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Abstract—The Internet of Things (I0T) technology with huge
number power-constrained devices has been heralded to impve
the operational efficiency of many industrial applications It is
vital to reduce the energy consumption of each device, howex
this could also degrade the Quality of Service (QoS) provishing.
In this paper, we study the problem of how to achieve the tradeff
between the QoS provisioning and the energy efficiency for
industrial loT systems. We first formulate the multi-objective
optimization problem to achieve the objective of balancingthe
outage performance and the network lifetime. Then we propos
to combine the Quantum Particle Swarm Optimization (QPSO)
with the improved Non-dominated Sorting Genetic algorithm
(NSGA-II) to obtain the Pareto optimal front. In particular ,
NSGA-Il is applied to solve the formulated multi-objective
optimization problem and QPSO algorithm is used to obtain
the optimum cooperative coalition. The simulation resultssuggest
that the proposed algorithm can achieve the tradeoff betweethe
energy efficiency and QoS provisioning by sacrificing about %
network lifetime but improving about 15% outage performance.

Index Terms—Industrial loT system, cluster, cooperative com-
munication, network lifetime, QoS, QPSO, NSGA-II.

I. INTRODUCTION

s. One form of cooperative communications known as co-
operative multiple-input-single-output (CMISO) transsion
scheme is used for the long-haul transmission between the
cluster and the sink node [6] to help release the transnmissio
burden of CH. CMISO increases the spatial diversity of
wireless channels by introducing additional cooperativeas
(Coops) to help CH in long-haul transmission which is the
most energy consuming phase of the communication between
the cluster and the sink node. The Coops and CH form a
virtual MISO system in the long-haul transmission by decode
and-forward technique, with the objective of evenly energy
distribution among the networks. Despite the advantages of
CMISO scheme, it reduces the transmit power and thus
degrades the QoS performance of long-haul communication
in the capillary network. However, QoS provisioning coukl b
further improved but requires higher energy consumption.
The aforementioned challenges raise the concerns of the
tradeoff between energy consumption and QoS provisioning
in the cluster-based 10T systems. In addition, most literat
measure the energy efficiency with energy consumption under
several constraints such as bit error rate and power control
instead of network lifetime. The capillary network lifetims

NTERNET of Things (loT) system is viewed to havedefined as the duration from the deployment of the capillary
potential to improve the operational efficiency of manyetwork to the time that the battery of the first device isyfull
industrial applications. There is an increasing need ofehudrained [7]. It reflects not only the energy consumption &f th
number of reliable devices equipped with short-range radithole network but also the fairness of energy consumption
interfaces, such as IEEE 802.15.4 and IEEE 802.11ah. among individual devices.
provide connectivity to other devices in 10T systems in orde The main contributions of the paper are summarized as

to maintain the operational efficiency.

following:

Capillary network was introduced to improve reliable and « First, considering most recent literature (see Section

energy efficient communications for the 10T systems. Capill
network is a specific local network consists of a group of

Il for further detail) aim at energy efficiency or QoS
provisioning optimization only and the fact that the QoS

wireless devices to be connected to the other communication provisioning could be further improved at the cost of
infrastructure such as mobile networks [1]. It uses cliister the energy consumption , we formulate a multi-objective
mechanism to reduce the transmission distance between the optimization problem of the tradeoff between QoS provi-
sink node and devices, as typically the cluster head (CH) is sioning and energy efficiency. In this paper, we use outage
close to all the nodes in each cluster. Clustering mechanism performance and network lifetime as the metric for QoS
organizes the devices into different clusters and selekts, C provisioning and energy efficiency respectively.
and consequently transmits the aggregated data from the CHs Second, we introduce a new method to select optimum
to the sink node via communication infrastructure networks  cooperative coalition for CH and Coops by using ex-
However, the CHs consume more energy as compared to other haustive search combined with Quantum-inspired Particle
devices in the networks as they take more responsibility and Swarm Optimization (QPSO). The exhaustive search is
dissipate additional energy to transmit aggregated datheto used to determine a potential CH candidate. The QPSO,
sink node. which combines the quantum computing theory and the
In principle, cooperative communications aim at improving  evolutionary algorithm, would have a stronger searching
effective energy efficiency [2], overall throughput [3], vper capability, rapid convergence, short-computing time, and
control [4] and resource allocation [5] in wireless network small-population size [8]. By taking advantage of the fast



