] and Gao et al. [12] that
in-degrees and out-degrees have differing distributions. However, their findings
do not address the structure of software at the source code level.

Some of the investigations had confounding factors, which makes them dif-
ficult to directly compare with our investigation. Marchesi et al. [24] examined
classes in Smalltalk systems, but issues of dynamic binding prevented precise
resolution of between-module interactions. To circumvent these issues, depen-
dency relationships that could only be resolved at runtime were approximated
using a weighting function, but it is not clear what effect this transformation
may have had. Potanin et al. [30] investigated object graphs, which are not
directly comparable to class graphs. For example, collection objects may have
large numbers of runtime associations that would not be detectable through
static analysis. Similarly, the number of instances of each class could skew the
total degree distribution as classes with higher numbers of instances would have
greater weight in the analysis. It is not clear that scale-free structure in an object
graph translates to scale-free structure in its corresponding class graph.

Valverde et al. [34] and Jenkins and Kirk [17] note that nodes with large
numbers of dependencies (termed hubs) fall in “the set of bad design practices
known as antipatterns” [20]; they fail to identify that the ubiquitous presence of
heavy-tailed distributions implies the presence of hubs.

2.3 Process models leading to scale-free structure

To offer an explanation as to how a power-law could develop, Barabási and
Albert [3] considered the evolution of complex networks as they increased in size
and noted that the preferential attachment model caused scale-free structure to
emerge. In this model, newly added nodes preferentially attach to nodes that
have been in the network the longest time, resulting in a structure where most
nodes have limited connectivity and only the oldest have high connectivity.

Several criticisms of the preferential attachment model have been put forth,
especially as it applies to software systems. Valverde et al. [34] complain that
“no design principle explicitly introduces preferential attachment, nor scaling”,
offering an alternative model based on optimizing designs to minimize the path
length between nodes. Unfortunately, their complaint about design principles is
largely irrelevant since known design principles are rules of thumb and incom-
plete. Furthermore, their evaluation is based on the assumption that the systems
they look at possess optimal designs—because they have been under develop-
ment for a long time. This contradicts Lehman’s Law of Declining Quality [21]
and the community’s general experience.

Myers [26] dismisses preferential attachment because it cannot generate the
hierarchical structures present in software; he suggests that scale-free structure
arises instead from continuous refactoring. But not all software undergoes non-



trivial refactoring, so either his model is false or we would expect there to exist
software systems that do not exhibit scale-free structure—he analyzed only 6
industrial systems that had been under development for prolonged periods and
hence could be assumed to have undergone at least some refactoring. Keller [19]
points out that many different processes can lead to scale-free structure, and
that in fact, the necessary constraints are quite meagre.

Jenkins and Kirk [17] state “preferential attachment relies on newly added
nodes having prior knowledge of the rest of the network, which seems implausi-
ble, since software is built in pieces from a series of sources using various rules for
design patterns which do not apply to the finished software graph”—a clearly un-
tenable assertion, since the developer must have prior knowledge of the network
in order to select to which parts of it a newly added node should connect.

Chen et al. [6] added a factor to the preferential attachment model that
made it less likely that attachment would happen to a node in another module;
they fail to consider how modules themselves are added, deleted, or refactored
within a system, and they only validate their conclusions against a single (albeit
large and important) system. Li et al. [22] accept the preferential attachment
model wholeheartedly without addressing Myers’s concern that it fails to explain
hierarchical structures; they evaluate their conclusions on two systems.

3 Model

It is generally accepted that dependency between programmatic entities within
a software system has a direct impact on that system’s ease to be changed,
understood, and developed in parallel, and that a key indicator of dependency
is connectivity between entities [31,2,10,28,32,7,5]. In Section 3.1, we examine
background on the interplay between connectivity and evolvability. We use this
background to develop a model, in Section 3.2, for why overall connectivity
should be expected to possess an approximately scale-free structure. Adding
considerations of practical limitations on module sizes leads us to the conclusion
that between-module connectivity should also possess an approximately scale-
free structure—and thus, that highly-coupled entities must exist in any sizeable
system.

3.1 Connectivity and evolvability

Different theoretical models of the relationship between dependency and evolv-
ability were developed by Simon [31] and Alexander [2] (Alexander used the term
adaption). Simon focused on the structures common to all complex systems while
Alexander focused on the design of systems intended to fit a particular problem.
Both researchers viewed complex systems as sets of “components” (we will use
the term entities or nodes to avoid further overloading the term “component”)
that are organized in a hierarchical structure, which interact in a non-simple
way. Both viewed the evolvability of complex systems as a probabilistic function
based on the interdependency of entities.



