5,075 research outputs found

    Modeling and predicting market risk with Laplace-Gaussian mixture distributions

    Get PDF
    While much of classical statistical analysis is based on Gaussian distributional assumptions, statistical modeling with the Laplace distribution has gained importance in many applied fields. This phenomenon is rooted in the fact that, like the Gaussian, the Laplace distribution has many attractive properties. This paper investigates two methods of combining them and their use in modeling and predicting financial risk. Based on 25 daily stock return series, the empirical results indicate that the new models offer a plausible description of the data. They are also shown to be competitive with, or superior to, use of the hyperbolic distribution, which has gained some popularity in asset-return modeling and, in fact, also nests the Gaussian and Laplace. Klassifikation: C16, C50 . March 2005

    A Non-Gaussian Approach to Risk Measures

    Get PDF
    Reliable calculations of financial risk require that the fat-tailed nature of prices changes is included in risk measures. To this end, a non-Gaussian approach to financial risk management is presented, modeling the power-law tails of the returns distribution in terms of a Student-t distribution. Non-Gaussian closed-form solutions for Value-at-Risk and Expected Shortfall are obtained and standard formulae known in the literature under the normality assumption are recovered as a special case. The implications of the approach for risk management are demonstrated through an empirical analysis of financial time series from the Italian stock market and in comparison with the results of the most widely used procedures of quantitative finance. Particular attention is paid to quantify the size of the errors affecting the market risk measures obtained according to different methodologies, by employing a bootstrap technique.Comment: Latex 15 pages, 3 figures and 5 tables 68% c. levels for tail exponents corrected, conclusions unchange

    The Predictive Performance of Asymmetric Normal Mixture GARCH in Risk Management: Evidence from Turkey

    Get PDF
    The purpose of this study is to test predictive performance of Asymmetric Normal Mixture Garch (NMAGARCH) and other Garch models based on Kupiec and Christoffersen tests for Turkish equity market. The empirical results show that the NMAGARCH perform better based on %99 CI out-of-sample forecasting Christoffersen test where Garch with normal and student-t distribution perform better based on %95 Cl out-of-sample forecasting Christoffersen test and Kupiec test. These results show that none of the model including NMAGARCH outperforms other models in all cases as trading position or confidence intervals and these results shows that volatility model should be chosen according to confidence interval and trading positions. Besides, NMAGARCH increases predictive performance for higher confidence internal as Basel requires.Garch; Asymmetric Normal Mixture Garch; Kupiec Test; Christoffersen Test; Emerging markets

    Portfolio optimization when risk factors are conditionally varying and heavy tailed

    Get PDF
    Assumptions about the dynamic and distributional behavior of risk factors are crucial for the construction of optimal portfolios and for risk assessment. Although asset returns are generally characterized by conditionally varying volatilities and fat tails, the normal distribution with constant variance continues to be the standard framework in portfolio management. Here we propose a practical approach to portfolio selection. It takes both the conditionally varying volatility and the fat-tailedness of risk factors explicitly into account, while retaining analytical tractability and ease of implementation. An application to a portfolio of nine German DAX stocks illustrates that the model is strongly favored by the data and that it is practically implementable. Klassifizierung: C13, C32, G11, G14, G18Die Bewertung von Risiken und die optimale Zusammensetzung von Wertpapier-Portfolios hängt insbesondere von den für die Risikofaktoren gemachten Annahmen bezüglich der zugrunde liegenden Dynamik und den Verteilungseigenschaften ab. In der empirischen Finanzmarkt-Analyse ist weitestgehend akzeptiert, daß die Renditen von Finanzmarkt-Zeitreihen zeitvariierende Volatilität (HeteroskedastizitÄat) zeigen und daß die bedingte Verteilung der Renditen von der Normalverteilung abweichende Eigenschaften aufweisen. Insbesondere die Enden der Verteilung weisen eine gegenüber der Normalverteilung höhere Wahrscheinlichkeitsdichte auf ('fat-tails') und häufig ist die beobachtete Verteilung nicht symmetrisch. Trotzdem stellt die Normalverteilungs-Annahme mit konstanter Varianz weiterhin die Basis für den Mittelwert-Varianz Ansatz zur Portfolio-Optimierung dar. In der vorliegenden Studie schlagen wir einen praktikablen Ansatz zur Portfolio-Selektion mit einem Mittelwert-Skalen Ansatz vor, der sowohl die bedingte Heteroskedastizität der Renditen, als auch die von der Normalverteilung abweichenden Eigenschaften zu berücksichtigen in der Lage ist. Wir verwenden dazu eine dem GARCH Modellähnliche Dynamik der Risikofaktoren und verwenden stabile Verteilungen anstelle der Normalverteilung. Dabei gewährleistet das von uns vorgeschlagene Faktor-Modell sowohl gute analytische Eigenschaften und ist darüberhinaus auch einfach zu implementieren. Eine beispielhafte Anwendung des vorgeschlagenen Modells mit neun Aktien aus dem Deutschen Aktienindex veranschaulicht die bessere Anpassung des vorgeschlagenen Modells an die Daten und demonstriert die Anwendbarkeit zum Zwecke der Portfolio-Optimierung