convergence and low complexity of QPSO, we formulateeward. The Coops are selected if two conditions are satisfie
the possible cooperative coalitions by the quantum-cod#t first is that signal-to-noise ratio (SNR) of the received
particles. In order to select the optimum Coops fasignal of Coop is larger than a predefined SNR threshold
the potential CH candidate, the quantum-coded particlevel, and the second condition is that Coop is within the
are flown through the 2-dimensional search space kansmission domain of the destination cluster. In [12k th
updating the fitness values of network lifetime and outagrithors analyzed the overall system performance in terms of
performance until reaching the pre-defined generation.packet error rate (PER) in the cluster-based cooperatitre co
Third, to solve the multi-objective optimization of QoSmunication system and proposed a novel node sleep strategy t
provisioning and energy efficiency, the improved Nonminimize the overall energy consumption under certain PER
dominated Sorting Genetic Algorithm (NSGA-I1) is usedhreshold. However, [10-12] only considered several Coops
in this paper. Unlike the scalarization method wherselection constraints instead of the cooperation beneth wi
multiple objectives are combined to form one objectivE€H.

by user-determined weight factors, NSGA-Il applies non- In [13] [14], the authors proposed a cluster-based CMISO
dominated sorting and crowding distance mechanism ¢dommunication with LEACH protocol [15]. However, LEACH
obtain a good quality and uniform spread nondominatemly selects CHs with a certain probability and does not
solution set. The NSGA-II algorithm has been proveoonsider residual energy and location of nodes. In [16], the
to be able to maintain a better spread of solutiorsuthors designed a cooperative communication scheme to
and converge better in the obtained non-dominated fras¢hieve the optimal solution of a random tradeoff between
compared with evolutionary algorithm such as Paret@oS provisioning and the energy efficiency by the Lambert
archived evolution strategy (PAES) and strength-Pareys function and coalition formation game theory. In [13], the
EA (SPEA) [9]. authors assume both CH and Coops are selected randomly,
Fourth, we combine QPSO algorithm with NSGA-llwhile in [14] and [16], the authors assume all the CHs are
to obtain the Pareto optimal front. To the best of ouslways located in the center of the network.

knowledge, the use of QPSO-based NSGA-II theory and

how it is applied to select the cooperative coalition in the

capillary networks has not been investigated. In particula

the fitness values are computed and updated through theNetwork Model

QPSO algorithm by selecting different devices as COOpS'The power-constrained wireless devices in the capillary

On the other hand, the Pareto optimal front is generated . .
. . . etworks of the loT system are randomly distributed in a two-
and sorted according to the obtained fitness values g

NSGA-II. ¥mensional space with following assumptions:

IIl. SYSTEM MODEL

The rest of this paper is organized as follow. In Section ° All wireless devices perform data collection task period-

. . ically and always have data to send to the sink node.
II, we present the related work. Section Il introduces net- . )
. o All wireless devices are homogeneous and energy con-
work model, system model and power consumption model. In .

. o T . . strained.
Section IV, the problem formulation is given in detail. Then All wireless devices are capable of adiusting their trans-
in Section V, we explain the procedure of QPSO algorithm * mit powers dynamically to Fr)each the illntendgd recipients
and how to apply QPSO to obtain the optimum Coops for P y y P

specific CH. Simulation results are provided in Section VI, with t_he minimum required energy. . .
i . ; o All wireless devices are aware of their geographical
and conclusions are drawn in Section VII.

locations and residual energies.
o All wireless devices are equipped with short-range local
area wireless radio, e.g. IEEE 802.15.4.