In these models, the evolvability of a system is a function of its stability with
respect to change propagation. To illustrate this point, consider Figure 1(a).
Nodes labelled 1, 2, and 3 share mutual dependency due to their structure of
connectivity. Should one of the nodes change, the probability of that change
propagating through a connection with dependent nodes is determined by a
probability distribution function that could, in principle, be determined empir-
ically. Change propagation may necessitate further change, and so on, thereby
increasing the number of structural modifications, which increases the time nec-
essary for the system to stabilize. Such change propagation is often called a
ripple effect [32,38]. Overall system stability is a function of the probability
of propagation p and the number of pathways through which propagation can
occur.
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Fig. 1. Evolvability: (a) change propagation; (b) clustering to minimize propa-
gation.

As a system increases in size, the potential for instability caused by ripple
effects also increases. In Figure 1(a), the introduction of node 4 introduces three
potential new pathways through which change propagation may occur. Since
systems require interaction between entities to function, limiting the number of
entities, or limiting their ability to interact, may increase a system’s stability
at the cost of limiting its capabilities. To mitigate the effects of dependency
while allowing a system to increase in size requires the use of modularization.
Figure 1(b) shows entities grouped into two modules. Entities within each one
are free to interact, but interaction between modules is strictly controlled. This
structure increases the overall stability of the system by attempting to contain
ripple effects within module boundaries.

Whether or not modularization mitigates overall change propagation depends
on the probability of propagation between modules (p′ in Figure 1(b)). Alexander
noted that, in a complex system, the strength of connectivity between entities
is not homogeneous [2]. Because of this, he specified that module boundaries be
chosen in a way that places entities for which change propagation is high in the
same module. This structure minimizes the probability of change propagating
between modules.

The principles outlined by Simon and Alexander are echoed in later work
by Dijkstra [10] and by Parnas [28,29]. Parnas compared two software systems



that were written to address the same problem. The key difference between the
systems was not the selection of individual entities, but rather the criteria used
to construct module boundaries. In the first system, modules were constructed
by identifying key steps in the overall processing, while for the second they
were constructed by using information hiding as the primary criterion. The
modularizations created in the first system resulted in the sharing of variables
between modules. Since the probability of propagation is high between processing
statements and variables, shared variables act as a bridge through which change
propagation flows between modules. Building module boundaries based upon
information hiding, however, encapsulated the interaction between processing
statements and variables within modules, thereby constraining the flow of change
propagation between modules. Parnas argued that the evolvability (along with
the understandability and the ability to construct the modules independently)
was higher in the second system due to the structure of its modules.

Recognizing the effects of between-module interaction on evolvability, Stevens
et al. [32] coined the term coupling. In a modularized system, coupling is defined
as “the measure of strength of association established by a connection from
one module to another” [32, pp. 233]. In Parnas’s example, modularization of
the second system exhibited lower coupling than the first and it was therefore
deemed to be more evolvable.

3.2 Scale-free structure in overall connectivity

We adopt the preferential attachment model as the starting point for our model,
and initially ignore considerations of constraining the maximum allowable con-
nectivity. Barabási and Albert [3] base the notion of preferential attachment on
an evolutionary process, in which the probability of attachment increases simply
because a node has been in the network longer. We can translate this into more
appropriate selection criteria at play in software development that should result
in the same overall effect. (1) The probability of attachment will be directly pro-
portional to the usefulness of the functionality provided. The general usefulness
of nodes can be expected to vary quite widely; in fact, a node that has proven
generally useful in the past is more likely to be generally useful in the future.
(2) A developer has to be aware of existing functionality to make use of it. The
most commonly used functionality in a system is most likely to be familiar to
that developer, his co-workers from whom he is likely to seek help, or any on-line
documentation or examples he is likely to encounter. (3) A developer is more
likely to use functionality in which he has greater trust, because he or others
have used it a lot in the past, or because it has been actively supported for a
prolonged time and has acquired a reputation for quality.

Two issues might skew empirically-derived distributions. First, below some
minimal scale, insufficient nodes exist for the Law of Large Numbers to hold. Sec-
ond, developers make errors (contrary to the assumptions of Valverde et al. [34]);
a developer might add a spurious connection or fail to add a necessary connec-
tion. Whatever the distribution from which these errors would be drawn, their
probability is necessarily much lower than that of the correct nodes, so the re-



sult would be a noisy scale-free structure. As a result, we arrive at the following
hypothesis:

Hypothesis 1*: The overall connectivity network of source code enti-
ties for any software system above some minimum size follows an (ap-
proximately) scale-free distribution, when no constraints are externally
applied to the maximum level of overall connectivity.

