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Non–technical Summary

In this paper, we analyze the distributional properties of daily returns on 25 stocks belong-

ing to the German stock index DAX. It is widely known that the normal distribution, although

it has dominated the field of empirical finance for a long time, cannot serve as an adequate

model for this task. This has stimulated considerable efforts to develop more appropriate

models. In this context, there is at least as much interest in the conditional as in the uncondi-

tional return distribution. The substantial interest in the conditional distribution is a result of

the observation that the volatility of asset returns, which can be viewed as a measure of risk,

appears to be serially correlated and can, to some degree, be predicted from past observations.

Thus, the methods of volatility modeling are indispensable tools for the risk management of

banks and other institutions facing short– or medium–term financial risks. Among the models

that have been proposed to capture time–varying volatility, the GARCH process is certainly

the most popular, as it is not only rather simple but also often quite successful in filtering out

the heteroskedasticity from financial return series. Ignoring the highly pronounced volatility

dynamics in higher–frequency returns data can give rise to misleading conclusions concern-

ing the underlying distribution governing the return process, because some of its important

features are jointly determined by the shape of the conditional distribution and the dynamic

properties of its second moment (or some other measure of risk). This draws into question

the Laplace-hypothesis that has recently attracted some interest, as is reviewed in the present

paper. Developing more general models, we show that the evidence in favor of the Laplace

distribution is probably due to not considering the GARCH–type dynamics in the returns.

Using the newly developed models, we illustrate in detail the impact of GARCH effects on

estimates of important parameters of the return distribution. The specifications we propose

are essentially mixtures of the Laplace and the normal distribution, which, as we argue in the

paper, makes them attractive models for a number of reasons, as does their good performance

in a competition with some mainstream models of financial modelling, the results of which are

also reported in the paper. As a consequence, the processes will be further investigated in the

future, possibly with a special focus on the pricing of options.



Nichttechnische Zusammenfassung

Die vorliegende Studie untersucht in systematischer Weise die Verteilungseigenschaften

der Aktienkursveränderungen der im DAX 30 enthaltenen Unternehmen für den Zeitraum

von 1996 bis 2001. Seit längerer Zeit ist weithin bekannt, dass die Normalverteilung—trotz

ihrer langjährigen Dominanz in der empirischen Finanzökonomie—nicht als geeignetes Mod-

ell für Renditen im Mittel- und Hochfrequenzbereich in Frage kommt. Noch nicht abgeebbt

ist jedoch die Diskussion darüber, wie diese Zeitreihen adäquat beschrieben werden können.

Dabei richtet sich das Interesse nicht nur auf die unbedingten Verteilungseigenschaften der

Renditen, sondern mindestens ebenso sehr auf die Modellierung der bedingten Verteilung und

ihrer Dynamik. Dieser Tatbestand erklärt sich aus der Beobachtung, dass sich an den Fi-

nanzmärkten Perioden geringer und solche mit hoher Volatilität abzuwechseln scheinen, so

dass sich etwa für das Risikomanagement mit kurz– oder mittelfristigem Horizont die Model-

lierung der Volatilitätsdynamik mit dem Ziel der Prognose als Anliegen von großer Wichtigkeit

darstellt. Das GARCH-Modell mit seinen zahlreichen Modifikationen und Erweiterungen hat

sich zu diesem Zweck in Wissenschaft und Praxis mittlerweile fest etabliert. Dabei lässt sich in

der empirischen Analyse die Frage, welche Form die bedingte Renditeverteilung hat, nicht von

der Frage nach der Renditedynamik trennen, denn beide determinieren gemeinsam die unbe-

dingte Renditeverteilung. Hier setzt die vorliegende Arbeit an. Anhand geeigneter Modelle,

die hier entwickelt werden, wird untersucht, in welcher Weise sich die Verteilungseigenschaften

beim Übergang von einem statischen zu einem dynamischen Modell verändern. Für die Mod-

ellierung der Dynamik vertrauen wir dabei auf den bekannten GARCH-Ansatz, den wir mit

speziellen Verteilungsstrukturen kombinieren. Die Analyse zeigt klar, dass bei der Frage nach

dem geeigneten Verteilungsmodell für Wertpapierrenditen die Frage der Dynamik nicht außer

Acht gelassen werden darf. Im Anschluss an diese Untersuchung werden die entwickelten Mod-

elle einer Reihe von statistischen Tests unterworfen und mit anderen, bereits weit verbreiteten

Mainstream-Modellen verglichen, wobei die neuen Modelle stets gut abschneiden. Diese Ergeb-

nisse legen den Schluss nahe, dass es lohnend sein wird, ihr weiteres Studium zu betreiben,

etwa im Rahmen von Modellen zur Optionspreisbewertung.



1 Introduction

Overwhelming empirical evidence strongly suggests that the normal, or Gaussian, distribution

is not appropriate for modeling financial time series such as returns on stocks, foreign currency,

and other financial instruments. This finding applies to both the unconditional and conditional

returns, where conditional modeling is most often associated with modeling the time–varying

volatility of the returns by GARCH–type or stochastic–volatility models. Relative to the

normal, the empirical distribution of the returns themselves, or the residuals of conditional

(GARCH) models is typically quite fat–tailed and more peaked around the center. As a

consequence, alternative distributions possessing these characteristics have been proposed in

the literature (see, for example, McDonald, 1996).

One strategy relies on mixtures of distributions, as developed in the seminal papers of Clark

(1973) and Epps and Epps (1976), and reviewed in Liesenfeld (2001). As an important case

in point, modeling the unconditional returns with a mixture of normals allows the conditional

distribution of the returns to be normal, which is often considered attractive because of the

implications of the central limit theorem. In this setting, the variance, τ2, of the conditional

normal distribution is the realization of a random variable that may be related to the arrival of

relevant new information, which is not distributed uniformly over time. That is, if we specify

a density function, say h(τ2), for the variance, the joint distribution, f(r, τ2), of returns r and

τ2 is f(r, τ2) = h(τ2)f(r|τ2) = h(τ2)φ(r; µ, τ2), where φ(r; µ, τ2) denotes the normal density

function with mean µ and variance τ2. The unconditional distribution of returns is found by

integrating out τ2, that is,

f(r) =
∫

φ(r; µ, τ2)h(τ2)dτ2. (1)

Hence, returns over fixed intervals of time follow a mixture distribution with mixing distrib-

ution h(·). The arguably most popular example is the Student’s t distribution, which can be

expressed as an inverted gamma–mixture of the normal distribution.

The Laplace distribution for returns, with

fX(x) =
1
2

exp {−|x|} , (2)

arises when the mixing distribution in (1) is exponential, i.e., h(τ2) = λ exp(−λτ2), λ > 0. The

result is well–known; see, for example, Teichrow (1957), Andrews and Mallows (1974); while

Linden (2001) also provides a proof. The Laplace distribution is particularly appealing not

only because of its emergence from the mixture framework, but also because of other favorable
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features, for example, its stability properties (Mittnik and Rachev, 1993; and Kotz, Pod-

gorski and Kozubowski, 2001). The Laplace distribution arises from the geometric summation

process, a probabilistic scheme which has some resemblance with Clark’s (1973) subordinated

process. The role of the Laplace distribution in the family of geometric–stable distributions

is analogous to that of the normal distribution among the class of (non–geometric) stable

distributions. The process is attractive, because geometric–stable random variables are closed

under geometric summation and have domains of attraction, providing certain robustness to

model misspecification (for details, see Mittnik and Rachev, 1993).

In conjunction with several conditional GARCH model formulations, the Laplace distrib-

utional assumption was shown to be greatly superior to the normal assumption by Granger

and Ding (1995) for the S&P 500 index, and by Mittnik, Paolella and Rachev (1998) for the

Nikkei index. It is important to note that use of the Laplace distribution instead of the normal

involves the same number of model parameters.

Moreover, the Laplace, as either the unconditional distribution of asset returns, or as

the conditional distribution coupled with a GARCH–type structure, has been found to result

from a purely economic model of stock prices (Reimann, 2005). Simulation results therein

show consistent evidence for fat–tailed return distributions, with favor for either hyperbolic

returns or, under certain economic model conditions, the Laplace, which is a special case of

the hyperbolic (see Section 5 below).

Linden (2001) examines the unconditional distribution of daily returns on Finnish stocks

and finds that the Laplace distribution cannot be rejected for roughly half of the stocks.

