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The genetic algorithm (GA) is a powerful technique that implements the principles nature uses in

biological evolution to optimize a multidimensional nonlinear problem. The GAworks especially well for

problems with a large number of local extrema, where traditional methods (such as conjugate gradient,

steepest descent, and others) fail or, at best, underperform. The field of accelerator physics, among others,

abounds with problems which lend themselves to optimization via GAs. In this paper, we report on the

successful application of GAs in several problems related to the existing Continuous Electron Beam

Accelerator Facility nuclear physics machine, the proposed Medium-energy Electron-Ion Collider at

Jefferson Lab, and a radio frequency gun-based injector. These encouraging results are a step forward in

optimizing accelerator design and provide an impetus for application of GAs to other problems in the

field. To that end, we discuss the details of the GAs used, include a newly devised enhancement which

leads to improved convergence to the optimum, and make recommendations for future GA developments

and accelerator applications.

DOI: 10.1103/PhysRevSTAB.16.010101 PACS numbers: 07.05.Tp, 29.20.�c

I. INTRODUCTION

Accelerator physics deals with intricate systems which
depend on many interrelated specifications/variables and
physical quantities. One of its main goals is to design and
operate accelerators so as to achieve an efficient interplay
between these many quantities, thereby optimizing their
performance. This is why genetic algorithms (GAs)—
efficient, robust, multidimensional nonlinear optimization
tools—are crucially important.

GAs have been used in the accelerator field as early as
1992 [1]. Initial use centered on the design and analysis of
individual accelerator elements such as magnets and radio
frequency (rf) cavities. With the successful optimization of
the injector design for the Cornell energy recovery linac-
based light source [2], interest in the applicability of GAs
to larger accelerator design problems has intensified. Most
applications are similar to the Cornell study where the goal
is to find the optimal settings for the magnets and rf
components in a beam line given a beam description and
layout of the components [3–5] or additionally optimize
the laser parameters for a photoinjector gun [6–8]. GAs
have also been used to balance design and operating costs
for a superconducting rf (SRF) linac [9] and to study

alternative ring-based machine designs [10] for the
International Linear Collider and in optics optimization
studies for the Advanced Photon Source [11].
Machine element applications represent the earliest uses

of GAs in the accelerator field. A free-electron laser appli-

cation found the optimal order for the wiggler constituent

magnets to minimize cumulative field error effects [1]. A

superconducting magnet design tool developed at CERN

produced a collection of magnet designs without meshing

the superconducting coils and allowed the magnet design-

ers to explore several possible designs subject to various

engineering constraints [12,13]. GA-based tools have been

used to design accelerator cavities meeting resonance and

higher-order mode frequency requirements [14,15] and

surface field constraints [16,17] and to diagnose a detuned

SRF cavity installed in a multicavity cryounit [18].
Building on the precedent established with [2], in this

paper, we expand the accelerator design problems to which
GAs can be successfully applied. We demonstrate that GAs
designed for multiobjective optimization are equally
powerful when applied to single-objective problems,
even problems that are difficult or computationally pro-
hibitive to solve using standard nonlinear optimization
techniques. For single-objective problems, GAs converge
more quickly than standard nonlinear optimization tech-
niques (when applicable) and are more efficient than
systematic parameter scans. Our multiobjective optimiza-
tion examples demonstrate how effective GAs are in
searches where the interplay of the multiple dimensions

Published by the American Physical Society under the terms of
the Creative Commons Attribution 3.0 License. Further distri-
bution of this work must maintain attribution to the author(s) and
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and objectives is unknown a priori. Each application
presented, single- or multiobjective, is customized for a
specific machine layout but serves as a roadmap for other
machines. The GA methodology is general purpose, and to
that end, we developed and use a GA framework that can
be quickly and easily configured to work with different
accelerator physics modeling codes. While in some cases
presented here, such as betatron tune or dynamic aperture
optimization, GA is essentially the only systematic ap-
proach, in other cases our framework extends the capa-
bility of existing codes by providing a straightforward
interface to a powerful optimization routine greatly ex-
panding the reach of GAs.

The remainder of the paper is outlined as follows. In
Sec. II, we describe the theory of GAs. In Sec. III, we apply
it to several problems in accelerator physics with a single
objective to be optimized: search for the optimal working
point in colliders, maximizing the dynamic aperture in a
proton ring, and decoupling of a beam line. In Sec. IV, we
apply GAs to problems that optimize multiple objectives:
optimizing the dynamic aperture and momentum accep-
tance simultaneously for a proton ring and maximizing the
brightness of an rf gun-based injector. Finally, in Sec. V we
summarize the work presented, discuss its importance, and
outline the possible future applications of GAs to other
problems in accelerator physics.

II. BRIEF OVERVIEW OF THE THEORY OF
GENETIC ALGORITHMS

Before we delve into explaining how GAs implement
nonlinear optimization, a brief overview of the terminol-
ogy is in order. The general statement of a minimization
problem is

minimize fiðx1; x2; . . . ; xNÞ i ¼ 1; 2; . . . ;M;

xðjÞmin � xj � xðjÞmax j ¼ 1; 2; . . . ; N; (1)

where M is the number of objective (cost) functions
to be simultaneously minimized and N is the dimension-
ality of the optimization problem—the number of indepen-
dent variables varied. When M ¼ 1, the minimization
is a single-objective optimization, and M> 1 for multi-
objective problems. N > 1 denotes a multidimensional
optimization.