Now, we must consider the effect of disallowing any entities to be added
to the system with connectivity greater than some value dmax. Imagine that,
through the standard preferential attachment model, we obtain the first entity
e that would normally (in the absence of the constraint) have connectivity of
deg(e) = d > dmax. Simply discarding this e is not an option—it was presumably
to be added to serve a new purpose within the system. Therefore, we must replace
e with some alternative that satisfies the constraint. We can begin by ignoring the
constraint and nevertheless insert e into the network, then transform (refactor)
the network to again support the constraint.

To replace e, two or more other entities ei could take its place, each of which
(at best) would inherit an independent portion of the connections of e; each
of these replacement entities would need at least one connection with another
of the replacement entities but as many as one connection with every of the
replacement entities. Thus, we have deg(e1) = p1d + p̂1n, deg(e2) = p2d + p̂2n,
. . . , deg(en) = pnd+p̂nn where pi is the fraction of the connections of e inherited
by ei and p̂i is the fraction of the replacement nodes to be connected to ei. If
any of these replacement entities themselves fail to respect the constraint, the
process can recurse. To ensure that this replacement process halts, we can add an
additional, simple constraint: that deg(ei) < deg(e) in all cases; thus, progress
is made at each iteration and eventually the constraint is satisfied.

To determine specifically to which other entities ei will be connected, we
can return to the original principle of preferential attachment. But preferential
attachment is known to result in a scale-free structure in the limit of long time
(equivalently, large number of network evolution steps). Thus for any arbitrary
dmax and the simple requirement for progress at each replacement step, a con-
nectivity network with a constraint on its maximum degree will also result in a
(different) scale-free structure. Thus we can revise Hypothesis 1* to eliminate
the clause regarding maximum connectivity not being constrained:

Hypothesis 1: The overall connectivity network of source code entities
for any software system above some minimum size follows an (approxi-
mately) scale-free distribution.

If “high coupling” is defined in terms of number of standard deviations away
from the mean, there will thus remain highly coupled entities (ignoring the ques-
tion of between-module versus within-module connectivity for the moment) after
the replacement process—even though the maximum absolute coupling level will
have been reduced. However, presumably any arbitrary dmax ≥ 1 is achievable,
and at some point, dmax would be considered “low enough” for practical pur-
poses; thus, “high coupling” would not be universal according to a more absolute



definition. The question then becomes: are there other negative consequences of
the replacement process that would tend to prevent an arbitrarily low dmax from
being achieved? If so, high coupling would remain, even when defined in absolute
terms.

To address this question, consider inlinks (inbound connections) and outlinks
(outbound connections) for all source code entities. In general, outlinking is
constrained to be reasonably small. For example, class declarations have few
direct superclasses and directly implement few interfaces. Variables are of a single
type (or few types in the case of generics) and individual statements tend to be
limited to the number of variable access or method invocations due to practical
issues, such as style guidelines and the difficulty of reading statements that
extend beyond a programmer’s screen width. Method declarations have practical
limits on the number of return types, the number of parameters, and the number
of exceptions that can be thrown by the method. There is, however, no constraint
on the number of inlinks that can be made to an entity that has a name within
a defined scope. Classes can be used in any number of variable declarations and
methods can be invoked from any number of statements. Variables, too, can
be used in a variety of different contexts although they will tend to be limited
to a stricter scope than that of classes and methods. For these reasons, high
connectivity is largely due to inlinks.

A source code entity that exhibits high connectivity is thus likely to do so
because of its utilization in multiple contexts. Indeed, use in multiple contexts
is a direct side effect of hierarchical structure. Consider a source code entity e
such that deg(e) > dmax and for which the number of connections is largely due
to inlinking. To replace e by two or more entities (ei) in an attempt to satisfy
deg(ei) ≤ dmax would require that all the replacement nodes ei provide the same
utility as e. This suggests the introduction of code clones, which is considered
to be poor design. The ability to reuse source code entities suggests that an
arbitrarily low dmax cannot be practically achieved.

