186 research outputs found

    A Comprehensive Survey on Particle Swarm Optimization Algorithm and Its Applications

    Get PDF
    Particle swarm optimization (PSO) is a heuristic global optimization method, proposed originally by Kennedy and Eberhart in 1995. It is now one of the most commonly used optimization techniques. This survey presented a comprehensive investigation of PSO. On one hand, we provided advances with PSO, including its modifications (including quantum-behaved PSO, bare-bones PSO, chaotic PSO, and fuzzy PSO), population topology (as fully connected, von Neumann, ring, star, random, etc.), hybridization (with genetic algorithm, simulated annealing, Tabu search, artificial immune system, ant colony algorithm, artificial bee colony, differential evolution, harmonic search, and biogeography-based optimization), extensions (to multiobjective, constrained, discrete, and binary optimization), theoretical analysis (parameter selection and tuning, and convergence analysis), and parallel implementation (in multicore, multiprocessor, GPU, and cloud computing forms). On the other hand, we offered a survey on applications of PSO to the following eight fields: electrical and electronic engineering, automation control systems, communication theory, operations research, mechanical engineering, fuel and energy, medicine, chemistry, and biology. It is hoped that this survey would be beneficial for the researchers studying PSO algorithms

    QoS-aware Energy Efficient Cooperative Scheme for Cluster-based IoT Systems

    Get PDF
    The Internet of Things (IoT) technology with huge number power-constrained devices has been heralded to improve the operational efficiency of many industrial applications. It is vital to reduce the energy consumption of each device, however, this could also degrade the Quality of Service (QoS) provisioning. In this paper, we study the problem of how to achieve the tradeoff between the QoS provisioning and the energy efficiency for the industrial IoT systems. We first formulate the multi-objective optimization problem to achieve the objective of balancing the outage performance and the network lifetime. Then we propose to combine the Quantum Particle Swarm Optimization (QPSO) with the improved Non-dominated Sorting Genetic algorithm (NSGA-II) to obtain the Pareto optimal front. In particular, NSGA-II is applied to solve the formulated multi-objective optimization problem and QPSO algorithm is used to obtain the optimum cooperative coalition. The simulation results suggest that the proposed algorithm can achieve the tradeoff between the energy efficiency and QoS provisioning by sacrificing about 10% network lifetime but improving about 15% outage performance

    樹状突起ニューロン計算および差分進化アルゴリズムに関する研究

    Get PDF
    富山大学・富理工博甲第118号・陳瑋・2017/03/23富山大学201

    Robust Mission Design Through Evidence Theory and Multi-Agent Collaborative Search

    Full text link
    In this paper, the preliminary design of a space mission is approached introducing uncertainties on the design parameters and formulating the resulting reliable design problem as a multiobjective optimization problem. Uncertainties are modelled through evidence theory and the belief, or credibility, in the successful achievement of mission goals is maximised along with the reliability of constraint satisfaction. The multiobjective optimisation problem is solved through a novel algorithm based on the collaboration of a population of agents in search for the set of highly reliable solutions. Two typical problems in mission analysis are used to illustrate the proposed methodology

    Innovative Applications of Genetic Algorithms to Problems in Accelerator Physics

    Get PDF
    The genetic algorithm (GA) is a powerful technique that implements the principles nature uses in biological evolution to optimize a multidimensional nonlinear problem. The GA works especially well for problems with a large number of local extrema, where traditional methods (such as conjugate gradient, steepest descent, and others) fail or, at best, underperform. The field of accelerator physics, among others, abounds with problems which lend themselves to optimization via GAs. In this paper, we report on the successful application of GAs in several problems related to the existing Continuous Electron Beam Accelerator Facility nuclear physics machine, the proposed Medium-energy Electron-Ion Collider at Jefferson Lab, and a radio frequency gun-based injector. These encouraging results are a step forward in optimizing accelerator design and provide an impetus for application of GAs to other problems in the field. To that end, we discuss the details of the GAs used, include a newly devised enhancement which leads to improved convergence to the optimum, and make recommendations for future GA developments and accelerator applications

    Combining Simulation and Optimisation for Dimensioning Optimal Building Envelopes and HVAC Systems

    Get PDF
    Responding to the international calls for high energy performance buildings like nearly-zero energy buildings (nZEB), recent years have seen significant growth in energy-saving and energy-supply measures in the building sector. A detailed look at the possible combinations of measures indicates that there could be a huge number (possibly millions) of candidate designs. In exploring this number of designs, looking for optimal ones is an arduous multi-objective design task. Buildings are required to be not only energy-efficient but also economically feasible and environmentally sound while adhering to an ever-increasing demand for better indoor comfort levels. The current thesis introduces suitable methods and techniques that attempt to carry out time-efficient multivariate explorations and transparent multi-objective analysis for optimizing such complex building design problems. The thesis’s experiences can be considered as seeds for developing a generic simulation-based optimisation design tool for high-energy-performance buildings. Case studies are made to illustrate the effectiveness of the introduced methods and techniques. In all the studies, IDA-ICE is used for simulation and MATLAB is implemented for optimisation as well as supplementary calculations. A new program (IDA-ESBO) is used to simulate renewable energy source systems (RESs). Using detailed simulation programs was important to investigate the impact of the energy-saving measures (ESMs) and the RESs as well as their effects on the thermal and/or energy performance of the studied buildings. The case studies yielded many optimal design concepts (e.g., the type of heating/cooling (H/C) system is a key element to achieve environmentally friendly buildings with minimum life cycle cost. The cost-optimal implementations of ESMs and RESs depend significantly on the installed H/C system). On building regulations, comments are taken. For instance, in line with the cost-optimal methodology framework of the European Energy Performance of Buildings Directive (EPBD-recast 2010), our study showed that the Finnish building regulation D3-2012 specifies minimum energy performance requirements for dwellings, lower than the estimated cost-optimal level by more than 15%. The adaptive thermal comfort criteria of the Finnish Society of Indoor Air Quality (FiSIAQ-2008) are strict and do not allow for energy-efficient solutions in standard office buildings. The thesis shows that it is technically possible to speed up the optimisation resolution of the building and HVAC design problems and to reach an optimal or close-to-optimal solution set. A simulation-based optimisation approach with a suitable problem setup and resolution algorithm can efficiently explore the possible combinations of design options and support informative, optimal results for decision-makers.