At the topmost level, a GA implements the principles of
biological evolution to optimize a multidimensional non-
linear problem. Correspondence between evolution and
multidimensional optimization is established if one views
genes as independent variables and individuals as different
sets of independent variable values and resulting objective
function values. A group of individuals form a population,
and successive populations are generations, the counter-
part to iterations. As in multidimensional optimizations,
GAs produce new values for the independent variables
based on the characteristics of past individuals. The

differences lie in how individuals are selected to create
new ones and the creation methods themselves. Table I
provides a summary of the parallel concepts in evolution
(GA) and multidimensional nonlinear optimizations.
In general, fitness, a fundamental concept in GA opti-

mizations, does not have a direct correlation in multidi-
mensional optimization. In biological evolution, the
strongest individuals in a population survive to produce
offspring, and in GAs, fitness embodies this propensity for
survival. A stronger or fitter individual is identified by its
fitness value. Fitness is a function of the objective values
specific to each GA and measures how well an individual
meets the optimization goals. In its simplest form, for a
single-objective optimization, an individual’s fitness is its
objective function value. In that case, evolution toward the
fittest individual is clearly equivalent to the search for the
optimal solution.
For multiobjective optimizations, the fitness function

definition must account for multiple objective functions
and accurately characterize the optimality of each objec-
tive value. This can be achieved with dominance. For a
minimization problem—all objectives to be minimized—
an individual A is said to dominate individual B if one or
more of A’s objective values is less than the corresponding
values for B, and any remaining objective values are equal
to B’s. In the bounded-domain minimization [19],

f1ðx1; x2Þ ¼ x1;

f2ðx1; x2Þ ¼ 1þ x2
x1

;

0:1 � x1 � 1;

0 � x2 � 5;

(2)

shown in Fig. 1, individual A dominates individual B since
both of A’s objective values are less than B’s. A is also said
to be nondominated by B. A and B are both feasible
because they are solutions to the objective functions,
f1ðx1; x2Þ and f2ðx1; x2Þ, and meet all specified constraints
of the optimization, in this case, the bounded domain. In a
single-objective optimization, the optimal solution is
feasible and dominates all other feasible objective function
values. Stated differently, the single-objective optimal

TABLE I. Correspondence between evolution and multidi-
mensional optimization.

Evolution Multidimensional optimization

Gene Variable

Individual Point in search space

Population Set of points in search space

Mutation Changing variable values

Recombination Exchange of variable values between

two points in search space

Generation Iteration
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solution is nondominated by any other feasible objective
function value. Since dominance, by definition, categorizes
a set of objective function values, and optimal solutions are
nondominated, it serves as a key criterion whereby multi-
objective optimization with GAs is implemented.

Equation (2) illustrates another feature of multiobjective
optimizations—conflicting objectives—that differentiate
them from single-objective optimizations. In the example,
the conflict is that minimizing f1ðx1; x2Þ causes f2ðx1; x2Þ
to increase. When objectives conflict, the optimization has
more than one equally valid solution, and these individuals
form a Pareto-optimal front in search space. Each solution
on this front is feasible, nondominated with respect to the
other solutions on the front, and dominates at least one
feasible individual in the search space. In Fig. 1, A and C
are on the Pareto-optimal front. Although B and C are
nondominated with respect to each other, B is not on the
Pareto-optimal front since it is dominated by A. The task
for a multiobjective optimization is to identify the Pareto-
optimal front (a set of individuals), and dominance-based
fitness functions are the best tools for this search.

Note that not all multiobjective optimizations have con-
flicting objectives. For instance, such a problem can be
constructed from Eq. (2) if for the same bounded domain
f1ðx1; x2Þ is minimized, and f2ðx1; x2Þ is maximized. The
problem essentially reduces to a single-objective optimi-
zation to maximize f2ðx1; x2Þ. Its one solution at ðx1; x2Þ ¼
ð0:1; 5Þ gives ðf1; f2Þ ¼ ð0:1; 60Þ in Fig. 1 and forms a
single-point Pareto-optimal front. Using a dominance-
based fitness function, the problem can be solved either
as a multiobjective or a single-objective optimization
because the optimal solution to either shares the same

characteristics: the solution dominates other feasible solu-
tions and is nondominated.
The process a GA follows to identify the Pareto-optimal

front for a multiobjective optimization is to first randomly
generate a population of individuals to evenly sample the
search space. The objective and fitness functions for each
individual are evaluated. The GA then uses competition to
select candidate individuals to form the mating pool. The
fitness values of randomly chosen contestants from the
generation are compared, and a copy of the contestant
with the stronger fitness value is placed in the mating
pool. Fitter individuals will win more competitions, have
more copies of themselves in the mating pool, and there-
fore have a greater influence on the next generation. Pairs
of individuals, parents, are taken from the mating pool to
produce offspring pairs to populate the next generation.
The offspring, modified copies of the parental gene
pairs, are created through a process which simulates repro-
duction, whereby genes undergo: recombination—value
exchange for the same independent variable—and
mutation—single independent variable value adjustment.
The value exchange in recombination can be a direct swap
where the parent values selected for exchange are used
without modification in the offspring. Alternatively, values
used in the offspring can be functions of the selected
parental values. Both recombination and mutation opera-
tions can be designed to enforce bounded-domain con-
straints. These operators also can be optionally switched
off in an optimization, and whenever recombination is
turned off, the GA method devolves to a Monte Carlo-
based optimization. In a GA, the process of evaluating
fitness and creating offspring is then repeated until desir-
able results are reached.
The choice of the population size should achieve a

balance between the richness of genes and the speed of
convergence. Too few individuals may not produce enough
gene variety for successful search of a good optimum
point. On the other hand, too many individuals may slow
down the speed of convergence by increasing the number
of function evaluations, thereby precluding the search from
benefiting from the increased gene variety.
For the studies reported here, the Strength Pareto