3.3 Scale-free structure in between-module connectivity

We still have to deal with Myers’s concern about preferential attachment being
an unsuitable model for software evolution because it does not generate hier-
archical structures [26]. While hierarchical structure does not emerge from the
preferential attachment model, Myers’s analysis does not consider a variation on
preferential attachment for which hierarchy is imposed by some external means
(such as programming language grammar). As new nodes are added to the net-
work, they will minimally link to a parent node. The programming language
syntax and semantics impose constraints on which nodes may act as an accept-
able parent based on the type of the node being added. For example, the Java
programming language only allows method declarations to be placed within the
source code graph as children of a class declaration. This constrains node linkages
in a preferential manner, although the preferential probability function differs
from that defined in the preferential attachment model [6].



A final question remains: is it reasonable to consider that scale-free structure
for overall connectivity necessarily leads to high coupling? Consider the models
of Alexander [2] and Simon [31], discussed in Section 3.1. A primary function of
modularization is to minimize propagation of change between modules, and to
this end, propagation of change within a module can be ignored if the module
stabilizes quickly. Module stabilization time is largely affected by limiting module
size. Having fewer entities within a module reduces the number of pathways
through which change propagation can occur, thereby resulting in pressure to
limit the size of modules.

For any source code entity that exhibits high connectivity its links will re-
solve to other entities contained either in the same module or a different module.
If they are resolved within a module, this implies that there are enough entities
within the module with which resolution can occur, and that suggests a large
module if connectivity is high. Since there is pressure to limit the size of mod-
ules, this suggests that high connectivity of source code components is resolved
between modules, which represents a form of high coupling. Thus we arrive at:

Hypothesis 2*: The between-module connectivity network of source
code entities follows a heavy-tailed distribution.

But the same replacement process can be applied to between-module con-
nectivity as was for overall connectivity, with the same constraints. Thus, while
between-module connectivity can be reduced, it cannot be practically reduced
beyond some minimum level. We can therefore adjust Hypothesis 2*:

Hypothesis 2: The between-module connectivity network of source
code entities follows a heavy-tailed distribution, and the degree of left
skewness has some maximum level.

Hypothesis 2 (if supported) implies that highly-coupled entities must exist for a
sizeable system, even when considered in absolute rather than relative terms.

4 Empirical Study

This study comprises an empirical investigation of source code connectivity as
observed in practice. The empirical data comes from the Qualitas Corpus [33], a
collection of 100 independent open-source software systems written in the Java
programming language. The corpus contains at least one version of each indepen-
dent system, and for some systems multiple versions are present. Since different
versions of the same software are not independent, our study only includes one
version of each system, specifically the latest one within the corpus, resulting
in 100 systems available for study. For three of the systems (eclipse SDK-3.3.2-
win32, myfaces core-1.2.0, and jre-1.5.0 14-linux-i586), source code was absent
from the corpus and thus discarded from the examination set, leaving 97 systems
for investigation.

Table 1 provides a truncated view of the systems examined. For each one,
counts are reported for: source code entities, connections between entities, mod-
ules, classes, methods, statements, and variables. Source code entities include



modules, classes, method declarations, blocks, statements, and variables; each
is modelled as a node within a directed graph. Connections between source
code entities are modelled as links between nodes; these include parent/child
relationships, method invocations, superclass/subclass relationships, superinter-
faces, type usage, variable usage, and polymorphic relationships. The systems
shown in Table 1 are sorted in descending order by node count; only the top and
bottom six systems are presented.

# Name/Version Nod Cnx Mod Cls Mth Blk Sta Var

1 derby-10.1.1.0 318831 809952 135 1805 25067 56357 160555 74910
2 gt2-2.2-rc3 256838 651522 219 3453 26347 52556 106738 67523
3 weka-3.5.8 248704 682151 91 2019 19169 47561 124152 55710
4 jtopen-4.9 230394 593240 18 1940 20559 42206 112259 53410
5 tomcat-5.5.17 177249 433523 149 1777 17152 36247 80214 41708
6 compiere-250d 155379 388859 43 1260 18128 25458 73472 37016

92 jmoney-0.4.4 6310 17618 6 193 713 996 2989 1411
93 nekohtml-0.9.5 6606 17153 7 54 422 1453 2887 1781
94 jchempaint-2.0.12 5757 15844 8 125 419 1146 2696 1361
95 jasml-0.10 5482 15419 8 53 256 895 3011 1257
96 fitjava-1.1 3862 10296 5 96 462 786 1564 947
97 picocontainer-1.3 3771 9117 5 99 540 842 1155 1128

Table 1. Structural measures of the systems that were examined. “Nod” =
nodes; “Cnx” = connections; “Mod” = modules; “Cls” = classes; “Mth” =
methods; “Blk” = blocks; “Sta” = statements; “Var” = variables.

