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Abstract 

 
A new adaptive learning Artificial Immune System (AIS) based committee machine is 

developed in this thesis. The new proposed approach efficiently tackles the general problem of 

clustering high-dimensional data. In addition, it helps on deriving useful decision and results 

related to other application domains such classification and prediction. 

 

Artificial Immune System (AIS) is a branch of computational intelligence field inspired by the 

biological immune system, and has gained increasing interest among researchers in the 

development of immune-based models and techniques to solve diverse complex computational 

or engineering problems. This work presents some applications of AIS techniques to health 

problems, and a thorough survey of existing AIS models and algorithms. 

 

The main focus of this research is devoted to building an ensemble model integrating different 

AIS techniques (i.e. Artificial Immune Networks, Clonal Selection, and Negative Selection) for 

classification applications to achieve better classification results. A new AIS-based ensemble 

architecture with adaptive learning features is proposed by integrating different learning and 

adaptation techniques to overcome individual limitations and to achieve synergetic effects 

through the combination of these techniques. 

 

Various techniques related to the design and enhancements of the new adaptive learning 

architecture are studied, including a neuro-fuzzy based detector and an optimizer using particle 

swarm optimization method to achieve enhanced classification performance. An evaluation 

study was conducted to show the performance of the new proposed adaptive learning ensemble 

and to compare it to alternative combining techniques. Several experiments are presented using 

different medical datasets for the classification problem and findings and outcomes are 
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discussed. The new adaptive learning architecture improves the accuracy of the ensemble. 

Moreover, there is an improvement over the existing aggregation techniques. The outcomes, 

assumptions and limitations of the proposed methods with its implications for further research 

in this area draw this research to its conclusion. 
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 1  CHAPTER 1: Introduction 

 

1.1.  Introduction 

This thesis presents research work that proposes, develops and assesses a new adaptive learning 

Artificial Immune System (AIS) based Ensemble. The new proposed approach efficiently 

tackles the general problem of clustering high-dimensional data. In addition, it helps on 

deriving useful decision and results related to other application domains such classification and 

prediction. Decisions about clustering high-dimensional data are traditionally difficult to derive 

using individual techniques or based on conventional algorithms. This is due to the fact that 

conventional and individual clustering algorithms divide the data into clusters based on certain 

performance measures related to the similarity between data points. However, the problem 

scope is complex, broad, and consists of high-dimension search space. Moreover, the selection 

of the similarity and performance measures is a challenge and often adds a new dimension to 

the problem complexity. These aspects, in addition to the sparse nature of the data, can lead to 

qualitatively poor performance of the conventional algorithms and the individual techniques. In 

this thesis, this fact is demonstrated by presenting a case study about the performance of three 

popular artificial immune algorithms and then proposes two solutions to overcome these 

problems. First, a new ensemble based on artificial immune algorithms is presented. The 

proposed ensemble has a unique architecture that is based on adaptive learning detector to 

enhance the performance.  Second, the proposed ensemble is further enhanced based on the 

Particle Swarm Optimization (PSO) to improve the overall performance of the architecture.  

These innovative solutions are combined together in an effective, computationally efficient 

architecture. Different samples of high-dimensional data are used to evaluate the performance 

of the proposed solution; the results demonstrate that the performance of the new proposed 

system outperforms the conventional AIS based algorithms.  
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The remainder of this chapter is organised as follows: the following section (1.2) presents the 

background and motivation of this dissertation. It describes the problem of the high-

dimensional data clustering problem and finding the network relationship between the data 

points. Sections 1.3 and 1.4 introduce the biological immune systems and the artificial immune 

systems (respectively). Section 1.4 further presents the appealing features of the AIS in the 

computational intelligence paradigm. Sections 1.5 and 1.6 present the objectives and main 

contribution of the thesis.  Finally, an outline of the dissertation structure is presented in 

Section 1.7. 

 

1.2.  Background and Motivation 

Clustering is a popular approach for exploratory data analysis and mining. One of the main 

goals of clustering research is to design scalable and efficient algorithms for high dimension 

datasets (Zhang et al., 1996). At the present time, technological advances have made data 

collection easier and faster, resulting in larger, more complex and high dimensional data. 

Therefore, adaptations to existing algorithms are required to maintain cluster quality and speed 

as the datasets become larger and more varied. Various clustering algorithms can handle data 

with low dimensionality, but as the dimensionality of the data increases, these algorithms tend 

to fail. 

 

The main goal of clustering is to partition a given set of data points in a multidimensional space 

into clusters, such that the points within a cluster are similar to one another (Fern and Brodley, 

2006). In high dimensional data, there are two challenges facing clustering algorithms. First, 

the presence of irrelevant dimensions can mislead the clustering process by hiding clusters in 

noisy data. The second challenge that many clustering algorithms are facing with high 

dimensional data sets is the curse of dimensionality, which means that the data tend to be sparse 

in high dimensional space. As the number of dimensions in a dataset increases, the difference in 

distance between a given point and its nearest neighbour and other points in the data set often 

becomes negligible, making it difficult if not impossible to identify any clustering structure in 

the data based on distance measures (Fern and Brodley, 2006). Hence, the performances of 

clustering algorithms are often directly influenced by the dimensionality used for calculating 

the chosen distance metric (McCallum et al. 2000; Aggarwal et al., 2003; Aggarwal et al., 

2004; Fern and Brodley, 2006). 
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Ensemble models offer a solution to challenges arising from high dimensional data used in 

clustering applications. Ensembles can provide robust and stable solutions by eliminating the 

limitations of the individual members, which may have a great impact on the final decision, 

hence leading to poor performance. In this study, a novel clustering biological based ensemble 

model is introduced with adaptive learning approaches to address these problems. The 

effectiveness of the proposed architecture will be demonstrated by running experiments with 

several real datasets, including high dimensional data set, and investigate the issue of diversity 

and accuracy in the ensemble model. 

 

1.3.  Biological Immune System 

Immunity refers to the biological state that describes the defence mechanisms and techniques in 

an organism against foreign pathogens, known as antigens, which cause infectious diseases. It 

is the role of the Biological Immune System (BIS), which is composed of many interdependent 

cell types, to protect the body from a wide variety of pathogens such as viruses, bacteria, 

parasites and fungi. 

 

Immune systems have many characteristics such as uniqueness, autonomous, recognition of 

foreigners, learning, memory, distributed detection, and noise tolerance (de Castro and Zuben, 

1999). The immune system has great pattern recognition capability that may be used to 

distinguish between foreign cells entering the body (non-self or antigen) and the body cells 

(self).  

 

The immune response is incited by the recognition of an associated molecule called an antigen. 

The immune system usually works according to two mechanisms called innate and adaptive 

immunity. Innate immunity is directed against general pathogens that enter the body while 

adaptive or acquired immunity allows launching an attack against any invader that the innate 

system cannot remove. The innate immune system plays an important role in the initiation and 

regulation of immune responses, including adaptive immune responses. Adaptive immunity 

includes immunologic memory as a significant, distinguishing characteristic. 

 

Inspired by biological immune systems, Artificial Immune Systems (AIS) have emerged during 

the last decade. Many researchers have designed and built immune-based models for a variety 

of application domains. AIS can be defined as a computational paradigm that is inspired by 
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theoretical immunology, observed immune functions, principles and mechanisms (de Castro 

and Timmis, 2003).  

 

1.4.  Artificial Immune Systems 

Researchers have explored the main features of the AIS mechanisms and exploited them in 

many application areas. Based on their aspects, some AIS techniques have been found to be 

more suitable for certain application areas compared to other AIS approaches. It has been found 

that negative selection models and algorithms were widely used in fault detection and computer 

security applications utilizing the self/non-self-recognition aspect. Alternatively, the artificial 

immune network approaches were used in clustering, classification, data analysis and data 

mining applications. The clonal selection models were used mostly for optimization problems 

(Al-Enezi et al., 2009). 

 

Although AIS models have achieved great successes in various application domains, there are 

still some theoretical issues that need to be further explored, such as the development of unified 

frameworks, convergence and scalability. The developments of the artificial immune systems 

would benefit not only from the inspiration of biological immune principles and mechanisms, 

but also hybridization with other soft computing paradigms, such as neural networks, fuzzy 

logic, and genetic algorithms. They could also be further studied and applied to more 

challenging application areas and to solve complex real-world problems.  

 

1.5.  Aim and Objectives 

This research is devoted to discussing the advancements of the AIS as one of the emerging 

fields in the bio-inspired computational intelligence area. The aim is to develop an AIS based 

classifier system with high classification accuracy and good generalisation. This study also 

presents an overview of the biological immune systems, including a theoretical background on 

the main functions, components, and immunological mechanisms and their relation to the 

development of computational models for problem solving. 
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The main objectives of this research are:  

 To provide an overview of the AIS field, including a theoretical background on the 

main ideas and concepts of AIS and recent advances in research literature. 

 To build an ensemble model using AIS algorithms.  

 To integrate different learning and adaptation techniques to overcome individual 

limitations and to achieve synergetic effects through the combination of these 

techniques.  

 

The approach adopted focuses on building an ensemble model integrating different AIS 

techniques (i.e. Artificial Immune Networks, Clonal Selection and Negative Selection) for 

classification applications. The research followed a straightforward approach involving initial 

research, followed by implementation, testing, and a dissertation phase. The core of this 

research was its emphasis on building an ensemble model for classification applications with an 

optimal performance.  This development was based on: (a) combining three different types of 

artificial immune systems (i.e., artificial immune networks models, clonal selection algorithms, 

and negative selection algorithms) in an ensemble architecture; (b) exploring the possibility of 

utilizing other soft computing and optimization techniques to further enhance the overall 

ensemble performance; (c) examination of the applicability of the proposed committee machine 

approach for classification problems; (d) comparison of the proposed model with the existing 

classification models; and (e) performance quantification of the developed classification 

ensemble model based on a number of statistical tests, benchmarks and empirical studies. 

 

1.6.  Contribution to Knowledge 

The goal of this dissertation is to develop a new adaptive learning artificial immune system 

based ensemble to tackle the general problem of clustering high-dimension data. Some of the 

challenges inherent to clustering were overcome by designing new approaches for clustering 

ensembles through the integration of AIS models with other learning and optimization 

methods. A summary of the main contributions follows: 

 

 The research provides a survey on the different AIS computational paradigms and 

introduces different AIS models and techniques developed in the literature since 

Dasgupta’s work (Dasgupta et al., 2003).  
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 A new biological based ensemble model is introduced integrating different AIS 

approaches and techniques for classification application to achieve better performance 

results. An empirical review has been conducted to compare the proposed ensemble 

model with other classification techniques.  

 

 This work also suggests a new technique to measure the confidence level for the base 

classifiers in the proposed ensemble architecture. The major focus here is on assigning 

the weights for the base classifier on the basis of its competence in order to achieve the 

maximum performance for the ensemble system. 

 

 An adaptive learning detector approach using neuro-fuzzy system to further enhance the 

performance has been introduced to the proposed ensemble. The suggested neuro-fuzzy 

detector assigns weights to the individual classifiers outputs based on their overall 

accuracy results before being fed to the aggregation procedure through a learning 

process.   

 

 This dissertation proposes also a new optimizer based on the Particle Swarm 

Optimization technique as an additional improvement to the unique AIS architecture 

aiming for an optimum performance. The PSO based optimizer refines the weights 

generated from the neuro-fuzzy detector and accordingly new optimized weights will be 

used in the final stage of the ensemble model.  The integration of all of these innovative 

solutions has resulted in an effective, computationally efficient ensemble model. 

 

 Several experiments have been conducted for evaluating the effectiveness of the 

suggested adaptive learning AIS based ensemble approach on different medical 

datasets. Four medical datasets including high-dimension data were used for testing the 

classification problem to demonstrate the capability of the new ensemble technique and 

how it can be employed in dealing with real-world problems in health and cancer 

research. 
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1.7.  Structure of the Thesis 

The rest of this thesis is organized as follows: Chapter 2 presents a critical review of the 

existing AIS models and algorithms expounded in existing literature. The chapter discusses in 

brief the various AIS models developed based on clonal selection, negative selection and 

immune network theories and highlights the applications of these models in the fields of 

science and engineering. Hybrid intelligent systems developed based on the integration 

between AIS and other soft computing techniques are presented at the end. 

 

Chapter 3 introduces the biological immune systems and highlights the role of the various 

organs and immune cells during immune response. The main immune system principles and 

mechanisms that inspire the design and developments of AIS are also discussed in the chapter. 

Furthermore, the chapter presents immunity-based systems and case study to test three of the 

well-known artificial immune systems application for cancer research.  

 

In Chapter 4, some of the basic ideas of ensemble systems are discussed and the commonly 

used methods for combining classifiers in an ensemble are introduced. In addition, the chapter 

introduces new biological based ensemble architecture for classification problem and a new 

technique to measure the confidence level for the base classifiers is suggested. Another 

enhancement is proposed in this chapter to the AIS based ensemble using particle swarm 

optimization method. The chapter finally presents a case study to test the performance of the 

new ensemble models using a real cancer dataset.   

 

A detector-based architecture as a main modification to the AIS ensemble is introduced in 

Chapter 5 using neuro-fuzzy approach to further improve the system performance. 

Additionally, the chapter introduces a new adaptive learning AIS based ensemble architecture 

as the main contribution of this thesis. The core components of the proposed adaptive learning 

ensemble architecture are discusses in details.  

 

In Chapter 6, an empirical review is presented to evaluate the performance of the new adaptive 

learning AIS ensemble systems and compare it to alternative combining techniques. Several 

experiments are carried out using different real medical datasets for the classification problem 

to demonstrate the effectiveness of the proposed ensemble architecture and the findings and 

outcomes of this are briefly discussed.  
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Finally, Chapter 7 highlights directions for future work and forms the conclusion of this 

research. 
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 2  CHAPTER 2: Artificial Immune 

Systems – A Survey1 

 

2.1.  Introduction 

During the past decade, artificial immune systems have attracted a lot of interest from 

researchers aiming to develop immune-based models and techniques to solve complex 

computational or engineering problems. Many AIS-based algorithms have been introduced in 

the literature. These AIS algorithms have been developed based on the emulation of different 

sets of immune system principles. Among these, three main immunological principles have 

been considered while developing the AIS techniques: the clonal selection, the negative 

selection and the immune network theories. This chapter presents a survey of existing AIS 

models and algorithms.  

 

Many application areas have been addressed by the AIS algorithms, including anomaly 

detection, pattern recognition, data mining, computer security, adaptive control and fault 

detection (de Castro and Zuben, 1999; Dasgupta et al., 2003; Hart and Timmis, 2005).  

  

Table 2.1 shows a chronological list of some AIS models and techniques developed in the 

literature since Dasgupta’s work (Dasgupta et al., 2003). A brief description for each model or 

technique, the aspect of the biological immune systems modelled, the type of representation 

used and the application area to which AIS has been applied are included in the table. 

 

 

 

 

                                                 
1
 Published in the 2009 5

th
 GCC IEEE Conference and the International Journal of Research and Reviews in 

Applied Sciences 2010.  
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Table ‎2-1: A timeline of AIS works (2003-present) 

Reference Model or technique description 

Aspects of 

the BIS 

modelled 

Type of 

representation 

used 

Applications 

Neal, 2003 Meta-stable memory immune 

system for multivariate data 

analysis. 

Immune 

Networks 

Real-valued Data analysis 

Rouchen et 

al., 2003 

An Immunity Clonal Strategy 

Algorithm (ICS) to solve multi- 

objective optimization task. 

Clonal 

Selection 

Real-valued 

vectors 

Optimization 

Zuo and Li, 

2003 

A Chaos Artificial Immune 

Algorithm (CAIF) by integrating of 

chaotic search and CLONALG 

Clonal 

Selection 

Real-valued 

vectors 

Optimization  

Nasraoui et 

al., 2003 

Techno – streams model for 

detecting an unknown number of 

evolving clusters in a noisy data 

stream 

Immune 

Networks 

Real-valued Clustering 

Secker et al., 

2003 

An artificial immune system for e-

mail classification (AISEC) 

Immune 

Networks 

Two-part words 

vector 

Classification 

Garrett, 2004 An Adaptive Clonal Selection 

(ACS) algorithm that suggests some 

modifications to the CLONALG 

Clonal 

Selection 

Real-valued 

vectors 

Optimization 

Gonzalez and 

Canady, 2004 

A self adaptive negative selection 

algorithm for anomaly detection. 

Negative 

Selection 

Binary strings, 

real-valued 

Anomaly 

Detection 

Yu and Hou, 

2004 

An improved Clonal selection 

algorithm based in CLONALG 

Clonal 

selection  

Ag-Ab 

binding 

Binary Strings Machine 

Learning 

Liu et al., 

2004 

An Adaptive Immune Clonal 

Strategy Algorithm (AICSA) 

Ag-Ab 

binding  

Clonal 

Selection 

Real-valued 

vectors 

Numerical 

Optimization 

problems 

Bentley and 

Timmis, 2004 

A Fractal immune networks model 

combining the ideas of fractal 

proteins with immune networks. 

Immune 

Networks 

Real-valued Classification,  

Clustering 

Luh and Lin, 

2004 

A Reactive Immune Network (RIN) 

for mobile robot learning 

navigation strategies within 

unknown environments 

Immune 

Networks 

Real-valued Robots 

Ji and 

Dasgupta 

2004. 

A Real-Valued Negative Selection 

Algorithm with Variable-Sized 

Detectors V-Detector 

Negative 

Selection 

Binary strings, 

real-valued 

Anomaly 

Detection 

Campels et al., 

2005 

A Real-coded Clonal Selection 

Algorithm (RCSA) that enables the 

treatment of real valued variables 

for optimization problems. 

Clonal 

Selection 

Real-valued 

vectors 

Electromagnetic 

design 

optimization 

Franca et al., 

2005 

A modified algorithm named dopt-

aiNet as an improved version of 

opt-aiNet to deal with time varying 

fitness functions 

Immune 

Networks 

Real-valued 

vector 

Optimization 

Xian et al., 

2005 

A novel unsupervised Fuzzy K-

Means (FKM) clustering anomaly 

detection algorithm based on clonal 

selection algorithm. 

Clonal 

Selection 

Numeric 

characteristic 

variables 

Computer Security 
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Reference Model or technique description 

Aspects of 

the BIS 

modelled 

Type of 

representation 

used 

Applications 

Cutello et al., 

2005 

Immunological algorithm for 

continuous global optimization 

problems named OPI-IA 

Clonal 

Selection 

Binary String Optimization 

Cutello et al., 

2006 

An improved version of OPT-IA 

called Opt-IMMALG 

Clonal 

Selection 

Real-code Optimization 

Qiao and 

Jianping, 2006 

An Immune based Network 

Intrusion Detection System 

(AINIDS) 

Immune 

Networks 

Rules  Computer Security 

Bian and Qiu, 

2006 

An adaptive clonal algorithm that 

suggests some modifications to the 

CLONALG 

Clonal 

selection, 

receptor 

editing 

Binary strings Optimization 

Karakasis et 

al., 2006 

A hybrid model which combines 

clonal selection principles and gene 

expression programming 

Clonal 

selection 

Symbol Strings Data Mining 

Tian et al., 

2006 

A modified algorithm of aiNet to 

solve function optimization 

problems 

Immune 

Networks 

Real-valued 

vector 

Optimization 

Hao and Cai-

Xin, 2007 

Artificial immune network 

classification algorithm (AINC) for 

fault diagnosis of power 

transformer. 

Immune 

Networks 

Real-valued Classification 

Zhang and Yi, 

2007 

A Tree structured artificial immune 

network (TSAIN) model for data 

clustering and classification. 

Immune 

Networks,  

Clonal 

Section 

Real-valued Classification,  

Clustering 

Fu et al., 2007 A hybrid artificial immune network 

that uses swarm learning 

Immune 

Networks 

Real-valued Optimization 

Lv, 2007 A chaos immune network algorithm 

combines chaos idea with immune 

network to improve its ability of 

searching peaks. 

Immune 

Networks, 

 

Real-valued Optimization 

Zeng et al., 

2007 

A feedback negative selection 

algorithm (FNSA) for anomaly 

detection. 

Negative 

Selection 

Real-valued Anomaly 

Detection 

Huang and 

Jiao, 2007 

An artificial Immune Kernel 

Clustering Network (IKCN) for 

unsupervised image segmentation. 

Immune 

Networks 

Real-valued, 

Image 

features sets 

Clustering 

Gan et al., 

2007 

A technique that combines gene 

expression programming with 

clonal selection algorithm for 

system modelling and knowledge 

discovery. 

Clonal 

selection 

Symbol Strings, 

Binary String 

System Modelling 

Graaff and 

Engelbrecht, 

2007 

A local network neighbourhood 

artificial immune system (LNNAIS) 

model for data clustering 

Immune 

Networks 

Real-valued Clustering 

Gong et al., 

2007a 

An improved clonal selection 

algorithm based on CLONALG 

with a novel mutation method, self-

adaptive chaotic mutation. 

Clonal 

Selection 

Real-valued Optimization 
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Reference Model or technique description 

Aspects of 

the BIS 

modelled 

Type of 

representation 

used 

Applications 

Gong et al., 

2007b 

A differential immune Clonal 

selection algorithm (DICSA) 

combining the mechanism of 

Clonal selection & differential 

evolution 

Clonal 

selection 

 

 

Real-valued 

 

 

Optimization 

Zhengbing et 

al., 2008 

A novel anomaly detection 

algorithm based on real-valued 

negative selection system 

Negative 

Selection 

Real-valued 

vectors 

Anomaly 

Detection 

Dabrowski 

and Kubale, 

2008 

A parallel clonal selection 

algorithm for solving the graph 

colouring problem 

Clonal 

selection 

Real-valued Optimization 

Danzhen et 

al., 2008 

A fuzzy artificial immune network 

(FaiNet) algorithm for lead 

classification that includes three 

parts: AIN learning algorithm, MST 

algorithm and fuzzy C-means 

algorithm. 

Immune 

Networks 

Real-valued 

vectors 

Classification 

Lu and 

Zhichun, 2008 

A Clonal Chaos Adjustment 

Algorithm (CCAA) that improves 

the search efficiency of CLONALG 

Clonal 

Selection, 

Immune 

Networks 

Real-valued Multi-modal 

function 

optimization 

Igawa and 

Ohashi, 2008 

Artificial Negative selection 

Classifier (ANSC) that combines 

the negative selection algorithm 

with clonal selection mechanism. 

Negative 

selection, 

clonal 

selection 

Real-valued Multi-class 

Classification 

 

2.2.  Clonal Selection Based Algorithms 

The clonal selection principle is the whole process of antigen recognition, cell proliferation 

and differentiation into memory cell (Burnet, 1959). Several artificial immune algorithms 

have been developed imitating the clonal selection theory. 

 

de Castro and Zuben (2002) proposed a clonal selection algorithm named CLONALG for 

learning and optimization, CLONALG generates a population of N antibodies, each 

specifying a random solution for the optimization process. At each iteration some of the best 

existing antibodies are selected, cloned and mutated in order to construct a new candidate 

population. New antibodies are then evaluated and certain percentage of the best antibodies is 

added to the original population. Finally, a percentage of worst antibodies of previous 

generations is replaced with new randomly created ones. 

 

Rouchen et al. (2003) introduced an Immunity Clonal Strategy (ICS) algorithm that included 

Immunity Monoclonal Strategy Algorithm (IMSA) and Immunity Polyclonal Strategy 
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Algorithm (IPSA). ICS is used to solve multi-objective optimization tasks. Zuo and Li (2003) 

proposed a chaos artificial immune algorithm for function optimization problems. It uses 

chaotic variables to perform local searches and explore solution spaces. 

 

Garrett (2004) introduced an Adaptive Clonal Selection (ACS) algorithm as a modification of 

CLONALG. This included some modifications of CLONALG, based on an analysis of the 

operators for selecting the amount of mutation and number of clones to overcome the 

drawbacks of the latter, such as the several parameters used and binary representation. An 

Adaptive Immune Clonal Strategy Algorithm (AICSA) was proposed for solving numerical 

optimization problems by Liu et al. (2004). It dynamically assigns the immune memory unit 

and antibody population according to the Ab-Ab and Ab-Ag affinities. It also integrates the 

local search with the global search. 

 

Yu and Hou (2004) presented an improved clonal selection algorithm based in CLONALG 

algorithm. A learning operator was introduced to enhance the learning mechanism of 

CLONALG and to improve the detection efficiency. Campels et al. (2005) proposed a Real-

Coded Clonal Selection Algorithm (RCSA) for electromagnetic design optimization. Some 

modifications were made to the clonal selection algorithm to enable the treatment of real 

valued variables for optimization problems. It has some features such as the number of 

clones, mutation range and the fraction of the population selected each generation. Cutello et 

al. (2005) devised an immunological algorithm for continuous global optimization problems 

named OPT-IA. The main features of the proposed algorithm include a cloning operator that 

explores the neighbourhood at each point within the search space and the inversely 

proportional hypermutation operator used in the algorithm, where the number of mutations is 

inversely proportional to the fitness value. Furthermore, the aging operator is used to remove 

the oldest candidate solution from the current populations to introduce diversity and avoid 

local minima during the search process. 

 

An adaptive clonal algorithm was proposed by Bian and Qiu (2006) for optimal Phasor 

Measurement Unit (PMU) placement. It adjusts the number of the cycle supplement 

population and the probabilities of hypermutation and recombination operators of the 

CLONALG algorithm. These modifications can enhance the optimization process and help to 

avoid locally optimal traps. Cutello et al. (2006) introduced an improved version of OPT-IA 
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called opt-IMMALG. The main modifications in this algorithm are the replacement of the 

binary string representation by a real-coded one and the introduction of a new inversely 

proportional hyper mutation operator. 

 

Gong et al. (2007a) presented an improved clonal selection algorithm based on CLONALG 

with a novel mutation method, self-adaptive chaotic mutation. The main modifications are 

that the new algorithm adopts the logistic chaotic sequence to generate the initial antibody 

population, while the hypermutation adopts self-adaptive chaotic mutation. Gong et al. 

(2007b) later proposed a Differential Immune Clonal Selection Algorithm (DICSA) to solve 

the global optimization problems. It combines the clonal selection theory and differential 

evolution and employs three operators: a clone operator, a differential mutation crossover 

mutation and a standard selection operator. 

 

A parallel clonal selection algorithm for solving the Graph Coloring Problem was presented 

by Dabrowski and Kubale (2008). It uses an island model wherein every processor works on 

its own pool of antibodies to improve the performance. Lu and Zhichun (2008) proposed a 

Clonal Chaos Adjustment Algorithm (CCAA) for Multi-modal Function Optimization. In 

order to enhance the global convergence performance of CLONALG, it takes advantages of 

the ergodic and dynamic properties of chaos system, and introduces the chaotic search 

mechanism into the CLONALG to improve its search efficiency. 