    Artificial intelligence to enhance aerodynamic shape optimisation of the Aegis UAV

    Get PDF
    This article presents an optimisation framework that uses stochastic multi-objective optimisation, combined with an Artificial Neural Network (ANN), and describes its application to the aerodynamic design of aircraft shapes. The framework uses the Multi-Objective Particle Swarm Optimisation (MOPSO) algorithm and the obtained results confirm that the proposed technique provides highly optimal solutions in less computational time than other approaches to the same design problem. The main idea was to focus computational effort on worthwhile design solutions rather than exploring and evaluating all possible solutions in the design space. It is shown that the number of valid solutions obtained using ANN-MOPSO compared to MOPSO for 3000 evaluations grew from 529 to 1006 (90% improvement) with a penalty of only 8.3% (11 min) in computational time. It is demonstrated that including an ANN, the ANN-MOPSO with 3000 evaluations produced a larger number of valid solutions than the MOPSO with 5500 evaluations, and in 33% less computational time (64 min). This is taken as confirmation of the potential power of ANNs when applied to this type of design problem

    Fast and Robust Design of CMOS VCO for Optimal Performance

    Get PDF
    The exponentially growing design complexity with technological advancement calls for a large scope in the analog and mixed signal integrated circuit design automation. In the automation process, performance optimization under different environmental constraints is of prime importance. The analog integrated circuits design strongly requires addressing multiple competing performance objectives for optimization with ability to find global solutions in a constrained environment. The integrated circuit (IC) performances are significantly affected by the device, interconnect and package parasitics. Inclusion of circuit parasitics in the design phase along with performance optimization has become a bare necessity for faster prototyping. Besides this, the fabrication process variations have a predominant effect on the circuit performance, which is directly linked to the acceptability of manufactured integrated circuit chips. This necessitates a manufacturing process tolerant design. The development of analog IC design methods exploiting the computational intelligence of evolutionary techniques for optimization, integrating the circuit parasitic in the design optimization process in a more meaningful way and developing process fluctuation tolerant optimal design is the central theme of this thesis. Evolutionary computing multi-objective optimization techniques such as Non-dominated Sorting Genetic Algorithm-II and Infeasibility Driven Evolutionary Algorithm are used in this thesis for the development of parasitic aware design techniques for analog ICs. The realistic physical and process constraints are integrated in the proposed design technique. A fast design methodology based on one of the efficient optimization technique is developed and an extensive worst case process variation analysis is performed. This work also presents a novel process corner variation aware analog IC design methodology, which would effectively increase the yield of chips in the acceptable performance window. The performance of all the presented techniques is demonstrated through the application to CMOS ring oscillators, current starved and xi differential voltage controlled oscillators, designed in Cadence Virtuoso Analog Design Environment

    Artificial immune systems based committee machine for classification application

    Get PDF
    This thesis was submitted for the degree of Doctor of Philosophy and awarded by Brunel University.A new adaptive learning Artificial Immune System (AIS) based committee machine is developed in this thesis. The new proposed approach efficiently tackles the general problem of clustering high-dimensional data. In addition, it helps on deriving useful decision and results related to other application domains such classification and prediction. Artificial Immune System (AIS) is a branch of computational intelligence field inspired by the biological immune system, and has gained increasing interest among researchers in the development of immune-based models and techniques to solve diverse complex computational or engineering problems. This work presents some applications of AIS techniques to health problems, and a thorough survey of existing AIS models and algorithms. The main focus of this research is devoted to building an ensemble model integrating different AIS techniques (i.e. Artificial Immune Networks, Clonal Selection, and Negative Selection) for classification applications to achieve better classification results. A new AIS-based ensemble architecture with adaptive learning features is proposed by integrating different learning and adaptation techniques to overcome individual limitations and to achieve synergetic effects through the combination of these techniques. Various techniques related to the design and enhancements of the new adaptive learning architecture are studied, including a neuro-fuzzy based detector and an optimizer using particle swarm optimization method to achieve enhanced classification performance. An evaluation study was conducted to show the performance of the new proposed adaptive learning ensemble and to compare it to alternative combining techniques. Several experiments are presented using different medical datasets for the classification problem and findings and outcomes are discussed. The new adaptive learning architecture improves the accuracy of the ensemble. Moreover, there is an improvement over the existing aggregation techniques. The outcomes, assumptions and limitations of the proposed methods with its implications for further research in this area draw this research to its conclusion
    corecore