The cooperative communications for cluster based networkss All devices are classified into three kinds of nodes: CH,
has also been introduced to achieve different objectives in  CNs and Coops.
cluding energy efficiency and Quality of Service (QoS) with All devices are capable of operating in data collection
the consideration of channel interference, node locatiwh a
residual energy. mode. _ _ _ _ _

In [10], authors proposed a cluster formation scheme base¢ A Static capillary gateway is equipped with two radio
on Low Energy Adaptive Clustering Hierarchy (LEACH) algo- m_terfaces: thg local area capillary radio to commqnlcate
frithm in CMISO network that considering residual energy and ~ With the capillary network and the cellular radio to
the distance between every node to the sink node to minimize Ccommunicate with the industrial 10T systems.

II. RELATED WORK

and aggregation mode as well as cooperative transmission

energy consumption as well as to balance energy consumptidre transmission is operated in two phases as shown in Fig.1:
across the whole network. The number of Coops is determingetup phase and steady state phase. During the setup phase,
by the distance between the CH and the sink node, and Cotips gateway executes the clustering algorithm as well as the
are selected from the cluster nodes (CNs) with most resid@@H and Coops selection algorithm, and informs every device
energy within the cluster. In [11], authors proposed a fairith its role. During the steady-state phase, all nodesecoll
cooperative communication scheme which encourages nodes transmit data in TDMA scheduling. The communication

to participate in cooperative communication by giving atr@&x protocol in steady state consists of the following phases:



Set-up Steady state Frame C. Power Consumption Model
—re— +«—>

In this paper, we use the power consumption model as
defined in [18]:

P = Pa + De, (1)

b Round 0 \ > Round 1 wherep is the power consumption of an individual devige,
e is the power consumption of the power amplifiers apds the

power consumption of all the other circuit blocks. Specifica
‘ Long:haul ‘ pa is dependent on the transmit powgr. Without loss of
generality,p, = (1 + a)p:, wherea is a constant depending
Fig. 1: Transmission structure in cluster-based 10T systenbn RF power amplifier and modulation scheme. Andis
composed of transmitter circuit blocks power consumption
denoted by, and receiver circuit blocks power consumption
« Data collection phase (DC): CH collects and aggregatdenoted byp,,.
data from all the other devices, including both CNs and 1) The Data Collection Phase Power Consumption: In the

Local
broadcasting

Coops. Data Collection (DC) phase, CH acts as receiver dissipating
« Local broadcasting phase (LB): CH broadcasts the agggswer of receiver circuit blocks, while all other devicedNEC
gated data to all Coops. and Coops) transmit data to CH, dissipating power of power

 Long-haul cooperative transmission phase (LH): CH araplifiers as well as power of transmitter circuit blocks.
Coops jointly transmit the aggregated data to the sinherefore, the power consumption for CH, CNs and Coops
node based on the distributed space time codes (DSTi@)his phase respectively, are
which is a cooperative technique investigated in [17]

. C C
such that CH and Coops share their antennas to create a Pes = Poom (2)
virtual array through distributed transmission and signal Do Do Do Do Do
processing. PeN, = Pa.cn, T Peon, = (L+a)ppen, +Peon,s (3)

Phase LB and LH form the CMISO transmission. DC DC DC DC DC
pCoopj = pa,Coopj +pct,Coopj - (1 + a)pt,Coopj +pct,Coopj'

4
2) The Local Broadcasting Phase Power Consumption: In
B. System Model the Local Broadcasting (LB) phase, CH acts as transmitter to
broadcast the aggregated data to Coops, dissipating pdwer o
power amplifiers as well as power of transmitter circuit B&c

) S

- .

-G Coopy™ N and Coops receive data information from CH, dissipating
v O.. power of receiver circuit blocks, while CNs do not partidgpa
/ © in this phase. Therefore, the power consumption for CH, CNs
\ m‘é‘n ToT Platform . . .
‘ =, and Coops in this phase respectively, are
\ \ . g:l:ei?v:;y Base Station
. : Coop; . LB LB LB LB LB
~O .- 2 PéE = Pocn tPi.on =1 +a)p ¢y +pveca  (5)
O N Data Collection (Capillary access) LB
—E Local Broadcasting (Capi)ilary access) pCN.L = 07 (6)
4 CH 4; Long-haul CMISO (Capillary access)
@ Coop Cellular access LB LB
pCoopj = pcr,Coopj : (7)