 

Many other clonal selection based algorithms were introduced in previous studies, such as 

those of Jiao and Li (2005), Li et al. (2005), Jin et al. (2006), Xiu-li and Yu-qiang (2006), 

Halavati et al. (2007), He and Jian (2007), Hu et al. (2007), Chen (2007), Zhang et al. (2007), 

Li et al. (2008), Qiao et al. (2008) and Yang et al. (2008). 

 

2.3.  Negative Selection Based Algorithms 

Negative selection is one of the mechanisms of the natural immune system that has inspired 

the developments of most of the existing artificial immune systems. In the T-cell maturation 

process (refer to Chapter 3) of the immune system, if a T-cell in thymus recognizes any self 

cell, it is eliminated before deploying for immune functionality. Similarly, the negative 
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selection algorithm generates detector set by eliminating any detector candidate that matches 

elements from a group of self samples. 

 

Negative selection based algorithms have been used in different applications areas, notably 

anomaly detection. Forrest (1994) proposed a negative selection algorithm whose main idea 

is to generate a set of detectors by first randomly making candidates and then discarding 

those that recognize training self-data, and then these detectors can later be used to detect 

anomalies. 

 

Ayara et al. (2002) presented the NSMutation algorithm. This uses somatic hyper-mutation, 

eliminates redundancy and possesses tunable parameters. It consists of three phases: define 

self-data, generate candidate detector and compare the generated detector with self-data based 

on affinity threshold. Gonzalez and Cannady (2004) presented a self-adaptive negative 

selection approach for anomaly detection. It uses self-adaptive techniques for parameter 

tuning. The main two phases of the algorithm comprise the generation of the initial 

population and the evolution of this generated population. 

 

A Real-Valued Negative Selection Algorithm with Variable-Sized Detectors named V-

Detector was developed by Ji and Dasgupta (2004). It has many notable characteristics, such 

as a simple generation strategy and detector scheme, variable-sized detectors, coverage 

estimate and boundary-aware technique to interpret the training data set as a whole, and not 

as independent points. 

 

Igawa and Ohashi (2008) proposed a new negative selection algorithm named Artificial 

Negative Selection Classifier (ANSC) for multi-class classification. It introduces a cutting 

method to reduce the effect of noise. It combines the negative selection algorithm with clonal 

selection mechanism to solve issues that prevent negative selection algorithms from being 

applied to classification problems. These issues include random searching, overfitting and 

incomplete information. Some other researchers proposed negative selection algorithms (Xia 

et al., 2007; Zeng et al., 2007; Zhengbing et al., 2008).  
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2.4.  Artificial Immune Network Based Models 

Based on the immune network theory proposed by Jerne (1974), discussed in the next 

chapter, many researchers developed models that use ideas and concepts from the immune 

network theory to solve problems in different application areas. The pioneering work of 

Ishiguro et al. (1994) and Hunt and Cooke (1996) inspired the development of several models 

by subsequent researchers. Following the work of Dasgupta et al. (2003), some of the 

existing immune network models are summarized below, with the specific focus on the last 

five years. 

 

Timmis et al. (2000) proposed an Artificial Immune NEtwork (AINE) to perform data 

analysis. It uses Artificial Recognition Ball (ARB) to represent identical B-cells. Two B-Cells 

are linked together if the affinity between two ARBs is below a Network Affinity Threshold 

(NAT). Timmis and Neal (2001) developed a Resource Limited Artificial Immune System 

(RLAIS) based on AINE. The main enhancements in their model are the fixed total number 

of B-cells presented in ARBs with centralized control, whereby each ARB competes to 

allocate resources from the pool. The ARBs with no resources are removed from the network. 

The cloning and mutation process and the interactions of B-Cells are done at the ARB level. 

 

The Self-Stabilizing Artificial Immune System (SSAIS) presented in Neal (2001) is based on 

RLAIS for continuous analysis of time-varying data. Unlike RLAIS, there is no limited 

number of resources and the control is decentralized to the level of ARBs. Castro and Zuben 

(2000) presented the aiNet model for data analysis tasks. The network of antibodies generated 

according to the Euclidean distance. It shares some features of AINE, but differs in that the 

immune network structure is not a part of the antibody cloning and selection process. 

 

de Castro and Timmis (2002a) proposed the Hierarchy of aiNets model based on aiNet. The 

main improvements to the aiNet model were the proposed stopping criterion for the network 

interactive process and the introduction of an automatic hierarchical method to generate a tree 

of aiNets capable of detecting clusters with less-uniform characteristics. de Castro and 

Timmis (2002b) presented the opt-aiNet model for multimodal function optimization based 

on the aiNet model. The main characteristics of this model are automatic determination of the 

population size, combination of local with global search, well-defined stopping criterion and 

capability of locating and maintaining stable local optima solutions. Knight and Timmis 
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(2002) proposed a Multi-layered Artificial Immune Systems (MLAIS) inspired by the clonal 

selection theory, incorporating a feedback mechanism much like the co-stimulation in the 

immune network theory. It incorporates the idea of a primary immune response to deal with 

the event of unknown data being presented to the system. 

 

Neal (2003) proposed a modified version of SSAIS named Meta-Stable Memory Immune 

System for multivariate data analysis. The model uses the stimulation function and resource 

allocation mechanism similar to SSAIS. It differs in that the system employs the cloning 

process in a primary response which is mediated by the affinity threshold, but it does not 

consider mutation operator. Nasraoui et al. (2003) introduced the TECNO-STREAMS model 

for detecting an unknown number of evolving clusters in a noisy data stream. It can model 

clusters with arbitrary shapes, since multiple B-cells can represent a single cluster. 

 

An Artificial Immune System for E-mail Classification (AISEC) was presented by Secker et 

al. (2003). It is capable of continuous learning for the purpose of two-class classification, and 

is used for the task of electronic mail sorting. Alonso et al. (2004) proposed an approach 

based on the aiNet model to model an agent that plays the Iterated Prisoner’s Dilemma (IPD). 

The agent structure consists of two immune networks: recognition AIN and a decision AIN. 

The main improvement to the aiNet is introduced in the mechanism the network uses to add 

B-cell to the memory. 

 

Bentley and Timmis (2004) introduced the Fractal Immune Network combining the ideas of 

fractal proteins with immune networks. The model maps data items to fractal antigens, 

creates fractal recognition spaces similar to ARBs in dynamic networks and forms all 

network links by emission and reception of fractal cytokines. The system provides desirable 

clusters and data classification regardless of the data. Luh and Liu (2004) developed a 

Reactive Immune Network (RIN) for mobile robot learning navigation strategies within 

unknown environments. In their approach, a modified virtual target method is integrated to 

solve local minima problem. Franca et al. (2005) proposed a modified algorithm termed dopt-

aiNet (opt-aiNet for dynamic environments) to deal with time-varying fitness functions as an 

improved version of opt-aiNet. The main improvements presented in their approach are the 

use of separate memory subpopulation, a line search procedure, two new mutation operator 

schemes, a cell line suppression mechanism, and a limited population size.   
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Qiao and Jianping (2006) developed an Artificial Immune based Network Intrusion Detection 

System (AINIDS). It consists of five components: a data collector, a packet head parser and 

feature extraction, antibody generation and antigen detection, co-stimulation and report and 

rule optimization components. Tian et al. (2006) proposed a modified algorithm of aiNet to 

solve function optimization problems. The main improvements presented in this algorithm 

are: 1) the searching radius is a variable parameter depending in the number of the 

generations in which a cell survives; 2) the capability to reserve the cell with the largest 

fitness (elitist strategy); and 3) the expanding rate is controlled to maintain the diversity of 

the network. 

 

Graaff and Engelbrecht (2007) introduced a Local Network Neighbourhood Artificial 

Immune System (LNNAIS) model for data clustering. Compared to the existing AIS models, 

LNNAIS uses the concept of Artificial Lymphocyte (ALC) neighbourhood to determine the 

network links between the ALCs. There is no network affinity threshold in this model that 

determines whether two ALCs should be linked to form a network. The lymphocytes 

neighbours are determined by their individual indexes and they interact and learn from one 

another to have a better local representation of patterns.  

 

Hao and Cai-Xin (2007) proposed an Artificial Immune Network Classification algorithm 

(AINC) for fault diagnosis of power transformer. The algorithm consists of three steps: 

classifying the fault samples into training and testing antigens sets and initialize them; using 

AINC to train the antigens set to obtain memory antibodies; and calculating the Euclidean 

distance among the test antigens set and memory antibodies, and classifying fault samples 

using the K-Nearest Neighbour (KNN) approach. 

 

Zhang and Yi (2007) proposed a Tree Structured Artificial Immune Network (TSAIN) for 

data clustering and classification. In this model, a topological link is set up between two 

antibodies immediately after one has reproduced by another, with no need to set a threshold 

for this connection. It consists of four phases: the clonal section, the antibody cooperation, 

the antibody suppression and the topology updating phases. The first two phases provide the 

network with self-organizing ability. The suppression and topology updating ensures the 

consistency of network topology with distribution of clusters.   
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In Lv (2007), a Chaos Immune Network (CIN) algorithm for multimodal function 

optimization is discussed. The main features of this algorithm are the use of chaos variable to 

simulate proliferation mode of immune cells to enhance searching accuracy, the stepping 

criteria was improved and some relevant measures have been added to avoid pre-maturation. 

Huang and Jiao (2007) presented an Artificial Immune Kernel Clustering Network (IKCN) 

for unsupervised image segmentation. It combines the artificial immune network and the 

support vector domain description. In this model the image features sets are divided into 

subsets by the antibodies, then each subset is mapped into a hypersphere in a high 

dimensional feature space by a Mercer Kernel. Finally, a minimal spanning tree is used to 

automatically determine the final number of clusters without a predefined number of 

clustering. Some other proposed immune network algorithms can be found in Li et al. (2008).  

 

2.5.  Hybrid Computational Intelligent Systems 

Hybrid intelligent systems development is one of the most intensively growing areas. Hybrid 

systems utilize various soft computing methods and techniques like artificial neural networks, 

fuzzy systems, artificial immune systems, evolutionary computation, and genetic algorithms. 

The main objective is to integrate different learning and adaptation techniques to overcome 

individual limitations and to achieve synergetic effects through the combination of these 

techniques. This has contributed effectively in the developments of a large number of new 

intelligent system designs in recent years.  

 

In this context, researchers have explored combining AIS with other computational models 

and techniques, especially with soft-computing methods. Some of the earlier work that 

combined AIS ideas with genetic algorithms was developed by Hajela et al. (1997). They 

used immune networks to improve the convergence of genetic algorithms for design. 

Dasgupta (1997) pointed out the similarities and the differences between AIS and artificial 

neural networks. Nasraoui et al. (2002) proposed the Fuzzy AIS model, which uses a fuzzy 

set to model the area of influence of each B-cell, which makes it more robust to noise. Vergas 

et al. (2003) presented an immune learning classifier network named CLARINET for 

autonomous navigation by combining the strengths of learning classifier systems, 

evolutionary algorithms, and an immune network model. Xian et al. (2005) proposed a novel 
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intrusion detection method that optimizes the objective function of unsupervised fuzzy k-

means clustering based on clonal selection algorithm. 

 

Karakasis and Stafylopatis (2006) introduced a hybrid technique for data mining tasks which 

combines clonal selection principles and gene expression programming. Fu et al. (2007) 

proposed a hybrid artificial immune network which uses the swarm learning of particle 

swarm optimization to speed up the convergence of artificial immune system. Gan et al. 

(2007) proposed a technique that combines the simple representation method of gene 

expression programming and the advantage of clonal selection algorithms. Danzhen et al. 

(2008) introduced a fuzzy artificial immune network (FaiNet) algorithm for load 

classification. It consists of three parts: the artificial immune network learning algorithm, the 

minimal spanning tree algorithm, and the classification algorithm based on fuzzy C-means 

algorithm. 

 

2.6.  Summary 

 

This chapter gives an overview of the various models and algorithms of the artificial immune 

systems as well as their applications in the real-world problems. The chapter briefly 

introduces and discusses the models and algorithms that have been developed based on 

various computational aspects of the immune system. Furthermore, hybrid intelligent systems 

combining artificial immune systems with other soft computing techniques have been 

highlighted. 

 

AIS models and algorithms have been applied in various application domains. For example, 

ClonalG and opt-aiNet algorithms were used for optimization problems. Furthermore, aiNet 

algorithm can be categorized within the clustering algorithms, while negative selection 

algorithms such as V-Detector were used mainly in anomaly detection applications. AIS 

algorithms can be classified into population-based and network-based categories. Thus, the 

negative and clonal selection based algorithms are included in first category and immune 

network models are considered in the second category (de Castro and von Zuben, 2002).  
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Although AIS models have achieved great successes in various application domains, there are 

still some theoretical issues that need to be further explored. As mentioned by Dasgupta et al.  

(2003), these open issues include:  

 Most of the existing AIS algorithms have been exploratory, and they do not scale. 

 The efficiency of the AIS algorithms needs to be improved. 

 Enhancement of the representation. 

 Development of a unified framework that can integrate several AIS models. 

 

The developments of the artificial immune systems would benefit not only from the 

inspiration of biological immune principles and mechanisms, but also from hybridization 

with other soft computing paradigms, such as neural networks, fuzzy logic, and genetic 

algorithms. They could also be further studied and applied to more challenging application 

areas and to solve complex real world problems.  

 

The following chapter presents a theoretical background of the biological immune system 

including the main components of the immune system and the immunological principles that 

inspired the development of the AIS field. The chapter also introduces immunity-based 

systems, discussing three popular AIS algorithms in detail, with case studies based on actual 

cancer datasets. 
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 3  CHAPTER 3: Biological Based 

Computational Systems 

 

3.1.  Introduction 

This chapter introduces the Biological Immune System and particularly discusses the roles of 

various organs and immune cells once an antigen invades the human body. It also discusses 

important principles and mechanisms of immune systems in order to describe the behaviour 

and the immunological processes of the BIS during immune responses. The chapter discusses 

three immune mechanisms that inspired and are primarily used in the development of AIS 

computational methods, namely immune network theory, clonal selection principles and 

negative selection mechanisms. 

 

Artificial Immune Systems incorporate many properties of natural immune systems, including 

diversity, distributed computation, error tolerance, dynamic learning and adaptation, and self-

monitoring. AIS utilizes the biological immune system’s remarkable pattern-matching ability, 

used to distinguish between foreign cells entering the body (referred to as non-self, or antigen) 

and the cells belonging to the body (referred to as self). Furthermore, this chapter presents 

several AIS models and algorithms and case studies to test AIS application for cancer research 

by validation against actual cancer dataset. Three popular AIS algorithms inspired by the 

immunological principles are considered for the case studies, including the CloanlG (de Castro 

and Zuben, 2002), V-Detector (Ji and Dasgupta, 2004a), and aiNet (de Castro and von Zuben, 

2001), which are discussed in detail in the following sections, since they are used as the 

comparison foundation in this work. 
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3.2.  Immunity – Theoretical Background 

3.2.1. The Biological Immune System  

Immunity refers to the biological state that describes the defence mechanisms and techniques of 

an organism against foreign pathogens, known as antigens, which cause infectious diseases. 

The vertebrate immune system is composed of diverse sets of cells and molecules that work 

together with other systems (such as the neural and endocrine), to maintain homeostasis. The 

primary function of the immune system is to protect the body from infectious agents, such as 

viruses and bacteria, commonly known as pathogens. In this section, a general overview of the 

immune system is presented to introduce the reader to its anatomy and the main cells that are 

responsible for defence responses. Detailed information on the functional elements of the 

immune system can be found in previous studies (de Castro and Zuben, 1999; Hofmeyr, 2000; 

Parkin and Cohen, 2001; Dasgupta and Nino, 2009). 

 

3.2.2. Cells of the Immune System 

All immune cells are generated as immature stem cells in the bone marrow. Some of the 

immature stem cells develop through a maturation process within the marrow, whereas others 

leave the bone marrow and migrate into the thymus. The immune cells respond to different 

cytokines and other chemical signals to grow into specific immune cell types, such as T cells, B 

cells, or phagocytes. There are several types of immune cells; however, the focus of this study 

concerns the major cell types, which are lymphocytes and phagocytic/dendritic cells.  

 Lymphocytes 

Lymphocytes are white blood cells produced in the bone marrow specialized mainly in the 

recognition of pathogens (de Castro and Timmis, 2003). There are two broad sub-types of 

lymphocyte known as B cells and T cells. All of them originate in the bone marrow, but T cells 

undergo a process of maturation in the thymus gland. These two types of mature cells are of 

similar appearance, but they differ in the way they identify antigens. B and T cells circulate in 

the blood and through body tissues. 

  

B cells are specialized white blood cells produced and developed in the bone marrow. It gives 

rise to plasma cells which generate substances called antibodies in the body’s fluids, which 
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bind to foreign antigens circulating in the bloodstream. Each B cell is programmed to make one 

specific antibody. When a B cell encounters an antigen that triggers it to become active, it gives 

rise to many large cells known as plasma cells, which produce antibodies. Unlike B cells, T 

cells have to migrate to the thymus where the maturation process occurs. T cells can only 

recognize antigens that are presented by other accessory cells. T cells contribute to immune 

system defences in two major ways (Dasgupta and Nino, 2009): 

 

1- Directing and regulating immune responses. 

2- Directly attacking infected or malignant cells. 

 

There are five different types of T cells produced in the thymus: Delayed hypersensitivity, 

Helper, Cytotoxic, Memory and Suppressor T cells (Dasgupta and Nino, 2009).  Each of these 

cells has important functions in an immune response. The delayed hypersensitivity T cell (TDH) 

secretes cytokines that can mediate cellular immunity and activate phagocytic cells for more 

effective immune response. The helper T cell (Th) produces signals by releasing cytokines that 

prompt the proliferation of both T cells and B cells. Th cells also secrete cytokines that enhance 

the immune response. Memory T cells are maintained in the body to remember previous 

antigens so that when the antigen is encountered again, it quickly respond by giving rise to 

additional helper, memory, and cytotoxic T cells. The cytotoxic T cells (TC), also called killer T 

cells, are the true effecter cells in cell-mediated immunity. These cells recognize the infected 

self-cells, tumour cells and other cells carrying certain foreign or abnormal molecules on their 

surfaces and then launch an attack to kill and destroy the infected cell. Suppressor T cell or 

Regulatory T cell (Treg) is a T cell that reduces or suppresses the immune response of B cells or 

of other T cells to an antigen. These cells are involved in shutting down immune responses after 

a successful elimination of invading organisms in order to prevent excessive reactions (de 

Castro and Zuben, 1999; Hofmeyr, 2000; Dasgupta and Nino, 2009).    

 Phagocytic and Dendritic Cells  

A phagocyte is a large white immune cell that engulfs and kills microbes and other foreign 

particles. Phagocytes also play an important role in the disposal of dead or dying cells caused 

by tissue injury. Three types of white blood cells can act as phagocytes: neutrophils, eosinophil 

and monocytes. Phagocytes circulate in the bloodstream waiting for chemical signals from 

dying cells, which allows them to detect their decline. Upon receiving these signals, the white 
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blood cell phagocytes migrate to the site of infection and ingest the dying cells through a 

process called phagocytosis. 

 

Dendritic Cells (DCs) get their name from their surface projections and are found in the parts 

of lymphoid organs where T cells also exist. Dendritic cells in lymphoid tissues perform two 

main functions: they display antigens to T cells and help stimulate T cells during an immune 

response. Once activated, DCs migrate to the lymph nodes where they interact with T cells and 

B cells to initiate and shape the adaptive immune response (Parkin and Cohen, 2001; Dasgupta 

and Nino, 2009). 

 

3.2.3. The Organs of the Immune System 

Each organ of the immune system plays a different role in defending the body against 

pathogens. There is no central organ that controls how the immune system functions. The 

components of the human immune system are shown in Figure 3.1. 

 

Figure ‎3-1: Anatomy of the Immune System (de Castro and Zuben, 1999) 

 

3.2.3.1. Bone Marrow 

The bone marrow is the place where all the immune system cells are initially generated and 

formed through a process called hematopoiesis. During this process, the generated stem cells 

differentiate into either mature cells of the immune system or into precursors of cells that 
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migrate and develop outside the bone marrow. The bone marrow produces B cells, natural 

killer cells, granulocytes and immature thymocytes, in addition to red blood cells and platelets 

(Dasgupta and Nino, 2009). 

3.2.3.2. Thymus 

The thymus is an organ located behind the breastbone, which is responsible for the 

maturation of T cells in the immune system. Immature thymocytes, also known as 

prothymocytes, leave the bone marrow and migrate into the thymus. During the maturation 

process, T cells that are containing receptors capable of recognizing self-antigens and may 

cause an autoimmune response are excluded from the population of T cells. The mature T 

cells are then released into the bloodstream (Hofmeyr, 2000; Parkin and Cohen, 2001).  

3.2.3.3. Spleen 

The spleen is an organ located in the upper-left portion of the human abdomen. It is made up 

of B cells, T cells, macrophages, dendritic cells, natural killer cells and red blood cells. The 

spleen acts as an immunologic filter of the blood. It removes and destroys old red blood cells, 

called erythrocytes, from the blood supply and removes, stores and produces white blood cell 

lymphocytes (B cells). These stored B cells are activated in the spleen and produce antibodies 

that will assist in removing microbes and other debris from the blood supply (Dasgupta and 

Nino, 2009). 

3.2.3.4. Lymph Nodes 

Lymph nodes filter the lymphatic fluid and store special cells that can eliminate antigens, 

bacteria or tumour cells that are travelling through the body in the lymph fluid. The lymph 

nodes are located in different places in the human body, and they are made up of T cells, B 

cells, dendritic cells and macrophages. Lymph nodes are critical for the immune responses 

and are principal sites where many immune reactions are initiated (Hofmeyr, 2000; Dasgupta 

and Nino, 2009). 
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3.2.4. Immune System Mechanisms 

The immune response is incited by the recognition of an associated molecule called antigen. 

Immune system usually works according to two mechanisms: Innate and Adaptive Immunity. 

Innate immunity is directed against general pathogens that enter the body, while adaptive or 

acquired immunity allows launching an attack against any invader that innate system cannot 

remove. The adaptive immunity includes immunological memory as a significant, 

distinguishing characteristic. For more information about the immune system mechanisms, the 

reader can refer to previous studies (de Castro and Zuben, 1999; de Castro and Timmis, 2003; 

Timmis et al. 2004).  

 Innate Immunity  

Vertebrates are born with this immunity, which plays a vital role in the initiation and regulation 

of immune responses. Specialized cells have evolved to recognize and bind to common 

molecular patterns of micro-organisms. However, it does not provide blanket protection, as it is 

primarily static in nature (de Castro and Zuben, 1999; Dasgupta and Nino, 2009).  

 Adaptive Immunity  

Adaptive immunity is directed towards specific invaders, and is modified by exposure to 

invaders - either those previously encountered by the body’s immune system, or novel antigens. 

It mainly consists of lymphocytes (white blood cells, more specifically B and T type) that aid 

the process of recognizing and destroying specific substances, and are antigen-specific (de 

Castro and Zuben, 1999; Dasgupta and Nino, 2009).  

 

3.3.  Artificial Immune Systems 

Artificial immune systems are computational paradigms that belong to the computational 

intelligence family and are inspired by the biological immune system. During the past 

decade, they have attracted a lot of interest from researchers aiming to develop immune-

based models and techniques to solve complex computational or engineering problems. 

Similarly to other bio-inspired computing paradigms, the AIS intends to capture some of the 

immune system principles and processes previously described within a computational 

perspective. The main objective is to utilize the appealing features of the natural immune 

system including pattern recognition, learning, memory and self-organisation. Hence, the field 



Brunel University | Jamal Al-Enezi 2012 28 

 

of immunology inspires computer scientists and creates much scope for work within the area of 

AIS (Somayaji et al. 1997; Delahunty and Callaghan, 2004; Timmis et al., 2008).  

 

Three well-known AIS algorithms have been selected in this work to test their applicability for 

the classification problem and then used on building the AIS based committee machine. The 

base of selection was due to the difference on the learning process for each algorithm and since 

they all are unsupervised learners. Features of these three AIS algorithms are described below. 

Greater details may be found in the original papers cited. 

 

3.3.1. ClonalG Algorithm  

ClonalG algorithm is based on clonal selection theory (Burnet, 1959). The theory is used to 

explain the basic response of adaptive immune system to antigenic stimulus. It establishes the 

idea that only those cells capable of recognizing an antigen will proliferate while other cells are 

ignored. Clonal selection operates on both B and T cells. B cells, when their antibodies bind 

with an antigen, are activated and differentiated into plasma or memory cells. Prior to this 

process, clones of B cells are produced and undergo somatic hyper mutation. As a result, 

diversity is introduced into the B cell population. Plasma cells produce antigen-specific 

antibodies that work against antigens. Memory cells remain with the host and promote a rapid 

secondary response (de Castro and Timmis, 2003). 

 

de Castro and Zuben proposed a clonal selection algorithm named ClonalG for learning and 

optimization (de Castro and Zuben, 2002). They considered the main features of the clonal 

selection theory while developing their algorithm, including: maintenance of a specific memory 

set, selection and cloning of the most stimulated antibodies, death of non-stimulated antibodies, 

affinity maturation and re-selection of the clones proportionally to their antigenic affinity, and 

generation and maintenance of diverse set of antibodies. The main steps of the ClonalG 

algorithm are described in algorithm 3.1. 

 

Algorithm 3.1: ClonalG Algorithm adopted from (de Castro and Zuben, 2002) 

Input: Ab , gen, n, d, L, β;  

// Ab: available antibody repertoire   

// gen: no of generations 
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// n: no of antibodies to select for cloning 

// d: lowest affinity antibodies to be replaced 

// L: bit string length for each antibody 

// β: cloning factor  

 

Output: Ab, f 

1.   for t = 1 to gen, 

        1.1  f := decode ( Ab ); f  vector containing the affinity of all antibodies with 

relation        to antigen 

        1.2  Abn := select ( Ab, f, n );  

        1.3  C := clone ( Abn, β, f );   

        1.4  C* := hypermut  ( C, f );  

        1.5  f := decode ( C* );  

        1.6  Abn := select ( C*, f, n );  

        1.7  Ab := insert ( Ab, Abn );  

        1.8  Abd := generate ( d, L );  Randomly generate d antibodies of  length  L 

        1.9  Ab := replace (Ab, Abd, f );  

end; 

2.   f := decode ( Ab );   Function decode is supposed to decode Ab and evaluate for 

these   decoded values. 