While still informative, conditional models of asset returns are often of greater value than

unconditional models when their purpose is risk and volatility prediction. Ignoring the highly

pronounced volatility clusters in daily or higher–frequency returns data can give rise to mislead-

ing conclusions concerning the underlying distribution governing the return process, because

important features, such as excess kurtosis of the unconditional distribution, are jointly deter-

mined by the shape of the conditional distribution and the dynamic properties of its second

moment (or some other measure of volatility).

In this paper, we analyze the daily returns on 25 stocks belonging to the German stock

index DAX and show that the Laplace distribution (while still superior to the normal) is still

insufficient when GARCH effects are appropriately accounted for. We extend the Laplace

model by considering two models which combine both the Laplace and normal distributions.

The first proposes a random variable whose probability density function (pdf) is a discrete
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mixture of a Gaussian and Laplace pdf. This construction is not new and has its origin in

the engineering sciences. The second model involves a random variable defined to be the

weighted sum of two independent random variables, one being normal, the other Laplace. Its

use appears to be new. Both models provide adequate descriptions of the empirical return

distributions and outperform, both in– and out–of–sample, the Laplace and the generalized

exponential distribution, or GED, which is another candidate that nests the normal and the

Laplace.

The paper is organized as follows. Section 2 tests the Laplace distribution against the

GED both in the unconditional and conditional context, resulting in a blatant rejection of

the Laplace distribution. Section 3 then introduces the aforementioned normal–Laplace com-

binations and details their important properties. Section 4 presents empirical estimates for

the German stock data, and evaluates their in– and out–of–sample performance. Section 5

augments the comparison with the hyperbolic distribution, which also nests the normal and

Laplace. Section 6 summarizes the findings and provides remarks on ways of generalizing the

normal–Laplace mixture to support asymmetry.

2 Testing the Laplace Model

2.1 Unconditional and Conditional Models for Asset Returns

As mentioned above, one of the most striking deviations from normality characterizing the

empirical distribution of asset returns is fat–tailedness, or excess kurtosis, relative to the

normal. The kurtosis, κ, of a distribution of a zero–mean random variable, X, (with finite

fourth moment) is defined via κ = E(X4)/E2(X2), where E denotes the expectation operator.

If κ is larger than 3 (the value associated with the normal distribution), the distribution of

X is called leptokurtic, or fat–tailed. A large number of distributions capable of modeling

leptokurtosis exist—the Laplace distribution (2) is among them. A detailed account of the

Laplace distribution, including applications in finance and economics, is provided by Kotz et

al. (2001). The raw moments of a Laplace random variable are E(Xm) = 0 for m odd and

E(Xm) = m! for m even, so that the coefficient of kurtosis is κLap = 4!/(2!)2 = 6.

Although it is heavier tailed then the normal, the fact that it lacks an explicit shape

parameter (such as the degrees of freedom parameter of the Student’s t distribution) renders

the Laplace relatively inflexible. Its shape is fixed, with the kurtosis being restricted to the

constant value of six, irrespective of the kurtosis of the data being modeled. The severeness
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of this restriction is illustrated when computing the sample kurtosis, κ̂,

κ̂ =
m̂4

m̂2
2

, with m̂k = T−1
T∑

t=1

(rt − r̄)k, k = 2, 4, r̄ = T−1
T∑

t=1

rt, (3)

for the 25 daily German stock returns studied in this paper. The values range from 4.13 to

10.45, indicating a considerable variation in the kurtosis across the different assets.

A well–known distribution which nests the Laplace (and normal) via introduction of a

shape parameter is the generalized exponential (GED), with density

fX(x; p) =
2−(1/p+1)p

Γ(p−1)
exp

{
−1

2
|x|p

}
, p > 0, (4)

where p is the shape parameter. Straightforward calculation shows that the kurtosis of (4) is

a function of p, given by

κGED(p) =
E(X4)
E2(X2)

=
Γ

(
5
p

)
Γ

(
1
p

)

Γ2
(

3
p

) , (5)

where Γ(·) denotes the gamma function, Γ(x) =
∫∞
0 tx−1e−tdt. For p = 1, (4) reduces to

the Laplace distribution, while for p = 2, the normal is obtained, so that κGED(1) = 6 and

κGED(2) = 3. As detailed in the Appendix, the kurtosis is strictly decreasing as p increases,

so that the GED is “somewhere between” the normal and the Laplace for 1 < p < 2.

A priori, there is no reason why all stock returns should exhibit the same distributional

shape. As such, one would expect that, provided enough data, statistical tests, such as the

likelihood ratio (LRT), will favor the GED over the Laplace distribution for most stocks, if not

all, as the null hypothesis of p = 1 is a point (i.e., measure zero) hypothesis. Indeed, for the 21

daily time series studied in Linden (2001), the GED was favored over the Laplace in 11 cases,

based on LR tests with significance level 0.05. However, Linden (2001) fits the unconditional

distribution of the returns; that is, he assumes that returns, denoted by rt, are adequately

modeled as

rt = µ + εt, (6)

where µ is the (constant) mean of rt and {εt} is an iid sequence of zero–mean random variables

following a Laplace distribution with constant scale–parameter σ. It will be useful in subse-

quent analysis to write εt = ηtσ, where {ηt} is an iid sequence of standard Laplace random

variables with density (2), and σ is a positive constant.

In many, if not most, practical applications involving moderate– to high–frequency financial

return data, the conditional distribution of rt+h given the information up to and including
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time t, collected in the information set Ψt, is of most interest. The typical pattern in daily

returns is that the autocorrelation in first moments is nearly negligible, while the correlations

in second moments are highly significant. The latter phenomenon, known as conditional

heteroskedasticity, can often be adequately captured by specifying a GARCH model (see,

for example, the survey article of Palm, 1997; and Gourieroux, 1997). Ignoring first–order

dynamics, the basic GARCH model assumes that returns are given by

rt = µ + ηtσt, (7)

where, vis–à–vis (6), σt is a time–varying scale parameter which evolves according to the

GARCH(1,1) recursion

σ2
t = α0 + α1ε

2
t−1 + β1σ

2
t−1, α0 > 0, α1, β1 ≥ 0. (8)

The conditional variance of rt, given Ψt−1 = {rt−1, rt−2, . . .}, is thus σ2
t E(η2

t ). For instance,

in the normal case, ηt ∼ N(0, 1), so that (8) represents the conditional variance of rt. In

the Laplace case, E(η2
t ) = 2, and the conditional variance of rt is 2σ2

t . When ηt follows the

GED distribution—which Nelson (1991) introduced to the GARCH literature—the variance

is 22/p[Γ(3/p)/Γ(1/p)]σ2
t .

If GARCH effects are present in return data, then their consideration is crucial for distribu-

tional modeling, because important features of the unconditional distribution (for example, un-

conditional kurtosis), are induced both by volatility clustering and conditional non–normality

of the return distribution (see, for example, the contributions in Knight and Satchell, 2001;

and Rachev, 2003). In fact, the exact relation between these two sources of unconditional

kurtosis has only recently been established by Bai, Russell and Tiao (2003), while the fact

that (G)ARCH effects account for excess kurtosis even with conditional normality has been

known since the pioneering work of Engle (1982).

In view of this relation, tests of the Laplace distribution against the GED based on fit-

ting unconditional distributions are thus expected to produce misleading results, because the

kurtosis due to non–normality of the conditional distribution is overestimated when ignoring

GARCH volatility dynamics.

We perform the test using daily (closing) returns on 25 German stocks (see Table 1 for

details), which are included in the German DAX index, a blue chip index comprising the 30

largest firms in terms of exchange turnover and market capitalization. As the composition of

the index changes over time, we use the 25 corporations that were included in the index over the

5



whole sample period (see Theissen, 2003).1 The data range from December 1996 to October

2001, yielding 1,220 observations for each stock. Continuously compounded percentage returns

are used, i.e., rt = 100(log Pt − log Pt−1), where Pt is the price at time t. Table 1 reports

statistical properties of the 25 return series, along with Lagrange multiplier test results for

conditional heteroskedasticity, which reveal highly significant ARCH effects of order 5 for all

return series but one (Bayer). However, the ARCH effects of order 6 are significant at the 10%

level for Bayer.