Evolutionary Algorithm 2 (SPEA2) [20] is used because
it has produced good results in previous efforts at using
GAs in accelerator design [2]. It is an elitist strategy.
Because individuals are selected at random to participate
in mating pool competitions, it is possible for some fitter
individuals to be omitted from the mating pool for lack of
being chosen to participate in a competition. Without
intervention, these individuals and their influence on the
optimization outcome are lost. An elitist strategy reserves
the fitter individuals from each generation to supplement
the set of individuals considered in subsequent generations
to seed the mating pool, in essence, giving the optimization
‘‘memory.’’ In SPEA2, reserved individuals are placed in
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FIG. 1. The search space (red and green) and Pareto-optimal
front (green) for the minimization of the system in Eq. (2) [19].
Pareto-optimal front estimates found by the Strength Pareto
Evolutionary Algorithm (SPEA2) [20] after 1, 10, and 20 gen-
erations for 16 individuals are marked. The overlap between the
search space and the rectangles with individuals A, B, and C at
the top right vertices contain the points, if any, in the search
space that dominate the respective individuals.
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the archive, and only members of the archive are used to
form the mating pool.

In each generation, the contents of the fixed-size archive
are updated to contain the fitter individuals from the ar-
chive and the present generation. Fitness in SPEA2 tracks
nondominance of individuals. For each individual in the
archive and the present generation, SPEA2 tallies the
number of individuals in the archive and present popula-
tion that dominate the given individual. Under this defini-
tion, fitter individuals are nondominated and have tallies of
0. The archive, thus, contains at the end of each generation
a cumulative estimate of the Pareto-optimal front. In Fig. 1,
front estimates (nondominated individuals) for three gen-
erations are shown. As the generations proceed, the esti-
mate of the Pareto-optimal front improves. While none of
the individuals in the front for the first generation are in the
final estimate, those individuals represent the best estimate
for the Pareto-optimal front for the randomly generated
individuals. Because GAs are population based, an advan-
tage of GAs is that each generation contains an estimate of
the Pareto-optimal front as evidenced by SPEA2.

A. General evolutionary algorithm code

We use automation systems that build on the Platform
and Programming Language Interface for Search
Algorithms (PISA) developed at ETH Zürich [21,22] and
Alternate PISA (APISA) from Cornell University [2].
PISA is a modular test bed system for GAs. It separates
the GA parent selection process from the optimization
problem evaluation and population generation processes
into two programs: the selector and the variator. This
design easily allows different GA selection algorithms,
selector programs, to be applied to several academic
bounded-domain optimization problems for performance
and convergence comparisons. APISA expands the avail-
able PISA problem types to include accelerator injector
design with an interface to the beam dynamics simulation
system A Space Charge Tracking Algorithm (ASTRA) [23].
It also provides support for strict inequality constraints.
These constraints, unlike bounded-domain constraints, de-
pend on the problem model evaluation to restrict the set of
feasible individuals. Two examples for Eq. (2) are

f2ðx1; x2Þ< 20 and
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
f2ðx1; x2Þ

p
< 10. We developed a

user-friendly, script-based hybrid of PISA and APISA
and use it for all optimizations presented, except the rf
gun optimization that builds directly on APISA [24–26].

As the name suggests, the selector is responsible for
selecting individuals from among the population. The se-
lector’s tasks include calculating fitness values and select-
ing individuals for the mating pool and the archive.
The selector program is complemented by the variator,
whose job is to generate the offspring population. The
variator is also responsible for calculating the value of
each individual’s objective function. For nontrivial
physical problems, this is usually accomplished by

dispatching a separate simulation. The variator dispatches
the simulations with independent variables as unique input,
and, upon their completion, parses their output to extract
the values of the objective functions and inequality con-
straints. In the problems presented in this paper, the func-
tion evaluation is performed by sophisticated accelerator
codes BEAMBEAM3D [27], ELEGANT [28], POISSON

SUPERFISH [29], and ASTRA [23]. It is important to ensure

the function evaluator reflects all important physics of the
problem to be optimized, because the solution of the GA
optimization is only as physical as the underlying model.
The simulations have been carried out on two large-scale

computation facilities at Jefferson Lab: the high perform-
ance cluster [30], consisting of over 1500 cores, using a
parallel Message Passing Interface paradigm and the batch
farm cluster [31].

III. ACCELERATOR PHYSICS APPLICATIONS
OF GENETIC ALGORITHMS:

SINGLE-OBJECTIVE PROBLEMS

It often suffices to optimize only a single aspect of the
accelerator performance by adjusting various variables of
the design. The problem then reduces to a single-objective
optimization. This section describes three such problems:
(i) locating a near-optimal working point in a collider;
(ii) maximizing the dynamic aperture in a collider
ring; and (iii) decoupling of the beam optics in an injector.
The first two problems arise in the design of the future
electron-ion collider, while the last deals with an existing
injector in Continuous Electron Beam Accelerator Facility
(CEBAF) at Jefferson Lab.
While these problems address particular machines, the

approach based on GAs presented here is general. GAs can
be used to solve similar problems in other existing or future
machines after accounting for different design layouts and
parameters. While important and novel in their own right,
these problems provide a template of how GAs can be used
to optimize different aspects of accelerator design and
performance.

A. Locating near-optimal working point in colliders

For over a decade, Jefferson Lab has been pursuing
design studies for an electron-ion collider for future nu-
clear physics research, as outlined in the 2007 long range
plan, DOE/NSF Nuclear Science Advisory Committee
[32]. Based on CEBAF, the Medium-energy Electron-Ion
Collider (MEIC) [33,34] would provide collisions between
polarized electrons and polarized light ions or unpolarized
heavy ions at multiple interaction points (IPs). The current
plan adopts a staged path. An immediate goal of the
electron-ion collider project is a low-to-medium-energy
collider (MEIC) with center-of-mass energies up to
51 GeV. A future upgrade option is a high-energy collider
with 100 GeV and greater center-of-mass energies. The
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layout of the MEIC is shown in Fig. 2 and its model
parameters in Table II.