The affinity between an antibody and an antigen can be defined using different techniques such 

as matching rules and distance measures. One of the commonly used techniques is the 

Euclidean distance, which is suitable when using a real-valued vector representation (Dasgupta 

and Nino, 2009). To explain how the ClonalG works using the Euclidean distance, let Ag = 

{Ag1, Ag2, …, AgN} and Ab = {Ab1, Ab2, …, AbN}denote the antigens and antibodies sets 

respectively, where N is their common order. Then, the matching degree d between Ag and Ab 

can be calculated based on the Euclidean distance: 

   ∑(    –    )
2

 

i 1

                    (   ) 

d is then compared with a preset  threshold λ, and the matching error E obtained by:  
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E = d – λ                           (3.2) 

 

If E > 0, then we consider that the two vectors are not matching, therefore the antigen has not 

been recognized by the antibodies. If E <= 0, we conclude that Ag matches Ab, hence the 

antigen has been recognized by the antibodies. The common range for the affinity calculation is 

varies between 0 and 1. 

 

For the affinity maturation, ClonalG algorithm assumed that the n highest affinity antibodies 

were sorted in ascending order, and the amount of clones generated for all these n selected 

antibodies is given by: 

 

 c   ∑ round (
β. 

i
)

 

i 1

                    (   ) 

 

where Nc is the total amount of clones generated for each of the antigens, β is a cloning factor 

specifies the scaling factor for the number of clones generated for the selected antibodies and 

its common values β (0,1], N is the total amount of antibodies and round() is the operator that 

rounds its argument towards the closest integer. Each term of this sum corresponds to the clone 

size of each selected antibody, e.g. for N = 100 and β = 1, the highest affinity antibody (i = 1) 

will produce 100 clones, while the second highest affinity antibody produces 50 clones, and so 

on (de Castro and Zuben, 2002). 

 

3.3.2. V-Detector Algorithm  

V-Detector algorithm is based on the negative selection mechanism, which aims at the 

protection of the body against self-reactive lymphocytes. Negative selection is a biological 

process by which the natural immune system generates non-self detectors that do not detect self 

structures. Similarly, the negative selection algorithm generates detector set by eliminating any 

detector candidate that match elements from a group of self samples. Negative selection based 

algorithms have been used in different applications areas, such as anomaly detection. 

 

The AIS algorithms developed based on the negative selection mechanism basically consist of 

two phases. In the first phase, the detector set is generated randomly as part of the training or 
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generation stage. Then, the new sample is examined using the detector set obtained during the 

training phase and classified as either self or non-self sample. On the other hand, if the new 

sample is recognized by any detector in the detector sets, then it is classified as a non-self 

sample (represent class 1 of the data). On the other hand, if it is not matching any of the 

detectors, then it is considered as a self sample (represent class 0 of the data). Figure 3.2 

illustrates the basic idea of negative selection algorithms.  

 

 

Figure ‎3-2: Negative Selection Main Idea 

 

Ji and Dasgupta introduced a real-valued negative selection algorithm with variable-sized 

detectors named V-Detector (Ji and Dasgupta, 2004a). It suggests a simple detectors generation 

strategy and matching scheme and includes a new variable parameter, which is the radius of 

each detector. Several versions exist of the V-Detector algorithm. The earlier version called 

point-wise V-Detector that treats each training data point (self sample) individually (Ji and 

Dasgupta, 2004b). In a later version, a new feature of negative selection algorithm was 

introduced that enables the V-Detector to detect the boundary of self region. This version was 

named a boundary-aware V-detector (Ji Z., 2004). The authors subsequently proposed a 

statistical mechanism to analyze the detector coverage namely a quantitative measurement of a 

detector set’s capability to detect non-self sample (Ji and Dasgupta, 2005).    

 

The V-Detector algorithm randomly generates detector candidates one at a time instead of 

generating a full set of detectors. Each individual candidate is then examined using the 
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Euclidean distance matching rule. If the distance to the nearest self sample is less than rs, a 

threshold value which represents the radius of this self sample, the detector is eliminated and a 

new candidate is generated. If the minimum distance to any self sample is greater than the rs, 

then the detector is retained and its radius is kept as the minimum distance to the nearest self 

sample. The generation phase finishes when a preset number of detectors are obtained. 

 

Several key running parameters exist in the V-Detector algorithm: p is the target coverage of 

the non-self region by all the existing detectors for hypothesis testing, α is the significant level 

for hypothesis testing, n is the sample size, rs is the self radius, z is the standard score for z 

score using “Central Limit Theorem”, and zα is the z score for a confidence level of 1-α. The V-

detector algorithm is shown in Algorithm 3.2, which is used in the case study. 

 

Algorithm 3.2: V-Detector Algorithm adopted from (Ji and Dasgupta, 2005) 

V-Detector  - Set ( S, Tmax, rs, co ) 

S : set of self samples 

Tmax : maxium number of detectors 

rs : self radius 

co : expected coverage 

1: D ← ᴓ 

2: Repeat 

3:      t ← 0 

4:      T ← 0 

5:      r ← ∞ 

6:      x ← random sample from [1, 0]
n
 

7:      Repeat for every di in D = {di, i   1, 2, …} 

8:           dd ← Euclidean distance between x (di) and x, where x(di) is the location of di 

9:           if dd  ≤  r(di) then, where r(di) is the radius of detector di 

10:                   t ← t + 1 

11:                   if  t  ≥  1 / (1 - co) then return D 

12:                   go to 4: 

13:     Repeat for every si in S 

14:          d ← Euclidean distance between si and x 

15:          if  d - rs ≤  r  then  r ← d - rs 

16:     if  r > rs  then D ← D  {< x, r >}, where < x, r> is a detector with location x  and   

            radius  r 

17:     else T ← T + 1 

18:     if  T >  1 / ( 1- maximum self coverage )  exit 

19: Until   D  = Tmax 
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20: return  D 

 

3.3.3. aiNet Algorithm  

The main idea of the immune networks theory is that the immune system maintains an idiotypic 

network of interconnected B cells for antigen recognition. These cells interconnect with each 

other in certain ways that lead to the stabilization of the network. Two B cells are connected if 

the affinities they share exceed a certain threshold, and the strength of the connection is directly 

proportional to the affinity they share (Jerne, 1974). 

 

Inspired by immunological principles, including clonal selection, affinity maturation, and 

immune network theory, the artificial immune network model aiNet was presented by de 

Castro and von Zuben (de Castro and von Zuben, 2001). The aiNet model has the capability of 

reducing redundancy and describing immune network structure, including data distribution and 

clustering.  

 

The learning procedure for the aiNet algorithm consists of two main steps. First, the clonal 

selection principle and affinity maturation interactions are applied, whereby the antibodies go 

through the cloning and mutation processes in order to recognize the antigens. This stage 

corresponds to the clonal selection algorithm (ClonalG) originally proposed by de Castro and 

von Zuben, which was outlined in the previous section (de Castro and von Zuben, 2002). The 

raw training data is explored and compressed by the aiNet, leading to an antibody network by 

extracting the most relevant information from the data for clustering purposes.  

 

The second step of the aiNet includes the immune network interactions and introduction of 

diversity. The Minimal Spanning Tree (MST), one of the hierarchical and graph-theoretical 

clustering techniques, is used in this stage to define the final network structure. This method is 

built on the antibody network, whereby the inconsistent edges are identified and removed, 

which can transform the network by separating the data into clusters (de Castro and von Zuben, 

2001). The aiNet adaptation procedure is described in Algorithm 3.3. 
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Algorithm 3.3: aiNet Algorithm adopted from (de Castro and von Zuben, 2000) 

X: data set composed of Np patterns of dimension p; 

C: matrix containing all the Nt network cells ( C  
Ntxp

 ); 

M: matrix of the N memory cells, (M  C); 

Nc: total number of clones generated by each stimulated cell; 

D: dissimilarity matrix with elements dij (Ag-Ab); 

S: similarity matrix with elements sij (Ab-Ab); 

n: n highest affinity cells selected to clone and mutate; 

ζ: percentage of the matured cells to be selected; and 

d,s: natural death and suppression threshold, respectively. 

1. At each iteration step, do: 

    1.1 For each antigen i, do: 

           1.1.1     Determine its affinity, dij, to all the network cells according to  

                        a distance  metric; 

           1.1.2     Select the n highest affinity network cells; 

           1.1.3     Reproduce (clone) these n selected cells. The higher the cell affinity,  

                         the larger Nc; 

           1.1.4     Apply Equation ( C C  α (C X) ) to these Nc cells; 

           1.1.5     Determine D for these improved cells; 

           1.1.6     Re-select  ζ % of the highest affinity cells and create a partial Mp  

                        memory cell matrix; 

           1.1.7     Eliminate those cells whose affinity is inferior to threshold d,  

                        yielding a reduction in the size of the Mp matrix; 

           1.1.8     Calculate the network Ab-Ab affinity, sij; 

           1.1.9     Eliminate sij < s (clonal suppression); 

           1.1.10   Concatenate C and Mp, (C ← [C ; Mp]); 

    1.2 Determine S, and eliminate those cells whose sij < s (network suppression); 

    1.3 Replace r % of the worst individuals; 

2. Test the stopping criterion. 

 
Compared to the other AIS algorithms, the ClonalG algorithm is low in complexity and has a 

small number of user parameters. However, the main issue with ClonalG is scalability, since 

the number of clones per generation which increases in proportion to the number of antibodies 

may reaches unlimited value. While the V-Detector algorithm is more effective in using smaller 

number of detectors because of their variable sizes. But like other negative selection 

algorithms, V-Detector algorithm has the limitations of one-class classification and specific 

matching rules (Ji and Dasgupta, 2009). On the other hand, aiNet has the capability of reducing 

redundancy and describing immune network structure, including data distribution and 
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clustering; however, it also has some drawbacks, including its high number of parameters and 

high time complexity. 

3.4.  Case Studies 

Some experiments were carried out in order to test three of the well-known AIS algorithms and 

to explore their capabilities. The ClonalG, V-Detector, and aiNet algorithms were chosen for 

this case study and tested on a cancer data set for classification purposes. The Matlab software 

was used for all the codes, running on a Windows 7 (64-bit operating system) machine with 

Intel core processor i7-2.20 GHz CPU and 8 GB RAM. 

3.4.1. Data Set 

The dataset used in the case studies is the Wisconsin breast cancer data set, obtained from the 

University of Wisconsin Hospitals (Frank and Asuncion, 2010). It has 699 samples with 9 

attributes, where each instance has one of two possible classes: benign or malignant. Table 3.1 

shows a snapshot from this dataset. Figure 3.3 shows the data distribution graphs for the 

Wisconsin breast cancer data set. 

 

Table ‎3-1:Sample of Wisconsin breast cancer data set 
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(a) 

 

(b) 

 

(c) 
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(d) 

 

(e) 

Figure ‎3-3: Data distribution graph for WBC dataset 

Initially, the dataset was normalised to unity before being fed to the algorithms. Once the data 

was normalised, a five percent of the samples were chosen at random and removed from the 

data set. These then became the testing samples, and the rest were used for the training phase. 

The training and the testing phases were repeated 100 times (was chosen to test the reliability 

of the system) for each experiment, using different samples chosen randomly. 

3.4.2. Performance Measures 

Some testing measures were used, such as accuracy, sensitivity, and specificity to evaluate the 

performance of the AIS algorithms. The predictive accuracy of the classifier measures the 

proportion of correctly classified instances; sensitivity measures the fraction of actual positive 
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examples that are correctly classified; and specificity measures the fraction of actual negative 

examples that are correctly classified. 

 

All these measures can be calculated by measuring true and false positives (TP, FP) in addition 

to the true and false negatives (TN, FN) as follows (Gambino, 2006; Sokolova et al., 2006): 
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Accordingly, the overall performance of the algorithm can be calculated using the following 

equation: 

                                                  (   ) 

 

3.4.3. Experiment Results 

This section presents a comparative analysis of the three algorithms described above. For the 

ClonalG algorithm, the stopping criterion is set as a fixed number of generations: gen = 3. 

Initially, all of the parameters were changed in values to test their effects on the accuracy 

results and the dependency between them.  These variables were varied on the following way 

without significant effect in the results except for the test tolerance:    

 The number of detectors for the training and testing stage was varied from 300 to 

2000 detectors. 

 The number of clones was varied from 2 to 20. 

 The test tolerance value was varied from 0.01 to 1.0. 

 

It was found that better performance results were obtained using number of detectors = 700, 

number of clones = 5 and test tolerance = 0.6. Several test runs were conducted in which the 

training and the testing samples were generated randomly from the original breast cancer data 

set.  
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Similar to the ClonalG algorithm experiment, several runs were carried out using combinations 

of the key control parameters in the V-Detector algorithm to reach an acceptable balance. The 

typical values for these parameters were as follows: 

 Radius of real-valued self samples: rs = 0.3 

 Estimated coverage rate: co = 99.9% 

 Significant level for hypothesis testing: α   0.001 

 Maximum number of detectors: Tmax = 1000 

 

The statistics obtained in this case study are based on 100 repeated runs with the same control 

parameters. V-Detector algorithm could use different distance measures, however only 

Euclidean distance is used in the results reported here. Furthermore, the performance of the V-

Detector algorithm was discovered to be sensitive to several parameters, such as the self radius. 

 

Lastly, the same approach used previously in the CloanlG and V-Detectors tests was applied in 

the aiNet experiment. For the purposes of training, the aiNet parameters were set as follows:  

 The suppression threshold = 0.1  

 The pruning threshold = 1.0  

 Number of best matching cells to be selected (n) = 4  

 Clone number multiplier (N) = 20  

 Percentile amount of clones to be re-selected = 10%  

 The stopping criterion is a fixed number of generations = 30.  

 

The comparison of performance results for the CloanlG, V-Detector, and aiNet algorithms are 

shown in Table 3.2. The table highlights the performance results for some test runs that include 

the accuracy, sensitivity, and specificity of the three algorithms. The outcome of this 

experiment has shown that the V-Detector algorithm has achieved a very promising 

classification performance results against the Wisconsin breast cancer dataset. Furthermore, the 

ClonalG algorithm also achieved very good performance results compared to the V-Detector 

algorithm. However, the results obtained from the aiNet algorithm still were unacceptably low, 

indicating the need for more improvements. Figure 3.4 depicts the overall performance of the 

ClonalG, V-Detector and aiNet algorithms respectively.  
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It is worth mentioning that the ClonalG algorithm is relatively low in complexity and has a 

small number of variables compared to other AIS techniques. Furthermore, aiNet has the 

capability of reducing redundancy and describing immune network structure, including data 

distribution and clustering; however, it also has some drawbacks, including its high number of 

user-defined parameters and its high computational cost per iteration O(m
2
), with relation to the 

number of memory antibodies (m) (de Castro and von Zuben, 2001). 

 

Table ‎3-2: Performance Results for the ClonalG, V-Detector and aiNet algorithms (Testing) 

Round # 

Accuracy Sensitivity Specificity 

ClonalG 
V-

Detector 
aiNet ClonalG 

V-

Detector 
aiNet ClonalG 

V-

Detector 
aiNet 

1 0.7647 0.9412 0.5000 0.6111 0.8889 0.9444 0.9375 1.0000 0.0000 

2 0.9118 0.9412 0.5294 0.8571 0.8571 1.0000 0.9500 1.0000 0.2000 

3 0.8286 0.9429 0.4000 0.5385 0.8462 1.0000 1.0000 1.0000 0.0455 

4 0.7714 0.8857 0.3429 0.4167 0.6667 1.0000 0.9565 1.0000 0.0000 

5 0.8824 0.9412 0.3529 0.6667 0.8333 1.0000 1.0000 1.0000 0.0000 

6 0.8529 0.9412 0.3235 0.5833 0.8333 0.9167 1.0000 1.0000 0.0000 

7 0.8571 0.9143 0.3143 0.5455 0.7273 1.0000 1.0000 1.0000 0.0000 

8 0.8571 0.9714 0.2857 0.7000 0.9000 1.0000 0.9200 1.0000 0.0000 

9 0.9118 0.8824 0.3529 0.7000 0.7000 1.0000 1.0000 0.9583 0.0833 

10 0.8857 0.9714 0.2571 0.5556 0.8889 1.0000 1.0000 1.0000 0.0000 
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Figure ‎3-4: The overall performance of ClonalG, V-Detector and aiNet algorithms 

 

3.5.  Summary 

An overview of the Artificial Immune Systems field, including a theoretical background on the 

main ideas and concepts of the biological immune system, is presented in this chapter. Three 

immune mechanisms are primarily used in the development of AIS methods. These include the 

immune network theory, clonal selection principles and negative selection mechanisms. 

 

Some of the AIS models and techniques developed in the literature are discussed, with 

particular reference made to their application in the health sector. A case study was presented to 

test three of the most well-known AIS algorithms using a dataset specific to cancer. The case 

study clearly demonstrates how AIS approaches can be employed in dealing with real world 

problems in health and cancer research. The three experiments conducted to test the ClonalG, 

V-Detector and aiNet algorithms respectively against the cancer dataset yielded mixed results. 

A better performance result was achieved in the experiment especially with the V-Detector 
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algorithm by detecting successfully the number and the clusters for the tested dataset. This 

outcome leads to the conclusion that some of the AIS techniques are found to be more suitable 

for cancer research than other AIS approaches. 

 

The main concepts and various methods for combining classifiers in ensembles are discussed 

in the following chapter. Furthermore, a new biological based ensemble model is proposed and 

a method for measuring the confidence level for the base classifiers is suggested. A 

modification to the new AIS based ensemble is introduced also in the chapter using 

optimization techniques and compared to alternative combining techniques. A case study is 

then presented to test the performance of the proposed AIS based ensemble systems against real 

cancer dataset. 
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 4  CHAPTER 4: Classifiers 

Ensembles Combining Methods 

 

4.1.  Introduction 

Ensemble is a well established method for obtaining highly accurate classifiers by combining 

different algorithms. It has received increasing attention from researchers in the pattern 

recognition community. Ensemble learning can be generally defined as a machine learning 

system consisting of a set of individual learner models and a decision fusion strategy to 

combine their outputs, which produces single answers for given problems. The basic idea here 

is to combine a mixture of experts and to effectively make use of the results produced by each 

expert within the ensemble. The ensemble model should combine the strengths and weaknesses 

of the individual members and effectively apply the fusion strategy to reach enhanced results. 

By combining the results of each model, a final result with improved performance can be 

achieved.  

 

Recently, the need for a combination of diverse classification algorithms has been widely 

recognized. Classifier combination is expected to outperform individual classifiers, whose 

performance is limited due to different factors such as the imperfection of feature extraction 

and learning algorithms, and the inadequacy of training data. It has been shown by many 

researchers that the classification accuracy of a combination of multiple classifiers is higher 

than that of the best individual classifier (Xu et al., 1992; Ho et al. 1994; Kittler et al., 1998). 

 

In this chapter, the basic ideas of ensemble learning and important steps to implement such 

methods are introduced. Furthermore, a new biological based ensemble is proposed for a 

classification problem and a new technique to measure the confidence level for the base 

classifiers is suggested. A further enhancement to the AIS based ensemble is introduced by 
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using particle swarm optimization approach. Finally, a case study is presented to evaluate the 

performance of the two suggested AIS based ensemble systems and their results are compared 

to other artificial immune systems algorithms. 

 

4.2.  Methods for Combining Classifiers in Ensemble 

Many researchers have investigated the technique of combining multiple classifiers to produce 

a single classifier with an enhanced performance to solve complex recognition problems 

(Kittler and Roli, 2000; Kuncheva, 2004). Ensemble systems can be classified in a variety of 

ways. The basic categorization of ensemble systems is based on how the multiple classifiers are 

arranged. The serial and parallel architectures are the two basic categories in this regard. In the 

parallel expert architecture, a set of classifiers are arranged in parallel and the decisions of the 

various experts are combined in parallel by the fusion module. Alternatively, the serial 

architecture consists of a set of classifiers arranged in series. It is appropriate to deal with 

situations where an expert can be undecided on the input patterns and information is then 

passed to the next expert in the sequence.  In this case, the experts should have a varying ability 

of generalizations. There are also other complicated combinations of these two architectures in 

the literature. However, parallel architectures are the most popular schemes. 

 

According to the output information of member classifier, classifier combination can be 

categorized into three levels: abstract level, rank level and measurement level (Xu et al., 1992). 

In the abstract level, combination methods combine simple class labels. In the ranked level, 

combination methods combine ranked lists of class labels ordered according to the degree of 

membership of the input pattern. In the measurement level, combination methods combine 

values provided by individual classifiers as a measure of the degree of membership of the input 

pattern to each class (Xu et al., 1992). Among the three categories, the combination of 

classifiers at the measurement level is expected to be the most effective, since it uses all 

information available. 

 

Xu et al. (1992) highlighted the two key challenges in the development of multiple classifier 

systems: the issue of how to create the individual classifiers that should be used for a specific 

application; and how to combine the results from different existing classifiers so that a better 



Brunel University | Jamal Al-Enezi 2012 45 

 

result can be obtained (a question facing various applications). Some of the commonly used 

approaches are introduced below for both challenges.  

4.2.1.  Creating Classifier Ensembles 

The main objective in ensemble systems is to create many classifiers and combine their 

outputs, so that the combination improves upon the performance of a single classifier. To 

achieve this, there is clearly no gain in combining identical classifiers, and therefore the need is 

to have diverse classifiers which generalize differently and whose decision boundaries are 

adequately different from those of others.  

 

Classifiers’ diversity can be achieved in several ways. There are a number of training 

parameters which can be manipulated with this goal in mind: initial conditions, the training 

data, the typology of the classifiers, and the training algorithm (Duin, 2002; Wanas and Kamel, 

2002). A set of different classifiers may be generated in the following ways:  

 

 Varying the set of initial random weights: A set of classifiers can be created by varying 

the initial random weights from which each classifier is trained, while maintaining the 

same training data. 

 Varying the architecture: A set of classifiers can be created by varying the architecture, 

while using the same training data.  

 Varying the algorithm employed: The algorithm used to train the classifiers can be 

varied, while holding the data constant. 

 Varying the data: The diversity in the classifiers is typically achieved by using a 

different training data set for each classifier, which then allows each classifier to 

generate different decision boundaries. 

 

The most frequent methods used for the creation of ensembles are those which involve altering 

the training data. This can be done using several ways, including sampling data, disjoint 

training sets, boosting and adaptive re-sampling, different data sources, and pre-processing, or a 

combination of these techniques (Wanas and  Kamel, 2002). In this context, the two most 

common algorithms to create an ensemble by training the classifiers on different samples of the 

training data are bagging and boosting (Bootstrapped Aggregating). The Bagging algorithm 

(Breiman, 1996) randomly samples the data set with replacement to create different training 
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sets for each ensemble classifier. In AdaBoost algorithm (Freund and Schapire, 1996), which is 

the commonly used version of boosting, the training sets are adaptively re-sampled, so that the 

weights in the re-sampling are increased for those cases which are most often misclassified. 

4.2.2.  Combining Classifier in Ensembles 

After creating classifiers, the second key component in building any ensemble system is 

employing a strategy for combining classifiers. Several approaches have been proposed for 

combining multiple classifiers (Battiti and Colla, 1994; Jacobs R., 1995). Kuncheva 

investigated a variety of combination techniques in detail, including a discussion of voting 

approaches as one of the most commonly used techniques in the literature (Kuncheva, 2004).  

 

One of the popular voting approaches is the majority vote (Xu et al., 1992; Battiti and Colla, 

1994; Lam and Suen, 1995; Ji and Ma, 1997; Waterhouse and Cook, 1997; Kuncheva, 2004). 

Other voting schemes include the minimum, maximum, median (Kuncheva, 2002), average 

(Munro and Parmanto, 1997; Taniguchi and Tresp, 1997), and product (Tax et al., 2000) 

methods. The weighted average approach (Jacobs, 1995; Hashem, 1997; Heskes, 1997; Merz 

and Pazzani, 1997; Kuncheva, 2004) introduces weights for the various classifiers used prior 

to averaging. The weights determine the relative importance of the classifiers outputs on the 

average. In the Behaviour-Knowledge Space (BKS) approach (Woods, 1997), the best 

classifier in some region of the input space is selected, the selection is based on its prediction 

accuracy. Other classifiers combination techniques include the rank-based methods such as the 

Borda count (Ho et al.1994), the Bayes approach (Xu et al., 1992; Lam and Suen, 1995), the 

Dempster-Shafer theory (Xu et al., 1992; Rogova, 1994; Denouex, 1995; Le Hegarat-Mascle 

et al., 1998), the fuzzy integral (Tahani and Keller, 1990; Grabisch, 1994; Cho and Kim, 

1995; Grabisch, 1995; Gader et al 1996; Mirhosseini et al. 1998), fuzzy connectives 

(Kuncheva, 1997), fuzzy templates (Kuncheva et al. 1998), and probabilistic schemes (Kang et 

al., 1997; Kittler et al., 1997a; Kittler et al., 1997b;  Kittler et al., 1998). 

 

The following subsections outline the majority vote and weighted average approaches 

commonly used in combining various classifiers.  
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a) Majority Vote 

In majority vote, each classifier provides a vote to a class to which the input pattern belongs. 

The correct class is the one most often chosen by the classifiers. Three consensus patterns for 

majority vote were introduced by Kuncheva (2004): 

1. Unanimity - 100% agree on choice to be returned 

2. Simple Majority - 50% + 1 agree on choice to be returned 

3. Plurality - Choice with the most votes is returned 

 

Assume that the label outputs of the classifiers are given as c-dimensional binary vectors [di,1, 

di,2,…,  i,c]
T
  {0, 1}

c
, i = 1, . . . , L, where di, j = 1 if  Di labels  x in class j, and 0 otherwise. The 

majority vote results in an ensemble decision for class k if  
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In majority voting, ties are resolved arbitrarily. The plurality vote is often called the majority 

vote, and it is the same as the simple majority when there are two classes (c = 2) (Kuncheva, 

2004). 

b) Weighted Average 

The weighted average approach is similar to the average combining strategy. However, the 

weighted average approach introduces weights to the outputs of the different classifiers prior to 

averaging. The average approach calculates the support µ (x) for class j by: 

   ( )   
 

 
 ∑     ( )

 

   

                    (   ) 

where L represents the number of classifiers and di,j(x) represents the output of the ith classifier 

for the jth class for the input x. In the weighted average approach, the overall accuracy of each 

classifier is used for generating the weighting parameters, where, a classifier is assigned a 

higher weight if the resulting classification accuracy is high. On the other hand, if the overall 

accuracy of a classifier is low, the classifier is assigned a lower weight.  