4.1 Graph-based source code representation

The basis of our analysis is a directed graph representation of source code, where
nodes represent source code entities (packages, classes, methods, blocks, state-
ments, and variables), and links (directed arcs) represent connections between
entities (hierarchical containment, method invocation, superclass, implementa-
tion, type, variable usage, and method overriding). Figure 2 shows the meta-
model used in this investigation, similar to that of Mens and Lanza [25].

Our model differs mostly in terms of the level of details provided (Mens and
Lanza’s metamodel is language-independent and was simplified for readability);
however, there are three key structural differences. (1) Our model explicitly de-
fines package and block entities, which are implicit in Mens and Lanza’s model.
Our reasoning for inclusion of these structural features is that they are impor-
tant means of structuring in practice, and they could have a significant effect on
the connectivity network. (2) Our model is more explicit about containment and
hierarchical structure. For example, classes can contain other classes and state-
ments can contain other statements or blocks (such as the code to be executed
as part of a loop). This kind of containment definition is particularly relevant
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Fig. 2. Metamodel applied in our analysis.

in terms of variable declarations. Our model allows for explicit containment
of variables within classes/interfaces (as class and instance variables), method
declarations (as parameters), blocks (as scope-limited variables), and statements
(e.g., a for-loop counter), where the Mens and Lanza model appears to be focused
exclusively on instance variables. (3) Our model supports relationships that do
not exist in Mens and Lanza’s model. For example, variables have a type (which
in our model is represented as a relationship between the variable declaration
entity and the associated type entity) and methods have a return type and can
specify exceptions that can be thrown from within the method’s body. Method
invocation is represented as a relationship between a statement and the target
method declaration, whereas the Mens and Lanza model represents invocation
as an entity contained within a method.

To illustrate the use of this metamodel, we provide a Java source example
(Figure 3) and the resulting directed graph (Figure 4). In Figure 4, different
node categories are illustrated as different shapes and link categories are shown
using different colour and line styles. To improve readability, some relationships
shown in the metamodel are excluded from the example (specifically “extends”,
“implements”, “throws”, and “overrides”). The example source code contains two
class definitions (X and Y), which are represented as Type nodes in the graph,
and each class is located within separate packages, p1, and p2. The code con-



tains several references to int, a primitive data type in Java. The code contains
three method declarations—m1(), getVar2(), and getValue()—the first two being
defined within class X and the last within class Y. To simplify this example, the
implementation is provided for only two of the methods.

package p1;
public class X {

private Y var1;
private int var2;
public int m1() {

int temp;
temp = var1.getValue() + getVar2();
return temp;

}
private int getVar2() {

return var2;
}

}

package p2;
public class Y {

public int getValue() { ... }
}

Fig. 3. Sample Java source code listing.

The hierarchical structure1 of the source code is maintained through Parent
links. Child nodes connect to their parent source code entities, and each node
can only have one hierarchical parent. For example, class X is in package p1, and
method m1() is defined within class X. Specification of type (as is seen in vari-
able declaration and method return type specifications) is represented as a link
from the specifying node to the type declaration node. In the example, instance
variable var1 (contained in class X) has a reference to class Y, creating a link
between node var1 and node Y. Similarly, each of the methods are declared to
have an int return type, so there is a link from each method to the node repre-
senting the int type. There are two method invocations, which are represented
as links between the calling statement node and the called method declaration
node. Finally, uses of variables (var1, var2 and temp) are represented as links
between the using statement and the used variable declaration node.

This structure is constructed through the standard parser of the Eclipse in-
tegrated development environment.2 The Eclipse parser is robust to all versions

1 Note that, in this context, “hierarchical” refers to the syntactic hierarchy, and should
not be confused with the type hierarchy.

2 http://www.eclipse.org

http://www.eclipse.org
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of the Java programming language and because it is used in both industrial-
strength toolsets and research environments, it provides a reasonable basis upon
which we conduct this investigation. The abstract syntax tree (AST) for each
compilation unit in a given system is constructed using the parser. The hierar-
chical relationships in the resulting directed graph are derived from the hierar-
chical structure of the AST. Each compilation unit is inserted into the hierarchy,
according to package definition, under a root node that represents the whole sys-
tem. The remaining links are derived from the semantic information contained
in the AST. In the case of type relationships, the Eclipse parser provides the
fully qualified name of all resolved types, which is used to resolve the target
node within the directed graph (the source node is implicit to the context of the
type relationship). In the case of method invocations, special care is needed to
correctly resolve overloaded methods as the fully-qualified names for overloaded
methods are the same. To resolve this ambiguity, we extract the fully qualified