For the purposes of the nuclear physics research, the two
most important figures of merit in a collider are beam
energies and collision luminosities. While different energy
ranges may be better suited for different experiments,
higher luminosity is preferred for the MEIC.

Luminosity and the long-term stability in a collider
are sensitive to the synchrotron and betatron tunes of the
two colliding beams. It is therefore imperative to select
carefully the betatron and synchrotron tunes, also known

as the working point, to assure the stable operation of
the collider and achieve high luminosity. Here we apply
a GA to locate a near-optimal working point for the
MEIC design.
We use the term ‘‘near-optimal’’ to illustrate that there is

no way of assuring that the GA will find the global extre-
mum; instead, it finds a finite selection of ‘‘fit’’ points,
from which the fittest is selected and pronounced near
optimal.

1. Optimization problem

At the heart of any GA is an objective function evaluator,
which, given a set of independent variables, computes the
objective function. The function evaluator here is a com-
puter code which simulates beam-beam effects for a given
working point and computes collider luminosity. The co-
herent beam-beam effects are dominated by the faster
damping of the two beams, the electron beam. This study
does not address beam-beam driven losses in the ion beam,
which require simulation time scales to be on the order of
the ion beam cooling time or longer. The goal here is to
maximize the collider luminosity at the IP over the time
scales on the order of electron beam damping time.
Therefore, the objective function is the luminosity eval-
uated after twice the synchrotron radiation damping time
(the luminosity is averaged over the last tenth of the damp-
ing time to avoid spurious results due to possible oscilla-
tions). The fact that this simulation covers only such a short
initial period of collider’s operation means that, in essence,
it optimizes the peak luminosity.
In general, a simulation of beam-beam effects in a

collider has two main components: tracking of particle
collisions at IPs and transporting beams through the
storage-collider rings. Colliding beams are modeled as
bunches of macroparticles with the same mass-to-charge
ratio. Each colliding beam bunch is divided in several
computational slices, which affect each other through non-
linear kicks computed by the Poisson equation. The colli-
sion luminosity is calculated by summing the overlapping
particle densities in each pair of interacting slices. At IPs,
bunches of colliding beams interact by exchanging non-
linear kicks. The resulting nonlinear forces acting on par-
ticles are computed on a grid using standard particle-in-cell
methods. In the present study we simulate the MEIC
configuration with one IP, so that the transport of beams
through storage-collider rings is modeled by one-turn lin-
ear maps. For more details on beam-beam simulations of
the MEIC and the earlier design, see [35–37].
We simulate beam-beam effects in the MEIC with

BEAMBEAM3D [27] simulation code, developed at

Lawrence Berkeley National Laboratory. BEAMBEAM3D is
a 3D, self-consistent beam-beam code which uses the
shifted integrated Green’s function method to solve the
Poisson equation for electromagnetic fields on a grid.
Each beam bunch imparts beam-beam kicks to the beam

TABLE II. Model parameters for the MEIC at Jefferson Lab
[33,34].

Quantity Unit e� beam p beam

Energy GeV 5 60

Collision frequency MHz 750

Particles per bunch 1010 2.5 0.416

Beam current A 3.0 0.5

Energy spread 10�3 0.71 0.3

rms bunch length mm 7.5 10

Horizontal bunch size at IP �m 23.4

Vertical bunch size at IP �m 4.7

Horizontal emittance

(normalized)

�m 53.5 0.35

Vertical emittance

(normalized)

�m 10.7 0.07

Horizontal �� cm 10

Vertical �� cm 2

Vertical beam-beam

tune shift

0.029 0.0145

Damping time turns 1516

(6.8 ms)

� 2:4� 106

(� 11 000 ms)
Synchrotron tune 0.045 0.045

Ring length m 1340.92 1340.41

Peak luminosity cm�2 s�1 0:56� 1034

Reduction (hourglass) 0.957

Peak luminosity

with hourglass effect

cm�2 s�1 0:54� 1034

FIG. 2. Layout of the MEIC.
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bunch of the opposing beam with which it collides. The
code is capable of running in both strong-strong mode, in
which both colliding beams suffer perturbation by the
beam-beam interactions in collisions, and weak-strong
mode, in which only the ‘‘weak’’ colliding beam can be
perturbed. BEAMBEAM3D code is parallelized so as to take
full advantage of parallel computer architecture.

In the current implementation, we keep the synchrotron
tunes fixed, and search the betatron tune space: x and y
tunes for each beam, thus yielding a 4D problem.
Therefore, this is a 4D, single-objective, nonlinear optimi-
zation problem.

This formalism can easily be extended to include also
the synchrotron tunes, as well as the particle spin.

2. Restricting the search space

A systematic scan of the multidimensional tune space in
search of an optimal working point is computationally
prohibitively expensive. For example, covering each of
the N betatron tunes with a modest resolution of 0.01
would require 102N function evaluations to cover the entire
space; in our problem, we search over N ¼ 4 betatron
tunes only, which still results in staggering 108 multihour
function evaluations. Without restricting the search space,
even the GA implemented here would require much larger
populations and many more generations to provide a rea-
sonable working point, due to the vastness of the parameter
space.