If wi is the weight assigned to the ith classifier, the support µ (x) for class j can be calculated by 

(Kuncheva, 2004): 
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4.2.3.  Architectures for Combining Classifiers 

Different multiple classifiers combining methods exist (as mentioned above) with the aim of 

achieving optimum performance accuracy. It has been argued that in many domains an 

ensemble of classifiers outperforms any of its single components. Three possible architectures 

can be used for combining different single classifiers: cascaded, parallel and hierarchical (Lu, 

1996). In a cascaded system, the classification results generated by a classifier are often used to 

direct the classification processes of successive classifiers. On the other hand, the main problem 

in this method is that errors made by previous classifiers are not recoverable by the successive 

classifiers (Lu, 1996). On the other hand, the classification result is generated independently in 

a parallel system from different sources, then a decision strategy is used to form the final 

decision. If the decision process is well designed, the overall system may reach peak 

performance (Lu, 1996). Finally, in a hierarchical system, the control strategy is a combination 

of cascaded and parallel processing. Figure 4.1 illustrates these different classifiers combining 

configurations. 

 

In general, the architectures depicted in Figure 4.1 work based on two architectural 

methodologies: multi-expert and multistage (Alpaydin, 1998). In multi-expert method, the 

classifiers work in parallel where they all trained on all patterns and then give their decisions in 

which a separate combiner computes the final decision using a decision combining strategy. 

Examples of this method are voting, mixture of experts and stacked generalization. 

Alternatively, the multi-stage method uses a serial approach where the next classifier is trained 

(consulted) only for patterns rejected by the preceding classifier(s); examples include boosting 

and cascading. 

 

 

 



Brunel University | Jamal Al-Enezi 2012 49 

 

 

  

 

(a) 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure ‎4-1: Architectures of multiple classifiers system: (a) cascading, (b) parallel, and (c) hierarchy 

 

4.3.  AIS Based Ensemble System 

Various approaches presented in the literature for combining multiple classifiers have been 

reviewed by previous sections. A new artificial immune system based ensemble is proposed in 

this section, in which three of the popular AIS algorithms are combined in an ensemble for the 

classification application, using the majority voting and weighted average combination 

techniques (presented in section 4.2.2). The three AIS algorithms are: ClonalG, V-Detector, 

and aiNet models (discussed in Chapter 3). Figure 4.2 highlights the block diagram of the new 

proposed ensemble system. 
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The proposed AIS architecture introduces a new method for calculating the confidence level on 

the predicted output O = [O1, O2, O3] for the base classifiers by extracting some features during 

the training stage and accordingly a confidence value will be assigned to each predicted output. 

The confidence levels for the base classifiers are represented by vector C = [C1, C2, C3]. Then, 

the predicted output along with the confidence measure will be used to perform the aggregation 

procedure for achieving the final decision. 

 

 

 

 

 

 

 

 

Figure ‎4-2: New AIS based ensemble system 

 

4.3.1.  Method for Measuring Confidence Level 

Improving the confidence level of making right decisions is one of the main objectives of 

ensemble systems. This can be achieved by weighing various opinions obtained from the base 

classifiers and combining them through some aggregation procedures to reach a final decision. 

The major focus here is on assigning the weights for the base classifier on the basis of its 

competence in order to achieve the maximum performance for the ensemble system. 

 

This work introduces a new method to measure the confidence level of the AIS classifier’s 

predicted output in the ensemble. Initially, the classifiers of the ensemble are trained 

independently on the training data set to generate sets of detectors. The detector set associated 

with each base classifier is used then to extract the output class and the confidence level for a 

given input sample xi. The outputs of the classifiers are interpreted as a decision output Oi and a 

confidence value Ci which will be used finally by the aggregation scheme. An illustrative 

example of the proposed method to measure the confidence level values is shown in Figure 4.3. 
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Figure ‎4-3: An example for calculating the confidence level for the input sample xi,j 

 

Figure 4.3 shows an example of using the ClonalG algorithm as the base classifier, where the 

new sample xi,j will be tested against the detectors set generated during the training phase of the 

algorithm. The suggested method for measuring the confidence level works in two main steps. 

The first step in this method is to find the predicted class for the input sample by testing it 

against all the detectors using the matching rules such as Euclidean distance and a preset 

threshold value. If the input sample xi,j matches any of the detectors, then it is considered as a 

non-self sample where the predicted class Oi will be set equal to one, and accordingly the 

confidence level Ci will be set to a high value (100%). Otherwise, for self sample, where the 

predicted class will be set equal to zero and the confidence level will be calculated in the next 

step. In the second step, the matching region around the input sample will be expanded to 

search for more detectors near this sample. The expanded region will be divided into 10 bins, 

then all of the detectors discovered within the region will be classified in bins. Let M = [m1, m2, 

…, mi] represent the number of detectors discovered in each bin, where i is the total number of  

bins and T = [t1, t2, …, ti] represent the bin index, then the confidence level of the predicted 

output will be calculated by: 
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Figure 4.4 (below) outlines the flowchart of the proposed method for calculating the confidence 

level. 
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Figure ‎4-4: Flowchart of the proposed method for calculating the confidence level 
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4.4.  AIS Based Ensemble System with PSO Optimizer 

Weighing the predicted outputs of base classifiers is an important task in ensemble methods to 

avoid poor combination performance. Hence, the drivers outputs of classifiers are transformed 

into unified measures that represent the confidence level of decisions made respectively in 

order to achieve enhanced performance. This section introduces an optimized version of the 

AIS based ensemble architecture presented earlier by adjusting the weights assigned to the base 

classifiers using particle swarm optimization technique. A brief introduction of the PSO 

algorithm and the proposed AIS based ensemble with PSO optimizer is discussed in the 

following subsections.       

 

4.4.1.  Particle Swarm Optimization Algorithm 

Particle Swarm Optimization is a swarm intelligence global optimization technique introduced 

by Eberhart and Kennedy that mimics the social behaviours of birds flocking or fish schooling 

(Eberhart and Kennedy, 1995; Kennedy and Eberhart, 1995; Kennedy and Eberhart, 1997). In 

PSO, a member in the swarm is called a particle that represents a potential solution in the 

search space. Each particle has a position and velocity. The PSO algorithm adaptively updates 

the velocities and positions of the members of the swarm by learning from the good 

experiences. This is a stochastic adaptation process that depends on both the memory of each 

individual as well as the knowledge gained by the whole swarm. 

 

While flying through the search space, the particle remembers the best position it has seen, and 

communicates this position to the other particles. Accordingly, the members of the swarm will 

adjust their own positions and velocity based on this information. The interconnection between 

particles can be common to the whole population, or be divided into local neighbourhoods of 

particles. 

 

During the operation of the PSO algorithm, each particle remembers the best position or best 

candidate solution it has achieved thus far, referred to as pbest. The difference between the best 

candidate solution pbest found so far and the particle current position is added to the current 

velocity, causing the redirection of position around that point. 

Furthermore, the PSO algorithm keeps the best global position or best global candidate solution 

achieved among all particles in the swarm, called gbest. The difference between the global best 
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position gbest and the individual’s current position is also added to its velocity, causing the 

particle to move to the best region the swarm has found so far. 

 

The new velocity for each particle in the swarm is calculated based on its previous velocity and 

the two best positions (pbest and gbest) as shown in the equation below: 

))()(())()(()()1( 2211 txtgbestrtxtpbestrtwvtv      (4.6) 

where v(t) and x(t) represent the particle previous velocity and position respectively, w is the 

inertia weight, φ1 and φ2 are random positive constants called cognitive and social parameter, 

which weigh the influence of the two different swarm memories, and r1 and r2 are random 

numbers between 0 and 1. Once the velocity for each particle is calculated, the new position for 

each particle is found by applying the new velocity to the particle’s previous position according 

to the equation below: 

)1()()1(  tvtxtx            (4.7) 

Figure 4.5 shows the movement of the particle in the search space towards the optimal solution, 

where it is initialized with random positions x(t) and velocities v(t) and a fitness function is 

evaluated using the coordinates of particle position as input values. Algorithm 4.1 outlines the 

main steps of the PSO algorithm. 

 

 

 

 

 

 

 

 

 

 

 

 
Figure ‎4-5: Particle movements toward optimal solution (Heo et al., 2006) 
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Algorithm 4.1: PSO algorithm adopted from (Poli, 2007) 

1. Initialize a population array of particles with random positions and velocities on 

D dimensions in the problem space. 

2. loop 

3. For each particle, evaluate the desired optimization fitness function in D 

variables. 

4. Compare particle's fitness evaluation with its personal best fitness pbest
i
. If 

current value is better than pbest
i
, then set pbest

i
 equal to the current value, and 

y
i
 equal to the current location x

i
 in D-dimensional space. 

5. Identify the particle in the neighborhood with the best success so far, and 

assign its position to the variable ŷ. 

 

6. Change the velocity and position of the particle according to the following 

equations: 

 

    
     

     (      
 )     (    

 )      ( ) 

    
    

      
        ( ) 

 

7. If a criterion is met, exit loop. 

8. end loop 
 

 

Note:     represents a vector of random numbers uniformly distributed in [0, ci] and   

is component-wise multiplication. 

   

4.4.2.  Architecture 

An enhanced version of the AIS based ensemble system is proposed in this section using the 

idea of particle swarm optimization technique in order to optimize the confidence levels 

(weights) of the base classifiers, which then better evaluate the competence of each member to 

improve the overall ensemble performance. A block diagram of the optimized AIS ensemble 

architecture is shown in Figure 4.6. 
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Figure ‎4-6: AIS based ensemble system with PSO Optimizer 

 

 

In this context, the various members of the ensemble are trained on the whole training dataset 

in order to make a decision on an input sample. The predicted outputs of the classifiers are 

represented by vector [O1, O2, O3] as shown in the figure. Accordingly, each one of the base 

classifiers will be assigned a confidence value Ci that could characterize the competence of the 

classifier in the ensemble based on its classification performance. These confidence levels are 

then optimized using PSO algorithm in order to achieve optimal weight values represented by 

vector [w1, w2, w3]. The process of optimization continues till a predefined threshold is reached. 

Once the optimal weight values are achieved by PSO, the outputs of these classifiers are 

combined to conclude the final decision using one of the aggregation procedures such as 

weighted average.  

 

4.5.  Case Study: Breast Cancer 

Three experiments were conducted in order to evaluate the performance of the proposed AIS 

ensemble system. The dataset used in these experiments is the Wisconsin breast cancer 

(presented in the previous chapter). The aims of these experiments are to show that the new 

AIS ensemble model outperforms the base AIS classifiers and to compare it with other 

combining methods such as majority voting and weighted average.   
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In the first experiment, the majority voting method was used as an aggregation procedure for 

combining the decisions that resulted from each algorithm. Alternately, the weighted average 

combination method was used in the second experiment. The proposed AIS ensemble with 

PSO optimizer was implemented in the last experiment to test it against the cancer dataset. The 

weighted average aggregation procedure was used to combine the predicted outputs resulted 

from the base classifiers along with the PSO optimizer.   

 

Initially, the dataset was normalised to unity before being fed to the algorithms and splitted into 

95% for training set and 5% test set. For each experiment, 100 runs were performed, in which 

different training and testing samples were chosen randomly in each round. The accuracy (equ. 

3.4), sensitivity (equ. 3.5), specificity (equ. 3.6) and total (equ. 3.7) performance measures are 

used to compare between the different methods.  

 

In the third experiment, the number of particles used in the optimization algorithm varied 

between 20 and 100 in each round, to test PSO optimizer capability for achieving an optimal 

solution. It was noticed that the computational time for achieving optimal weight values while 

running the PSO optimizer increases with the increase in number of particles used. However, 

increasing the number of particles has no direct impact in reaching the optimal solution. Table 

4.1 highlights the detailed performance results for the top ten samples obtained from this 

experiment. The presented results show the impact of variation on the number of particles to 

the different performance measures. In conclusion, the proposed AIS based ensemble with PSO 

optimizer achieved better results than the base classifiers. However, there is still a room for 

improvement to the model and the ensemble performance can be further optimized. 

 

Table ‎4-1: Performance Results for the WA_PSO Ensemble System 

Sample 

# 

# of 

Particles 

WA_PSO Ensemble 

Accuracy Sensitivity Specificity Total Gbest 

1 

20 0.941 0.889 1.000 2.830 0.540 0.659 0.819 

30 0.958 0.875 1.000 2.833 0.670 0.759 0.232 

40 0.941 0.889 1.000 2.830 0.618 1.227 0.223 

50 0.941 0.889 1.000 2.830 0.149 1.010 0.042 

70 0.941 0.889 1.000 2.830 0.626 0.746 0.344 
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Sample 

# 

# of 

Particles 

WA_PSO Ensemble 

Accuracy Sensitivity Specificity Total Gbest 

100 0.958 0.875 1.000 2.833 0.443 0.281 0.069 

2 

20 0.971 0.929 1.000 2.899 0.726 0.779 0.572 

30 0.971 0.929 1.000 2.899 0.670 0.685 0.593 

40 0.971 0.929 1.000 2.899 0.316 0.364 1.009 

50 0.971 0.929 1.000 2.899 1.233 1.293 0.667 

70 0.971 0.929 1.000 2.899 0.373 0.449 1.462 

100 0.971 0.929 1.000 2.899 0.412 0.420 0.984 

3 

20 0.971 0.923 1.000 2.895 1.345 1.421 1.452 

30 0.971 0.923 1.000 2.895 0.828 0.969 0.073 

40 0.971 0.923 1.000 2.895 1.130 1.155 0.359 

50 0.971 0.923 1.000 2.895 0.997 1.199 0.297 

70 0.971 0.923 1.000 2.895 0.305 0.306 0.351 

100 0.971 0.923 1.000 2.895 0.897 1.078 0.221 

4 

20 0.914 0.750 1.000 2.664 1.198 1.251 1.136 

30 0.914 0.750 1.000 2.664 1.220 1.229 0.882 

40 0.914 0.750 1.000 2.664 0.841 0.870 0.721 

50 0.914 0.750 1.000 2.664 1.013 1.022 0.013 

70 0.914 0.750 1.000 2.664 1.021 1.065 1.100 

100 0.914 0.750 1.000 2.664 0.162 0.163 0.131 

5 

20 0.971 0.917 1.000 2.887 0.995 1.072 0.772 

30 0.971 0.917 1.000 2.887 0.265 0.265 1.215 

40 0.971 0.917 1.000 2.887 0.079 0.081 0.292 

50 0.971 0.917 1.000 2.887 1.095 1.178 1.057 

70 0.971 0.917 1.000 2.887 1.310 1.366 0.545 

100 0.971 0.917 1.000 2.887 1.260 1.262 0.178 

6 

20 0.971 0.917 1.000 2.887 0.192 0.198 0.377 

30 0.971 0.917 1.000 2.887 1.407 1.443 0.534 

40 0.971 0.917 1.000 2.887 1.053 1.097 0.301 
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Sample 

# 

# of 

Particles 

WA_PSO Ensemble 

Accuracy Sensitivity Specificity Total Gbest 

50 0.971 0.917 1.000 2.887 0.299 0.303 0.356 

70 0.960 1.000 0.955 2.915 1.138 1.168 0.490 

100 0.971 0.917 1.000 2.887 0.696 0.732 1.145 

7 

20 0.966 0.800 1.000 2.766 0.237 0.342 0.423 

30 0.914 0.727 1.000 2.642 0.594 1.048 0.151 

40 0.914 0.727 1.000 2.642 0.543 1.499 0.647 

50 0.966 0.800 1.000 2.766 1.070 1.089 0.107 

70 0.966 0.800 1.000 2.766 0.307 0.357 0.253 

100 0.966 0.800 1.000 2.766 0.691 0.862 0.484 

8 

20 0.971 0.900 1.000 2.871 0.971 1.266 0.833 

30 0.971 0.900 1.000 2.871 0.803 1.251 1.077 

40 0.971 0.900 1.000 2.871 0.128 1.380 0.120 

50 0.971 0.900 1.000 2.871 0.590 1.276 0.421 

70 0.971 0.900 1.000 2.871 0.429 1.018 0.258 

100 0.971 0.900 1.000 2.871 1.396 1.489 0.707 

9 

20 0.897 0.750 0.920 2.567 0.975 0.484 0.172 

30 0.963 0.750 1.000 2.713 0.840 1.164 1.826 

40 0.963 0.750 1.000 2.713 0.501 0.570 0.044 

50 0.963 0.750 1.000 2.713 0.681 0.694 0.117 

70 0.882 0.700 0.958 2.541 0.503 1.222 0.327 

100 0.882 0.700 0.958 2.541 0.393 0.647 1.415 

10 

20 0.971 0.889 1.000 2.860 0.268 0.373 0.774 

30 0.971 0.889 1.000 2.860 0.308 0.896 0.734 

40 0.971 0.889 1.000 2.860 0.730 1.477 0.709 

50 0.971 0.889 1.000 2.860 0.280 1.420 1.162 

70 0.971 0.889 1.000 2.860 0.833 1.348 1.163 

100 0.971 0.889 1.000 2.860 0.350 0.693 1.119 
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The experiments conducted in this chapter are a continuation of the case study performed in 

Chapter 3. It was shown in the case study that the V-Detector algorithm achieved the higher 

performance results. The performance results achieved by the individual classifiers are used in 

this case study in order to compare it with the results obtained from various ensemble methods. 

The top ten results were selected from all runs to present the overall performance of the system. 

Table 4.2 highlights the performance results of the three experiments of this case study. 

Furthermore, Table 4.3 and Figure 4.7 illustrate the total performance of the majority voting, 

weighted average, and the optimized AIS ensembles against the base AIS algorithms. In Figure 

4.8, the ROC plots were performed for the various ensemble methods used in the three 

experiments to visualize their classification performance.  

 
Table ‎4-2: Performance Results for the MV_E, WA_E and WA_PSO AIS ensembles 

Round 

# 

# 

Particles 

Accuracy Sensitivity Specificity 

MV_E WA_E 
WA_PS

O 
MV_E WA_E 

WA_PS

O 
MV_E WA_E 

WA_PS

O 

1 20 0.971 0.971 0.941 0.944 0.944 0.889 1.000 1.000 1.000 

2 20 0.971 0.971 0.971 0.929 0.929 0.929 1.000 1.000 1.000 

3 20 0.971 0.971 0.971 0.923 0.923 0.923 1.000 1.000 1.000 

4 20 0.971 0.971 0.914 0.917 0.917 0.750 1.000 1.000 1.000 

5 20 0.971 0.971 0.971 0.917 0.917 0.917 1.000 1.000 1.000 

6 20 0.971 0.971 0.971 0.917 0.917 0.917 1.000 1.000 1.000 

7 30 0.971 0.971 0.914 0.909 0.909 0.727 1.000 1.000 1.000 

8 20 0.971 0.971 0.971 0.900 0.900 0.900 1.000 1.000 1.000 

9 70 0.971 0.941 0.882 0.900 0.900 0.700 1.000 0.958 0.958 

10 20 0.971 0.971 0.971 0.889 0.889 0.889 1.000 1.000 1.000 

 
Table ‎4-3: The overall performance of the MV_E, WA_E and WA_PSO AIS ensembles 

Round # 
Total Performance 

ClonalG V-Detector aiNet MV_E WA_E WA_PSO  

1 2.313 2.830 1.444 2.915 2.915 2.830 

2 2.719 2.798 1.729 2.899 2.899 2.899 

3 2.367 2.789 1.446 2.895 2.895 2.895 

4 2.145 2.552 1.343 2.888 2.888 2.664 

5 2.549 2.775 1.353 2.887 2.887 2.887 

6 2.436 2.775 1.240 2.887 2.887 2.887 

7 2.403 2.642 1.314 2.881 2.881 2.642 

8 2.477 2.871 1.286 2.871 2.871 2.871 

9 2.612 2.541 1.436 2.871 2.800 2.541 

10 2.441 2.860 1.257 2.860 2.860 2.860 

Average 2.446 2.743 1.385 2.885 2.878 2.798 
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Figure ‎4-7: The overall performance of the MV_E, WA_E and WA_PSO AIS ensembles 

 

The experimental results demonstrate that the proposed AIS based ensemble systems achieved 

the best performance in the three experiments and in all the test runs. More specifically, the 

classification performance of the AIS based ensembles using the majority voting, weighted 

average and optimized weighted average combining techniques outperform individual AIS 

classifiers.  

 

However, beside the fact that the AIS ensemble with PSO optimizer model achieved better 

results than the base classifiers, it can be noted that the results of the third experiment that its 

average performance was slightly less than the other two classical combining techniques.   

Finally, the results obtained from all the experiments show a slight improvement on the overall 

classification performance, and that the AIS ensemble system can be further enhanced. An 

attempt to design AIS based ensemble with the objective of reaching an optimal performance is 

presented in the following chapter.  
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Figure ‎4-8: The ROC plots for the MV, WA and WA_PSO AIS ensembles 

 

4.6.  Summary  

Various methods and techniques for combining multiple classifiers were presented and 

discussed in this chapter. In addition, the chapter highlighted the key challenges in the 

development of multiple classifier systems. Different strategies and architectures have been 

introduced to address these challenges and the relevant work in the literature has been 

presented. 

In this chapter, a new artificial immune systems based ensemble combining three well known 

AIS algorithms was proposed. The majority voting and weighted average combining 

techniques were used to form the aggregation procedure of the suggested AIS ensemble model. 
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Additionally, a PSO optimizer technique was introduced to further enhance the performance of 

the proposed AIS based ensemble using a particle swarm optimization method.   

Finally, a case study was conducted to test the performance of the proposed ensemble model 

against a real cancer data set for the classification problem. The experimental results show that 

the AIS ensemble systems achieved the best classification performance results. However, the 

suggested AIS ensemble model can be enhanced further to achieve even better results. 

 

The following chapter introduces a new adaptive learning AIS based ensemble model and 

compares it to alternative combining techniques. The adaptive learning feature of the new 

model using a neuro-fuzzy based detector model is discussed in details.       
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 5  CHAPTER 5: A New Adaptive 

Learning Artificial Immune 

Systems Based Ensemble 

 

5.1. Introduction 

This Chapter introduces a new AIS based ensemble with an adaptive learning capability to 

further enhance the accuracy of the proposed ensemble.  A detector based architecture as a 

main modification to the AIS ensemble is introduced to further improve the system 

performance. The proposed architecture focuses on making the decision fusion a more adaptive 

process. Finally, a new adaptive learning AIS based ensemble is proposed, integrating various 

soft computing and optimization techniques to achieve optimal performance. The following 

sections discuss several variations of the adaptive learning ensemble architecture, including 

some theoretical background on the main components used.   

 

The motivation for exploring the multiple classifiers combination strategies is to improve the 

overall system performance and robustness. In the previous chapter, the author discussed 

various approaches presented in the literature for combining multiple classifiers in an ensemble. 

These pioneering methods paved the way for developing systems with a level of performance 

adequate to be deployed in real-world applications. In addition, the previous chapter presented 

a case study which showed that by combining various artificial immune systems algorithms, the 

overall all performance of the AIS based ensemble can be further improved. However, more 

improvements on the proposed model can be achieved by using other soft computing 

techniques such as neuro-fuzzy systems. 
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5.2. Detector Based Ensemble  

The main goal of the proposed detector based architecture is to provide a dynamic process for 

enhancing the decision fusion of the different classifiers and consequently to enhance the 

performance of the AIS based ensemble. This can be achieved by introducing a detector 

component to extract features from the base classifiers to perform the aggregation procedure 

efficiently. The detector allows the ensemble model to recognize and learn the changes in the 

input and their impact on the performance of the individual classifiers, and adjust accordingly 

the final decision fusion of the ensemble. This learning process provides the ensemble system 

with the required flexibility to adapt to changes in the input and output of the classifiers in 

order to improve the overall classification performance.        

 

With this objective in mind, two main factors were taken into consideration while designing the 

detector based architecture. Firstly, the design of the detector depends heavily on the type of 

extracted features from the base classifiers. The detector requires new features for the problem 

that are different from those used for the classification. However, extracting such features is not 

a simple task, since they are not always available. Secondly, designing the base classifiers and 

the technique used for training them is always a challenge. Various studies have shown that 

classifiers applied to different problems and trained by different algorithms perform differently 

(Kuncheva, 2004). The variation on performance between these different classifiers is due to 

several reasons, such as the choices of the training and testing sets, the internal randomness of 

the training algorithm, and the random classification error (Kuncheva, 2004). Therefore, 

training the base classifiers sufficiently and appropriately is a key step to achieving an 

improved classification performance once the classifiers are combined. 

 

In this Chapter, a detector component is suggested as a new contribution to further enhance the 

performance of the initially proposed AIS based architecture. The purpose of the new detector 

component is to extract more features from the base classifiers that may help in performing the 

aggregation procedure. Figure 5.1 illustrates the proposed detector based architecture. The 

following subsections explain the different components of this architecture. 
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Figure ‎5-1: Detector Based Architecture 

 

A. The Classifier Components 

In the proposed architecture, the classifier components represent the individual classification 

algorithms used to form the ensemble model. The role of the classifier is to partition feature 

space into class-labelled decision regions. These decision regions are then used to categorize 

new input samples into predefined classes. Initially, the base classifiers are trained extensively 

in the same feature spaces and with the same training set wherein each individual classifier 

solves the same classification problem using different methods. The proposed architecture 

assumes that the classifier outputs are the predicted class labels O = [O1, O2, …, ON] and the 

confidence level of a classifier on its predicted output C = [C1, C2, …, CN], where N is the 

number of classifiers. The final output of a classifier-based ensemble system is determined by 

combining the outputs of the individual classifiers.  

 

B. The Detector Components  

The main function of the detector is to generate a weighting factor or confidence for each 

classifier. These weights are represented by the vector W = (w1, w2, …, wN). The weights reflect 

the degree of confidence in each classifier with respect to the classification accuracy 

performance. These weights may then be used to combine the various classifiers via the use of 

standard classifiers combining techniques, such as majority voting or weighted average. A 
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detailed description of how the detector works and the main steps involved in obtaining the 

weights is presented in the following section. 

 

C. The Aggregation Procedure 

The aggregation procedure represents the combination strategy used to amalgamate the various 

outputs generated by the base classifiers, in order to conclude the final decision of the ensemble 

model. As shown in Figure 5.1, the aggregation procedure uses the weights resulted from the 

detector which represents a confidence in the output of each classifier.  By using a standard 

combining method, all the different classification outputs are then aggregated to generate a 

more competent decision. Several combining methods can be used in the fusion layer; however 

the focus of this research is on the weighted average method presented in the previous chapter. 

 

5.3.  Neuro-fuzzy Based Detector AIS Ensemble 

Fuzzy logic and fuzzy sets provide means for soft interpretation and processing of knowledge 

regarding a complex or ill-defined system, which is difficult to tackle using precise 

mathematical representation (Nauck et al., 1997; Karray and de Silva, 2004). In contrast to 

conventional methods, which state crisp decisions about data samples, fuzzy sets allows 

analysing data samples without clear or crisp boundaries or binary membership features. Fuzzy 

logic approaches are useful in developing expert systems. They can be employed to deal with 

the inexact and qualitative knowledge of experts, yet satisfactory decisions are still required 

(Karray and de Silva, 2004).   