2.2 Empirical Results for the Laplace Model

As the GED density (4) nests the Laplace when p = 1, the LRT can be used to test for the

appropriateness of the Laplace distribution. We do so for the unconditional model (6) as well

as the conditional model given in (7) and (8), adopting both the Laplace and GED assumption

for the disturbance term εt, respectively ηt. The exact maximum likelihood estimator (MLE)

is used for the unconditional models and the conditional MLE for the GARCH–based models

(see Mittnik, Paolella and Rachev, 1998, for details on the latter).

Estimation results are reported in Table 2 and include the log–likelihood values, LLap and

LGED, of models assuming Laplace and GED distributed innovations, the likelihood ratio test

statistic LR = −2(LLap − LGED), and the estimates of the shape parameter, p, of the GED

distribution. Under the null hypotheses of Laplace, the LR is approximately χ2(1)–distributed,

implying critical values of 2.706, 3.842, and 6.635, for the 10, 5 and 1 percent significance level,

respectively.

The results are twofold. First, for all 25 return series, the Laplace distribution is rejected

at the 5% level in favor of the GED, both in the unconditional and conditional models, and

in most (21 out of 25) cases even at the 1% level. Thus, the data at hand are even less

favorable for the Laplace hypothesis than for the Finnish stocks examined in Linden (2001),

where the Laplace is not rejected for 10 out of 21 stocks. A second result is that, if we

discard the assumption of iid returns and allow for GARCH dynamics in the scale parameter

as in (8), then the evidence against the Laplace distribution becomes even stronger. For all

stocks, the LR–statistics increase substantially. In the GARCH framework, the LRT rejects

the Laplace distribution for all series at the 1% level. At the same time, a comparison to

the unconditional log–likelihood values, LLap and LGED, in the left part of Table 2, indicates

1 This has, for example, the consequence that DaimlerChrysler is not included because of the merger of
Chrysler and Daimler Benz in 1998.
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Table 1: Stock Names and Basic Statistical Properties of their Returnsa

Stock ID# Name Mean Std. Dev. Min. Max. Kurt. ARCH(1) ARCH(5)
1 Adidas–Salomon 0.003 2.570 −11.91 12.78 5.34 71.62∗∗∗ 86.29∗∗∗

2 Allianz 0.054 2.357 −15.13 13.40 8.16 11.33∗∗∗ 46.90∗∗∗

3 BASF 0.029 2.028 −7.57 13.70 5.43 15.91∗∗∗ 64.91∗∗∗

4 Bayer 0.019 2.039 −19.40 9.89 10.45 0.15 4.88
5 BMW 0.067 2.680 −12.09 12.86 4.74 27.07∗∗∗ 89.53∗∗∗

6 Commerzbank −0.004 2.179 −12.77 10.21 6.88 31.30∗∗∗ 97.94∗∗∗

7 Dt. Bank 0.049 2.470 −14.09 13.80 6.86 31.92∗∗∗ 68.33∗∗∗

8 Degussa −0.008 2.371 −8.49 14.35 4.66 37.28∗∗∗ 76.18∗∗∗

9 Dt. Telekom 0.014 2.951 −12.46 14.50 4.27 4.53∗∗ 52.82∗∗∗

10 E.ON 0.033 2.105 −8.57 10.45 4.45 7.73∗∗∗ 34.85∗∗∗

11 Fresenius 0.018 2.359 −11.33 14.38 5.90 13.31∗∗∗ 71.81∗∗∗

12 Henkel 0.052 2.303 −8.16 12.01 4.80 17.52∗∗∗ 59.49∗∗∗

13 Hypo–Vereinsbank 0.013 2.628 −11.02 13.93 5.68 59.50∗∗∗ 150.72∗∗∗

14 Lufthansa 0.017 2.537 −16.37 12.20 6.68 4.61∗∗ 138.87∗∗∗

15 Linde 0.010 2.206 −14.32 11.05 5.67 3.75∗ 15.31∗∗∗

16 MAN 0.016 2.344 −9.51 11.13 4.40 29.38∗∗∗ 48.76∗∗∗

17 Metro 0.045 2.349 −12.10 8.37 4.23 26.90∗∗∗ 46.69∗∗∗

18 Münchner Rück 0.100 2.511 −17.05 15.65 6.61 2.48 24.07∗∗∗

19 Preussag 0.046 2.304 −18.42 13.45 8.64 59.15∗∗∗ 97.43∗∗∗

20 RWE 0.036 2.154 −7.70 11.68 5.69 64.78∗∗∗ 70.93∗∗∗

21 SAP 0.101 3.707 −19.39 21.66 6.41 12.07∗∗∗ 53.67∗∗∗

22 Schering 0.089 1.998 −7.88 7.31 4.13 8.70∗∗∗ 30.60∗∗∗

23 Siemens 0.064 2.653 −12.48 16.19 5.70 1.93 36.54∗∗∗

24 ThyssenKrupp 0.002 2.396 −17.54 11.65 7.19 3.36∗ 23.20∗∗∗

25 Volkswagen 0.029 2.477 −14.28 10.68 5.72 23.38∗∗∗ 85.60∗∗∗
aListed are the names of the stocks used for the investigation. Statistical properties of the returns are also reported.

Std. Dev. is the standard deviation, and Kurt. refers to the sample kurtosis coefficient κ̂, given in equation (3).

ARCH(q) refers to the Lagrange multiplier test for ARCH effects, as proposed by Engle (1982). The test is obtained

by running the regression r2
t = α0 + α1r

2
t−1 + · · · + αqr

2
t−q + ut. Then, under the null of no ARCH effects, the

quantity TR2 is approximately distributed as χ2(q), where T is the number of observations and R2 is the coefficient

of determination obtained for the regression. Asterisks ∗, ∗∗ and ∗∗∗ indicate significance at the 10%, 5% and 1%

levels, respectively.
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dramatic improvements in fit across all assets when allowing for a GARCH structure. Thus,

even when focussing on distributional aspects, dynamic structures should be taken into account

in financial modeling.

The estimates for the shape parameters of the GED, reported in Table 2, reveal the reason

for this shift in evidence towards the GED. It reflects the density’s degree of fat–tailedness

for the unconditional (p̂u) and conditional (p̂c) models. All 25 estimates rise when moving

from unconditional to conditional models, indicating lower excess kurtosis for the conditional

distributions. Obviously, in the unconditional setting, the assumed distribution can capture

some of the properties of the unconditional return distribution induced by volatility dynamics.

Once these are incorporated into the model, they account for a portion of the unconditional

excess kurtosis, and the GED shape parameter estimate moves further away from unity—the

value associated with the Laplace. However, given the substantial improvement in fit, these

dynamic structures should not be ignored when modeling high–frequency asset returns.

3 Incorporating the Laplace Into More Flexible Models

We demonstrated in Section 2.2 that the Laplace distribution, due to its fixed kurtosis, cannot

be expected to serve as a tenable model for many financial return series. However, as detailed

in the introduction, the Laplace distribution has some appealing properties as a model for

asset returns, and we may not want to be abandon it completely. In this section, we propose

two models which incorporate the Laplace distribution as a building block. These models, like

the GED, have only one additional parameter to be estimated, but, as will be seen, provide

better in– and out–of–sample fit than the GED. Specifically, we consider the use of a mixture

and the assumption of conditional normality. As seen in Table 2, the Laplace distribution

apparently has too high a kurtosis, as all p–estimates exceed unity significantly, implying that

there is still a component in the return process which is more adequately modeled with a

Gaussian assumption.