Fig. 2: System model
3) The Long-haul Cooperative Transmission Phase Power
onsumption: In the Long-haul Cooperative Transmission
(LH) phase, CH and Coops jointly transmit data to the sink
node, dissipating power of power amplifiers as well as power
ﬁ:‘ transmitter circuit blocks, while CNs do not participate

The system model considers a capillary networks for lo
system with\/ devices: one CH; CNs andj Coops as shown
in Fig.2, whereN = 1 + ¢ + j. All devices are randomly
distributed over the same cluster and the set of all devices
denoted byn = {CH,CNy,--- ,CN;,Coopy,---,Coop;}.
The channels of' N; andCoop; to CH, denoted byicw cn,
and hcw,coop; respectively and the channels between
transmitting nodes within the clustef 7 and C'oops) to the
sink node, denoted by, are all modeled by Rayleigh-
fading with square-law path loss. We assume that CH, CNs
and Coops in the same cluster know their channel conditions peR, =0, ©)
and the distances between each transmitting node in thieclus ‘
and the sink node, which is also known as long-haul distancgggljopj = peoop; + Do Coop; = (1+ )DL Loop; + Prt-Coop; -
denoted byd, are the same. (10)

is phase. Assuming energy of the gateway is infinite, the
energy consumption by the gateway can be omitted. Therefore
a“]e power consumption for CH, CNs and Coops in this phase
respectively, are

LH LH LH LH LH
pén = Pacu +Pe.on = 1+ a)pcy + oo, (8)



D. Transmit Power As referred in [23],R.p cannot be lower than the long-haul

1) Transmit Power of the Data Collection Phase: As re- ansmission rat€,., hence we have,

ferred to [19], the transmit power & N; andC'oop; denoted Cout < RLB. (18)

DC H
by Py en, oo, CAN be derived from N )
J In addition, due to the broadcast nature of wireless channel

if the Coop with the worst channel condition (denoted by
5) > Rpc, Coop,) can receive the data, other Coops can also receive
) it simultaneously. Therefore the transmit povpé)g g can be

_ o ) (11_) derived from
where Rpc is the channel capacity;? is the Gaussian noise

LB
variance,d is the distance between the source device and llogg(l + |heH.Coop |2Z:;707H'{) > Cow. (19)
destination devicer is a constant which depends on the 2 7 U2dCH,Coopw

propagation environmeng is the path loss parameter andp order to reduce energy consumption, we set Eq.(19) to be
h ~ CN(0,1) is unitary power, Rayleigh fading coefficientspe |ower bound. that is

for all intra-cluster connections. In order to improve ayer

DC
pt,CNi/Coopj

1Og2 <1 + |hCH,CNi/Coopj |2 N
o%(dew,cN, /Coop,

.. A (226‘0“,5 o 1)02H71d5 v
efficiency, we set Eq.(11) to be the lower bound, that is, pLgH _ CH,Coop; (20)
t - 2
' |heH,Coopu |
2fpc _ 1)g2k~1(d I Cooms ° ' v
prCN//CWA = ( }z ( CH’C];“/ Coop,) . (12) 3) Transmit Power of the Long-haul Cooperative Transmis-
R |hct,eN./Coop, | sion Phase: Based on DSTC, each transmitting device has the

2) Transmit Power of the Local Broadcasting Phase: In  same transmit power, thus; & = pf{.,, =p" /( J+1)
terms of the CMISO transmission, as referred to [20], thethat is

outage probabilityP,,; under a predetermined transmission (22Cout — )25 10
rate R, can be expressed as Pout,miso = (7 + 1, ngSO/ . miso ) (21)
Pout = Pr{log2(1 + |h87d|2£;6> < R}7 (j " 1)
s (2R~ 1)o2dPk! (13) IV. PROBLEM FORMULATION
= Pr{lhsal” < De }- The objective is to strike a balance between energy efficien-

cy and QoS provisioning. As illustrate in [16], the design of
EWIISO communication scheme falls into two categories:
« The optimization of QoS provisioning subject to a energy
constraint.
Cout = SUp{ R : Py < P11, (14) « The minimization of energy consumption (or the network
lifetime prolonging) subject to a QoS provisioning con-
Eq.(14) represents the largest rdig, that can be sustained straint.
over all the channel states except over a subset with priitigabi
Phr Thus, we can rewrite Eq.(13) by

out*

bility P,.; should not be larger than the threshold vaRfé’,
the corresponding outage capacity is defined as