 

In this section, an overview of the neuro-fuzzy systems is presented with the emphasis on the 

Adaptive Network based Fuzzy Inference System (ANFIS) architecture. In addition, a neuro-

fuzzy based detector is proposed, which is devoted to generating weights by learning from base 

classifiers and representing these weights in the form of fuzzy rules using neuro-fuzzy 

concepts. 

  

 

 

 



Brunel University | Jamal Al-Enezi 2012 68 

 

5.3.1. Neuro-fuzzy Systems 

Neuro-fuzzy systems represent hybrid intelligent models that inherit the features of both 

Artificial Neural Networks (ANN) and Fuzzy Logic (FL) systems to build advanced intelligent 

decision-making systems (Karray and de Silva, 2004; Vieira et al., 2004). By integrating these 

two intelligent approaches, the neuro-fuzzy models can benefit from the ANN advantages, 

including massive parallelism, robustness, and learning in data-rich environments. FL systems 

on the other hand offer the modelling of imprecise and qualitative knowledge, transparency as 

well as the transmission of uncertainty (Mitra and Hayashi, 2000). Besides these advantages, 

building the neuro-fuzzy systems eliminates the limitations of both ANN and FL approaches. 

Neuro-fuzzy systems have been used in many application domains (Karray et al., 2002; Al-

Sharhan et al., 2003). 

 

Neuro-fuzzy systems can be categorized into three main architecture types: cooperative, 

concurrent, and hybrid neuro-fuzzy systems (Karray and de Silva, 2004; Vieira et al., 2004). In 

cooperative neuro-fuzzy systems, the objective of integration is to provide the fuzzy system 

with the learning mechanisms of the ANN. ANN plays an initial rule of determining certain 

parameters of fuzzy systems such as the member functions or fuzzy rules. Alternatively, the 

ANN and fuzzy systems work continuously in concurrent neuro-fuzzy systems to determine the 

required parameters of the fuzzy system. Unlike the other two architectures, hybrid neuro-fuzzy 

systems have a parallel architecture, where the fuzzy logic system and the neural network work 

as one synchronized entity and exploit similar learning standards (Karray and de Silva, 2004). 

 

Hybrid architectures are the most commonly known neuro-fuzzy systems, and one of the 

common examples is the Adaptive-Network based Fuzzy Inference System (ANFIS) proposed 

by Jang (1993). The ANFIS architecture is described in the following subsection. 

5.3.2. ANFIS Architecture 

ANFIS is a hybrid five-layer neuro-fuzzy system which implements a Takagi Sugeno fuzzy 

inference system (Jang, 1993). To explain how the ANFIS architecture is functioning, assume a 

fuzzy inference system with two inputs x and y, and one output z, and containing two if-then 

base rules represented as follows (Jang, 1993): 

                                                         (   ) 
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                                                         (   ) 

where A1, A2 and B1, B2 represent the membership functions of the two inputs, and pi, qi, ri 

represent the parameters of the output function. Figure 5.2 illustrates the equivalent ANFIS 

structure of this example, where the nodes in each layer have the same functions as outlined 

below: 

 

Layer 1: in this layer the input variable is mapped relatively to each membership function. For 

each node i, the output   
  is defined by: 

  
     

( )               (   ) 

where x is the input to node i, and Ai is the linguistic label represent the fuzzy set associated 

with the node function. By choosing the membership function     
( ) to be bell-shaped with 

maximum equal to 1 and minimum equal to 0, then: 

  
  

 

  [(
    

  
)
 

]
  

               (   ) 

where {ai, bi, ci} is the parameter set that changes the shapes of the membership function. 

 

Layer 2: the node in this layer labelled as Π multiplies the incoming signals, where the output 

function is calculated as: 

      
( )     

( )                (   ) 

 

Layer 3: each node in this layer labelled as N and its output named as the normalized firing 

strength, which can be calculated as: 

 ̅  
  

     
                            (   ) 

Layer 4: in this layer, each node I is a square node with the function: 

  
   ̅     ̅ (          )             (   ) 

where  ̅  is the output of the previous layer, and {pi, qi, ri} is the parameter set denoted as 

consequent parameters. 
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Layer 5: the output layer, which calculates the total output as the summation of all the incoming 

input signals by: 

  
                 ∑ ̅   

 

 
∑      
∑    

               (   ) 

 

 

 

 

 

 

 

 

Figure ‎5-2: ANFIS Architecture (Jang, 1993) 

 

5.3.3. Neuro-fuzzy Detector Development 

The ANFIS methodology described above is used to develop the detector component of the 

proposed ensemble architecture. The ANFIS structure was derived with three inputs A = [A1, 

A2, A3] and three outputs W = [w1, w2, w3], with a total of 61 rules using the clustering 

method. The input parameters represent the classification accuracy of the predicted output for 

the base classifiers while the output parameters denote the weights that will be assigned to the 

individual classifiers for the fusion stage, which reflects the degree of confidence in each 

classifier. The fuzzy inference system was constructed in this work using a Takagi-Sugeno 

type (Takagi and Sugeno, 1985) inference system. It is known that Takagi-Sugeno FIS is 

more efficient and can usually generate a better performance for accurate numerical 

approximation (Wu et al., 2011). It has a flexible representation capability using fewer rules 

to express the relation between the inputs and outputs explicitly. In addition, it is 

computationally effective due to its simple defuzzification process, which is based on the 

weighted average (Jassbi et al., 2006; Wu et al., 2011).  
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In the proposed system, generalized bell-shaped membership function was used to map the 

input values to their appropriate membership values. The membership function for each input 

parameter was divided into five regions, namely very low, low, medium, high, and very high 

to cover the full spectrum. Although several membership functions were introduced in the 

literature, the Gaussian and bell-shaped types are widely used for specifying fuzzy sets, due 

to their smoothness and concise notations (Chang and Chang, 2006). In addition to the 

advantage of being smooth, these curves provide nonzero membership values at all input 

points.  

 

The ANFIS editor GUI in Matlab was employed to construct the ANFIS model. The first step 

in building the ANFIS structure is to load the data that will be used on the training stage. In 

this work, 27 samples were used to train the ANFIS system, referred to as training data and 

testing data. These samples were generated manually to represent part of the actual rules that 

should be generated by ANFIS. The data set used is shown in Table 5.1. Figure 5.3 shows the 

training data that is loaded in the ANFIS editor. 

 

Once the training data set is loaded, the next step is to generate the new fuzzy inference 

system to fit the data into membership functions. The clustering partitioning method was used 

to generate the ANFIS network where the number of membership functions for each input 

parameter was set to five. Also, the generalized bell-shaped type was chosen for the 

membership function related to the input parameter, while the linear membership function 

type was chosen for the output variable. 

 

After generating the fuzzy inference system, the next step is to train the ANFIS network. The 

ANFIS network was trained for 60 epochs to generate the final membership functions for all 

the input parameters. At the end of 60 training epochs, the network error (mean square error) 

convergence curve of ANFIS was derived as shown in Figure 5.4, with a final convergence 

value of 2.9282E−7. Finally, the ANFIS network was tested to validate the fuzzy system 

mapping capability. Figure 5.5 illustrates the ANFIS testing plot against the testing data.  
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Table ‎5-1: Training data for ANFIS 

Sample No. 
Input variables Output variables 

A1 A2 A3 O1 O2 O3 

1 0.0 0.0 0.0 0.1 0.1 0.1 

2 0.0 0.0 0.5 0.1 0.2 0.6 

3 0.0 0.0 1.0 0.1 0.1 0.8 

4 0.0 0.0 0.0 0.1 0.6 0.3 

5 0.0 1.0 0.0 0.1 0.8 0.2 

6 0.0 0.5 0.5 0.2 0.7 0.5 

7 0.0 0.5 1.0 0.1 0.6 0.9 

8 0.0 1.0 0.5 0.2 0.9 0.6 

9 0.0 1.0 1.0 0.2 0.8 0.8 

10 0.5 0.0 0.0 0.7 0.2 0.1 

11 1.0 0.0 0.0 0.9 0.3 0.2 

12 0.5 0.0 0.5 0.7 0.2 0.7 

13 0.5 0.0 1.0 0.7 0.1 0.9 

14 1.0 0.0 0.5 0.9 0.2 0.6 

15 1.0 0.0 1.0 0.9 0.3 0.8 

16 0.5 0.5 0.0 0.7 0.5 0.2 

17 0.5 1.0 0.0 0.7 0.8 0.3 

18 1.0 0.5 0.0 0.8 0.6 0.1 

19 1.0 1.0 0.0 0.8 0.9 0.1 

20 0.5 0.5 0.5 0.7 0.6 0.6 

21 0.5 0.5 1.0 0.7 0.5 0.8 

22 0.5 1.0 0.5 0.7 0.8 0.7 

23 0.5 1.0 1.0 0.7 0.9 0.7 

24 1.0 0.5 0.5 0.9 0.7 0.6 

25 1.0 0.5 1.0 0.9 0.7 0.9 

26 1.0 1.0 0.5 0.9 0.9 0.7 

27 1.0 1.0 1.0 0.9 0.9 0.8 
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Figure ‎5-3: Training Samples for ANFIS Network 

 

 

Figure ‎5-4: Course of error during ANFIS training 
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Figure ‎5-5: ANFIS testing phase 

 

The generalized bell-shaped type membership functions after training the AFNIS for 60 

epochs are shown in Figure 5.6 for all the input parameters. 

 

 
(a) 
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Figure ‎5-6: Gaussian bell-shaped MF’s for (a)  nput 1, ( )  nput 2, and (c)  nput 3 parameters 

 

Figure 5.7 illustrates a snapshot of the rules constructed in Matlab. The various surface shape 

plots between the input parameters are shown in Figure 5.8, which clearly demonstrate that 

some input parameters are more significant than the others.    

 

(b) 

(c) 
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Figure ‎5-7: A snapshot of the ANFIS rules 
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Figure ‎5-8: Surface Shape Plots for all variables 

 

The surface diagrams in Figure 4.8 clearly demonstrate the relationship between the input 

parameters controlled by surface roughness and illustrate the interaction between each 

parameter. It is evident how the continuity of the output surface is assured by the ANFIS 

model.  

 

5.4. The New Adaptive Learning AIS Ensemble System  

The main contribution of this thesis is presented in this section. A new adaptive learning AIS 

based ensemble architecture is introduced for classification application that integrates 
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different artificial intelligent and optimization techniques to enhance the overall system 

performance. The new proposed ensemble architecture is shown in Figure 5.9. 

 

 

 

 

 

 

 

 

 

 

 

           

 

 

Figure ‎5-9: Adaptive Learning AIS Based Ensemble Architecture 

 

The proposed adaptive learning ensemble architecture uses the PSO optimizer and the neuro-

fuzzy components (explained in sections 4.4 and 5.3 respectively). By integrating these 

various methods, the proposed architecture utilizes their features including the PSO searching 

capability for best solutions and the neuro-fuzzy system learning and modelling of imprecise 

and qualitative knowledge characteristics. The different components of the ensemble model 

work in synergy with the objective of reaching an optimal classification performance 

outperform the best base classifier.  

 

The proposed adaptive learning AIS based ensemble system has several main processing steps. 

They can be described as follows: 

1. Initialization: train the three base classifiers (i.e. ClonalG, V-Detector, and aiNet 

algorithms) against the training data set to create the detectors sets for each algorithm that 

will be used in the testing phase. 
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2. Experts Decision: for every sample xi in the testing dataset, determine the predicted class of 

xi by each AIS classifier represented by O = [O1, O2,…, Oi], where Oi is the predicted 

output of classifier number i. 

3. Confidence Measure Calculation: obtain the confidence level vector C = [C1, C2, …, Ci] on 

the predicted output for each classifier by: 

3.1.  calculate the Euclidean distance between sample xi  and all detectors in detectors set 

3.2. If distance < threshold, then set confidence level Ci equal to 100% and Oi=1. 

Otherwise, set Oi = 0 and divide the area around xi into bins and then calculate Ci by: 

      
∑         

  
   

∑   
  
   

 

 where mi represents the number of detectors in each bin and ti is the bin index.  

4. Neuro-fuzzy detector stage: the confidence level values obtained in the previous step will 

be used by the neuro-fuzzy detector to determine the weight values W = [w1, w2, …, wi]  for 

each base classifier. Considering a first order Sugeno type ANFIS model with the three 

inputs (C1=X1, C2=X2, C3=X3), and five membership functions for each input, then: 

4.1. The if-then rule base can be expressed as follows 

Rule 1: if X1 is A1 and X2 is B1 and X3 is C1,  

   Then                                 3         

Rule 2: if X1 is A1 and X2 is B1 and X3 is C2,  

   Then                                 3         

Rule 3: if X1 is A1 and X2 is B1 and X3 is C3,  

   Then      3       3        3        3 3       3 

   

Rule 125: if X1 is A5 and X2 is B5 and X3 is C5,  

   Then                                 3         

where Ai, Bj, and Ck (i, j, k = 1, 2, …, 5) are the linguistic labels associated with this 

node function. 

 

4.2. Layer 1: the node function in this layer represented by: 

    
     

(  )               

    
     

(  )               

 3  
     

( 3)               

  Where      
 ,     

  , and  3  
  are the MFs for Ai, Bj, and Ck respectively. 
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4.3. Layer 2: each node output represents the firing strength of a rule. It multiplies the 

incoming signals and sends the product out. For instance: 

      
            

(  )     
(  )     

( 3)                      

 

4.4. Layer 3: The ith node in this layer calculates the ratio of the ith rule’s firing strength to 

the sum of all rule’s firing strengths: 

      
3   ̅      

      

∑       
3
       

                  

 

4.5. Layer 4: Every node i in this layer is a square node with a node function: 

      
   ̅                      (                         3        )     

              

 

4.6. Layer 5: in this layer, the overall output is computed as a summation of all the 

incoming signals: 

  
                 ∑ ̅   

 

 
∑      

∑    
 

 

4.7. The weight for each base classifier is equal to the overall output of the neuro-fuzzy 

system, i.e.  W =   
  

 

5. PSO Optimizer stage: obtain the optimized weights vector  ̅   ( ̅ ,  ̅ ,  ̅3) using PSO 

algorithm by obtaining the gbest values for  ̅ . 

 

6. Aggregation Process: using the weighted average combining method, perform the 

aggregation procedure using the predicted output for each classifier O = [O1, O2,…, Oj], the 

weights obtained by the neuro-fuzzy detector W = [W1, W2, …, Wj], and the optimized 

weights from the PSO optimizer  ̅    ̅ ,  ̅ ,…,  ̅ ] by: 

 (  )  
∑        ̅  

∑  ̅  

 

Where  (  ) represents the final predicted class for sample xi by the ensemble model, j is 

the number of base classifiers. 
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The above steps are repeated for all the testing samples. Considering the architecture shown in 

Figure 5.9, where three AIS classifiers were used, in this case, the adaptive learning AIS based 

ensemble model works as per the following scenario. Initially, the various members of the 

ensemble are trained on the whole training dataset in order to make a decision on an input 

sample xi from the testing dataset. As explained in Chapter 4, the ClonalG, V-Detector, and 

aiNet AIS algorithms are used as base classifiers in this architecture. The predicted outputs of 

the AIS classifiers are represented by vector O = [O1, O2, O3], as shown in Figure 5.6. 

Accordingly, the confidence values denoted by vector C = [C1, C2, C3] are calculated using the 

method described in subsection 4.3.1, which are then assigned to each one of the base 

classifiers to measure their first level accuracies regarding the predicted class. In the next step, 

the resultant confidence values are fed to the neuro-fuzzy detector, where the new weights 

represented by vector W = [w1, w2, w3] are extracted, as explained in section 5.3. Using the 

neuro-fuzzy detector at this stage helps in transforming the crisp values of the confidence 

levels assigned to the individual classifiers into a more accurate and satisfactory weight 

measures that will lead to an appropriate decision. In addition, instead of interpreting the 

knowledge extracted from each base classifier separately, the neuro-fuzzy detector looks at 

the performance results of the base classifiers altogether and set the weights accordingly.    

  

Once the weights W = [w1, w2, w3] are calculated by the neuro-fuzzy detector, the fusion stage 

can be performed. However, the new adaptive learning AIS ensemble architecture suggests a 

method for optimizing the values of the weights using the PSO optimizer technique (as 

discussed in section 4.4). The aim of performing the PSO optimization technique is to further 

enhance the overall ensemble performance by searching for optimal weights values. The 

process of optimization continues till a predefined threshold is reached, hence, the final weights 

are achieved with optimum values, which are denoted by vector  ̅   ( ̅ ,  ̅ ,  ̅3).  

 

As a final stage, the fusion process is performed using one of the aggregation procedures to 

conclude the final decision. The weighted average combining procedure (as discussed in 

section 4.2) is employed in this architecture.  The optimized weight values along with the 

predicted outputs of the base classifier as well as the confidence levels that resulted from the 

neuro-fuzzy detector are all used to tune the weighted average method in order to reach the 

final decision. The final decision representing the class of input sample xi is calculated by: 
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 (  )  
       ̅         ̅   3   3   ̅3

 ̅   ̅   ̅3
               (   ) 

 

Figure 5.10 shows a flow chart including the main steps of the proposed AIS ensemble with 

adaptive learning feature. The adaptive learning AIS ensemble architecture allows for the 

dynamic decision fusion of classifiers. The aggregation procedure in this architecture has the 

flexibility to adapt to changes in the input and output in order to improve the final decision. 

In this architecture, the key underlying concept is to understand the changes in the input and 

its impact on the base classifiers, by means of extracting features using the neuro-fuzzy 

detector, to direct the way it performs the aggregation. Then, the PSO optimizer helps the 

fusion process in learning how to combine the different decisions in order to improve the 

overall classification performance of the system. More discussion on the performance of the 

proposed adaptive learning AIS based ensemble model is presented in the next chapter. 
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Figure ‎5-10: Flow chart of the adaptive learning AIS based ensemble system 
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5.5. Summary 

 

The detector based ensemble architecture as an enhancement to the original ensemble 

architecture has been introduced in this chapter, and the main components of the architecture 

are discussed. A neuro-fuzzy detector has been suggested to enhance the performance of the 

ensemble model using the fuzzy system concepts. Also, an overview of the neuro-fuzzy 

system principles and the development of the neuro-fuzzy based detector have been 

presented. 

 

Finally, the chapter introduced a new adaptive learning AIS based ensemble architecture as 

the main contribution of this work, integrating different artificial intelligence and 

optimization methods for classification application. The proposed ensemble architecture 

benefits from the features of particle swarm optimization and neuro-fuzzy methods to achieve 

an optimal classification performance. 

   

In the next chapter, an empirical study is presented on the classification performance of the 

new adaptive learning AIS ensemble system in comparison to other models. Various case 

studies are presented to test the performance of the proposed ensemble architecture against 

actual datasets and the final results are discussed in detail. 

 

 

  



Brunel University | Jamal Al-Enezi 2012 87 

 

 

 6  CHAPTER 6: Results and 

Discussion 

 

6.1. Introduction 

This chapter presents an empirical evaluation of the adaptive learning AIS based ensemble as 

compared to the various conventional classifiers. In this evaluation, several experiments were 

conducted to demonstrate the effectiveness of the proposed AIS ensemble model with different 

medical datasets. The main objectives of these experiments were to demonstrate the 

performance of the proposed adaptive learning AIS ensemble model compared to the 

conventional AIS classifiers and to compare it with other combining methods, such as majority 

voting and weighted average.   

 

In the evaluation study, all the comparisons between the different methods were conducted with 

equal training and testing parts of the data. In addition, for all the experiments, the datasets used 

were normalized initially to unity before being fed to the algorithms and split into 95% for 

training set and 5% test set. For each experiment, 100 runs were performed, in which different 

training and testing samples were chosen randomly in each round. The performance measures 

used to compare the performance of the different methods are shown below in table 6.1: 
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Table ‎6-1: Performance measures used 

Performance Measure Definition Equation 

Accuracy 
Measures the proportion of correctly classified 

instances 
equ. 3.4 

Sensitivity 
Measures the fraction of actual positive 

examples that are correctly classified 
equ. 3.5 

Specificity 
Measures the fraction of actual negative 

examples that are correctly classified 
equ. 3.6 

Total 
Measures the overall performance as a 

summation of the accuracy, sensitivity, and 

specificity  

equ. 3.7 

 

The top ten results were selected from all runs to present the overall performance of the 

individual methods. The experiments conducted in this chapter are a continuation of the case 

studies performed in Chapters 3 and 4. The Matlab software was used for all the codes, running 

on a Window 7 (64-bit operating system) machine with Intel core processor i7-2.20 GHz CPU 

and 8 GB RAM. 

 

6.2. Datasets 

In this evaluation study, four different medical datasets were used in various experiments to 

demonstrate the effectiveness of the proposed adaptive learning AIS based architecture. These 

data sets are the Wisconsin Breast Cancer (WBC), which was presented in Chapter 3; Bladder 

Cancer (BC); Haberman’s Survival (HS); and the Pima Indians Diabetes (PID) data sets. 

Beside the fact that three of these datasets are high-dimensional data, they all are unbalanced 

where the number of positive and negative samples are not equal. Furthermore, the selected 

datasets have different type of representation for the attributes where some of them are binary 

and the others are continuous. All these challenges on the datasets are of interest to examine the 

effectiveness of the proposed ensemble model. A brief description of the data sets used is given 

below. 

 

A. Bladder Cancer Dataset 

The bladder cancer data set consisted of 693 instances with 12 attributes. The predicted output 

of this dataset represents the recurrence status where the value one as an output indicates the 

possibility of the patient getting the cancer again in the future. Post-operative tumor recurrence 
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occurred in 219 (31.6%) patients. Table 6.2 shows a snapshot from this dataset. The 12 

attributes of the dataset are: 

 Gender (0 = F, 1 = M),  

 Age (years) 

 Pathologic Stage (pT1, pT2, pT3, or pT4) 

 Pathologic Grade (Grade 2 or 3) 

 Carcinoma In Situ – CIS (0 = Absent, 1= Present) 

 Margin status (0 = Clear, 1 = Involved) 

 Lymph nodes removed (pN0, pN1-3) 

 Lymphovascular invasion (0 = Absent, 1= Present) 

 p53 

 p21 

 pRb 

 p27 

 

Table ‎6-2: Sample of Bladder cancer data set 
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0 74 2 2 0 0 25 0 1 0 1 0 0 

0 62 2 2 0 0 20 0 1 0 0 1 0 

1 70 3 2 0 0 15 1 1 1 0 1 1 

1 66 3 2 0 0 11 1 0 0 0 1 1 

1 66 2 2 0 0 16 0 0 1 1 1 1 

1 76 2 2 0 0 25 0 0 0 1 0 1 

1 77 4 2 0 0 13 1 0 0 1 0 0 

1 72 3 2 0 0 14 0 0 1 0 1 1 

1 68 3 2 1 0 25 0 0 0 1 0 0 

1 79 3 2 0 0 26 0 1 0 0 1 0 

 

B. Ha erman’s Surv val Dataset 

This dataset includes cases from a study that was conducted at the University of Chicago’s 

Billings Hospital on the survival of patients who had undergone surgery for breast cancer 

(Frank and Asuncion, 2010). It contains 306 instances and 3 attributes, and the predicted output 
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represents two classes. The first class represents the patient surviving 5 years or longer, and the 

second class is for patients who died within 5 years. The dataset has three attributes: 

 Age of patient at time of operation (years) 

 Patient's year of operation (years) 

 Number of positive axillary nodes detected (numerical) 

 

C. Pima Indians Diabetes Dataset 

The Pima Indians Diabetes Dataset (Frank and Asuncion, 2010) was obtained from the UCI 

Repository of Machine Learning Databases. All patients in this database are Pima Indian 

women at least 21 years old. This dataset has two classes with binary values 0 or 1, where 1 

means a positive test and 0 means a negative test for diabetes. The number of instances 

included in the dataset is 768; 268 (34.9%) cases in class 1, and 500 (65.1%) cases in class 0. 

The dataset has eight attributes:  

 Number of pregnancies  

 Plasma glucose concentration after 2 hours in an oral glucose tolerance test 

 Diastolic blood pressure (mm Hg)  

 Triceps skin fold thickness (mm)  

 2-hour serum insulin (mu U/ml)  

 Body mass index  

 Diabetes pedigree function  

 Age (years) 

 

6.3.  Experimental Evaluation 

Various experiments were conducted to test the effectiveness of the popular AIS algorithms 

and the ensemble methods proposed in this work against a number of datasets. The detailed 

performance results for each experiment are presented in the following subsections.  

 

6.3.1. Experiment # 1: AIS Algorithms 

In this experiment, the ClonalG, V-Detector and aiNet AIS algorithms were chosen with the 

purpose of evaluating them and exploring their capabilities for the classification application. 

The three medical data sets used for this experiment are: the BC, HS, and the PID dataset. All 



Brunel University | Jamal Al-Enezi 2012 91 

 

the variables used in the three AIS algorithms have been set in this experiment as described in 

the case study presented in Chapter 3. 

 

For the BC dataset, the experimental performance results obtained (as shown in Table 6.3 and 

Table 6.4 respectively) indicate that V-Detector algorithm achieved better average 

classification accuracy compared to the other two algorithms in six out of ten rounds; ClonalG 

achieved four out of ten, and aiNet showed the poorest accuracy. For the sensitivity measure, 

aiNet consistently performed the best in all ten rounds, averaging 100%; V-Detector has 

consistently ranked second-best, averaging over 68%; and ClonalG consistently performed 

poorly for this measure.  For the specificity measure, the ClonalG algorithm consistently 

performed the best in all ten rounds, while the V-Detector consistently achieved good 

performance results, averaging over 77%; however, the testing results obtained from the aiNet 

algorithm were 0% throughout. Figure 6.1 illustrates the overall performance results for all the 

algorithms against this dataset.  The findings rank V-Detector highest and ClonalG second best 

in performance for the BC dataset.  