As such, we propose two models that combine the normal and the Laplace. The first is a

discrete mixture of the normal and Laplace distributions. Such models have been proposed by

Kanji (1985) and Jones and McLachlan (1990) in an engineering context. The second model

appears to be new and assumes that the (conditional) returns can be described by a weighted

sum of a Gaussian and a Laplace random variable.
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Table 2: Unconditional and Conditional Tests of Laplace against GED Distributiona

Unconditional Models Conditional Models
Stock ID# LLap LGED LR p̂u LLap LGED LR p̂c

1 −2835.1 −2830.8 8.649∗∗∗ 1.176
(0.0639)

−2800.7 −2788.3 24.76∗∗∗ 1.324
(0.0735)

2 −2718.8 −2712.2 13.30∗∗∗ 1.199
(0.0584)

−2689.1 −2673.6 30.98∗∗∗ 1.325
(0.0645)

3 −2579.8 −2564.5 30.54∗∗∗ 1.352
(0.0722)

−2560.8 −2535.1 51.32∗∗∗ 1.520
(0.0884)

4 −2555.8 −2548.0 15.61∗∗∗ 1.234
(0.0640)

−2542.7 −2532.9 19.54∗∗∗ 1.257
(0.0631)

5 −2916.9 −2903.8 26.08∗∗∗ 1.326
(0.0723)

−2884.0 −2861.1 45.82∗∗∗ 1.461
(0.0815)

6 −2614.5 −2611.9 5.245∗∗ 1.127
(0.0582)

−2560.3 −2543.0 34.48∗∗∗ 1.386
(0.0760)

7 −2777.3 −2772.3 10.01∗∗∗ 1.176
(0.0596)

−2735.5 −2720.5 30.05∗∗∗ 1.331
(0.0675)

8 −2772.3 −2758.3 27.97∗∗∗ 1.349
(0.0754)

−2738.2 −2711.4 53.65∗∗∗ 1.529
(0.0880)

9 −3028.0 −3019.9 16.15∗∗∗ 1.266
(0.0739)

−2965.8 −2949.0 33.66∗∗∗ 1.396
(0.0797)

10 −2621.2 −2610.5 21.41∗∗∗ 1.309
(0.0753)

−2590.1 −2571.5 37.30∗∗∗ 1.424
(0.0817)

11 −2729.5 −2724.7 9.676∗∗∗ 1.184
(0.0627)

−2702.0 −2691.1 21.74∗∗∗ 1.297
(0.0699)

12 −2707.5 −2702.8 9.537∗∗∗ 1.188
(0.0658)

−2668.6 −2654.9 27.45∗∗∗ 1.346
(0.0763)

13 −2848.2 −2845.2 5.898∗∗ 1.135
(0.0585)

−2780.2 −2757.6 45.27∗∗∗ 1.451
(0.0792)

14 −2818.1 −2812.9 10.31∗∗∗ 1.189
(0.0632)

−2785.8 −2768.2 35.33∗∗∗ 1.415
(0.0816)

15 −2668.0 −2657.6 20.75∗∗∗ 1.279
(0.0678)

−2637.4 −2621.6 31.67∗∗∗ 1.352
(0.0683)

16 −2752.5 −2741.2 22.72∗∗∗ 1.310
(0.0736)

−2724.9 −2701.5 46.70∗∗∗ 1.489
(0.0866)

17 −2766.4 −2750.9 30.95∗∗∗ 1.379
(0.0789)

−2743.8 −2722.8 42.10∗∗∗ 1.446
(0.0809)

18 −2827.0 −2814.8 24.44∗∗∗ 1.301
(0.0673)

−2797.8 −2775.4 44.93∗∗∗ 1.417
(0.0706)

19 −2682.6 −2679.2 6.722∗∗∗ 1.144
(0.0583)

−2650.8 −2638.4 24.71∗∗∗ 1.319
(0.0731)

20 −2622.4 −2617.0 10.87∗∗∗ 1.198
(0.0645)

−2589.0 −2574.9 28.32∗∗∗ 1.348
(0.0742)

21 −3260.2 −3257.6 5.068∗∗ 1.121
(0.0565)

−3204.8 −3192.4 24.81∗∗∗ 1.310
(0.0711)

22 −2568.6 −2552.9 31.52∗∗∗ 1.378
(0.0777)

−2552.7 −2531.6 42.17∗∗∗ 1.452
(0.0823)

23 −2890.5 −2880.3 20.31∗∗∗ 1.272
(0.0666)

−2845.6 −2824.1 42.93∗∗∗ 1.420
(0.0730)

24 −2748.7 −2742.3 12.72∗∗∗ 1.207
(0.0622)

−2720.5 −2706.9 27.28∗∗∗ 1.315
(0.0671)

25 −2773.7 −2771.3 4.939∗∗ 1.123
(0.0582)

−2728.8 −2715.9 25.81∗∗∗ 1.321
(0.0717)

Mean −2763.3 −2755.3 16.06 1.237 −2728.0 −2710.5 34.91 1.386
aStandard errors are given in parentheses.
LLap and LGED denote the maximum value of the log–likelihood function of the Laplace and GED models,
respectively. LR is the likelihood ratio statistic, LR = −2(LLap−LGED), which is approximately distributed
as χ2(1). Asterisks ∗, ∗∗ and ∗∗∗ indicate significance at the 10%, 5% and 1% levels, respectively. The
critical values at the 10%, 5% and 1% levels are 6.635, 3.842, and 2.706, respectively. p̂u and p̂c denote
the estimates of the GED shape parameter p in the unconditional and conditional (GARCH) setting,
respectively.

9



3.1 The Gauss–Laplace Mixture (GLaM)

The discrete mixture of a normal and a Laplace distribution, which will be referred to as

Gauss–Laplace mixture, or GLaM, was introduced in Kanji (1985) as a model for wind shear

data. The mixture is characterized by the mixing proportion θm, 0 ≤ θm ≤ 1, which denotes

the fraction of normality in the distribution. Because this fraction is generally unknown a

priori, it has to be estimated from the data. The standardized density of a zero–mean random

variable X following a GLaM with mixing proportion θm is

fX(x; θm) =
θm√
2π

e−x2/2 +
1− θm

2
e−|x|, θm ∈ [0, 1]. (9)

Its kurtosis, given by

κGLaM(θm) = 3
(

1 +
(θm + 4) (1− θm)

(2− θm)2

)
, (10)

varies with θm and is bounded between 3 (for θm = 1) and 6.125 (for θm = 2/7). For

0 < θm < 1/2, the kurtosis exceeds that of the Laplace distribution (albeit by a small amount).

The dependence of the GLaM kurtosis on the “fraction of normality”, θm, is shown in Figure

1.

If the sample kurtosis, κ̂, is between 3 and 6.125, then an initial estimate of θm can easily

be computed by the method of moments. Solving (10) for θ̂m implies

θ̂m =
4c− 3±√25− 24c

2(c + 1)
, c =

κ̂− 3
3

. (11)

While the positive root is admissible for all values of κ̂ between 3 and 6.125, the negative

root yields admissible solutions, i.e., θm ∈ [0, 1], only for κ̂ ∈ [6, 6.125]. Hence, the solution is

not unique in this interval. However, it may be preferable to use the negative root there, as

the positive solution implies an unrealistic high fraction of normality. For example, if sample

kurtosis is 6, which is the kurtosis of the Laplace distribution, then the moment estimates for

θm are 0 and 0.5 using the negative and the positive root, respectively.

3.2 The Gauss–Laplace Sum (GLaS)

Let Z be the weighted sum of a normal random variable, N , and a Laplace random variable,

L, i.e.,

Z = θsN + (1− θs)L, θs ∈ [0, 1]. (12)

We refer to (12) as a Gauss–Laplace sum, or GLaS. The derivation of the probability density

function (pdf) and the cumulative distribution function (cdf) of a GLaS random variable is

10
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Figure 1: Kurtosis of the Gauss–Laplace mixture (solid line) as a function of θm, the Gauss–

Laplace sum (dashed line) as a function of θs, and the hyperbolic (dash-dot line), as a function

of one minus its shape parameter p.
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detailed in the Appendix. The pdf is needed for maximum likelihood estimation and the cdf

for Value–at–Risk estimation. The Appendix also shows that the odd moments of Z are zero;

and the even moments are given by

E(Zm) = (1− θs)mm!em/2

(
θ2
s

2(1− θs)2

)
, (13)

where en(x) =
∑n

k=0 xk/k! denotes the exponential sum function.

Using (13), the kurtosis of the GLaS is found to be

κGLaS(θs) = 3

[
1 +

(
2

r2 + 2

)2
]

, r =
θs

1− θs
, (14)

which exceeds 3 for θs ∈ [0, 1). Note that κGLaS(θs) is bounded between 3 and 6, the respective

κ–values of the Gaussian and the Laplace. A plot of the kurtosis as a function of θs is shown

in Figure 1.2

If the sample kurtosis, κ̂, is between 3 and 6, then (14) can be used to obtain a simple

method–of–moments estimate for θs. From (14), we obtain

θ̂s =

√
b

1 +
√

b
, with b = 2

(√ 3
κ̂− 3

− 1
)
. (15)

4 Empirical Results for Gauss–Laplace Models

In this section, the two Gauss–Laplace models introduced above are fitted to the 25 German

stock return series. The estimates for the “normality weights” θm and θs are discussed. We

emphasize the conditional (GARCH) models, because of their clear superiority over the un-

conditional specifications. The models’ in– and out–of–sample performance is studied in some

detail.