We restrict the search space to the most stable regions
determined in the following way. Figure 3 shows a grid of
both sum (denoted by black lines) and difference (denoted

by green lines) resonances in the betatron tune space of up
to order 7. The sum resonances always lead to dynamic
instability due to resonant amplitude growth. Therefore,
one generally wants to stay far away from them. The
difference resonances, on the other hand, preserve a com-
bination of the integrals of motion. They just cause ex-
change between the degrees of freedom, which, barring the
situations such as beam envelope beating, keeps the motion
bounded. Resonant lines are defined by m�x þ k�y ¼ n,

where �x and �y are the betatron tunes, m, k, and n are

integers, and n is the order of the resonance. The shaded
regions are entirely devoid of sum resonances (black lines).
It is also generally considered a bad idea to operate the
collider with nearly integer tunes, which is why the regions
near (0,0) and (1,1) are excluded from the search. The 16
regions (each with its mirror on the other side of the central
point) cover only about 3.6% of the entire 2D tune space,
which reduces the 4D search space and computational load
by a factor of nearly 1000. With this realization, the search
of the multidimensional parameter space becomes compu-
tationally tractable.

3. Results

Given that each function evaluation may require hours of
computing time on eight nodes of Jefferson Lab’s com-
puter cluster, it is imperative that the new algorithm locates
a good working point within as few steps as possible. Each
beam’s tune can be located in any of the 16 regions of the
tune space, which means that there is a total of 162 ¼ 256
areas of the tune space available for search. Randomly
populating all of the 256 areas leads to solutions which
slowly converge toward the near-optimal solution, in the
sense that the most consequent generations are concen-
trated in the region in betatron tune space just beyond the
half-integer resonance: ½0:5; 0:55�2, for each of the two
colliding beams. The working point obtained in this com-
prehensive search exceeds design luminosity but is not
optimal. To that end, we further restrict our search space
to the single high-performing region [0.5,0.55] in each of
the four tunes. This choice is also corroborated by the fact
that PEP-II and KEK-B empirically converged to working
points near the half-integer resonance. Figure 4 shows the
luminosity for five generations consisting of 64 individuals
which initially randomly sample ½0:5; 0:55�4 space. Within
only 320 function evaluations, the algorithm located a
working point at ð�x; �yÞ ¼ ð0:53; 0:548Þ for the electron

beam and (0.501, 0.527) for the proton beam with lumi-
nosity of 7:05� 1033 cm�2 s�1, which exceeds design
luminosity corrected for the hourglass effect of 5:42�
1033 cm�2 s�1 by 30%. The enhancement of the collider’s
luminosity beyond the design value is due to the decrease
in the beams’ transverse size at the IP.
For the near-optimal working point, we compute the

tunes of the subset of particles from each beam, and super-
impose them on the resonance lines in Fig. 5. It is evident
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that tune footprints for both beams stay comfortably
away from the unstable resonance lines. It is also interest-
ing to note that the solutions obtained by the GA neces-
sarily show favoring for the tune footprint with the proper
orientation—away from the resonant lines. For all working
points with low luminosity, one or more lower-order
unstable resonance lines passes through the tune footprint.

The main factors limiting the closeness of the betatron
tunes to the integer and half-integer resonances are their
sensitivity to machine imperfections (alignment and field
errors) and the particle loss due to single-particle scattering
(Touschek and intrabeam). These are not a part of the

physical model implemented here, which is why the
near-optimal working point is so close to the half-integer
resonance.
A more massive search, which includes more genera-

tions and individuals, can yield an even better working
point. This is illustrated in the top panel of Fig. 6 which
shows the improvement over design luminosity for each
generation of a GA-based optimization where 128 indi-
viduals are evolved for 20 generations within the region
[0.5,0.55] in each tune. This yielded the working point,
ð�x; �yÞ ¼ ð0:525; 0:546Þ for the electron beam and

(0.501, 0.501) for the proton beam, with luminosity of
7:53� 1033 cm�2 s�1, which exceeds design luminosity
by 39%. However, it is not always obvious that additional
computational work expended on a more detailed and
longer search (here about 6 times) justifies the improve-
ment in performance (here about 9%).
It is interesting to compare the results from a

GA-based optimization with those from a traditional
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optimization such as a systematic parameter scan using
the problem discussed in this section as an example.
Note that in this instance, a systematic parameter scan
requires k4 function evaluations, where k is the number
of evenly spaced discrete values for each of the four
parameters (independent variables) and together uni-
formly sample the 4D search space. Extending to N
dimensions, the number of function evaluations is kN ,
and it is easy to see that this quickly becomes computa-
tionally prohibitive. In this N ¼ 4 example, the ranges of
parameters are quite small—[0.5, 0.55]—so the problem
is marginally tractable by a (very coarse) parameter scan;
this is not the case in the other applications presented
here, which is why parameter scans are not implemented
for those. Figure 6 compares the results obtained for the
example case using GA-based optimization (top panel)
and a systematic parameter scan (bottom panel). It is
evident that the GA-based optimization is appreciably
more powerful and efficient. More to the point, if one
recalls that the first generation in a GA optimization
(denoted by the leftmost red dot in the top panel of
Fig. 6) randomly samples the entire allowable parameter
space, then it is clear that the parameter scan even at the
k ¼ 7 resolution (the rightmost blue point in the bottom
panel of Fig. 6) does not provide any improvement over
such random sampling. (Note the curve for the parameter
scan in Fig. 6 is not necessarily monotonic because as
the resolution of the scan increases by 1, a different set
of interior points is sampled; the proper refinement in
resolution follows the sequence k ¼ 2; 3; 5; 9; . . . .)