 

Table ‎6-3: Performance Results for the AIS algorithms against BC dataset 

Round 

# 

Accuracy Sensitivity Specificity 

ClonalG 
V-

Detector 
aiNet ClonalG 

V-

Detector 
aiNet ClonalG 

V-

Detector 
aiNet 

1 0.743 0.771 0.286 0.300 0.900 1.000 0.920 0.720 0.000 

2 0.559 0.765 0.294 0.000 0.700 1.000 0.792 0.792 0.000 

3 0.686 0.743 0.371 0.154 0.692 1.000 1.000 0.773 0.000 

4 0.800 0.743 0.200 0.143 0.714 1.000 0.964 0.750 0.000 

5 0.800 0.743 0.200 0.429 0.714 1.000 0.893 0.750 0.000 

6 0.657 0.743 0.343 0.250 0.667 1.000 0.870 0.783 0.000 

7 0.794 0.706 0.235 0.125 0.750 1.000 1.000 0.692 0.000 

8 0.750 0.719 0.188 0.000 0.667 1.000 0.923 0.731 0.000 

9 0.676 0.735 0.412 0.357 0.429 1.000 0.900 0.950 0.000 

10 0.618 0.706 0.471 0.313 0.625 1.000 0.889 0.778 0.000 
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Table ‎6-4: The overall performance of the AIS Algorithms against BC dataset 

Round # 
Total Performance 

ClonalG V-Detector aiNet 

1 1.963 2.391 1.286 

2 1.350 2.256 1.294 

3 1.840 2.208 1.371 

4 1.907 2.207 1.200 

5 2.121 2.207 1.200 

6 1.777 2.192 1.343 

7 1.919 2.148 1.235 

8 1.673 2.116 1.188 

9 1.934 2.114 1.412 

10 1.819 2.109 1.471 

Average 1.830 2.195 1.300 

 

Figure ‎6-1: The overall performance of AIS Algorithms against BC dataset 

 

Figure 6.1 represents the overall performance of the AIS algorithms against the BC dataset.  It 

is evident that the V-Detector delivers total performance results consistently better than the 

other two algorithms, scoring above 2.0. ClonalG is second in total performance with results 
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falling in a band just below, but showing wide fluctuation between 1.350 and 2.121.  aiNet is 

consistently poorest in total performance averaging just 1.300. 

Similarly, the results presented in Tables 6.5 and 6.6 for the HS dataset has shown that the V-

Detector algorithm also achieved better accuracy results. However, the aiNet algorithm also 

achieved a very good accuracy results compared to the previous dataset. The total classification 

performance results for the three AIS algorithms against the HS are depicted in Figure 6.2.   

 

Table ‎6-5: Performance Results for the AIS algorithms against HS dataset 

Round 

# 

Accuracy Sensitivity Specificity 

ClonalG 
V-

Detector 
aiNet ClonalG 

V-

Detector 
aiNet ClonalG 

V-

Detector 
aiNet 

1 0.733 0.867 0.933 0.000 0.333 0.667 0.917 1.000 1.000 

2 0.733 0.800 0.867 0.000 0.667 0.333 0.917 0.833 1.000 

3 0.667 0.800 0.667 0.000 0.400 0.000 1.000 1.000 1.000 

4 0.800 0.733 0.733 0.000 0.667 0.000 1.000 0.750 0.917 

5 0.800 0.733 0.800 0.000 0.000 0.333 1.000 0.917 0.917 

6 0.467 0.667 0.600 0.000 0.375 0.250 1.000 1.000 1.000 

7 0.786 0.786 0.786 0.000 0.333 0.000 1.000 0.909 1.000 

8 0.600 0.600 0.667 0.143 0.286 0.286 1.000 0.875 1.000 

9 0.533 0.667 0.600 0.000 0.286 0.143 1.000 1.000 1.000 

10 0.600 0.733 0.667 0.000 0.200 0.000 0.900 1.000 1.000 

 

Table ‎6-6: The overall performance of the AIS Algorithms against HS dataset 

Round # 
Total Performance 

ClonalG V-Detector aiNet 

1 1.650 2.200 2.600 

2 1.650 2.300 2.200 

3 1.667 2.200 1.667 

4 1.800 2.150 1.650 

5 1.800 1.650 2.050 

6 1.467 2.042 1.850 

7 1.786 2.028 1.786 

8 1.743 1.761 1.952 

9 1.533 1.952 1.743 

10 1.500 1.933 1.667 

Average 1.660 2.022 1.916 
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Figure ‎6-2: The overall performance of AIS Algorithms against HS dataset 

 

Figure 6.2 represents the overall performance of the AIS algorithms against the HS dataset.  It 

is evident that the V-Detector again delivers total performance results generally better than the 

other two, scoring above 2.000.  For this dataset, aiNet performs much better than ClonalG and 

is closely second in total performance averaging a score of 1.916.  ClonalG in third place 

performed very poorly compared with the other two, with total performance averaging 1.660.  

 

It has also been found that for the PID dataset, the ClonalG algorithm achieved slightly higher 

average accuracy rates compared to the V-Detector algorithm, as shown in Table 6.7 and Table 

6.8. However, the results obtained from the aiNet algorithm still were unacceptably low and 

need more improvements. Figure 6.3 outlines the overall accuracy results for the three AIS 

algorithms against this dataset.  
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Table ‎6-7: Performance Results for the AIS algorithms against PID dataset 

Round # 

Accuracy Sensitivity Specificity 

ClonalG 
V-

Detector 
aiNet ClonalG 

V-

Detector 
aiNet ClonalG 

V-

Detector 
aiNet 

1 0.737 0.711 0.421 0.500 0.375 1.000 0.909 0.955 0.000 

2 0.684 0.763 0.395 0.600 0.400 1.000 0.739 1.000 0.000 

3 0.722 0.722 0.306 0.545 0.364 1.000 0.800 0.880 0.000 

4 0.730 0.730 0.351 0.538 0.385 1.000 0.833 0.917 0.000 

5 0.611 0.750 0.333 0.250 0.250 1.000 0.792 1.000 0.000 

6 0.757 0.730 0.270 0.400 0.500 1.000 0.889 0.815 0.000 

7 0.711 0.684 0.342 0.462 0.231 1.000 0.840 0.920 0.000 

8 0.684 0.684 0.342 0.385 0.385 1.000 0.840 0.840 0.000 

9 0.632 0.579 0.474 0.389 0.222 1.000 0.850 0.900 0.000 

10 0.611 0.722 0.806 0.571 0.286 0.000 0.621 0.828 1.000 

 

 

Table ‎6-8: The overall performance of the AIS Algorithms against PID dataset 

Round # 
Total Performance 

ClonalG V-Detector aiNet 

1 2.146 2.040 1.421 

2 2.023 2.163 1.395 

3 2.068 1.966 1.306 

4 2.102 2.031 1.351 

5 1.653 2.000 1.333 

6 2.046 2.045 1.270 

7 2.012 1.835 1.342 

8 1.909 1.909 1.342 

9 1.870 1.701 1.474 

10 1.803 1.836 1.806 

Average 1.963 1.953 1.404 
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Figure ‎6-3: The overall performance of AIS Algorithms against PID dataset 

 

Figure 6.3 represents the overall performance of the AIS algorithms against the PID dataset. In 

this case, ClonalG delivers total performance results averaging 1.963, outperforming V-

Detector’s average score of 1.953, despite one outlier in round no. 5.  V-Detector performs 

almost as well as ClonalG for this dataset.  aiNet is consistently trailing in third place, with the 

total performance averaging 1.404, indicating the need for significant improvement before it 

can be considered as a viable option. 

 

The case studies carried out clearly demonstrate how the AIS approaches can be employed in 

dealing with real-world problems in health and cancer research. The three experiments 

conducted to test the ClonalG, V-Detector and aiNet algorithms respectively against three 

medical datasets yielded mixed results. In general, good performance results were obtained in 

all tests for some of the AIS algorithms, especially for the V-Detector algorithm. However, the 

overall classification performance results are still unacceptably low, and more improvements 

are required to yield better outcomes. This outcome leads to the conclusion that some of the 

AIS techniques are found to be more suitable for medical research than other AIS approaches. 
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6.3.2. Experiment # 2: Majority Voting AIS Ensemble System 

The AIS ensemble system based on the majority voting classifiers combining method was 

tested in this experiment against three medical datasets. The datasets used here are the BC, HS 

and PID. Table 6.9 highlights the detailed classification performance results for the majority 

voting AIS ensemble method. Table 6.10 and Figure 6.4 illustrate the total classification 

performance of the majority voting AIS ensemble system. 

 

The presented results show that the majority voting AIS ensemble has achieved on average a 

consistent classification performance outcome for the three datasets. The results obtained from 

the BC dataset test are slightly better compared to the other two datasets. However, the overall 

performance results of the majority voting ensemble are considerably below average for all the 

three datasets.      

 

Figure 6.4 represents the overall performance of the majority voting AIS Ensemble System 

against the BC, HS, and PID datasets. The closely overlapping curves show that the majority 

voting AIS ensemble achieved on average almost identical classification performance outcomes 

for the three datasets. The results obtained from the BC dataset test minimally outperform the 

other two datasets. 

 

 
Table ‎6-9: Performance Results for the MV AIS Ensemble System 

Round 

# 

Accuracy Sensitivity Specificity 

BC HS PID BC HS PID BC HS PID 

1 0.771 0.933 0.816 0.900 0.667 0.625 0.720 1.000 0.955 

2 0.765 0.800 0.816 0.700 0.667 0.533 0.792 0.833 1.000 

3 0.743 0.800 0.778 0.692 0.400 0.545 0.773 1.000 0.880 

4 0.743 0.733 0.757 0.714 0.667 0.538 0.750 0.750 0.875 

5 0.743 0.800 0.778 0.714 0.333 0.417 0.750 0.917 0.958 

6 0.743 0.667 0.730 0.667 0.375 0.600 0.783 1.000 0.778 

7 0.706 0.786 0.737 0.750 0.333 0.462 0.692 0.909 0.880 

8 0.719 0.667 0.684 0.667 0.429 0.538 0.731 0.875 0.760 

9 0.735 0.667 0.658 0.429 0.286 0.389 0.950 1.000 0.900 

10 0.706 0.733 0.806 0.625 0.200 0.143 0.778 1.000 0.966 
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Table ‎6-10: The overall performance for the MV AIS Ensemble System 

Round # 
Total Performance 

BC HS PID 

1 2.391 2.600 2.395 

2 2.256 2.300 2.349 

3 2.208 2.200 2.203 

4 2.207 2.150 2.170 

5 2.207 2.050 2.153 

6 2.192 2.042 2.108 

7 2.148 2.028 2.078 

8 2.116 1.970 1.983 

9 2.114 1.952 1.947 

10 2.109 1.933 1.914 

Average 2.195 2.123 2.130 

 

 
Figure ‎6-4: The overall performance of MV AIS Ensemble system 
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6.3.3. Experiment # 3: Weighted Average AIS Ensemble System 

Similar to the previous experiment, the AIS ensemble with weighted average used as an 

aggregation procedure was tested against the same datasets. The detailed classification 

performance results for the weighted average AIS ensemble are shown in Table 6.11. For all 

the three datasets, the accuracy results for weighted average AIS ensemble varied between 60% 

and 81% except for the first sample, where it achieved 93% with the HS dataset. On the other 

hand, the sensitivity measures are considered low for most of the test runs. For the specificity 

measure, the AIS ensemble model achieved high results for both HS and PID datasets.  

 

Table 6.12 and Figure 6.5 outline the total performance of the weighted average AIS ensemble 

with the three datasets used in this experiment. It can be noticed that the AIS ensemble systems 

achieved (to some extent) better total performance results with the BC dataset. 

 

Figure 6.5 represents the overall performance of the weighted average AIS ensemble system 

against the BC, HS, and PID datasets. The figure shows some consistency of total performance 

of the weighted average AIS ensemble system against the BC dataset, and a slightly lower 

though similar trend against the PID dataset. It is evident that total performance against the HS 

dataset depicts wider variation with many data outliers. 

 

Table ‎6-11: Performance Results for the WA AIS Ensemble System 

Round 

# 

Accuracy Sensitivity Specificity 

BC HS PID BC HS PID BC HS PID 

1 0.771 0.933 0.816 0.900 0.667 0.625 0.720 1.000 0.955 

2 0.765 0.800 0.816 0.700 1.000 0.533 0.792 0.750 1.000 

3 0.743 0.800 0.778 0.692 0.400 0.545 0.773 1.000 0.880 

4 0.743 0.667 0.757 0.714 0.667 0.538 0.750 0.667 0.875 

5 0.743 0.600 0.778 0.714 0.333 0.417 0.750 0.667 0.958 

6 0.743 0.667 0.730 0.667 0.500 0.600 0.783 0.857 0.778 

7 0.706 0.786 0.737 0.750 0.333 0.462 0.692 0.909 0.880 

8 0.719 0.667 0.684 0.667 0.429 0.538 0.731 0.875 0.760 

9 0.735 0.667 0.658 0.429 0.286 0.389 0.950 1.000 0.900 

10 0.706 0.800 0.611 0.625 0.400 0.429 0.778 1.000 0.655 
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Table ‎6-12: The overall performance for the WA AIS Ensemble System 

Round # 
Total Performance 

BC HS PID 

1 2.391 2.600 2.395 

2 2.256 2.550 2.349 

3 2.208 2.200 2.203 

4 2.207 2.000 2.170 

5 2.207 1.600 2.153 

6 2.192 2.024 2.108 

7 2.148 2.028 2.078 

8 2.116 1.970 1.983 

9 2.114 1.952 1.947 

10 2.109 2.200 1.695 

Average 2.195 2.112 2.108 

 

 
Figure ‎6-5: The overall performance of WA AIS Ensemble system 
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6.3.4. Experiment # 4: Weighted Average with PSO AIS Ensemble System 

In this experiment, the proposed AIS ensemble with PSO optimizer was tested against the BC, 

HS and PID datasets. The weighted average aggregation procedure was used to combine the 

predicted outputs resulted from the base classifiers along with the PSO optimizer. The number 

of particles used in the optimization algorithm varied between 20 and 100 in each round, to 

search for an optimal solution within the full space. Tables 6.13, 6.14 and 6.15 highlight the 

detailed results of the classification performance measures of the weighted average AIS 

ensemble with PSO optimizer against the BC, HS, and PID datasets respectively.  

 

Generally speaking, improved experimental results were obtained while testing the AIS 

ensemble with PSO optimizer. More specifically, the optimized AIS ensemble model 

succeeded in some cases in achieving perfect results by predicting the correct class for all the 

testing samples, especially with the HS dataset, as shown in Table 6.14. However, the results 

shown in Table 6.16 and Figure 6.6 highlight that the AIS ensemble system with PSO 

optimizer achieved a slight improvement on the average total performance compared to the best 

base classifier, which can be further enhanced. 

 

Table ‎6-13: Performance Results for the WA_PSO AIS Ensemble System against BC dataset 

Sample 

# 

# of 

Particles 

WA_PSO AIS Ensemble 

Accuracy Sensitivity Specificity Total Gbest 

1 

20 
0.771 0.900 0.720 2.391 0.190 1.274 1.148 

30 
0.950 0.500 1.000 2.450 0.857 0.745 1.096 

40 
0.771 0.900 0.720 2.391 0.273 1.232 0.706 

50 
0.771 0.900 0.720 2.391 0.274 1.427 1.359 

70 
0.771 0.900 0.720 2.391 0.971 1.105 1.108 

100 
0.950 0.500 1.000 2.450 0.116 0.092 0.549 

2 

20 
0.807 0.667 0.864 2.337 0.131 0.217 0.065 

30 
0.794 0.600 0.875 2.269 1.194 0.826 1.225 

40 
0.794 0.600 0.875 2.269 0.815 0.636 0.591 

50 
0.794 0.600 0.875 2.269 1.137 0.833 1.306 

70 
0.807 0.667 0.864 2.337 0.856 1.423 0.899 
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Sample 

# 

# of 

Particles 

WA_PSO AIS Ensemble 

Accuracy Sensitivity Specificity Total Gbest 

100 
0.794 0.600 0.875 2.269 1.326 1.126 0.768 

3 

20 
0.743 0.692 0.773 2.208 0.739 1.073 0.880 

30 
0.743 0.692 0.773 2.208 0.032 0.610 0.413 

40 
0.743 0.692 0.773 2.208 0.756 1.004 1.413 

50 
0.743 0.692 0.773 2.208 0.269 1.256 0.259 

70 
0.743 0.692 0.773 2.208 1.213 1.353 1.285 

100 
0.743 0.692 0.773 2.208 1.117 1.478 0.084 

4 

20 
0.800 0.714 0.821 2.336 0.883 0.589 2.530 

30 
0.771 0.714 0.786 2.271 1.450 1.145 0.816 

40 
0.771 0.714 0.786 2.271 1.371 1.325 0.649 

50 
0.771 0.714 0.786 2.271 1.294 1.179 0.641 

70 
0.771 0.714 0.786 2.271 1.328 0.979 1.176 

100 
0.794 0.714 0.815 2.323 0.101 0.217 1.275 

5 

20 
0.743 0.714 0.750 2.207 0.934 1.052 1.063 

30 
0.743 0.714 0.750 2.207 0.182 1.342 1.492 

40 
0.743 0.714 0.750 2.207 0.214 0.366 0.640 

50 
0.743 0.714 0.750 2.207 0.541 1.476 0.559 

70 
0.743 0.714 0.750 2.207 0.840 0.967 0.904 

100 
0.743 0.714 0.750 2.207 1.187 1.387 1.062 

6 

20 
0.743 0.667 0.783 2.192 1.155 1.200 0.280 

30 
0.743 0.667 0.783 2.192 0.549 1.391 1.367 

40 
0.743 0.667 0.783 2.192 0.402 0.464 0.582 

50 
0.743 0.667 0.783 2.192 0.516 0.621 0.252 

70 
0.743 0.667 0.783 2.192 0.592 0.796 0.768 

100 
0.743 0.667 0.783 2.192 0.520 0.658 1.046 

7 

20 
0.706 0.750 0.692 2.148 1.139 1.214 1.128 

30 
0.706 0.750 0.692 2.148 0.413 1.418 1.174 

40 
0.706 0.750 0.692 2.148 0.739 0.880 0.429 
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Sample 

# 

# of 

Particles 

WA_PSO AIS Ensemble 

Accuracy Sensitivity Specificity Total Gbest 

50 
0.706 0.750 0.692 2.148 0.413 1.495 0.164 

70 
0.706 0.750 0.692 2.148 0.262 1.144 0.930 

100 
0.706 0.750 0.692 2.148 0.719 0.936 1.394 

8 

20 
0.781 0.500 0.846 2.128 1.224 0.921 0.807 

30 
0.781 0.500 0.846 2.128 1.227 1.027 0.427 

40 
0.786 0.600 0.826 2.212 1.018 1.688 0.278 

50 
0.781 0.500 0.846 2.128 1.321 1.064 0.283 

70 
0.781 0.500 0.846 2.128 0.860 0.541 1.379 

100 
0.781 0.500 0.846 2.128 0.999 0.629 0.154 

9 

20 
0.735 0.429 0.950 2.114 1.147 1.371 1.004 

30 
0.735 0.429 0.950 2.114 0.192 0.847 0.308 

40 
0.735 0.429 0.950 2.114 1.136 1.147 1.110 

50 
0.735 0.429 0.950 2.114 0.308 0.772 0.950 

70 
0.735 0.429 0.950 2.114 0.721 1.022 0.806 

100 
0.735 0.429 0.950 2.114 1.207 1.421 0.679 

10 

20 
0.706 0.625 0.778 2.109 0.187 1.125 1.019 

30 
0.706 0.625 0.778 2.109 1.108 1.393 1.025 

40 
0.706 0.625 0.778 2.109 0.240 1.099 1.344 

50 
0.706 0.625 0.778 2.109 0.430 0.921 1.081 

70 
0.706 0.625 0.778 2.109 0.206 0.946 0.896 

100 
0.706 0.625 0.778 2.109 0.475 1.487 0.013 

 

 

It is clear that in sample 1, for example, the WA_PSO AIS ensemble achieved 95% accuracy 

when the number of particles is 30; whilst the sensitivity and specificity are 0.5 and 1 

(respectively). The same is also true when the number of particles is 100. However, the average 

accuracy achieved across all the samples is only 76%, the average sensitivity is 0.65 and 

average specificity 0.8. 
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Table ‎6-14: Performance Results for the WA_PSO AIS Ensemble System against HS dataset 

Sample 

# 

# of 

Particles 

WA_PSO AIS Ensemble 

Accuracy Sensitivity Specificity Total Gbest 

1 

20 
0.933 0.667 1.000 2.600 0.610 0.676 0.862 

30 
0.933 0.667 1.000 2.600 0.610 0.208 0.913 

40 
0.933 0.667 1.000 2.600 1.090 0.930 1.257 

50 
0.933 0.667 1.000 2.600 0.077 0.014 1.326 

70 
0.933 0.667 1.000 2.600 0.614 1.293 1.352 

100 
0.933 0.667 1.000 2.600 1.371 1.131 1.320 

2 

20 
0.933 1.000 0.917 2.850 0.457 0.052 0.934 

30 
0.933 0.667 1.000 2.600 0.248 0.271 0.991 

40 
0.933 1.000 0.917 2.850 0.218 0.027 0.438 

50 
0.933 0.667 1.000 2.600 0.288 0.312 1.159 

70 
0.933 1.000 0.917 2.850 1.138 0.105 2.206 

100 
1.000 1.000 1.000 3.000 0.754 0.606 0.747 

3 

20 
0.800 0.400 1.000 2.200 0.079 1.323 0.926 

30 
0.800 0.400 1.000 2.200 0.382 0.404 0.873 

40 
0.800 0.400 1.000 2.200 0.190 1.148 0.878 

50 
0.800 0.400 1.000 2.200 0.585 0.452 1.328 

70 
0.800 0.400 1.000 2.200 1.222 1.261 1.280 

100 
0.800 0.400 1.000 2.200 0.820 1.052 0.002 

4 

20 
0.733 0.667 0.750 2.150 1.146 1.446 0.297 

30 
0.733 0.667 0.750 2.150 0.692 1.285 1.343 

40 
0.733 0.667 0.750 2.150 0.934 1.399 1.445 

50 
0.733 0.667 0.750 2.150 0.945 1.225 0.878 

70 
0.733 0.667 0.750 2.150 1.194 1.141 1.157 

100 
0.733 0.667 0.750 2.150 0.210 0.851 0.701 

5 

20 
0.800 0.333 0.917 2.050 1.222 0.984 0.658 

30 
0.800 0.333 0.917 2.050 0.243 0.647 1.170 

40 
0.800 0.333 0.917 2.050 0.904 0.741 1.459 
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Sample 

# 

# of 

Particles 

WA_PSO AIS Ensemble 

Accuracy Sensitivity Specificity Total Gbest 

50 
0.800 0.333 0.917 2.050 1.359 1.020 1.191 

70 
0.800 0.333 0.917 2.050 1.164 1.328 0.647 

100 
0.800 0.333 0.917 2.050 0.382 0.522 0.828 

6 

20 
0.818 0.800 0.833 2.452 0.148 0.855 1.728 

30 
0.733 0.625 0.857 2.215 0.933 0.603 0.780 

40 
0.733 0.625 0.857 2.215 1.132 0.631 1.109 

50 
0.733 0.625 0.857 2.215 1.093 0.671 0.878 

70 
0.733 0.625 0.857 2.215 0.900 0.461 0.957 

100 
0.733 0.625 0.857 2.215 0.692 0.142 1.166 

7 

20 
0.857 0.333 1.000 2.190 0.029 0.146 0.175 

30 
0.857 0.333 1.000 2.190 0.405 0.957 0.807 

40 
0.857 0.333 1.000 2.190 0.283 0.458 1.108 

50 
0.786 0.667 0.818 2.271 0.580 0.874 0.397 

70 
0.857 0.333 1.000 2.190 0.207 0.561 1.148 

100 
0.857 0.333 1.000 2.190 0.403 0.186 0.849 

8 

20 
0.733 0.714 0.750 2.198 0.956 0.467 0.730 

30 
0.818 0.800 0.833 2.452 0.381 1.410 2.416 

40 
0.733 0.714 0.750 2.198 0.841 0.246 0.868 

50 
0.733 0.714 0.750 2.198 0.749 0.073 1.021 

70 
0.733 0.714 0.750 2.198 0.947 0.070 1.324 

100 
0.733 0.714 0.750 2.198 1.092 0.256 1.202 

9 

20 
0.667 0.857 0.500 2.024 1.055 1.820 1.288 

30 
0.667 0.571 0.750 1.988 1.105 0.653 0.766 

40 
0.667 0.571 0.750 1.988 1.539 0.864 1.166 

50 
0.733 0.571 0.875 2.180 1.086 1.128 0.036 

70 
0.667 0.286 1.000 1.952 0.202 1.251 0.637 

100 
0.667 0.857 0.500 2.024 1.230 1.506 0.438 

10 20 
0.867 0.800 0.900 2.567 1.642 1.424 0.421 
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Sample 

# 

# of 

Particles 

WA_PSO AIS Ensemble 

Accuracy Sensitivity Specificity Total Gbest 

30 
0.867 0.800 0.900 2.567 0.938 0.248 1.244 

40 
0.867 0.800 0.900 2.567 1.293 0.682 1.026 

50 
0.867 0.800 0.900 2.567 1.072 0.543 0.953 

70 
0.867 0.800 0.900 2.567 0.263 0.127 0.208 

100 
0.800 1.000 0.778 2.578 0.112 0.502 0.901 

 

In Table 6.14 (showing the Performance Results for the AIS Ensemble with PSO optimizer 

system against the HS dataset), it can be seen that the optimized AIS ensemble model 

succeeded in some cases in achieving perfect results by predicting the correct class for all the 

test samples. This is evident in sample 2; when number of particles is 100, encouraging 

performance results were obtained in samples 2, 8, and 10. Additionally, the figures for the 

three measures of accuracy, sensitivity, and specificity in samples 1, 3, 4 and 5, are constant 

within the sample, regardless of the number of particles. For example, in sample 1, the 

optimized AIS ensemble achieved 93.3% accuracy, 0.667 sensitivity, and a perfect 1.000 

specificity for the number of particles spanning the range 30 to 100.   