However, the QoS provisioning could be further improved at
the cost of the energy consumption, and vice versa. Hence,
(2Ceut — 1)g2d0 k1 there exists a tradeoff between the energy efficiency and the
» b (15) QoS provisioning. In this paper, we adopt network lifetime

_ t_ _ to represent energy efficiency and the outage performance to
Denote the number of transmit devices to be Since represent the QoS provisioning in long-haul transmission.
|hsa|” ~ X3, (i.e., chisquare distributed R.V. witBn,
d_egrees of freeQdom) and the cu_mulat_lve distribution fun%:. The Network Lifetime
tion (cdf) of X5, is the regularized incomplete Gamma ) ) )
function [21], i.e. Fxz (b) = ~(1,b), where v(n;,b) = Denote the energy consumption of a device during the

e communication process in unit time by e, we have,

Pout = Pr{|hs.q|* <

(ml—_l)!' f(? a™~le(=*)dz, we have

1 1
_ DC LB LH
(Qcom _ 1)0’21€_1d5 €= N Xp~T A+ N xXp~T 4+ N Xp~r. (22)
Pous =, P ) (18) " The iifetime of an individual device is,
Due to the broadcasting nature of wireless channel, once the T E (23)
cooperative nod€'oop; with the worst channel receives data e’

from CH, other Coops can receive the data simultaneouslyhere E is residual energy of the device when setting up a
As referred to [22], the data received by all Coops needs $oenario. Denotécr, Ton, andTcoop, to be the lifetime of
be decoded correctly, and the transmit powé@H can be CH, CN; andCoop; respectively.

derived from The network lifetime denoted bY,,.; is

LB .
Py.cuh ) (17) Thet = mln{TCHa TCNla co aTCN“ TCOOp17 to 7TCoopj}-

1
Rip < Slogy(1+ hen oo, @4

2 79
o dCH,Coopj



B. QoS Provisioning network. Sinces,,,, = /1 — a2, we can simplify Eq.(30)

The outage performance can be formulated by Eq.(25). 85

'Ufn = [ afml aan afnR ] (31)

thr
J = ,Poug - Pout,CH/Coopj7
(22cout _ 1)0’2I$71d5

=P _ (41, e miso The quantum particle position according to Eq.(31) can be
e expressed as
G+1 (25)
st. J>0, _ )
1 N 1 N 1 N e L if Omn > (afmn) (32)
E > — DC J— LB - LH mn ~ 0 |f 677”L S Oé: . 2

whereP! is the maximum outage probability threshold ani/1€rédmn € [0,1] is uniform random number. In this paper,
the quantum position indicates whether the devices a

E; is the maximum energy constraints of network commun : i ;
cation. LetB = (22Cout — 1)g2x~1d% . which should be a member of the cooperative c_oalltlo_n in particte z!,, = 1
constant after scenario setting up. Therefore, we have, ~ '€Presents that devicein particler is a Coop at generation
t; otherwise, device: in particlem is a CN at generation.
J =P (41 B(j+ 1)>. (26) Thergfore each p_article in this paper represents a cardidat
out T pMISO solution of a particular cooperative coalition and a grodip o
CNs, and the fitness value of each particle can then be obtaine

By making the derivative of/ with respect top?5¢, we by Eq.(23) and (25)

obtain, ) . .
. Denote the fitness value of particle at generation: to
9] _ B'fle (27) be /i, . then the local individual optimum fitness valife,
OpprsO i pMISOyIT? and the corresponding local individual optimum positjop

. o . is defined as below,
By making the second derivative dfwith respect tgM 99,

we obtain, Im = min{ 'rlm 72rw T frz}v (33)
_ B
02J Bitle #1159 B
(api\/[ISO)Q - j!(pgv[[SO)j+4 ('j +2- pg\/[[so ) (28) Pm = [pmla s Pmns ame]- (34)

Sincej+2—pM% is positive, Eq.(25) is a concave optimizaSimilarly, the global optimum fitness valug, and the corre-
tion problem, that is, the optimum outage performance can #onding global optimum positiop, is defined as below,
obtained using numerical methods.