The results from maximum likelihood estimation are shown in Table 3. We first consider

the estimates θ̂m and θ̂s for the normal weights in the GLaM and GLaS models, and defer the

discussion of likelihood values to the next subsection. The means of θ̂m and θ̂s, taken over

the 25 series, are reported at the bottom of the table. The average θ̂m for the unconditional

and conditional models are 0.503 and 0.662, respectively, in line with the common findings

that conditional (GARCH) innovations exhibit less kurtosis than that of their unconditional

counterpart, and that conditional normality is (still) not appropriate. The corresponding

values for θ̂s are 0.387 and 0.489.
2 Although kurtosis is monotonic in θs, the moments are not. For example, the variance E(Z2) = θ2

s +2(1−θs)
2

is a quadratic function in θs, which has its minimum at θs = 2/3, namely E(Z2) = 2/3.
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We now concentrate on the conditional models, illustrated in the right part of the table,

because the shape–parameter estimates obtained for the unconditional models are expected

to have a systematic downward bias (for reasons explained at the end of Section 2.2). The

estimates are relatively stable across all stocks, with θ̂m ranging roughly from 0.5 to 0.8, and

θ̂s ranging from 0.4 to 0.55. This was to be expected, as the stocks are relatively similar; i.e.,

blue–chip stocks with high market capitalization traded in the same market, so the fraction of

normality arising perhaps from the pattern of the inflow of relevant new information should

not be too different.

In order to examine whether this pattern is stable across time, we split the sample into

two non-overlapping subsamples of equal length 610, and estimate parameters separately for

each of them. The results are illustrated in Figure 2, where the left panel gives the estimates

for θ̂m in the Gauss–Laplace mixture GARCH model, and the right panel those for θ̂s in the

Gauss–Laplace sum GARCH model. Due to sampling error, the estimates of θm and θs are

slightly more “volatile” in the shorter subperiods. However, the general pattern observed over

the whole sample period also holds in both subperiods, indicating considerable stability of the

normal fraction in the return process over the period considered.

4.1 In–Sample Performance

To compare the in–sample performance of the Gauss–Laplace models with the GED distri-

bution, we rely on the likelihood–criterion. Note that the models are not nested, so that a

likelihood ratio test is not applicable. However, the log–likelihood value obtained from max-

imum likelihood estimation may be viewed as an overall measure of fit and allows to judge

which candidate is more likely to have generated the data. Consequently, standard model

selection criteria such as the AIC (Akaike, 1973) or the BIC (Schwarz, 1978) are widely used

for comparing non–nested models, and there is evidence that these measures are useful for

choosing among GARCH–models with respect to out–of–sample prediction (see Mittnik and

Paolella, 2000, and the references therein). These model selection criteria use the maximum

log–likelihood value of each model but punish the use of additional free parameters. As the

competing models under examination, i.e., GED, GLaM and GLaS, all have the same number

of parameters both when estimated unconditionally and conditionally, ranking them according

to any of these criteria is equivalent to ranking them according to only their likelihood values.

Table 4 summarizes the results of a likelihood–based comparison of the three models both

for the unconditional and the conditional (GARCH) models. It lists, for each model, the
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Figure 2: Estimates of the normality parameters θm (GLaM) and θs (GLaS) over the whole

sample period, as well as over non–overlapping subperiods of equal length.
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Table 3: Likelihood Values and Parameter Estimates for GLaM and GLaS Modelsa

Unconditional Models Conditional Models
Stock ID# LGLaM θ̂m LGLaS θ̂s LGLaM θ̂m LGLaS θ̂s

1 −2828.6 0.406
(0.102)

−2830.2 0.345
(0.0515)

−2784.1 0.640
(0.0854)

−2786.5 0.461
(0.0431)

2 −2697.9 0.621
(0.0746)

−2703.9 0.415
(0.0400)

−2665.3 0.692
(0.0686)

−2662.7 0.492
(0.0345)

3 −2562.2 0.647
(0.0858)

−2562.2 0.464
(0.0441)

−2537.7 0.782
(0.0795)

−2536.1 0.540
(0.0475)

4 −2543.0 0.630
(0.0980)

−2546.8 0.429
(0.0508)

−2530.4 0.633
(0.0972)

−2529.2 0.464
(0.0450)

5 −2902.8 0.610
(0.0939)

−2902.8 0.440
(0.0457)

−2858.2 0.748
(0.0759)

−2855.8 0.544
(0.0415)

6 −2606.7 0.440
(0.0989)

−2610.3 0.331
(0.0533)

−2540.5 0.666
(0.0782)

−2541.5 0.504
(0.0417)

7 −2766.9 0.499
(0.0962)

−2768.1 0.362
(0.0459)

−2718.7 0.681
(0.0858)

−2715.4 0.471
(0.0431)

8 −2761.7 0.622
(0.111)

−2759.7 0.426
(0.0533)

−2716.6 0.753
(0.0806)

−2712.0 0.549
(0.0478)

9 −3024.6 0.361
(0.133)

−3024.3 0.374
(0.0625)

−2945.0 0.702
(0.0803)

−2946.7 0.490
(0.0421)

10 −2611.7 0.561
(0.107)

−2613.0 0.438
(0.0519)

−2574.3 0.666
(0.0879)

−2573.0 0.526
(0.0468)

11 −2722.8 0.422
(0.105)

−2722.5 0.344
(0.0472)

−2694.2 0.528
(0.0993)

−2689.8 0.425
(0.0504)

12 −2705.3 0.270
(0.122)

−2703.5 0.294
(0.0550)

−2657.1 0.520
(0.0917)

−2655.6 0.442
(0.0465)

13 −2843.8 0.303
(0.0977)

−2841.5 0.309
(0.0446)

−2759.5 0.664
(0.0821)

−2755.2 0.497
(0.0407)

14 −2809.6 0.528
(0.107)

−2813.2 0.361
(0.0601)

−2773.5 0.671
(0.0948)

−2769.4 0.522
(0.0482)

15 −2657.0 0.562
(0.103)

−2655.8 0.400
(0.0476)

−2615.5 0.710
(0.0822)

−2616.1 0.479
(0.0406)

16 −2743.6 0.517
(0.111)

−2740.7 0.405
(0.0463)

−2707.0 0.695
(0.0957)

−2702.2 0.511
(0.0466)

17 −2753.8 0.621
(0.105)

−2752.4 0.466
(0.0467)

−2727.5 0.640
(0.0825)

−2720.7 0.511
(0.0391)

18 −2809.2 0.655
(0.0874)

−2809.7 0.443
(0.0415)

−2762.0 0.774
(0.0653)

−2766.7 0.527
(0.0363)

19 −2674.8 0.448
(0.102)

−2676.5 0.344
(0.0483)

−2639.1 0.630
(0.0978)

−2637.8 0.447
(0.0487)

20 −2612.3 0.474
(0.0924)

−2615.8 0.399
(0.0448)

−2575.8 0.567
(0.0872)

−2573.4 0.471
(0.0409)

21 −3254.2 0.347
(0.0935)

−3253.4 0.313
(0.0463)

−3190.2 0.568
(0.0917)

−3188.4 0.413
(0.0410)

22 −2555.4 0.596
(0.0975)

−2552.9 0.448
(0.0466)

−2536.6 0.690
(0.0923)

−2531.4 0.494
(0.0465)

23 −2875.1 0.592
(0.0862)

−2876.9 0.426
(0.0430)

−2814.4 0.812
(0.0691)

−2817.3 0.550
(0.0386)

24 −2736.3 0.533
(0.0914)

−2738.7 0.397
(0.0437)

−2702.3 0.631
(0.0867)

−2700.2 0.468
(0.0375)

25 −2769.4 0.307
(0.0989)

−2768.7 0.300
(0.0498)

−2721.2 0.478
(0.0917)

−2714.9 0.428
(0.0451)

Mean −2753.1 0.503 −2753.7 0.387 −2709.9 0.662 −2707.9 0.489
aStandard errors are given in parentheses.
LGLaM and LGLaS denote the maximum value of the log–likelihood function of the Gauss–Laplace mixture
and Gauss–Laplace sum, respectively.
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Table 4: Frequency of Likelihood–Based Rankings of Unconditional and Conditional Distrib-
utional Models

Unconditional models Conditional Models
Rank GED GLaM GLaS GED GLaM GLaS

1 5 11 9 6 6 13
2 3 8 14 7 6 12
3 17 6 2 12 13 0

Avg. Rank 2.48 1.80 1.72 2.24 2.28 1.48

number of stocks for which a model is ranked as the best (Rank 1), second best or worst

(Rank 3). The last row reports the average ranks over the 25 stocks for each model, which

may be viewed as the overall goodness–of–fit criterion. According to this, the GLaS would

be the preferred model both in the unconditional and the conditional case. Another possible

criterion is the number of times a model is selected as the best. In this case, GLaM dominates

somewhat in the unconditional case, while GLaS is clearly preferred in the GARCH context.