 

Table ‎6-15: Performance Results for the WA_PSO AIS Ensemble System against PID dataset 

Sample 

# 

# of 

Particles 

WA_PSO AIS Ensemble 

Accuracy Sensitivity Specificity Total Gbest 

1 

20 
0.737 0.438 0.955 2.129 0.710 0.686 0.212 

30 
0.737 0.438 0.955 2.129 0.180 0.176 0.700 

40 
0.737 0.438 0.955 2.129 1.454 1.392 0.811 

50 
0.737 0.438 0.955 2.129 1.064 0.986 1.100 

70 
0.737 0.438 0.955 2.129 0.530 0.508 0.484 

100 
0.737 0.438 0.955 2.129 1.463 1.327 1.451 

2 

20 
0.790 0.467 1.000 2.256 0.806 0.567 0.532 

30 
0.790 0.467 1.000 2.256 1.137 0.824 0.932 

40 
0.790 0.467 1.000 2.256 0.391 0.310 0.827 

50 
0.790 0.467 1.000 2.256 1.435 1.202 0.763 
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Sample 

# 

# of 

Particles 

WA_PSO AIS Ensemble 

Accuracy Sensitivity Specificity Total Gbest 

70 
0.790 0.467 1.000 2.256 1.316 1.031 1.381 

100 
0.790 0.467 1.000 2.256 0.355 0.334 0.113 

3 

20 
0.778 0.364 0.960 2.101 1.359 0.054 0.572 

30 
0.778 0.364 0.960 2.101 0.467 0.273 0.363 

40 
0.778 0.364 0.960 2.101 0.892 0.160 0.989 

50 
0.778 0.364 0.960 2.101 1.359 0.382 0.688 

70 
0.778 0.364 0.960 2.101 0.772 0.220 0.267 

100 
0.778 0.364 0.960 2.101 0.727 0.187 0.941 

4 

20 
0.757 0.462 0.917 2.135 0.407 0.441 0.058 

30 
0.757 0.462 0.917 2.135 0.835 0.923 0.824 

40 
0.757 0.462 0.917 2.135 1.329 1.330 0.925 

50 
0.757 0.462 0.917 2.135 0.418 0.462 0.711 

70 
0.757 0.462 0.917 2.135 0.781 0.861 0.154 

100 
0.757 0.462 0.917 2.135 1.327 1.431 1.172 

5 

20 
0.750 0.250 1.000 2.000 0.976 1.464 1.326 

30 
0.750 0.250 1.000 2.000 0.502 0.989 0.703 

40 
0.750 0.250 1.000 2.000 0.450 0.897 1.144 

50 
0.750 0.250 1.000 2.000 0.736 1.185 0.992 

70 
0.750 0.250 1.000 2.000 0.190 1.221 0.526 

100 
0.750 0.250 1.000 2.000 0.820 1.052 0.002 

6 

20 
0.811 0.600 0.889 2.300 1.832 1.750 1.403 

30 
0.811 0.600 0.889 2.300 1.436 1.425 0.224 

40 
0.811 0.600 0.889 2.300 1.170 1.158 0.089 

50 
0.811 0.600 0.889 2.300 1.045 0.953 0.669 

70 
0.811 0.600 0.889 2.300 0.822 0.797 0.354 

100 
0.811 0.600 0.889 2.300 0.418 0.394 1.314 

7 

20 
0.711 0.308 0.920 1.938 0.986 0.830 0.919 

30 
0.711 0.308 0.920 1.938 0.839 0.610 0.208 
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Sample 

# 

# of 

Particles 

WA_PSO AIS Ensemble 

Accuracy Sensitivity Specificity Total Gbest 

40 
0.711 0.308 0.920 1.938 1.144 0.290 0.864 

50 
0.711 0.308 0.920 1.938 1.213 0.297 0.362 

70 
0.711 0.308 0.920 1.938 1.154 0.251 0.668 

100 
0.711 0.308 0.920 1.938 1.316 0.171 0.052 

8 

20 
0.737 0.462 0.880 2.078 0.920 0.911 0.856 

30 
0.737 0.462 0.880 2.078 0.931 0.917 0.571 

40 
0.737 0.462 0.880 2.078 1.435 1.428 0.955 

50 
0.737 0.462 0.880 2.078 0.676 0.613 0.297 

70 
0.737 0.462 0.880 2.078 0.879 0.816 0.302 

100 
0.737 0.462 0.880 2.078 0.747 0.697 0.550 

9 

20 
0.658 0.333 0.950 1.941 1.460 1.326 1.365 

30 
0.658 0.333 0.950 1.941 0.311 0.286 1.241 

40 
0.658 0.333 0.950 1.941 0.901 0.863 0.066 

50 
0.658 0.333 0.950 1.941 1.409 1.345 0.980 

70 
0.658 0.333 0.950 1.941 0.530 0.477 1.029 

100 
0.658 0.333 0.950 1.941 1.162 1.152 0.144 

10 

20 
0.722 0.286 0.828 1.836 0.387 1.080 0.208 

30 
0.722 0.286 0.828 1.836 0.309 1.222 0.830 

40 
0.722 0.286 0.828 1.836 0.029 1.300 0.103 

50 
0.800 0.200 0.950 1.950 0.527 0.863 1.800 

70 
0.800 0.200 0.950 1.950 0.704 0.701 0.063 

100 
0.800 0.200 0.950 1.950 0.569 0.677 1.105 

 

In Table 6.15 (showing the performance results for the AIS ensemble system with PSO 

optimizer against the PID dataset), the performance accuracy did not exceed 81.1%, which was 

achieved only in sample 6. However, except for sample no. 10, the optimized AIS ensemble 

model succeeded in all other cases in achieving persistent performance results, as evidenced in 

samples 1 through 9, where the figures for the three measures of accuracy, sensitivity, and 

specificity are constant within the sample, regardless of the number of particles. For example, 
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in sample 2, the AIS ensemble system achieved 79% accuracy, 0.467 sensitivity, and a perfect 

1.000 specificity for the number of particles spanning the range 30 to 100. However, the 

average accuracy achieved across all the samples is only 74.9%, the average sensitivity is 0.390 

and average specificity a good 0.936. 

 
Table ‎6-16: The overall performance for the WA_PSO AIS Ensemble System 

Round # Total Performance 

 BC HS PID 

1 2.391 2.600 2.129 

2 2.269 2.850 2.256 

3 2.208 2.200 2.101 

4 2.271 2.150 2.135 

5 2.207 2.050 2.000 

6 2.192 2.215 2.300 

7 2.148 2.190 1.938 

8 2.128 2.198 2.078 

9 2.114 1.988 1.941 

10 2.109 2.567 1.836 

Average 2.204 2.301 2.071 

 

 
Figure ‎6-6: The overall performance of WA_PSO AIS Ensemble system 
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Figure 6.6 represents the overall performance of the weighted average with PSO AIS ensemble 

system against the BC, HS, and PID datasets. The figure shows some consistency of total 

performance of the optimized AIS ensemble system against the BC dataset, and a slightly lower 

though similar trend against the PID dataset. It is evident that total performance against the HS 

dataset is the highest, although it depicts wider variation because of some data outliers. 

 

6.3.5. Experiment # 5: Weighted Average with NFS AIS Ensemble System 

The AIS based ensemble with neuro-fuzzy detector feature was proposed in Chapter 5. In this 

experiment, four medical datasets were used to test the effectiveness of this ensemble model. In 

addition to the three datasets introduced in section 6.2 of this chapter, the BC dataset presented 

in Chapter 3 was also used to test the detector based AIS ensemble.  

 

Table 6.17 illustrates the detailed classification performance results of the AIS ensemble model 

with neuro-fuzzy detector for the four datasets, while Table 6.18 and Figure 6.7 highlight the 

total performance results. It can be noticed from the two tables that the proposed ensemble 

systems has achieved very high accuracy, sensitivity and specificity rates for the breast cancer 

compared to the other datasets. Also, the results obtained for testing the ensemble model with 

the BC, HS, and PID datasets are relatively similar, as shown in Figure 6.7. Furthermore, the 

experimental results demonstrate clearly that AIS ensemble with neuro-fuzzy detector works 

effectively with high dimensional datasets such as BC and and PID datasets, and reasonable 

classification performance was achieved. However, this can be further improved by integrating 

the proposed architecture with other optimization techniques.  
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Table ‎6-17: Performance Results for the WA_NFS AIS Ensemble System 
R

o
u

n
d

 

#
 

Accuracy Sensitivity Specificity 

WBC BC HS PID WBC BC HS PID WBC BC HS PID 

1 0.971 0.771 0.933 0.816 0.944 0.900 0.667 0.625 1.000 0.720 1.000 0.955 

2 0.971 0.765 0.800 0.816 0.929 0.700 0.667 0.533 1.000 0.792 0.833 1.000 

3 0.971 0.743 0.800 0.778 0.923 0.692 0.400 0.545 1.000 0.773 1.000 0.880 

4 0.971 0.743 0.733 0.757 0.917 0.714 0.667 0.538 1.000 0.750 0.750 0.875 

5 0.971 0.743 0.800 0.778 0.917 0.714 0.333 0.417 1.000 0.750 0.917 0.958 

6 0.971 0.743 0.667 0.730 0.917 0.667 0.375 0.600 1.000 0.783 1.000 0.778 

7 0.971 0.706 0.786 0.737 0.909 0.750 0.333 0.462 1.000 0.692 0.909 0.880 

8 0.971 0.719 0.667 0.684 0.900 0.667 0.429 0.538 1.000 0.731 0.875 0.760 

9 0.971 0.735 0.667 0.658 0.900 0.429 0.286 0.389 1.000 0.950 1.000 0.900 

10 0.971 0.706 0.733 0.806 0.889 0.625 0.200 0.143 1.000 0.778 1.000 0.966 

 
Table ‎6-18: The overall performance for the WA_NFS AIS Ensemble System 

Round # 
Total Performance 

WBC BC HS PID 

1 2.915 2.391 2.600 2.395 

2 2.899 2.256 2.300 2.349 

3 2.895 2.208 2.200 2.203 

4 2.888 2.207 2.150 2.170 

5 2.887 2.207 2.050 2.153 

6 2.887 2.192 2.042 2.108 

7 2.881 2.148 2.028 2.078 

8 2.871 2.116 1.970 1.983 

9 2.871 2.114 1.952 1.947 

10 2.860 2.109 1.933 1.914 

Average 2.885 2.195 2.123 2.130 

 



Brunel University | Jamal Al-Enezi 2012 112 

 

 
Figure ‎6-7: The overall performance of WA_NFS AIS Ensemble system 

 

6.3.6. Experiment # 6: The Adaptive Learning AIS Based Ensemble System 

The proposed AIS ensemble has a unique architecture that is based on adaptive learning neuro-

fuzzy detector to enhance the classification performance. It has been further enhanced based on 

the PSO technique to further improve the overall performance of the architecture. These 

innovative solutions are combined together in an effective, computationally efficient 

architecture. In this experiment, various high-dimensional datasets are used to evaluate the 

performance of the proposed solution, where the results demonstrate that the performance of 

the new proposed system outperforms the conventional AIS based algorithms. Tables 6.19, 

6.20, 6.21, and 6.22 represent the detailed experimental results of the adaptive learning AIS 

ensemble with WBC, BC, HS, and PID datasets respectively.   

 

The weighted average combining method has been used as an aggregation procedure in this 

architecture. The number of particles used in the optimization algorithm varied between 20 and 

100 in each round, to test PSO optimizer capability for achieving an optimal solution.  
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Table ‎6-19: Performance Results for the WA_PSO_NFS AIS Ensemble System against WBC dataset 

Sample 

# 

# of 

Particles 

WA_PSO_NFS AIS Ensemble 

Accuracy Sensitivity Specificity Total Gbest 

1 

20 
0.971 0.944 1.000 2.915 0.272 0.353 0.622 

30 
0.971 0.944 1.000 2.915 1.428 1.475 1.031 

40 
0.971 0.944 1.000 2.915 1.342 0.906 1.464 

50 
0.971 0.944 1.000 2.915 0.529 0.594 0.709 

70 
0.971 0.944 1.000 2.915 0.763 0.541 1.035 

100 
0.971 0.944 1.000 2.915 0.612 0.839 0.867 

2 

20 
1.000 1.000 1.000 3.000 0.402 0.239 0.329 

30 
0.971 0.929 1.000 2.899 0.528 0.606 0.589 

40 
0.971 0.929 1.000 2.899 1.039 1.017 0.614 

50 
0.971 0.929 1.000 2.899 1.433 0.966 1.222 

70 
1.000 1.000 1.000 3.000 0.490 0.221 0.464 

100 
1.000 1.000 1.000 3.000 0.416 0.216 1.474 

3 

20 
0.971 0.923 1.000 2.895 0.805 0.734 1.053 

30 
0.971 0.923 1.000 2.895 0.767 0.394 1.439 

40 
1.000 1.000 1.000 3.000 0.223 0.120 0.850 

50 
0.971 0.923 1.000 2.895 1.010 1.351 1.357 

70 
0.971 0.923 1.000 2.895 1.414 1.327 0.221 

100 
0.971 0.923 1.000 2.895 1.209 1.236 0.096 

4 

20 
0.971 0.917 1.000 2.888 0.263 0.716 1.226 

30 
0.971 0.917 1.000 2.888 0.940 0.434 1.277 

40 
0.971 0.917 1.000 2.888 1.027 1.147 1.400 

50 
0.971 0.917 1.000 2.888 0.684 0.349 1.041 

70 
0.971 0.917 1.000 2.888 0.594 0.753 0.828 

100 
0.971 0.917 1.000 2.888 0.158 0.497 0.957 

5 

20 
0.971 0.917 1.000 2.887 0.974 1.492 1.414 

30 
0.971 0.917 1.000 2.887 0.846 0.721 1.094 

40 
0.971 0.917 1.000 2.887 0.785 0.803 0.503 
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Sample 

# 

# of 

Particles 

WA_PSO_NFS AIS Ensemble 

Accuracy Sensitivity Specificity Total Gbest 

50 
0.971 0.917 1.000 2.887 0.899 1.022 0.999 

70 
0.971 0.917 1.000 2.887 1.023 1.445 1.490 

100 
0.971 0.917 1.000 2.887 0.933 1.046 1.419 

6 

20 
0.971 0.917 1.000 2.887 1.079 0.884 1.016 

30 
0.971 0.917 1.000 2.887 0.812 0.908 0.482 

40 
0.971 0.917 1.000 2.887 0.859 0.751 1.459 

50 
0.971 0.917 1.000 2.887 0.545 0.515 0.881 

70 
0.971 0.917 1.000 2.887 0.752 0.721 0.105 

100 
0.971 0.917 1.000 2.887 0.648 0.469 1.465 

7 

20 
0.971 0.909 1.000 2.881 0.508 0.515 1.459 

30 
0.971 0.909 1.000 2.881 0.599 0.970 1.274 

40 
0.971 0.909 1.000 2.881 0.981 0.556 1.409 

50 
0.971 0.909 1.000 2.881 0.092 0.151 0.294 

70 
0.971 0.909 1.000 2.881 1.044 1.276 1.422 

100 
0.971 0.909 1.000 2.881 0.670 0.735 0.892 

8 

20 
0.971 0.900 1.000 2.871 0.393 0.106 0.897 

30 
0.971 0.900 1.000 2.871 0.448 0.761 1.366 

40 
0.971 0.900 1.000 2.871 0.107 0.785 0.463 

50 
0.971 0.900 1.000 2.871 1.359 1.020 1.191 

70 
0.971 0.900 1.000 2.871 1.230 1.298 1.153 

100 
0.971 0.900 1.000 2.871 0.685 1.041 0.038 

9 

20 
0.971 0.900 1.000 2.871 0.163 0.343 0.900 

30 
0.971 0.900 1.000 2.871 0.944 1.013 1.346 

40 
1.000 1.000 1.000 3.000 0.480 0.034 1.116 

50 
0.971 0.900 1.000 2.871 1.146 0.923 0.692 

70 
0.971 0.900 1.000 2.871 0.365 0.283 0.963 

100 
0.971 0.900 1.000 2.871 1.431 1.201 0.947 

10 20 
0.971 0.889 1.000 2.860 0.913 0.976 1.056 
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Sample 

# 

# of 

Particles 

WA_PSO_NFS AIS Ensemble 

Accuracy Sensitivity Specificity Total Gbest 

30 
0.971 0.889 1.000 2.860 0.434 0.387 1.321 

40 
0.971 0.889 1.000 2.860 0.964 1.368 1.345 

50 
0.971 0.889 1.000 2.860 0.188 0.375 0.796 

70 
0.971 0.889 1.000 2.860 1.251 1.384 1.059 

100 
0.971 0.889 1.000 2.860 0.777 0.819 1.080 

 

In Table 6.19 showing the performance results for the adaptive learning AIS ensemble system 

against the WBC dataset, the performance accuracy consistently equals 97.1% and achieves 

100% in 8% of the instances.  Performance sensitivity ranges between 0.889 and 1.000 

averaging 0.921.  Performance specificity is 1.000 in all cases.  These results clearly 

demonstrate that this approach outperforms conventional AIS algorithms for the WBC dataset.   

 
Table ‎6-20: Performance Results for the WA_PSO_NFS AIS Ensemble System against BC dataset 

Sample 

# 

# of 

Particles 

WA_PSO_NFS AIS Ensemble 

Accuracy Sensitivity Specificity Total Gbest 

1 

20 
0.771 0.900 0.720 2.391 1.015 1.457 0.404 

30 
0.771 0.900 0.720 2.391 0.739 0.756 1.395 

40 
0.771 0.900 0.720 2.391 0.610 0.862 1.495 

50 
0.771 0.900 0.720 2.391 0.215 0.365 0.799 

70 
0.771 0.900 0.720 2.391 0.963 1.362 1.069 

100 
0.771 0.900 0.720 2.391 0.290 1.117 1.478 

2 

20 
0.794 0.600 0.875 2.269 1.436 0.983 1.064 

30 
0.794 0.600 0.875 2.269 0.467 0.273 0.363 

40 
0.781 0.667 0.826 2.274 0.465 1.168 0.181 

50 
0.794 0.600 0.875 2.269 1.044 0.691 0.477 

70 
0.794 0.600 0.875 2.269 0.801 0.186 1.368 

100 
0.794 0.600 0.875 2.269 0.727 0.187 0.941 

3 

20 
1.000 1.000 1.000 3.000 0.649 0.885 0.306 

30 
0.743 0.692 0.773 2.208 0.693 1.271 1.006 
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Sample 

# 

# of 

Particles 

WA_PSO_NFS AIS Ensemble 

Accuracy Sensitivity Specificity Total Gbest 

40 
0.743 0.692 0.773 2.208 0.366 0.980 1.046 

50 
1.000 1.000 1.000 3.000 2.109 1.860 0.344 

70 
0.743 0.692 0.773 2.208 1.397 1.496 0.896 

100 
0.743 0.692 0.773 2.208 0.261 0.430 0.447 

4 

20 
0.771 0.714 0.786 2.271 1.144 0.575 1.202 

30 
0.800 0.714 0.821 2.336 1.617 1.363 0.354 

40 
0.800 0.714 0.821 2.336 1.327 0.892 0.197 

50 
0.800 0.714 0.821 2.336 1.571 1.071 0.209 

70 
0.771 0.714 0.786 2.271 1.304 0.613 1.264 

100 
0.955 1.000 0.952 2.907 0.105 0.103 0.004 

5 

20 
0.743 0.714 0.750 2.207 0.472 0.942 0.946 

30 
0.743 0.714 0.750 2.207 0.522 1.419 0.227 

40 
0.944 1.000 0.941 2.886 1.307 1.537 0.134 

50 
0.643 1.000 0.615 2.258 0.241 0.386 0.225 

70 
0.743 0.714 0.750 2.207 1.335 1.207 0.924 

100 
0.743 0.714 0.750 2.207 0.940 0.438 1.339 

6 

20 
0.771 0.917 0.696 2.384 0.676 1.534 1.407 

30 
0.743 0.667 0.783 2.192 0.225 0.832 1.321 

40 
0.771 0.833 0.739 2.344 0.403 0.966 0.862 

50 
0.771 0.917 0.696 2.384 0.263 0.797 0.907 

70 
0.771 0.917 0.696 2.384 0.490 1.266 1.308 

100 
0.743 0.667 0.783 2.192 0.841 1.281 0.198 

7 

20 
0.706 0.750 0.692 2.148 0.604 1.335 0.488 

30 
0.706 0.750 0.692 2.148 0.086 0.419 0.498 

40 
0.706 0.750 0.692 2.148 0.169 0.909 1.030 

50 
0.706 0.750 0.692 2.148 1.284 1.333 0.075 

70 
0.706 0.750 0.692 2.148 0.308 1.428 0.261 

100 
0.706 0.750 0.692 2.148 0.851 0.701 0.570 
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Sample 

# 

# of 

Particles 

WA_PSO_NFS AIS Ensemble 

Accuracy Sensitivity Specificity Total Gbest 

8 

20 
0.781 0.500 0.846 2.128 0.664 0.165 1.077 

30 
0.781 0.500 0.846 2.128 0.962 0.594 0.375 

40 
0.781 0.500 0.846 2.128 1.464 1.074 0.343 

50 
0.759 0.600 0.792 2.150 0.770 1.586 0.658 

70 
0.781 0.500 0.846 2.128 0.656 0.112 1.120 

100 
0.781 0.500 0.846 2.128 0.852 0.697 0.023 

9 

20 
0.735 0.429 0.950 2.114 0.525 0.902 0.622 

30 
0.735 0.429 0.950 2.114 0.328 0.818 0.313 

40 
0.735 0.429 0.950 2.114 0.287 0.443 0.193 

50 
0.735 0.429 0.950 2.114 0.709 1.118 0.192 

70 
0.735 0.429 0.950 2.114 0.238 1.149 0.223 

100 
0.735 0.429 0.950 2.114 0.364 0.405 0.472 

10 

20 
0.706 0.625 0.778 2.109 0.844 0.883 0.075 

30 
0.706 0.625 0.778 2.109 0.512 0.869 1.479 

40 
0.706 0.625 0.778 2.109 0.214 0.410 0.832 

50 
0.706 0.625 0.778 2.109 0.283 0.322 0.439 

70 
0.706 0.625 0.778 2.109 0.341 0.356 1.118 

100 
0.706 0.625 0.778 2.109 1.416 1.240 0.445 

 

Table 6.20 shows the performance results for the adaptive learning AIS ensemble system 

against the BC dataset. For this dataset, the performance accuracy ranges from 64.3% to 100% 

averaging 76.5%. Performance sensitivity ranges between 0.429 and 1.000 averaging 0.702. 

Performance specificity varies from 0.615 to 1.000 averaging 0.802. It is interesting to note that 

optimal results were obtained for sample 3, when number of particles is 20 and 40, by 

predicting the correct class for most test samples. Also, the ensemble model achieved 

encouraging performance results for samples 4, 5 and 6, when the number of particles is 100, 

40, and 50 respectively.  
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Table ‎6-21: Performance Results for the WA_PSO_NFS AIS Ensemble System against HS dataset 

Sample # 

# of 

Particles 

WA_PSO_NFS AIS Ensemble 

Accuracy Sensitivity Specificity Total Gbest 

1 

20 
0.933 0.667 1.000 2.600 1.370 1.401 1.193 

30 
0.933 0.667 1.000 2.600 0.243 0.647 1.170 

40 
0.933 0.667 1.000 2.600 1.004 0.706 1.267 

50 
0.933 0.667 1.000 2.600 0.607 1.186 1.108 

70 
0.933 0.667 1.000 2.600 0.810 0.835 1.401 

100 
0.929 1.000 0.917 2.845 0.045 0.431 0.743 

2 

20 
1.000 1.000 1.000 3.000 2.769 3.113 1.439 

30 
0.867 1.000 0.833 2.700 1.239 1.250 0.569 

40 
0.867 1.000 0.833 2.700 1.455 1.473 0.943 

50 
0.867 1.000 0.833 2.700 0.930 0.956 0.535 

70 
1.000 1.000 1.000 3.000 0.043 0.186 1.607 

100 
1.000 1.000 1.000 3.000 0.070 0.270 2.343 

3 

20 
0.800 0.400 1.000 2.200 0.244 1.228 0.098 

30 
0.800 0.400 1.000 2.200 0.716 1.248 0.507 

40 
0.800 0.500 1.000 2.300 0.220 0.021 1.140 

50 
0.800 0.400 1.000 2.200 0.029 1.119 0.790 

70 
0.800 0.400 1.000 2.200 0.383 0.944 1.461 

100 
1.000 1.000 1.000 3.000 0.093 0.480 1.313 

4 

20 
0.733 0.667 0.750 2.150 0.801 0.919 1.154 

30 
0.733 0.667 0.750 2.150 0.201 0.267 0.684 

40 
0.846 1.000 0.818 2.664 0.010 0.471 0.777 

50 
0.733 0.667 0.750 2.150 0.096 1.366 1.126 

70 
0.733 0.667 0.750 2.150 0.492 1.080 1.177 

100 
0.733 0.667 0.750 2.150 0.580 0.898 0.872 

5 

20 
0.800 0.333 0.917 2.050 0.631 0.742 1.293 

30 
0.800 0.333 0.917 2.050 1.123 1.344 0.722 

40 
0.800 0.333 0.917 2.050 0.180 0.430 1.307 
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Sample # 

# of 

Particles 

WA_PSO_NFS AIS Ensemble 

Accuracy Sensitivity Specificity Total Gbest 

50 
0.800 0.333 0.917 2.050 0.447 0.709 0.968 

70 
0.800 0.333 0.917 2.050 0.998 1.363 1.391 

100 
0.800 0.333 0.917 2.050 0.272 0.541 1.037 

6 

20 
0.733 0.625 0.857 2.215 1.112 0.981 0.828 

30 
0.769 0.714 0.833 2.317 0.201 0.186 1.238 

40 
0.733 0.625 0.857 2.215 1.101 1.026 0.682 

50 
0.733 0.625 0.857 2.215 0.831 0.762 0.644 

70 
0.733 0.625 0.857 2.215 1.229 1.144 0.828 

100 
0.733 0.625 0.857 2.215 1.088 1.018 0.590 

7 

20 
0.857 0.333 1.000 2.190 0.080 0.611 1.453 

30 
0.786 0.333 0.909 2.028 0.091 1.472 0.312 

40 
0.857 0.333 1.000 2.190 0.155 0.567 1.460 

50 
0.846 0.500 0.909 2.255 0.108 0.479 0.214 

70 
0.786 0.333 0.909 2.028 1.067 1.294 0.664 

100 
1.000 1.000 1.000 3.000 0.106 0.122 0.032 

8 

20 
0.667 0.714 0.625 2.006 0.478 0.297 0.420 

30 
0.733 0.714 0.750 2.198 0.369 0.078 1.102 

40 
0.733 0.714 0.750 2.198 1.255 0.339 2.197 

50 
0.733 0.714 0.750 2.198 0.443 0.149 0.736 

70 
0.733 0.714 0.750 2.198 0.579 0.064 1.200 

100 
0.769 0.667 0.857 2.293 0.104 0.344 1.059 

9 

20 
0.667 0.571 0.750 1.988 1.414 1.028 1.324 

30 
0.733 0.429 1.000 2.162 0.962 0.937 0.376 

40 
0.667 0.857 0.500 2.024 1.192 1.387 0.511 

50 
0.733 0.429 1.000 2.162 0.708 0.705 0.243 

70 
0.667 0.571 0.750 1.988 1.095 0.681 1.474 

100 
0.667 0.571 0.750 1.988 1.459 1.095 1.358 

10 20 
0.867 0.800 0.900 2.567 0.550 0.180 1.422 
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Sample # 

# of 

Particles 

WA_PSO_NFS AIS Ensemble 

Accuracy Sensitivity Specificity Total Gbest 

30 
0.867 0.800 0.900 2.567 1.201 0.668 1.352 

40 
0.867 0.800 0.900 2.567 0.956 0.662 0.792 

50 
0.800 1.000 0.778 2.578 0.278 0.579 1.738 

70 
0.867 0.800 0.900 2.567 0.747 0.448 1.239 

100 
0.867 0.800 0.900 2.567 1.002 0.741 0.922 

 

In Table 6.21 showing the performance results for the AIS ensemble system with adaptive 

learning feature against the HS dataset, the performance accuracy averaged 81.2% and ranged 

from 66.7% to 100%. The performance for sensitivity spanned a much wider range from 0.333 

to 1.000 and averaged 0.652.  The performance for specificity averaged 0.881 while varying 

from 0.500 to 1.000.  In addition, the adaptive learning AIS ensemble system succeeded on 

achieving perfect results by predicting the correct class for all the test samples for samples 2 

(when no. of particles is 20, 70 and 100), 3 (no. of particles is 100), and 7 (no. of particles is 

100). For sample no. 5, the performance measures of accuracy, sensitivity, and specificity were 

constant within the sample, regardless of the number of particles, at 0.800, 0.333 and 0.917 

respectively for the number of particles spanning the range 30 to 100.  Samples 1 and 3 also 

showed similar consistency.  