    ASSESSMENT OF MARKET RISK IN HOG PRODUCTION USING VALUE-AT-RISK AND EXTREME VALUE THEORY

    Get PDF
    The objective of this paper is to investigate the performance of different VaR models in the context of risk assessment in hog production. Potential pitfalls of traditional VaR models are pinpointed and proposals to solve them are analyzed. After a brief description these methods are used to calculate the VaR of the hog finishing margin under German market conditions. In particular we apply Extreme Value Theory (EVT) to our data and compare the results with historical simulation (HS) and the variance-covariance method (VCM). Hill's estimator is used to determine the tail index of the extreme distribution of the gross margin in hog finishing and farrow production. A bootstrap method proposed by Danielsson et al. (1999) is adopted to choose the optimal sample fraction for the tail estimator. It turns out that EVT, VCM, and HS lead to different VaR forecasts if the return distributions are fat tailed and the forecast horizon is long.Livestock Production/Industries, Risk and Uncertainty,

    The volatility of realized volatility

    Get PDF
    Using unobservable conditional variance as measure, latent-variable approaches, such as GARCH and stochastic-volatility models, have traditionally been dominating the empirical finance literature. In recent years, with the availability of high-frequency financial market data modeling realized volatility has become a new and innovative research direction. By constructing "observable" or realized volatility series from intraday transaction data, the use of standard time series models, such as ARFIMA models, have become a promising strategy for modeling and predicting (daily) volatility. In this paper, we show that the residuals of the commonly used time-series models for realized volatility exhibit non-Gaussianity and volatility clustering. We propose extensions to explicitly account for these properties and assess their relevance when modeling and forecasting realized volatility. In an empirical application for S&P500 index futures we show that allowing for time-varying volatility of realized volatility leads to a substantial improvement of the model's fit as well as predictive performance. Furthermore, the distributional assumption for residuals plays a crucial role in density forecasting. Klassifikation: C22, C51, C52, C5

    Pareto Improving Social Security Reform when Financial Markets are Incomplete!?

    Get PDF
    While much of classical statistical analysis is based on Gaussian distributional assumptions, statistical modeling with the Laplace distribution has gained importance in many applied fields. This phenomenon is rooted in the fact that, like the Gaussian, the Laplace distribution has many attractive properties. This paper investigates two methods of combining them and their use in modeling and predicting financial risk. Based on 25 daily stock return series, the empirical results indicate that the new models offer a plausible description of the data. They are also shown to be competitive with, or superior to, use of the hyperbolic distribution, which has gained some popularity in asset-return modeling and, in fact, also nests the Gaussian and Laplace.GARCH, Hyperbolic Distribution, Kurtosis, Laplace Distribution, Mixture Distributions, Stock Market Returns
    • …
    corecore