The GED is not favored by any of these criteria. In particular, the GlaS is clearly superior

to the GED and the GLaM when used as conditional distribution in a GARCH model. The

latter seems more important, given the strong evidence for GARCH effects in the data.

However, the foregoing analysis does not take into account the fact that small differences

in the log–likelihood value—and hence in AIC or BIC—may be viewed as negligible. For

example, according to Kass and Raftery (1995), a BIC difference of less than two corresponds

to “not worth more than a bare mention”; while differences between two and six imply positive

evidence; differences between six and ten give rise to strong evidence; and differences greater

than ten invoke very strong evidence. It turns out, however, that most of the differences in

log–likelihood used to produce Table 4 are in the region of positive to very strong evidence

according to Kass and Raftery (1995), as is illustrated in Figure 3. As two times the difference

in log–likelihood is used in the computation of AIC and BIC, Figure 3 shows the differences

in the values of L multiplied by 2 for the 25 stocks for each pairwise model comparison.

4.2 Out–of–Sample Performance

Comparing the performance of the distributional models with respect to out–of–sample fore-

casting, we shall only consider GARCH models, given the overwhelming evidence for con-

ditional heteroskedasticity in the return series. Also, we focus on the evaluation of density
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Figure 3: The left panel shows two times the difference in log–likelihood of unconditional

models, the right panel is the similar, but for conditional (GARCH) models.
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forecasts, since they are the cornerstone for reliable Value–at–Risk (VaR) predictions, and,

thus, of great importance in modern risk management (Diebold, Gunther and Tay, 1998).

Compared to VaR analysis, density forecasts are concerned not only with selected quantiles

of the conditional distribution, but with its characteristics over the whole support, and, thus,

their evaluation seems appropriate when fully specified distributional models are subject to

testing. Employing the first half of the sample (i.e., the first 610 observations) for estima-

tion, we produce density forecasts for the 610 observations in the second half in the sample,

reestimating the models after each forecast.

The evaluation of density forecasts is based on the series of estimated εt values in (6),

denoted by ε̂t, t = 611, . . . , 1220. They are computed as ε̂t = rt − µ̂, where µ̂ is the estimate

of the mean. If the model used to generate the forecast error series were correctly specified,

then the series of standardized forecast errors, ε̂t/σ̂t, where σ̂t is the (estimated) conditional

standard deviation obtained from (8), should follow the postulated zero mean and unit scale

distribution.

However, as these standardized residuals depend on the distribution used, we employ the

probability integral (or Rosenblatt) transformation method in order to make the forecast errors

of the different models comparable. This produces a series of transformed residuals, denoted ût,

which are independently uniformly distributed over the unit interval—provided the underlying

model is correctly specified (Rosenblatt, 1952; see also Diebold et al., 1998). For a density

forecast with cdf F̂ (· | Ψt−1), the probability integral transform is simply defined as

ût = F̂ (ε̂t | Ψt−1) . (16)

The cdf of the Laplace distribution is given in (22) in the Appendix, where we also derive the

cdf of the GLaS. The cdf of the GLaM is simply a linear combination of the cdf of the normal

and the Laplace distribution; and the cdf of the GED distribution is given by (see Johnson,

Kotz and Balakrishnan, 1995)

FX(x; p) =





1
2

[
1− Γinc

(
1
p , |x|

p

2

)]
, if x ≤ 0,

1
2

[
1 + Γinc

(
1
p , xp

2

)]
, if x > 0,

with Γinc(·, ·) being the incomplete gamma function given below in (24).

Palm and Vlaar (1997) propose a Pearson goodness–of–fit test to test for iid uniformity

of (16); see also Stuart, Ord and Arnold (1999, Ch. 25) for further account of this test. One

drawback associated with this test is the fact that the choice for the number of bins may affect
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the test results when dealing with continuous distributions. To circumvent this problem, we

apply the inverse normal cdf as a second transformation, as advocated by Palm and Vlaar

(1997); that is

zt = Φ−1 (ût) , (17)

where Φ(·) is the standard normal cdf. The zt are then iid N(0,1) distributed, provided the

underlying model is correct, so that the ût values are indeed uniformly distributed. Berkowitz

(2001) shows that inaccuracies in the density forecast will be preserved in the transformed

data.

To test for standard normality of the zt values, a joint test involving the first four moments

is employed using the likelihood ratio approach proposed by Berkowitz (2001). It is imple-

mented as follows: Under the alternative hypothesis, we let zt be distributed according to the

skewed exponential power distribution (SEP) of Fernandez, Osiewalski and Steel (1995), with

density

f(zt; µ, σ, d, θ) = K





exp
{
−1

2

( |zt−µ|θ
σ

)d
}

, if zt < µ,

exp
{
−1

2

( zt−µ
σθ

)d
}

, if zt ≥ µ,

(18)

where K = [σ(θ + θ−1)21/dd−1Γ(d−1)]−1. This distribution nests the normal for θ = 1 and

d = 2. For θ < 1 (θ > 1) the density is skewed to the left (right); and is fat–tailed for d < 2.

If µ̂, σ̂, d̂, and θ̂ are the values which maximize the log–likelihood

L(µ, σ, d, θ) =
T∑

t=1

log f(zt;µ, σ, d, θ), (19)

then the likelihood ratio statistic

LRB = 2[L(µ̂, σ̂, d̂, θ̂)− L(0, 1, 2, 1)] (20)

is asymptotically distributed as χ2(4) if the zt are N(0, 1)–distributed.

The test results are summarized in Table 5. For each distributional model, the table reports

the percentage of stock return series for which the models are not rejected at the 0.1, 0.05 and

0.01 significance level, respectively. The results in Table 5 show that the GED distribution is

rejected more often than the GLaM and GLaS, although the results are not as clear–cut as

in the in–sample comparison. Also, we note a slight superiority of the GLaM over the GLaS

model. Finally, an interesting result is that, although the pure Laplace distribution is rejected

for most of the time series, there are some stocks that seem to be reasonably described by the

Laplace distribution.
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Table 5: Density Forecasting Performance of GARCH Models Driven by Alternatively Dis-
tributed Innovationsa

Distributional Model

Level Lap GED GLaM GLaS

0.01 48 80 96 88
0.05 24 68 88 68
0.1 20 56 72 68

aPercentage of stocks for which the respective distributional model is not rejected at the

indicated significance levels according to the likelihood-ratio test defined by Equation (20).

5 Use of the Hyperbolic Distribution

There has been a growing interest in hyperbolic processes for modeling financial data in recent

years; see, e.g., Bibby and Sørensen (2003) for an overview and account of the historical devel-

opment of the hyperbolic and related distributions, and Schoutens (2003, Sec. 5.3) for their use

in Lévy and Ornstein–Uhlenbeck processes. A useful parameterization of the location–zero,

scale–one hyperbolic density function is

f (z; p, q) = C1 exp
{

C2

(
p
√

1 + z2 − qz
)}

, 0 < p ≤ 1, |q| < p, (21)

where

C1 =

√
p2 − q2

2pK1 (p−2 − 1)
, C2 =

p2 − 1

p2
√

p2 − q2
,

and K1 is the modified Bessel function of the third kind with index v = 1. Integral expressions

for K1(x) and related functions necessary for working with the hyperbolic distribution are

given in Bibby and Sørensen (2003), and can be reliably computed using, for example, the

built–in functions provided in Matlab.