 
Table ‎6-22: Performance Results for the WA_PSO_NFS AIS Ensemble System against PID dataset 

Sample 

# 

# of 

Particles 

WA_PSO_NFS AIS Ensemble 

Accuracy Sensitivity Specificity Total Gbest 

1 

20 
0.816 0.625 0.955 2.395 1.150 1.088 1.489 

30 
0.868 0.813 0.909 2.590 0.063 0.599 1.609 

40 
0.816 0.625 0.955 2.395 0.853 1.154 1.180 

50 
0.868 0.813 0.909 2.590 0.331 0.230 1.345 

70 
0.868 0.813 0.909 2.590 0.560 0.117 1.607 

100 
0.868 0.813 0.909 2.590 0.360 0.089 1.063 

2 

20 
0.816 0.533 1.000 2.349 0.624 0.746 0.353 

30 
0.816 0.533 1.000 2.349 1.473 1.070 1.166 

40 
0.816 0.533 1.000 2.349 1.445 1.221 0.685 
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Sample 

# 

# of 

Particles 

WA_PSO_NFS AIS Ensemble 

Accuracy Sensitivity Specificity Total Gbest 

50 
0.816 0.533 1.000 2.349 0.770 0.498 0.939 

70 
0.816 0.533 1.000 2.349 0.843 0.834 1.469 

100 
0.816 0.533 1.000 2.349 0.465 0.597 0.919 

3 

20 
0.778 0.546 0.880 2.203 0.419 0.423 0.510 

30 
0.778 0.546 0.880 2.203 0.988 0.666 1.185 

40 
0.778 0.636 0.840 2.254 0.376 0.402 1.847 

50 
0.778 0.546 0.880 2.203 1.146 0.923 0.692 

70 
0.750 0.546 0.840 2.136 0.135 0.341 1.142 

100 
0.778 0.546 0.880 2.203 1.431 1.201 0.947 

4 

20 
0.757 0.539 0.875 2.170 0.913 0.976 1.056 

30 
0.757 0.539 0.830 2.125 0.599 1.029 1.326 

40 
0.730 0.692 0.750 2.172 0.257 0.322 1.406 

50 
0.757 0.539 0.875 2.170 1.294 1.179 0.641 

70 
0.757 0.539 0.875 2.170 1.328 0.979 1.176 

100 
0.730 0.692 0.750 2.172 0.241 0.229 1.133 

5 

20 
0.806 0.500 0.958 2.264 0.538 0.576 2.521 

30 
0.806 0.667 0.875 2.347 0.286 0.117 0.978 

40 
0.806 0.667 0.875 2.347 0.228 0.012 0.572 

50 
0.806 0.667 0.875 2.347 0.415 0.109 1.253 

70 
0.806 0.500 0.958 2.264 0.128 0.521 1.467 

100 
0.806 0.667 0.875 2.347 0.477 0.077 1.337 

6 

20 
0.811 0.600 0.889 2.300 1.129 0.656 1.147 

30 
0.811 0.600 0.889 2.300 1.023 0.647 0.842 

40 
0.811 0.600 0.889 2.300 0.400 0.229 0.397 

50 
0.811 0.600 0.889 2.300 1.030 0.840 0.384 

70 
0.811 0.600 0.889 2.300 1.084 0.635 1.116 

100 
0.811 0.600 0.889 2.300 1.207 0.728 1.083 

7 20 
0.737 0.462 0.880 2.078 1.128 0.734 1.137 



Brunel University | Jamal Al-Enezi 2012 122 

 

Sample 

# 

# of 

Particles 

WA_PSO_NFS AIS Ensemble 

Accuracy Sensitivity Specificity Total Gbest 

30 
0.737 0.462 0.880 2.078 1.453 1.350 1.348 

40 
0.737 0.462 0.880 2.078 0.584 0.828 1.024 

50 
0.737 0.462 0.880 2.078 0.137 0.308 0.562 

70 
0.737 0.462 0.880 2.078 0.261 0.447 1.307 

100 
0.737 0.462 0.880 2.078 0.709 0.976 1.479 

8 

20 
0.737 0.462 0.880 2.078 1.092 0.674 0.922 

30 
0.737 0.462 0.880 2.078 1.479 0.994 1.156 

40 
0.763 0.692 0.800 2.256 0.769 0.018 1.771 

50 
0.737 0.462 0.880 2.078 1.075 0.830 0.585 

70 
0.778 0.800 0.750 2.328 0.080 0.582 1.656 

100 
0.711 0.769 0.680 2.160 0.032 0.156 0.438 

9 

20 
0.711 0.722 0.700 2.133 0.498 0.143 1.552 

30 
0.658 0.389 0.900 1.947 1.222 1.059 1.127 

40 
0.684 0.556 0.800 2.040 0.320 0.116 0.493 

50 
0.658 0.389 0.900 1.947 1.002 1.155 0.879 

70 
0.711 0.722 0.700 2.133 0.199 0.191 0.943 

100 
0.711 0.722 0.700 2.133 0.159 0.342 1.217 

10 

20 
0.806 0.143 0.966 1.914 0.520 0.127 1.342 

30 
0.806 0.286 0.931 2.022 0.131 0.700 1.437 

40 
0.806 0.143 0.966 1.914 1.289 1.072 0.814 

50 
0.800 0.200 0.950 1.950 2.036 2.693 0.081 

70 
0.806 0.286 0.931 2.022 0.034 0.456 1.063 

100 
0.806 0.143 0.966 1.914 1.226 1.231 0.682 

 

Table 6.22 shows the performance results for the proposed AIS ensemble system against the 

PID dataset. The performance accuracy averaged 77.8%, ranging from 65.8% to 86.8%. The 

performance for sensitivity spanned a much lower range from 0.143 to 0.813, averaging 0.549.  

The performance for specificity averaged 0.883, varying from 0.680 to 1.000.  This shows a 

decline in performance for accuracy and sensitivity in comparison with the HS dataset, 
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although it matches it in specificity. However, good overall performance results were obtained 

in most samples, taking into consideration the high dimensional aspect of this dataset. This was 

demonstrated clearly in the results for samples 1, 2, 5 and 8. The performance measures of 

accuracy, sensitivity, and specificity for samples 2, 6, and 7 were constant within the sample, 

regardless of the number of particles that spanned the range 30 to 100.  

 

Table 6.23 and Figure 6.8 depict the overall performance of the adaptive learning AIS 

ensemble with all datasets used in this experiment. The presented results show that the 

proposed ensemble model has achieved an outstanding classification performance against the 

WBC dataset. Improved results have been obtained also with the other datasets, including the 

high dimensional datasets such as the BC and the PID datasets.  It can be noticed from Table 

6.23 that the AIS ensemble system with adaptive learning feature has succeeded in achieving 

optimum performance on some samples by predicting the correct class for most of the testing 

samples. 

 

 
Table ‎6-23: The overall performance for the WA_PSO_NFS AIS Ensemble System 

 

 

Round # 
Total Performance 

WBC BC HS PID 

1 2.915 2.391 2.600 2.590 

2 2.899 2.269 2.700 2.349 

3 2.895 2.208 2.200 2.254 

4 2.888 2.336 2.150 2.172 

5 2.887 2.207 2.050 2.347 

6 2.887 2.192 2.215 2.300 

7 2.881 2.148 2.190 2.078 

8 2.871 2.128 2.198 2.256 

9 2.871 2.114 2.162 2.133 

10 2.860 2.109 2.567 2.022 

Average 2.885 2.210 2.303 2.250 
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Figure ‎6-8: The overall performance of WA_PSO_NFS AIS Ensemble 

 

In conclusion, this experiment demonstrates the effectiveness of the adaptive learning AIS 

ensemble when used for the classification problem. The proposed AIS ensemble system has 

achieved better results with all the datasets used compared to the other experiments.    

 

6.4.  Results comparison and discussion 

So far, the experiments carried out in the previous section have shown the effectiveness of the 

various methods against the different datasets used separately. In this section, a comparative 

review between the AIS base classifiers and the several proposed ensemble methods is 

presented.  

 

In addition to the three AIS base classifiers, Table 6.24 summarizes all the results achieved by 

the various ensemble methods presented in this work against the WBC dataset. These methods 

include the majority voting (MV_E), weighted average (WA_E), weighted average with PSO 
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optimizer (WA_PSO), weighted average with neuro-fuzzy detector (WA_NFS), and the 

adaptive learning (WA_PSO_NFS) AIS based ensemble systems.  

 

For this dataset, the results shown in Table 6.24 highlight that all the ensemble methods 

improve the total classification performance above of that of the individual base classifiers. 

Among all the ensemble methods, the presented results confirm that the overall classification 

accuracy achieved by using the majority voting AIS based ensemble, the AIS ensemble with 

neuro-fuzzy detector, and the adaptive learning AIS based ensemble approaches has shown the 

best overall performance. Figure 6.9 illustrates the overall performance of all the methods.  

 
Table ‎6-24: The overall performance for the AIS algorithms and all Ensemble Systems against WBC 

dataset 

Round # 

Total Performance 

(WBC dataset) 

Clonal

G 

V-

Detector 
aiNet MV_E WA_E 

WA_PS

O 

WA_NF

S 
WA_PSO_NFS 

1 2.313 2.830 1.444 2.915 2.915 2.830 2.915 2.915 

2 2.719 2.798 1.729 2.899 2.899 2.899 2.899 2.899 

3 2.367 2.789 1.446 2.895 2.895 2.895 2.895 2.895 

4 2.145 2.552 1.343 2.888 2.888 2.664 2.888 2.888 

5 2.549 2.775 1.353 2.887 2.887 2.887 2.887 2.887 

6 2.436 2.775 1.240 2.887 2.887 2.887 2.887 2.887 

7 2.403 2.642 1.314 2.881 2.881 2.642 2.881 2.881 

8 2.477 2.871 1.286 2.871 2.871 2.871 2.871 2.871 

9 2.612 2.541 1.436 2.871 2.800 2.541 2.871 2.871 

10 2.441 2.860 1.257 2.860 2.860 2.860 2.860 2.860 

Average 2.446 2.743 1.385 2.885 2.878 2.798 2.885 2.885 
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Figure ‎6-9: The overall performance of all methods against WBC 

Similarly, Table 6.25 and Figure 6.10 clearly depict the slight improvement in classification 

performance obtained when using the adaptive learning AIS ensemble architecture with the BC 

dataset. With this high dimensional dataset, the results showed that the proposed adaptive 

learning ensemble systems outperformed not only the base classifiers, but all the other 

ensemble methods.    

 

The experimental outcomes for testing all the methods with the HS and PID datasets are 

illustrated in Table 6.26, Figure 6.11 and Table 6.27, Figure 6.12 respectively. It can be noticed 

from the results shown that the adaptive learning AIS based ensemble has achieved the best 

results compared to the other methods. In Figure 6.13, the ROC plots were drawn for the 

various ensemble methods used in the PID testing experiment to visualize their classification 

performance.  

 

Figure 6.11 represents the overall performance of all methods (AIS algorithms and all ensemble 

systems) against the HS dataset. The figure shows that with the best average performance of 

2.303, the adaptive learning AIS based ensemble has achieved the best results compared to the 
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other methods. The AIS ensemble with PSO optimizer method ranks second best with an 

average performance of 2.301. Both of these range between 2.000 and 2.850.  The remaining 

methods score lower against this HS dataset. 

 

In conclusion, the experiments conducted in this work have shown that the combination of 

multiple classifiers is an alternative strategy of improving the robustness and performance of 

the overall system. The experimental results have demonstrated clearly the effectiveness of the 

new adaptive learning AIS based ensemble architecture for the classification application 

especially when used with high dimensional datasets. The different particle swarm optimization 

and neuro-fuzzy intelligent methods used in building the proposed ensemble system have 

generously improved the overall classification performance of the ensemble system on every 

dataset.  Furthermore, the slight increase in the computational requirements introduced by the 

proposed ensemble system can be justified by the possible gains while training with high 

dimensional data sets.  

 
Table ‎6-25: The overall performance for the AIS algorithms and all Ensemble Systems against BC 

dataset 

Round # 

Total Performance 

(BC dataset) 

Clonal

G 

V-

Detector 
aiNet MV_E WA_E 

WA_PS

O 

WA_NF

S 
WA_PSO_NFS 

1 1.963 2.391 1.286 2.391 2.391 2.391 2.391 2.391 

2 1.350 2.256 1.294 2.256 2.256 2.269 2.256 2.269 

3 1.840 2.208 1.371 2.208 2.208 2.208 2.208 2.208 

4 1.907 2.207 1.200 2.207 2.207 2.271 2.207 2.336 

5 2.121 2.207 1.200 2.207 2.207 2.207 2.207 2.207 

6 1.777 2.192 1.343 2.192 2.192 2.192 2.192 2.192 

7 1.919 2.148 1.235 2.148 2.148 2.148 2.148 2.148 

8 1.673 2.116 1.188 2.116 2.116 2.128 2.116 2.128 

9 1.934 2.114 1.412 2.114 2.114 2.114 2.114 2.114 

10 1.819 2.109 1.471 2.109 2.109 2.109 2.109 2.109 

Average 1.830 2.195 1.300 2.195 2.195 2.204 2.195 2.210 
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Figure ‎6-10: The overall performance of all methods against BC 

Table ‎6-26: The overall performance for the AIS algorithms and all Ensemble Systems against HS dataset 

Round # 

Total Performance 

(HS dataset) 

Clonal

G 

V-

Detector 
aiNet MV_E WA_E 

WA_PS

O 

WA_NF

S 
WA_PSO_NFS 

1 1.650 2.200 2.600 2.600 2.600 2.600 2.600 2.600 

2 1.650 2.300 2.200 2.300 2.550 2.850 2.300 2.700 

3 1.667 2.200 1.667 2.200 2.200 2.200 2.200 2.200 

4 1.800 2.150 1.650 2.150 2.000 2.150 2.150 2.150 

5 1.800 1.650 2.050 2.050 1.600 2.050 2.050 2.050 

6 1.467 2.042 1.850 2.042 2.024 2.215 2.042 2.215 

7 1.786 2.028 1.786 2.028 2.028 2.190 2.028 2.190 

8 1.743 1.761 1.952 1.970 1.970 2.198 1.970 2.198 

9 1.533 1.952 1.743 1.952 1.952 1.988 1.952 2.162 

10 1.500 1.933 1.667 1.933 2.200 2.567 1.933 2.567 

Average 1.660 2.022 1.916 2.123 2.112 2.301 2.123 2.303 
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Figure ‎6-11: The overall performance of all methods against HS dataset 

Table ‎6-27: The overall performance for the AIS algorithms and all Ensemble Systems against PID 

dataset 

Round # 

Total Performance 

(PID dataset) 

Clonal

G 

V-

Detector 
aiNet MV_E WA_E 

WA_PS

O 

WA_NF

S 
WA_PSO_NFS 

1 2.146 2.040 1.421 2.395 2.395 2.129 2.395 2.590 

2 2.023 2.163 1.395 2.349 2.349 2.256 2.349 2.349 

3 2.068 1.966 1.306 2.203 2.203 2.101 2.203 2.254 

4 2.102 2.031 1.351 2.170 2.170 2.135 2.170 2.172 

5 1.653 2.000 1.333 2.153 2.153 2.000 2.153 2.347 

6 2.046 2.045 1.270 2.108 2.108 2.300 2.108 2.300 

7 2.012 1.835 1.342 2.078 2.078 1.938 2.078 2.078 

8 1.909 1.909 1.342 1.983 1.983 2.078 1.983 2.256 

9 1.870 1.701 1.474 1.947 1.947 1.941 1.947 2.133 

10 1.803 1.836 1.806 1.914 1.695 1.836 1.914 2.022 

Average 1.963 1.953 1.404 2.130 2.108 2.071 2.130 2.250 
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Figure ‎6-12: The overall performance of all methods against PID dataset 

 
Figure ‎6-13: The ROC plots for all the ensemble methods for one of the samples in the PID dataset 
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6.5.  Summary 

An empirical evaluation of the various proposed methods for combining AIS classifiers has 

been presented in this chapter using four datasets. Several experiments have been conducted to 

evaluate the proposed AIS ensemble methods in comparison to the individual base classifiers 

and the other classifiers combining methods. The results obtained from all experiments have 

shown that the method of combining classifiers in an ensemble has enhanced the overall 

classification performance.  

 

Furthermore, the experimental results have confirmed that the new adaptive learning AIS based 

ensemble system proposed in this work has achieved the best classification performance results 

compared to the other methods. The consistency in the performance of the proposed adaptive 

learning AIS ensemble model and the reliability in handling large datasets makes it the 

preferred choice in the designing of multiple classifier systems. 

 

The success rates achieved with the proposed AIS ensemble models indicates that the 

developments of the artificial immune systems would benefit not only from the inspiration of 

biological immune principles and mechanisms, but also from integration with other soft 

computing methods, such as neuro-fuzzy systems and particle swarm optimization algorithms. 

 

The next chapter highlights the conclusion of this dissertation and suggests avenues for further 

research.  
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 7  CHAPTER 7:  Conclusion and 

Future Work 

 

7.1.  Conclusion 

This chapter highlights directions for future work and forms the conclusion of this research. It 

summarizes the main technical contributions of this thesis that were discussed in the previous 

chapters and directions for future research arising from this work, as presented in Section 7.2.  

 

This research presented the essential needs of a new AIS based ensemble for data classification 

and the motivation behind this work. The thesis also studied several aspects related to AIS and 

a new ensemble based on artificial immune algorithms introduced to solve the data 

classification problem.   

 

A study and survey on the AIS field (see Chapter 2), including theoretical background on the 

main ideas and concepts of AIS and the recent advances in the literature, has been presented in 

this thesis. This study has provided a motivation to continue exploring the AIS field and 

contribute to the development of the new AIS models and techniques. Researchers have 

explored the main features of the AIS mechanisms and exploited them in many application 

areas. Based on their aspects, some AIS techniques have been found to be more suitable for 

certain application areas compared to other AIS approaches. This study found that negative 

selection models and algorithms were widely used in fault detection and computer security 

applications utilizing the self/non-self recognition aspect.  Alternatively, the artificial immune 

network approaches were used in clustering, classification, data analysis and data mining 

applications. The clonal selection models were used mostly for optimization problems. 

In this research, a comparative study has been presented between three well known AIS models 

and algorithms as applied to cancer research by validation against actual cancer dataset. The 

three AIS algorithms inspired by the immunological principles are considered for the case 
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study are ClonalG, V-Detector, and aiNet algorithms. The case study clearly demonstrates how 

AIS approaches can be employed in dealing with real-world problems in health and cancer 

research. The experimental results have shown that a better performance result was achieved in 

the experiment, especially with the V-Detector algorithm, by detecting successfully the number 

and the clusters for the tested dataset. This outcome leads to the conclusion that some of the 

AIS techniques are found to be more suitable for cancer research than other AIS approaches. 

 

Furthermore, various methods and techniques for combining multiple classifiers have been 

presented. In addition, the thesis highlighted the key challenges in the development of multiple 

classifier systems. Different strategies and architectures have been introduced to address these 

challenges and the relevant work in the literature has been presented. Furthermore, a new AIS 

based ensemble model combining the three AIS algorithms was proposed using the majority 

voting and weighted average combining techniques as a first step toward achieving the 

objectives of this research. A new technique to measure the confidence level for the base 

classifiers of the ensemble system was suggested in this thesis. The method is focused on 

assigning the weights for the base classifier on the basis of its classification competence in 

order to achieve the maximum performance for the ensemble system. The proposed technique 

was applied successfully and the effect of using it on the performance of the AIS ensemble 

model is shown in the results.  

Additionally, a PSO optimizer technique was utilised in this research to further enhance the 

performance of the proposed AIS based ensemble. The PSO optimizer is developed to find the 

optimal weight values for the base classifiers to further enhance the AIS ensemble overall 

performance. A case study was conducted to evaluate the performance of the different AIS 

ensemble models against a real cancer dataset. The experimental result of this study has shown 

that the AIS ensemble systems achieved the best classification performance results in all test 

runs. More specifically, the classification performance of the AIS based ensembles using the 

majority voting, weighted average and PSO AIS ensemble models outperformed individual 

AIS classifiers. However, in addition to  the fact that the AIS ensemble with PSO optimizer 

model achieved better results than the base classifiers, the results have shown that its average 

performance was slightly lower than the other two classical combining techniques. Hence, 

further enhancement is required to improve the classification performance of the AIS ensemble 

system.  
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In this research, a new ensemble based on artificial immune algorithms for the classification 

problem is proposed. The proposed AIS ensemble has a unique architecture that is based on 

adaptive learning neuro-fuzzy detector to enhance the classification performance. The proposed 

ensemble has further enhanced the overall performance with the aid of the particle swarm 

optimization technique. These innovative solutions are combined together in an effective, 

computationally efficient architecture. The neuro-fuzzy detector is used to help in 

transforming the crisp values of the confidence levels assigned to the individual classifiers 

into a more accurate and satisfactory weight measures, while the PSO optimizer is utilized to 

find the optimal weight values, hence leading to an appropriate decision and providing 

desired classification accuracy. Both methods are applied successfully in the proposed 

architecture and the effect of using them on the classification accuracy of the ensemble 

system is demonstrated in the final results.  

 

After the adaptive learning AIS ensemble system was developed, the system was tested using 

different samples of high-dimensional data by conducting several experiments to evaluate the 

performance of the proposed solution; the experimental results clearly demonstrate that the 

performance of the new AIS based ensemble system outperforms the conventional AIS based 

algorithms and the other classifiers combining methods.  

 

An evaluation of the various proposed methods for combining AIS classifiers using four 

medical datasets is presented. Several experiments have been conducted to evaluate the 

proposed AIS ensemble methods in comparison to the individual base classifiers and the other 

classifiers combining methods. The results obtained from all experiments have shown that the 

method of combining classifiers in an ensemble has enhanced the overall classification 

performance. Moreover, the results have confirmed that the proposed adaptive learning AIS 

based ensemble system has achieved the best classification performance results compared to 

the other methods. The consistency in the performance of the proposed adaptive learning AIS 

ensemble model and the reliability in handling high-dimensional datasets make it the preferred 

choice in the designing of multiple classifier systems. The success rates achieved with the 

proposed AIS ensemble model demonstrate the added value of integrating AIS models with 

various artificial intelligent and optimization methods when applied to challenging application 

domains. Accordingly, the outcomes of the evaluation study have confirmed the effectiveness 
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and capability of the proposed ensemble model for the classification application, especially 

when used with high dimensional datasets. 

 

Although AIS models have achieved great successes in various application domains, there are 

still some theoretical issues that need to be further explored, such as the development of unified 

frameworks, convergence and scalability. The developments of the artificial immune systems 

would benefit not only from the inspiration of biological immune principles and mechanisms, 

but also hybridization with other soft computing paradigms, such as neuro-fuzzy systems and 

PSO algorithms. They could also be further studied and applied to more challenging application 

areas such as clustering of high-dimension data and to solve complex real-world problems. 

 

The research aim formulated in the introduction of the thesis served as the main guideline and 

motivation. The main goal to develop an AIS based classifier with high classification accuracy 

was achieved based on the design and development of an adaptive learning AIS based 

ensemble system. Secondly, the applicability of the proposed AIS ensemble model in the 

classification problem of high-dimensional datasets was also successfully demonstrated. In 

addition, the combination of various adaptation and optimization techniques provided 

significant improvement to the overall classification performance of the AIS based classifier. 

This research provides a comprehensive foundation for such investigations. The research 

objectives set in this thesis can be concretely compared with the results of the dissertation, in 

which it evident that those goals have been successfully accomplished as highlighted in the 

previous conclusion paragraphs. 

 

A number of issues remain open to future investigation, and this research can be extended to 

allow further improvements to the proposed adaptive learning AIS ensemble system. These 

issues suggest a variety of research directions that need to be pursued, some of which are 

briefly described in the following subsection. 
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7.2. Future Research 

Although this thesis presented several contributions related to the classification problem and 

AIS based ensemble, there are still some general directions to extend the work of this thesis. 

The directions highlighted for future exploration are as follows: 

 The success rates achieved with the adaptive learning AIS based ensemble model for 

some of the datasets indicate that there is further need for refinement and modifications 

of the approaches considered to gain greater accuracy and reliability to derive optimum 

benefit in cancer research. 

 

 The focus of this study was on combining homogenous classifiers in an ensemble. 

Heterogeneous classifiers may help on improving the diversity of the proposed 

ensemble architecture and accordingly improve the overall performance of the 

architecture. 

 

 The neuro-fuzzy detector and the PSO optimizer were the two main components 

suggested in the proposed adaptive learning ensemble architecture to tune the 

aggregation procedure. Future work could extend the adaptive learning feature to adjust 

also the base classifiers in order to achieve higher success rates, hence improving the 

overall ensemble classification performance. 

 

 Testing the scalability of the proposed adaptive learning AIS ensemble architecture is 

an interesting subject. The proposed ensemble architecture was tested on three AIS base 

classifiers; the effects of the inclusion of more base classifiers can be further explored. 

 

 The medical datasets used in testing the proposed AIS ensemble systems with adaptive 

learning feature have two classes. The proposed ensemble model can be further tested 

against other datasets with multiple classes to evaluate its performance.      

 

 Future research work may include further investigation of the adaptive learning 

convergence features of the AIS based ensemble architecture and employing it to deal 

with more real-world engineering problems. 
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