.fg:min{flv"'7fm;"'7fh}; (35)

C. The Multi-Objective Optimization Problem Formulation

The tradeoff between energy efficiency and QoS provision- Py = [Po1, s Pgn: -+ Porl- (36)

ing research problem can be expressed as . . :
g P P At generatiort+1, the quantum rotation angié ! is updated

m

{CH,1,...,Coop;} = argmaX Ty, J}. (29) by

9::73 = el(pmn - x:wa) + 62(p9n - :Csnn)v (37)
V. QPSOBASED NSGA-IlI ALGORITHM
A. Quantum Particle Swarm Optimization wheree; ande; are two positive learning factors of cognitive

. . . . _agd social acceleration factors respectively.
PSO is an evolutionary computing technique based on bir If 9+1 £ 0, the updated velocity oh—th quantum particle
flocking principle. QPSO uses quantum coding mechanism tP mmn o

att + 1 generation Is,

encode each particle by a quantum bit. In [24], a quantum
bit is defined as a pair of composite numbéss 5), where

la]? + |82 = 1 anda > 0, 5 > 0. [a|? gives the probability  v5! = |ak,, x cos04ih — /1~ (at,,)? x sin6%}}]. (38)
that the quantum bit is found if0’ state and3|* gives the

probability that the quantum bit is found /i’ state. Then If §!f! = 0 andr = ¢;, the updated velocity ofn — th
the quantum velocity of the: — ¢th particle at generationis quantum particle at 4 1 generation is,

defined as

t t t 1 2
" A1 2 0 QR U'fntL = 1- (Od;nn) : (39)
U = t t .. t ’ (30)
ml m2 mR

wherer is a uniform random number between 0 and 1, and
wherem € [1,2,---,h], h is the number of particles andc; is a constant which refers to the mutation probabilitye
R = 1+ i+ j which represents number of devices in th@,1/R].



B. NSGA-II algorithm
As referred to [25], in a maximization problem, a vec®

tor * = [21,22, -+ ,7p]7 is said to dominatey =
[y1,v2, - ,yp]T, denoted byr = y, if Vi € {1,2,...,p} :
x; >y, and3i € {1,2,...,p} : x; > y;. Thatis, no value in

r ex
ev

y is more thane and at least one value afis strictly greate
thany. Similarly, in a multi-objective maximization problem
a solutionz™* is said to dominater, if Vi € {1,2,..., M} :
fi(xz*) > fi(x) andFi € {1,2,...,. M} : fi(x*) > fi(z).
That is, a solutionz* is Pareto optimal if there exists no
feasible solutiorc which would increase some criteria without
causing a simultaneous decrease in at least other critdrien
NAGA-II is proposed to be an effective algorithm to find the
Pareto optimal solutions.
In NSGA-II [9], each solution has two entities:

» Domination count,, which is defined as the number of
solutions which dominate individual.

» Sp, Which is the set containing all the individuals that are
being dominated by.

The non-dominated sorting focus on identifying all fronts,
which is described as below:

i) Evaluate the population according to fitness value.

ii) Identify the first nondominated front denoted Hy(V.
Thatis,Vi,n; = 0,7 € F1), wherei is thei —th solution
and F) is the first non-dominated front.

iii) For each solutioni in F(M), visit each membey of its
domination setS;. For every membey, whereq € S;,
ng = 0, ng® = ng — 1. Putq in a separate list) if
ng®? = 0. The members i) belong to the second non-
dominated frontF'(2),

iv) Visit each member inF(®) and repeat Step ii) until all
fronts are identified.

[9] also proposed crowding distance to maintain the diver-
sity among population members. The crowding-distanceds th

average distance of two points along each of the objectives.