4. Discussion

This study demonstrates that the GA is very efficient in
finding the near-optimal working point for the collider. We
recognize that the present physical model may be too
simplistic to be used for the design of the real accelerator:
it does not include nonlinear aspects of the collider rings,
magnet imperfections, intrabeam scattering (IBS), the
damping due to electron cooling of the ion beam, crab
crossing by high integrated voltage SRF cavities, etc.
These studies are currently under way. All the augmenta-
tions to the beam-beam simulations listed above will be
implemented at the level of individual beam-beam simu-
lations, and therefore confined to the function evaluator.
However, the concept and implementation of the GA will
remain intact. Therefore, this study serves as a proof of
concept that GAs can efficiently optimize the collider
working point.

Further sophistication of the GA-based beam-beam
simulations will include the implementation of a multi-
objective search in which additional objective functions
will assure that the optimal working point is in a stable
‘‘neighborhood’’ in the tune space. Another important
aspect of the collider that will be considered is its long-
term operational stability. At the price of sacrificing the

self-consistency of the physical model, the much-faster
strong-weak simulations can enable the study of the me-
dium- to long-term stability. This type of simulation will
allow for optimization of the integrated luminosity, which
is of greatest importance to the experiments.

B. Maximizing the dynamic aperture in a collider ring

In this section, we illustrate application of the GA to
maximizing the dynamic aperture of a collider ring by
optimizing its betatron tunes. Note that, to a large extent,
the dynamic aperture optimization can be considered in-
dependently of the beam-beam interaction discussed in
Sec. III A due to their different interaction ranges: the
dynamic aperture is determined by dynamics of large-
amplitude particles while the beam-beam interaction pri-
marily affects the beam cores. Ultimately, of course, one
would like to study these effects in combination.
To achieve the highest possible luminosity in a collider,

the colliding beams should be focused to a small spot at the
IP. Conceptually, the main challenge of designing a col-
lider interaction region (IR) is compensation of chromatic
effects associated with this strong focusing while preserv-
ing an adequately large dynamic aperture (a region in the
transverse plane of stable particle motion).
One approach to IR design is presented in [38–40]. It

involves installation of a dedicated chromaticity com-
pensation block (CCB) between a beam extension sec-
tion (BES) and a final focusing block (FFB) (see Fig. 7).
In the CCB, certain symmetries of the beam orbital
motion and dispersion are created using a symmetric
arrangement of dipoles, quadrupoles, and sextupoles
[40]. Namely, the particle’s horizontal and vertical beta-
tron trajectory components must be either symmetric or
antisymmetric with respect to the center of the CCB,

FIG. 7. Linear optics of the ion ring’s IR.
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and the quadrupole field component must be symmetric,
while the dispersion and the sextupole field component
must have symmetries opposite to that of the horizontal
trajectory component. These symmetries then allow si-
multaneous compensation of the 1st-order chromaticities
and chromatic beam smear at the IP without inducing
significant 2nd-order aberrations and therefore helping
preserve the ring’s dynamic aperture.

The above IR design concept is implemented [40–42] in
the prototype electron and ion collider ring lattices of the
MEIC [34]. As shown in Fig. 2, the collider rings have
geometrically matching figure-8 shapes consisting of two
120� arcs connected by two straight sections crossing each
other in the middle at 60�. Each collider ring contains two
IRs located in the two straights and is arranged in a twofold
symmetric way. Figure 7 shows the optics of the first half
of the ion IR from the start of the beam extension to the IP,
with the second half of the IR being mirror symmetric
around the IP. The parts of the straights not taken up by
the IRs are filled with dispersion-free focusing-drift-
defocusing-drift (FODO) cells. The rings’ betatron tunes
are adjusted by changing the betatron phase advance in the
straights’ FODO regions. The ring optics outside of these
regions is maintained undisturbed by using a few quadru-
poles at the ends of each FODO region to match every new
FODO setting to the fixed optics at the regions’ ends. The
two straight FODO regions of each ring are identical and
are adjusted in the same way simultaneously so that the
ring’s twofold symmetry is preserved.

Since the designs of the electron and ion collider rings
are similar, below we will focus on the ion ring. This is a
rather challenging case due to the ring’s relatively large
horizontal �x � @�x=@� and vertical �y linear chromatic-

ities of �319:7 and�397:0, respectively. Contributions of
the IRs to �x and �y are �296:0 (92.6%) and �375:0

(94.5%), respectively. The IR design shown in Fig. 7 sat-
isfies the symmetry requirements discussed above. Two
sextupole families arranged symmetrically in each CCB
as shown in Fig. 7, provide simultaneous compensation of
both the horizontal and vertical linear chromaticities. For
the nominal ð�x; �yÞ working point of (0.31, 0.32), this

chromaticity compensation approach results in an excel-
lent momentum acceptance of >14��.

The factors limiting this compensation technique in-
clude a small finite angular spread in the beam even after
expansion, violation of the symmetry conditions outside of
the CCB, and higher-order effects, such as amplitude-
dependent tune shift and higher-order chromaticities.
Therefore, further optimization of the nonlinear dynamics
may be required using additional sextupole and octupole
families. Another important optimization aspect is the
choice of the betatron tunes. Even though, as described
above, the phase advance changes only in the FODO
regions of the straights, while most of the contribution to
the nonlinear effects comes from the IR’s, the choice of the

betatron tunes sets their position with respect to beam
resonances and determines the phase advance between
the two IP’s and between the consecutive passes through
the same IP, which can enhance or suppress certain chro-
matic and geometric perturbations.