For q = 0, density (21) is symmetric; for q < 0 (q > 0) it is left (right) skewed. As p → 0,

f (z) approaches a normal density, and with p = 1, q = 0, it coincides with a scaled Laplace.

Thus, p and q can be interpreted as measures of kurtosis and skewness, respectively. The

kurtosis as a function of p is illustrated in Figure 1;3 it is seen to be bound between 3 and 6,

which correspond to the limiting cases of normal and Laplace, respectively.

We repeat the in–sample comparison conducted above with the hyperbolic distribution

and also the symmetric hyperbolic, obtained by restricting q = 0 in (21). The latter provides

3 The values were computed via numeric integration. Complicated expressions for the moments do exist
however; see, e.g., Küchler, Neumann, Sørensen, and Streller (1999, p. 5).
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a fairer comparison to the GLaM and GLaS, as these cannot exhibit skewness. Note also

that the symmetric hyperbolic has the same number of shape parameters as GLaM and GLaS

(namely one), so that log likelihoods at the respective MLEs can be directly compared. We

only summarize the results for the unconditional models: Out of 25 stocks, the hyperbolic is

superior to the GED in 20 cases; it is better than the GLaS in 13 cases, and is better then

the GLaM in 12 cases. This reinforces the above finding that the GED is a relatively poor

candidate distribution, and shows that the GLaS and GLaM are “worthy competitors” to the

hyperbolic.

More relevant is the conditional (GARCH) setting. Table 6 shows the likelihood results

in this case, as well as the estimated shape parameters, of the symmetric and asymmetric

hyperbolic distribution when coupled with the GARCH structure (7) and (8). From the left

panel of Table 6, the values of p̂ clearly rule out use of the special cases of normal or Laplace.

From the right panel, based on the difference of the likelihood values, we see that only for

series 21 and 23 is there mild asymmetry; otherwise, skewness is not a prominent feature in

this data. This is reinforced from the mean of the likelihood values and parameter estimates,

which are shown in the last column.

Consider comparing the achieved log–likelihood values between the symmetric hyperbolic

and those of GLaM and GLaS. In order to ascertain if the latter two new models are useful,

we construct the difference

Di = max(LGLaM
i , LGLaS

i )− LHypS
i , i = 1, . . . , 25,

for each of the 25 time series (and, again, restricting attention to the conditional, i.e., GARCH,

models). Negative values of D thus lend favor to the hyperbolic. In our case, 11 of the 25

series have a negative D, with an average of only −0.59, while 14 are positive, with an average

of 1.9. While this result indeed implies favoring the GLaM and GLaS distributions, matters

are more clear when considering the following. For 20 of the series, the absolute difference,

|D| is less than 2.0, while for 5 (namely series 2, 1, 23, 9 and 18 in increasing order of

magnitude), D is larger than 2.0, ranging from 2.5 to 6.5. Thus, in light of Kass and Raftery’s

(1995) aforementioned guidelines for judging such differences, we conclude that there is positive

evidence for favoring the new GLaS and GLaM distributions over the symmetric hyperbolic.

21



Table 6: Likelihood Values and Selected Parameter Estimates for Symmetric and Asymmetric
hyperbolic GARCH Modelsa

Symmetric Hyperbolic Asymmetric Hyperbolic
Stock ID# LHypS p̂ LHyp p̂ q̂

1 −2786.7 0.638
(0.0596)

−2786.2 0.628
(0.0608)

−0.021
(0.0223)

2 −2665.2 0.607
(0.0508)

−2665.1 0.612
(0.0514)

0.014
(0.0235)

3 −2535.5 0.534
(0.0463)

−2534.6 0.521
(0.0481)

−0.028
(0.0199)

4 −2529.3 0.644
(0.0606)

−2529.2 0.643
(0.0609)

−0.003
(0.0256)

5 −2856.1 0.518
(0.0612)

−2855.8 0.513
(0.0628)

−0.012
(0.0178)

6 −2541.7 0.586
(0.0625)

−2541.7 0.585
(0.0627)

−0.005
(0.0192)

7 −2715.8 0.624
(0.0566)

−2715.6 0.619
(0.0582)

−0.016
(0.0218)

8 −2711.4 0.513
(0.0696)

−2711.2 0.510
(0.0712)

−0.010
(0.0172)

9 −2950.5 0.491
(0.0401)

−2949.8 0.512
(0.0040)

−0.009
(0.0186)

10 −2572.8 0.504
(0.0764)

−2572.1 0.546
(0.0736)

−0.015
(0.0188)

11 −2689.7 0.659
(0.0501)

−2689.1 0.670
(0.0457)

0.026
(0.0244)

12 −2655.1 0.654
(0.0638)

−2655.0 0.654
(0.0640)

−0.010
(0.0231)

13 −2755.4 0.570
(0.0607)

−2755.3 0.572
(0.0606)

0.006
(0.0178)

14 −2768.7 0.562
(0.0685)

−2768.6 0.558
(0.0645)

−0.009
(0.0201)

15 −2616.6 0.609
(0.0571)

−2616.6 0.609
(0.0578)

0.000
(0.0215)

16 −2701.5 0.545
(0.0693)

−2700.6 0.573
(0.0678)

0.030
(0.0231)

17 −2721.6 0.589
(0.0430)

−2721.6 0.588
(0.0434)

−0.004
(0.0220)

18 −2768.5 0.549
(0.0544)

−2768.2 0.554
(0.0544)

0.016
(0.0199)

19 −2637.4 0.648
(0.0628)

−2637.1 0.661
(0.0640)

0.019
(0.0259)

20 −2573.7 0.621
(0.0596)

−2573.6 0.620
(0.0600)

−0.007
(0.0216)

21 −3186.4 0.604
(0.0274)

−3183.6 0.598
(0.0224)

−0.045
(0.0190)

22 −2530.9 0.575
(0.0664)

−2530.8 0.581
(0.0667)

0.010
(0.0238)

23 −2818.4 0.520
(0.0588)

−2815.4 0.508
(0.0592)

−0.040
(0.0170)

24 −2701.6 0.624
(0.0537)

−2701.3 0.614
(0.0561)

−0.017
(0.0213)

25 −2714.7 0.669
(0.0595)

−2714.6 0.672
(0.0596)

0.010
(0.0235)

Mean −2708.2 0.586 −2707.7 0.589 −0.005
aStandard errors are given in parentheses.
LHypS and LHyp denote the maximum value of the log–likelihood function of the symmetric hyperbolic
and unrestricted (asymmetric) hyperbolic, respectively.
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6 Conclusions

An appealing approach to modeling returns on financial assets and for explaining the excess

kurtosis observed in their empirical distribution is to view the return distribution as a finite–

variance mixture of normal distributions. It also reconciles the assumption of conditional nor-

mality with the observed—even conditional—fat–tailedness. Recently, Linden (2001) argued

that the Laplace distribution is a promising candidate, as it fits into the mixture framework

and is justifiable on empirical grounds. In this paper, we have demonstrated that the ap-

plicability of the Laplace distribution is not as general as perhaps suggested in Linden (2001).

In the analysis of 25 German blue–chip stocks, the Laplace–hypothesis was rejected against

the GED distribution. The rejection is even stronger when the time–series properties of the

returns, i.e., second–moment dynamics, are taken into account.

An outright rejection of the Laplace model may not be called for, however, given its

attractive properties. More flexible but still simple models, building upon the Laplace and

combining it with the Gaussian distribution, have been proposed. An empirical investigation

of 25 German blue–chip stocks shows that models based on such Gauss–Laplace combinations

offer valid descriptions of the conditional distribution both in– and out–of–sample.

A comparison with the symmetric hyperbolic distribution indicates that the new models

are at least as good, and sometimes more suitable for modeling the conditional distribution of

asset returns. For the 25 series under consideration in this paper, only two exhibited mildly

substantial skewness, so that the symmetry restriction of the models considered was not a

detriment. Of course, significant asymmetry in some asset return series is well–documented.