The crowding-distance computation requires sorting thg- po
ulation according to each objective value in ascending rorde
of magnitude for every front. Therefore, for each objective
function, the boundary solutions (solutions with smallasd
largest function values) are assigned an infinite distaatgeyv

All other intermediate solutions are assigned a distantgeva
equal to the absolute normalized difference in the function
values of two adjacent solutions. The calculation is cargth
with other objective functions. The overall crowding dista
value is calculated as the sum of individual distance values
corresponding to each objective. From the description of no

dominated sorting and crowding distance, we can see that the

solutions with better front and larger crowding distance ar
better than others.

C. QPSO-based NSGA-II algorithm

In this paper, we formulate the possible cooperative coali-
tions to be quantum-coded particles which are flown through

the 2-dimensional search space. Each particle has several

attributes: the rotation angle, the current velocity, therent
position, the local optimum position and the global optimum

position. The current position of the particle suggests the
oops selection. In order to joint optimize the networktlife

and QoS provisioning, we apply NSGA-II to search the Pareto-
optimal particle solutions by setting the fitness values to
be network lifetime and the outage performance. Besides,

haustive search is used to find the optimal CH by assuming
ery device in the cluster to be CH. The QPSO-based NSGA-

"Il algorithm can be summarized in the following steps:

o Step 1: Assume every device to be CH in turn and operate
the following steps to select the optimum Coops for the
assumed CH.

Step 2: Initialize a populatio§ with h quantum particles
based on quantum coding mechanism. Specifically, The
current position and velocity of every particle is randomly
generated. The local optimum position of the particle is
equal to the current position of the particle.

Step 3: Evaluate each quantum particle by the fitness
value of both objectives: network lifetime and the long-
haul transmit power. Sort populatio§ according to
non-dominated sorting scheme in NSGA-II. Choose non-
dominated solutions from the first Pareto front to the
last Pareto front and add them int® which is an
external memory to store non-dominated solutions with
the maximum pre-defined siz¥,. The global optimum
position py is chosen from the top part aP (i.e. top
5%) randomly.

Step 4: Generate a new populatiSp.., through QPSO
algorithm from S. Renew the quantum rotation angle
of each quantum particle by Eq.(37). Updasg, and

pg correspondingly from Eq.(33) to Eq.(36). Update the
quantum position of each particle by Eq.(32). Update
andp, correspondingly from Eq.(33) to Eq.(36).

Step 5: Evaluate each quantum patrticle of the new popula-
tion S,,ew by the fithess value of both objectives: network
lifetime and the long-haul transmit power. Combine the
current population and the parent population and form a
new population, that isS}: .., = SnewUS. Sort the new
population S}, according to non-dominated sorting
scheme in NSGA-II. Select non-dominated solutions and
add them to@ which is an external memory similar to
P.

Step 6: Combin&? and P to form a new Pareto solution
memory setS, that is,S = P U Q. Sort S according

to non-dominated sorting scheme in NSGA-II. Calculate
the crowding distance and sort the solutions according
to the crowding distance in each front in a descending
order. Limit the size ofS to be N, by selecting the
former Ny Pareto solutions and rejecting the others. The
global optimum is chosen from the top part$f(e.g. top
5%) randomly and the local optimum of each particle is
chosen fromS randomly.

Step 7: ReplaceS by Spe. t0 participate in the next
generation.

Step 8: If it has reached the maximum generation, then
stop the process. The solutions $hare non-dominated
solutions. Otherwise, go to Step 4 until it has reached the
maximum generation denoted Y,,... The solutions in
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S are Pareto front solutions. Pareto optimal front, which are the two variables to updage t

o Step 9 Repeaftepl to Sep8 until finding the optimum rotation angle in Eq.(37).
cooperative coalition for every CH. Add all Pareto front First, we observe that the network lifetime with different
solutions obtained in Step 8 for each CH in externddng-haul distance in Fig.3. The outage probability thoégdh
memory S fina With the maximum pre-defined siz&,. is P"7 = 1073, In Fig.3, the network lifetime of both algo-
Sort S¢inq according to non-dominated sorting schemeathms decreases significantly with respect to long-hast di
in NSGA-Il. Calculate the crowding distance and soitance, as more long-haul transmit power is required. Beside
the solutions according to the crowding distance in eathe network lifetime of QPSO network lifetime optimization