1. Optimization problem

In case of the MEIC, the momentum acceptance is al-
ready adequate just after the linear chromaticity compensa-
tion. Therefore, we first focus on optimization of the
dynamic aperture. There are a number of techniques avail-
able for this task such as optimization of the resonance
driving terms [43,44], minimization of the tune diffusion
rate [45–47], and direct maximization of the dynamic ap-
erture area [48,49]. The GA is not specific to any of these
techniques and can be applied using any one or a combina-
tion of those. Below we illustrate optimization of the beta-
tron tunes by maximizing the area of the dynamic aperture.
The MEIC ion collider ring is simulated using ELEGANT

[28] particle tracking code. All ring components are mod-
eled as canonical kick elements with exact Hamiltonians
retaining all orders in momentum offset. The magnet fields
are approximated as hard edge, and the lattice is assumed
ideal, i.e., containing no errors. Betatron tune adjustment
and appropriate rematching to preserve the ring optics
outside of the straights’ FODO cells, as discussed above,
are automated in ELEGANT. Also, in each case, both the
horizontal and vertical linear chromaticities are compen-
sated down to zero using the two sextupole families, as
described above.
The dynamic aperture of the ion collider ring is obtained

for each betatron tune setting using ELEGANT in the follow-
ing way. An on-momentum particle is launched parallel to
the beam axis at the entrance into one of the CCB’s. It is
then tracked for 100 turns using kick-based 2nd-order
symplectic integration. The particle initial coordinates
are gradually moved away from the beam center along
13 rays originating at the center and spaced out equally
in the upper half plane. The distance of the launch point
from the center is increased along each ray until the
particle stability is lost within 100 turns. The stability
border is determined to within about 	0:1 mm precision.
The edge-of-stability points located on different rays are
connected by straight lines outlining a stability region in
the transverse plane, or, in other words, the dynamic aper-
ture. The area of this region is used as the objective
function. The choice of a small number of turns for finding
the dynamic aperture is driven by the computational time
considerations and is justified by the fact that our main goal
is to investigate the relative effect of different betatron
tunes rather than to study the ring’s long-term stability.
Figure 8 shows the dynamic aperture after the linear

chromaticity compensation for the initially chosen working
point of (0.31, 0.32). These ð�x; �yÞ values seemed to be a

reasonable initial guess based on their location on the beam

INNOVATIVE APPLICATIONS OF GENETIC ALGORITHMS . . . Phys. Rev. ST Accel. Beams 16, 010101 (2013)

010101-9



resonance grid and the running experience of the existing
machines. The dynamic aperture in Fig. 8 is reasonably
large, especially considering the large compensated values
of the natural chromaticities. However, due to the large
beam extension required to achieve the ambitiously small
IP� values at theMEIC, the horizontal and vertical sizes of
the dynamic aperture correspond to only
4�x and
15�y,

respectively. Since a practical design typically requires a
dynamic aperture above 6� in both transverse dimensions
with all imperfections and realistic effects taken into ac-
count, further optimization of the dynamic aperture even
within this simplified model is required.

We combine the GA described in Sec. II with ELEGANT

code [28] as a function evaluator. The independent varia-
bles are the two fractional parts of the betatron tunes, �x

and �y, while the objective function is the dynamic aper-

ture, evaluated as described above. The domain of the two
independent variables is 0 to 1. Therefore, this is a 2D,
single-objective, nonlinear optimization problem.

2. Results

Figure 9 shows the results of the GA run with 64
individuals and 20 generations, sampling the entire
½0; 1�2 domain in fractional betatron tunes. The optimal
value of the dynamic aperture is found in the tenth genera-
tion (after about 640 function evaluations). By the sixth
generation, the optimal value becomes prevalent, signaling
that the algorithm has converged on the location of the
optimal fractional betatron tunes. Figure 10 plots the dy-
namic aperture data from Fig. 9 as a function of the frac-
tional betatron tunes. From the clustering of the points near
the (1, 0) point in Fig. 10, it is evident that the GA has
converged to this region, having identified it as the
one with optimal fractional betatron tunes. The largest
dynamic aperture occurs at a working point of ð�x; �yÞ ¼
ð0:994; 0:001Þ. Precipitous drops in the area of the dynamic
aperture in Fig. 10 correspond to the points too close to the
(1, 0) integer resonance.

The choice of the optimal working point for the beam-
beam interaction described in Sec. III A and for the maxi-
mum dynamic aperture discussed in this section are
determined by different processes. Nevertheless, in com-
paring the two cases, one has to consider that the ring
model used in this section includes two IPs, or two super-
periods; therefore, all phase advances are doubled in com-
parison to Sec. III A, which only assumed one IP. The two
cases then demonstrate similar optimal working points
close to half-integer resonances. This is a general feature
of linear or properly linearized systems; the most stable
dynamics in these systems are near half-integer resonances
because they are devoid of other low-order resonances (of
order� 2 and above). This result confirms that the model’s
chromaticity compensation scheme successfully sup-
presses the nonlinearity introduced by the final focus.
Selecting a working point so close to half-integer reso-
nances is perhaps not realistic, especially for ion beams
that do not have synchrotron damping. To find a more
realistic solution, the model has to be extended to include
magnet errors, beam-beam interaction, IBS, etc.
In fact, in a practical design optimization, one has to
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maximize the correctable dynamic aperture over an en-
semble of machines with randomly generated realistic
magnet alignment and field errors. However, the same
algorithm as in this conceptual demonstration can be ap-
plied and offers the same advantages over an optimizer that
searches for a local extremum as discussed earlier.

Another noteworthy observation is that, due to the low
dimensionality of this optimization problem, we are able
to search the whole tune space. However, the optimal
working point still falls into one of the stability regions
discussed in Sec. III A, which validates the procedure for
the search domain reduction used in that section.

Figure 11 illustrates the improvement to the dynamic
aperture attained by optimizing the working point: the
initial dynamic aperture from Fig. 8 is compared to the
largest-area dynamic aperture obtained in the optimization,
corresponding to the blue �’s in Figs. 9 and 10.