name as well as the declared method’s signature for each method declaration
(which are guaranteed to be unique within the containing class). This signa-
ture is used in conjunction with the method’s fully qualified name to resolve to
the correct method declaration node. Finally, the Eclipse parser cannot provide
a fully qualified name for variables that are embedded within blocks because
blocks do not provide a namespace for contained variables. However, because
the hierarchical structure of the source code is preserved in our directed-graph
representation, the scope of any node can be computed. In the case of variable
accesses for which the parser has not provided a fully qualified name, the scope
of the accessing node is computed and the variable in question is resolved within
that scope by unqualified name.

We consider package declarations, class and interface declarations, method
declarations, variable declarations, blocks, and statements as the base units of
analysis. The form of other substructures, such as expressions and subexpres-
sions, are highly constrained by the syntax of the language, rather than necessar-
ily taking on a form that arises more naturally; thus, we ignore them for the sake
of this analysis. To eliminate subexpressions from the data structure, all links for
each subexpression are collapsed into the nearest non-expression ancestor node
within the structure. For example, the statement return x * y; is represented
by four nodes in the AST: the return statement, the multiplication expression,
and the two variable references. Nodes x and y have links to the associated vari-
able declaration nodes and the node representing the multiplication has no links
(other than hierarchical containment ones). The relationships between x and y
and their respective variable declarations are collapsed into the return statement.
Once all subexpression relationships are resolved and collapsed, subexpression
nodes are removed from the data structure.

Embedded within the source code structure are polymorphic relationships
that are not explicitly identified by the compiler. Specifically, polymorphic
method invocation is resolved at runtime: it is a dependency relationship that
is implicit within the inheritance structure defined by superclass and subclass
relationships. To make this relationship explicit, all overriding method declara-
tions are identified and a link is added between each declaration and all ancestor
method declarations in the class and interface hierarchy that have the identi-
cal signature. The Java programming language allows for single inheritance of
classes but implementation of interfaces, which is supported by our toolset.

Virtually all software systems contain references to externally defined en-
tities (e.g., libraries and programming language types). Since external entities
are not part of the system under investigation, they are not considered in the
analysis. However, proxy nodes that represent external entities are included in
the analytic structure to act as placeholders, thereby allowing consideration of
the connections between internal and external entities. For example, variables of
type int possess a link to an int type declaration node even though the int type
is external to the software system.



4.2 Identification of within-module and between-module links

In object-oriented programming, the key module in a software design is the ob-
ject, and objects are represented in source code by their classification (class).
For the purposes of this analysis, we consider class to be the defining aspect of
modular boundaries; alternatives are both possible and desirable targets for anal-
ysis, which we discuss further in Section 6. Identification of within-module and
between module links is a matter of identifying links that cross class boundaries.

Encapsulated within the analytic structure are the hierarchical relationships
for each entity in a software system. Within-module links are those for which
both its associated source and target nodes share a common class in their hier-
archical ancestry. Figure 5 illustrates examples of within-module and between-
module links.

class 

Hierarchical 

Within class 

Between class 

method method method 

class 

variable 

statement statement statement 

Fig. 5. Identifying within-module and between-module dependency.

Hierarchical relationships introduce a confounding factor into our analysis.
These links do not define relationships of direct interaction and because they
are overwhelmingly within-module, their inclusion as part of the analysis will
skew any comparison in that direction. For this reason, hierarchical links are
used to identify structural boundaries that are relevant to the analysis but are
not included as part of the computation of degree distributions.

Heavy-tailed distributions are then identified and fit to a power-law model
via the informal procedure described in Section 2.1.

5 Analysis

To test Hypothesis 1, the degree distribution for all systems is computed and, in
accordance with Section 4.2, hierarchical links are eliminated from the analysis.
To test Hypothesis 2, we compute the degree distribution for all systems exclud-
ing hierarchical and within-module links. Between-module links are identified
using the approach outlined in Section 4.2: links are between-module if their
source node and target node do not share the same class in their hierarchical
ancestry.



All nodes that have a degree of zero (such as those whose sole dependency is
through hierarchical relationships) are removed from the analysis. The resulting
distributions are plotted using a log–log scale; the full set is available elsewhere.3

5.1 Overall connectivity

For the purposes of discussion, three example plots are chosen based on system
size (total node count). The example systems are derby-10.1.1.0, jung-1.7.6, and
picocontainer-1.3, which represent the largest, median, and smallest systems,
respectively. Figure 6 shows these distributions on a single plot. The similarity
in shape is striking: we observe a positive slope between the first two data points,
followed by a linear negative trend. Note that each of the distributions is noisy
at the right end of the distribution, which is expected because they are produced
from discrete data points and naturally have fewer points exhibiting high values.