Fortunately, both Gauss–Laplace models examined here can easily be extended to support

asymmetry. In the Gauss–Laplace mixture (9), this can be achieved by allowing for different

means in the two components. In the Gauss–Laplace sum (12), the Laplace variable L could

have an asymmetric Laplace distribution, as given, e.g., in Kotz et al. (2001). This gives rise to

the asymmetric Gauss–Laplace sum, the properties of which can be derived using the methods

employed in the Appendix. Finally, a GARCH structure which couples a normal and Laplace

component along the lines of the model proposed in Haas, Mittnik and Paolella (2004a,b) could

be entertained. In addition to allowing for time–varying skewness and kurtosis, the Laplace

component could give rise to a more parsimonious fit and potentially better forecasts. The

usefulness of such extensions for density prediction is currently under investigation.
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Appendix

Kurtosis of the GED distribution (4)

Differentiating (5) with respect to p produces

dκGED(p)
dp

= −
5Γ′

(
5
p

)
Γ

(
1
p

)
Γ2

(
3
p

)
+ Γ′

(
1
p

)
Γ

(
5
p

)
Γ2

(
3
p

)
− 6Γ

(
5
p

)
Γ

(
1
p

)
Γ

(
3
p

)
Γ′

(
3
p

)

p2Γ4
(

3
p

)

=
2Γ

(
5
p

)
Γ

(
1
p

)

pΓ2
(

3
p

)
[
3
p
ψ

(
3
p

)
− 1

2
5
p
ψ

(
5
p

)
− 1

2
1
p
ψ

(
1
p

)]
,

where ψ(·) is the digamma function, i.e., ψ(x) = (log Γ(x))′ = Γ′(x)/Γ(x). From Alzer (1997,

Theorem 4), the function xψ(x) is strictly convex on (0,∞). Hence, the term in brackets is

negative, and kurtosis strictly decreases with increasing p.

Properties of the Gauss–Laplace Sum (GLaS)

We begin with deriving the cumulative distribution function (cdf) of the GLaS defined by

(12). Note that Z = X + Y , where the densities of X and Y are given by

fX(x; θs) =
1√
2πθs

exp
{
− x2

2θ2
s

}
and fY (y; θs) =

1
2(1− θs)

exp
{
− |x|

1− θs

}
,

respectively. Let the density and the cdf of the standard normal distribution be denoted by

φ(·) and Φ(·), respectively. To derive the cdf of Z, FZ(z), we make use of the fact the cdf of

the Laplace distribution is available in closed form, i.e.,

FY (y) =
1

2(1− θs)

∫ y

−∞
exp

{
−

∣∣∣∣
ξ

1− θs

∣∣∣∣
}

dξ =





1
2 exp

{
y

1−θs

}
for y < 0

1− 1
2 exp

{
− y

1−θs

}
for y ≥ 0.

(22)

Using this, we can derive

FZ(z) = P(X + Y ≤ z)

=
∫ ∞

−∞

∫ z−x

−∞

1
2(1− θs)

exp
{
− |y|

1− θs

}
dy

1√
2πθs

exp
{
− x2

2θ2
s

}
dx

=: A + B,
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where, using (22) and completing the square,

A =
∫ z

−∞

∫ z−x

−∞

1
2(1− θs)

exp
{
− |y|

1− θs

}
dy

1√
2πθs

exp
{
− x2

2θ2
s

}
dx

=
1√
2πθs

∫ z

−∞

(
1− 1

2
exp

{
− z − x

1− θs

})
exp

{
− x2

2θ2
s

}
dx

= Φ
(

z

θs

)
− 1

2
exp

{
− z

1− θs

}
exp

{
1
2

(
θs

1− θs

)2
}

Φ
(

z

θs
− θs

1− θs

)

and

B =
∫ ∞

z

∫ z−x

−∞

1
2(1− θs)

exp
{
− |y|

1− θs

}
dy

1√
2πθs

exp
{
− x2

2θ2
s

}
dx

=
1
2

∫ ∞

z

1√
2πθs

exp
{

z − x

1− θs

}
exp

{
− x2

2θ2
s

}
dx

=
1
2

exp
{

z

1− θs

}
exp

{
1
2

(
θs

1− θs

)2
}

Φ
(
− z

θs
− θs

1− θs

)
.

Hence,

FZ(z) = Φ
(

z

θs

)
+

1
2

exp

{
1
2

(
θs

1− θs

)2
}

×
[
exp

{
z

1− θs

}
Φ

(
− z

θs
− θs

1− θs

)
− exp

{
− z

1− θs

}
Φ

(
z

θs
− θs

1− θs
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.

The density function of Z is obtained by differentiating its cdf, i.e.,

fZ(z) =
dFZ(z)

dz
=

1
θs

φ

(
z

θs

)
+

1
2

exp

{
1
2

(
θs
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}

×
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1
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)
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exp

{
− z

1− θs

}
φ

(
z

θs
− θs

1− θs
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=
1

2(1− θs)
exp

{
1
2

(
θs

1− θs

)2
}

×
[
exp

{
z

1− θs

}
Φ

(
− z
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− θs

1− θs

)
+ exp

{
− z

1− θs

}
Φ

(
z

θs
− θs

1− θs

)]
. (23)

Next, we derive the moments of Z. Using the binomial theorem, (a+b)n =
∑n

i=0

(
n
i

)
aibn−i,

we obtain

E(Zm) = E [(θsN + (1− θs)L)m] =
m∑

i=0

(
m

i

)
θi
s(1− θs)m−iE(N i)E(Lm−i).
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If m is odd, either i is odd or m− i is odd, and so, as all odd moments of N and L are zero, the

odd moments of Z are all zero. For the even moments, we use the fact that E(N2i) = 2−i(2i)!/i!

and E(L2i) = (2i)!. This yields

E(Zm) = E [(θsN + (1− θs)L)m] =
m∑

i=0

(
m

i

)
θi
s(1− θs)m−iE(N i)E(Lm−i)

=
m/2∑

i=0

(
m

2i

)
θ2i
s (1− θs)m−2iE(N2i)E(Lm−2i)

= (1− θs)m

m/2∑

i=0

(
θs

1− θs

)2i m!
(2i)!(m− 2i)!

(2i)!
2ii!

(m− 2i)!

= (1− θs)mm!
m/2∑

i=0

1
i!

(
θ2
s

2(1− θs)2

)i

= (1− θs)mm!em/2

(
θ2
s

2(1− θs)2

)
,

as claimed in (13).

Using the relation (Abramowitz and Stegun, 1974, p. 262)

en(x) = ex[1− Γinc(n + 1, x)],

where

Γinc(n, x) = [Γ(n)]−1

∫ x

0
tn−1e−tdt (24)

is the incomplete gamma function, it is straightforward to show that

E(Zm) = (1− θs)mΓ(m + 1) exp
{

θ2
s

2(1− θs)2

}[
1− Γinc

(
m

2
+ 1;

θ2
s

2(1− θs)2

)]
, (25)

the computation of which, given the availability of Γinc(n, x) in most numerical software pack-

ages, represents no practical problem. For computation purposes, it may be even more useful

to use the fact that E(Zm) satisfies the difference equation

E(Zm) = (1− θs)2m(m− 1)E(Zm−2) + θm
s

Γ(m + 1)
2m/2Γ(m/2 + 1)

, m ≥ 4 and even, (26)

which is easily affirmed through evaluation of E(Zm)−E(Zm−2). Relation (26) is particularly

appealing because the first term on the right hand side, apart from the factor (1− θs)2 mea-

suring the weight of the Laplace, defines the updating scheme for the moments of the Laplace

distribution, while the second term is exactly the mth moment of the Gaussian distribution,

weighted by θm
s .
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Interestingly, if the proportion of normality, θs, is small, [0.5θ2
s/(1− θs)2]i approaches zero

very fast as i increases, implying that the exponential sum function in (13) can be approximated

by exp{0.5θ2
s/(1− θs)2}. As such, a useful approximation to E(Zm) for even m and small θs

is given by

E(Zm) ' (1− θs)mm! exp

{
1
2

(
θs

1− θs

)2
}

. (27)

Table 7, which compares expressions (13) and (27) for selected values of θs and m, shows that

the accuracy of (27) is quite acceptable for small values of θs.

Table 7: Moments of the Gauss–Laplace Sum Computed Exactly and by Approximationa

E(Z2) E(Z4) E(Z6)

θs Exact Appr. Exact Appr. Exact Appr.

0.1 1.630 1.630 15.84 15.84 385.0 385.0
0.3 1.070 1.074 6.316 6.317 92.85 92.85
0.5 0.750 0.824 2.438 2.473 18.52 18.55
0.7 0.670 2.739 1.444 2.958 5.663 7.986

a“Exact” refers to the respective moments calculated using (13)

and “Appr.” refers to use of approximation (27).
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