front in a descending order. The form&i Pareto front algorithm is better than that of the proposed NSGAQOSP

solutions in sortedSy;,,; are the optimum ones. algorithm, due to higher long-haul transmit power of the-pro
posed NSGAQOSP algorithm. Note that both CMISO schemes
VI. SIMULATION outperform the SISO scheme significantly.

The simulation tool used in this paper is Matlab. There Secondly, F|g4 shows the network lifetime with different
are 10 wireless devices randomly distributed within a eircPutage probability threshold. The long-haul distance i8r80
of 100 meter radius. We adopt circuit power consumptiohne outage probability gives the probability of unsuccelssf
model in paper [18] The constant is set to 1, the path transmission when the received SNR falls below a certain
loss parameted is set to 3, the Gaussian noise variande spPecific SNR threshold. Correspondingly, outage prokgbili
is 10-12 W, the capacityCyw: and Rpc is 1.4 bis/Hz. The threshold represents quality of service in terms of minimum
initial residual energy of each device is betweehto 1.5 transmit power to avoid outage, that is, the lower the outage
randomly. Besides, we adopt circuit power consumption rhod&obability, the more transmit power and the better reckive
in paper [18]. For QPSO, the maximum generation is set §gnal quality. It can be seen in Fig.4 that the network
100, the number of particle is 20, learning factors; ande, lifetime goes up with the increase of outage probability
are 0.06 and 0.03 respectively, and the mutation probgbilit threshold. The QPSO network lifetime optimization algumit
is 1/300. For NSGA-II, the buffer siza/, is 20. outperforms the proposed NSGAQOSP algorithm in network
To verify the proposed joint optimization algorithm, wdifetime due to higher long-haul transmit power of the pro-
simulate and compare the results with the QPSO sinflesed NSGAQOSP algorithm. And both the QPSO network
objective optimization scheme (QPSO network lifetime ogifetime optimization algorithm and the proposed NSGAQOSP
timization and QPSO long-haul transmit power optimizatiorlgorithm outperform the SISO scheme.
as well as the single-input-single-output transmissidresze ~ However, in terms of the long-haul transmit power, we
between the cluster and the gateway, i.e. LEACH [15]. TH@n observe from Fig.5 and Fig.6, the proposed NSGAQOSP
fitness values are implemented by Eq.(23) and Eq.(25). #gorithm outperforms the QPSO long-haul transmit power
QPSO algorithm, we simulate particles by following atttim  Optimization, which indicates that the proposed NSGAQOSP
particle position in Eq.(32), the rotation angle in Eq.(3d algorithm achieve better QoS compared with the QPSO net-
the velocity in Eq.(38) and Eq.(39). For each generatioa, tMOrk lifetime optimization. In particular, as the outagelpr
particle velocity and position are updated according to tiility threshold increases, the minimum transmit power is
rotation angle. The particles position can suggest the €oddso decreased. Compared with two CMISO scheme, the SISO
selection in each generation, and fitness value can thenS¢8eme requires highest long-haul transmit power.
updated correspondingly based on different Coops setectio
In NSGA-II, we implement the non-dominated sorting and VII. CONCLUSION
crowding distance calculation to obtain the Pareto optimalIn this paper, we have investigated investigate QPSO-based
front by the updated fithess values obtained in QPSO. Th&SGA-II algorithm with the aim to optimize both energy
the global optimum and local optimum are updated by the tleéficiency and QoS in cluster-based IoT systems. We show



the joint optimization problem can be formulated into non[-lz]
dominated sorting research problem. In addition, the psedo
algorithm applies the QPSO algorithm to select the opti-
mum cooperative coalition. Simulation results show that th
proposed QPSO-based NSGA-II joint optimization algorithm
can achieve a balance between network lifetime and outa[%]
performance.
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