Fig. 6. Distribution of overall connectivity for the example systems.

All the plots exhibit characteristics of heavy-tailed distributions. They are
left skewed and have a total range that is at least an order of magnitude larger
than the mean. The mean degree for each example system is also shown on
Figure 6. To demonstrate this for all systems, the mean and maximum degrees
of each system are computed and plotted with a logarithmically-scaled y-axis
in Figure 7, and the systems are sorted by descending order of maximum de-
gree. The mean degree over all systems remains relatively constant, while the
maximum is roughly between 10 and 1000 times the mean for all systems.

Further observation of the distributions in Figure 6 reveals clear differentia-
tion of the three systems except to the right where the distributions are noisy.

3 http://hdl.handle.net/10289/5307

http://hdl.handle.net/10289/5307


Fig. 7. Mean degree versus maximum degree.

This is consistent with the expectations of a power-law distribution (Equation 1).
The probability of a node with a high degree decreases proportionally to the de-
gree; therefore, given a fixed α, the number of nodes with higher degrees increases
for systems that have more nodes. Based on these observations, we conclude that
Hypothesis 1 is satisfied: overall connectivity for source code entities follows a
heavy-tailed distribution for all systems within the corpus.

5.2 Between-module connectivity

The between-module distributions for the three example systems are shown in
Figure 8. The between-module distributions show the overall coupling present
in each system.

Fig. 8. Degree distributions for the sample systems (between-module only).



Figure 8 demonstrates that the between-module connectivity distributions
are similar in shape to those computed to show overall connectivity (Figure 6).
The between-module connectivity distributions are less well defined and this
is due to the avoidance of between module interaction; less interaction equates
with fewer data points, thereby producing noisier distributions. All the between-
modules connectivity distributions have similar shape, including a heavy tail.

Figure 9 shows the overall and between-module connectivity distributions
plotted together for each of the target systems. For each of the three systems
we observe an overlap in the heavy tail. If the links for the nodes that exhibited
high overall connectivity were primarily resolved within-module, then we would
observe a migration of data points towards the left in the within-module distri-
butions, which would therefore not exhibit a heavy tail. However, this migration
is not observed. Instead, we observe heavy tails in both distributions, which over-
lap when we plot them on the same graph. This demonstrates that the nodes
that appear in the heavy tail of the overall connectivity distributions are the
same nodes that appear in the heavy tail of the between-module connectivity
distributions, and are responsible for the presence of high-coupling.

Fig. 9. Comparison of overall and between-module connectivity distributions for
the example systems.

In Figure 9, we observe that there is a difference in slope of the linear por-
tions of the distributions. Because the overall connectivity distributions have
more data points in the left side of the distribution, the slope in the overall con-
nectivity distributions are steeper than the slope for the corresponding within-
module connectivity distributions. Using the process outlined in Section 2.1, we
estimate α for all distributions. We use dmin = 1 for all between-module distri-
butions and dmin = 2 for all overall connectivity distributions; data below the
threshold are ignored. Comparison of estimated α between overall and within-
module connectivity distributions for all systems (sorted in descending order by
largest α estimate for overall connectivity) is shown on Figure 10. Estimated α
for between-module connectivity distributions is lower than the overall connec-



tivity distribution for the same system and this is true for all systems. Based on
the above analysis, we conclude that Hypothesis 2 is satisfied.

Fig. 10. Comparison of α estimates.

6 Discussion

Here we discuss remaining issues and avenues for further research.

6.1 Threats to validity

Internal validity. It is an important characteristic of these findings that scale-
free structure was found to be ubiquitous in the data set. It is important because
we do not have a priori knowledge about the quality of design of the systems in
the corpus and because of this, we have no ground truth from which to argue
about the relationship between scale-free structure, high coupling, and the design
of software systems. The results demonstrate, however, that high coupling is
present in every system in our data set. If we are to accept high coupling as a
definitive indicator of poor design, then we would have to conclude that all 97
systems under investigation suffer from poor design. This conclusion, however,
seems implausible given the number of systems and the long modification and
usage history and maturity of some of the systems. It is likely that at least some
of the systems in the corpus are well designed despite the fact that they contain
areas of high coupling. To be clear, we do not argue that all the systems in the
corpus are well designed, but we argue against the notion that they are all poorly
designed and that at least for the systems in the corpus, the presence of high
coupling does not distinguish good design from poor. From these findings, we
conclude that the presence of high coupling can be consistent with good design.



Construct validity. In Section 3.2, we presented a model of software evolution
that is based on preferential attachment. Our model assumes hierarchical struc-
ture imposed as a constraint and utilizes a preferential probability function based
on node functionality, module structure, and scoping rules. We are quick to point
out that our finding of scale-free structure at the source code level does not
necessarily imply our model in action. Keller notes that the mere presence of
a particular distribution does not imply particular underlying or generational
process [19]. However, our model does show that preferential attachment can
be modified to be consistent with the evolution of software systems, thereby
providing the possibility that our findings may translate to other programming
languages and paradigms. If scale-free structure is common at the overall con-
nectivity level, then high coupling is difficult to avoid.

External validity. While this study demonstrates that the presence of high cou-
pling can be consistent with good design practice, we caution against extrapo-
lating the specific structures identified in the examined systems to all software
systems. All the systems in this investigation were open source and written
using the Java programming language. Based on the structure of our investiga-
tion, it may be that the programming paradigm or open source nature of the
systems confound our results. Different programming paradigms may produce
dependency structures that are different from those generated using an object-
oriented paradigm. Similarly, open source software may introduce greater levels
of dependency through the desire to appeal to a broad base of users. Although
our investigation did not identify any systems that did not contain areas of high
coupling, we cannot conclude that a system with such structure does not exist.

The differing functionality, size, maturity, and modification histories of the
investigated systems supports some generalizability of these findings. None of the
systems under investigation were immune to the hypothesized effects, thereby
suggesting that the presence of scale-free structure is independent of these prop-
erties.

6.2 Near-constant α for between-module connectivity

From our model, we believe that α for between-module connectivity is obtained
through balancing two opposing goals: manageable module sizes and low cou-
pling. While we expected to see distributions that were not extremely left-skewed
(as stated in Hypothesis 2), we were surprised at the constancy of α. This may
be a sign of an optimal balance that developers are able to achieve. One must
recall that this is an exponent, however, and so even small variations can have
large effects on the actual data. Even so, the possibility that this is more than
coincidence is intriguing, and demands further investigation.

6.3 Varieties of coupling

It has been argued that not all types of coupling are the same. Indeed, Wheeldon
and Counsell [37] studied 5 different class-coupling relationships and found them



to be independent. However, they also concluded that all 5 relationships followed
a power-law, which suggests that high-coupling exists across those types. One
avenue of future work suggests expanding the analysis performed here to account
for different types of coupling.

There are cases where the quality of design is reduced as a tradeoff to a more
desirable goal, such as performance optimizations. It is possible that some of
the coupling detected by our analysis is the result of performance optimization;
however, we consider it unlikely that all 97 systems have been subjected to this
kind of optimization.

7 Conclusion

We have long heard the maxim of “high cohesion/low coupling” as a basis for
good design. Abstract models of evolvability demonstrate why modularization
and minimization of between-module connectivity (coupling) are essential to
building complex systems: change propagation that would otherwise destabilize
an unconstrained network can be contained. We build from the preferential at-
tachment model and standard ideas of modularity to theorize as to why highly-
coupled nodes should be expected in real software systems. In our model, we
propose a preferential probability function based on entity utility and we ar-
gue that the probability of attachment to utility-providing nodes is not uniform
because nodes will provide functionality of differing utility.

Using classes to define modules, we studied connectivity in 97 open source
software systems using a graph-based analytic framework. Regardless of ma-
turity, size, modification history, and the size of the user community, all these
systems exhibit a similar scale-free dependency structure in both the structure of
overall connectivity and between-module connectivity (coupling). Our analysis
also demonstrated a relationship between highly-connected source code entities
and high coupling: entities that exhibited high connectivity were the same en-
tities that participated in areas of high coupling, as these nodes made up the
heavy tail of both distributions. The links of highly connected source code enti-
ties were not generally resolved within-module, and our model indicates that this
is due to practical limits on module sizes. From this, we conclude that scale-free
structure in the source code network translates directly to high coupling.

Thus, we conclude that high coupling is impracticable to eliminate entirely
from software design. The maxim of “high cohesion/low coupling” is interpreted
by some to mean that all occurrences of high coupling necessarily represent poor
design. In contrast, our findings suggest that some high coupling is necessary for
good design.
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