In comparison, a systematic scan of the entire 2D frac-
tional betatron tune space, at a resolution of 0.01 would
require 1002 ¼ 10 000 function evaluations. By employing
a GA in our search, we reduced the required number of
function evaluations to a few hundred—a computational
savings of at least 1 order of magnitude.

C. Decoupling of the beam optics in the injector

The Continuous Electron Beam Accelerator Facility
(CEBAF) is a superconducting facility located at
Jefferson Lab. It provides a continuous electron beam of
up to 6 GeV for use for nuclear physics experiments in up
to three experimental halls simultaneously. (See the layout
in Fig. 12.)

The beam is generated at the electron gun equipped with
a GaAs photocathode. A circularly polarized laser beam
impinges on this cathode and allows for polarized electrons
to be produced with a longitudinal polarization in excess of
85% and currents as high as 200 �A.

The electrons have an initial kinetic energy of 130 keV,
and are then accelerated, bunched, and compressed in the
injector to an energy of a few tens of MeV depending on
the linacs’ energy gains and the desired energies in the
experimental halls. After the injector, acceleration to the
experiment energies is achieved in two superconducting
linacs, set in an antiparallel configuration and connected by
asynchronous recirculation arcs. CEBAF can thus deliver
beams between 0.6 and 6 GeV. The delivery of very high-
quality beams with energy spread less than 3–4� 10�5

and geometric emittances on the order of 10�9 mrad is
routinely achieved.
Parity-violating experiments are the most challenging in

terms of beam quality amongst the wide range of experi-
ments performed at CEBAF. They require the helicity-
correlated beam positions and angles to be controlled at
the level of nanometers/nanoradians. Most of these corre-
lations originate at the laser table and, while they can be
controlled, they cannot be completely eliminated. To reach
the desired level of accuracy, one has to rely on the natural
adiabatic damping occurring during acceleration to reduce
the helicity-correlated position and angle differences to the
desired tolerances. One of the implications to the beam
transport is that one has to suppress the transverse coupling
in the injector proper to prevent projected emittance
growth from occurring [50].
Coupling in the machine originates mainly from the SRF

cavities. Skew quadrupoles are installed in the linacs be-
tween the rf zones to compensate for this. The injector is
instrumented with eight skew quadrupoles located along
the beam line where the SRF cavities are installed. The
most damaging emittance growth potentially occurs in the
injector proper since the beam is accelerated from 130 keV
at the cathode to 60 MeV for a standard one-pass parity
experiment. Here we describe the scheme we have adopted
for correcting such transverse coupling in the injector
transport line.
To recover from the emittance growth that occurs be-

cause of the x-y coupling, one has to alter the strengths of
both the skew and normal quadrupoles. One approach is to
measure the 4� 4 transport matrix across the SRFmodules
and then use the skew quadrupoles to decouple the system
and normal quadrupoles to rematch the beam line [51].
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An alternative method which lends itself well to real-
time corrections is to instead measure the beam shape with
beam profile monitors. For this test, we use wire scanners
equipped with x, y and 45-degree wires. By using four such
scanners placed at the proper phase advances, it is possible
to access all the off-diagonal terms of the transport matrix.
The algorithm then simply becomes one of minimizing all
these cross terms by making use of the available skew
quadrupoles. For the sake of demonstration, we simulate
a simple system where one gets the off-diagonal terms
from a model and iterates the GA until they are nulled.
This can also be solved with traditional nonlinear least
square optimization. The GA starts being better suited to
this kind of problem when one also includes a number of
other constraints on the optics such as maximum beam size
and phase advance constraints. Other groups have started
using ELEGANT together with GAs for lattice design and
optimization [52].

1. Optimization problem

We again combine the GA described in Sec. II with
ELEGANT code [28] as a function evaluator. The indepen-

dent variables are strengths of the six skew quadrupoles,
allowed to vary within their entire operational ranges. The
objective function value computed by ELEGANT simulation
is the sum of squares of the cross terms at four different
locations in the beam line with proper phase advances,

S ¼ P
4
i¼1ð�ðiÞ

xyÞ2, and should, therefore, be minimized.
Hence, this is a 6D, single-objective, nonlinear minimiza-
tion problem.

2. Heuristic shrinking of the search space

The GA simulation of the beam decoupling proved to be
rather well behaved: as the objective function decreases,
individuals converge to a smaller region of an area of
search space previously occupied. We observe that the
individuals neither converge to multiple disjoint subareas
nor do they drift away from the area where they initially
settle (Fig. 13). Moreover, after many iterations within
some search area, the speed of convergence starts to de-
crease substantially, as shown by the blue line in Fig. 14.
However, if the search space is restricted to contain only its
small subarea where the individuals converge, the rate of
convergence of the algorithm drastically increases, as
shown by the red line in Fig. 14. This happens because
arriving close to a local optimum requires high precision
gene variation (achieved through mutation in small
steps). Since mutation amplitude depends on the search
area size, decreasing the area decreases the average muta-
tion amplitude, which, in turn, increases the speed of
convergence.

We improve the rate of convergence of the GA by
enhancing it with an area-shrinking algorithm which re-
duces the search area as soon as individuals converge
within some fraction of the original search space. The

shrinking is done in each search variable independently,
quantified by two parameters: shrinking threshold and
margin size. If the total size of the search space in each
dimension becomes smaller than some fraction of the
original search space denoted by the shrink threshold, the
search space shrinks. The new search space then becomes
the range between these two points plus the extra space on
each size determined as the margin size parameter times
the range size.

3. Results

The simulations show that enhancing the GA with the
shrinking algorithm noticeably improves the speed of con-
vergence, on average by about 15%. Figure 15 shows a
representative comparison between optimizations using
GA without and with shrinking enhancement.
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The purpose of this optimization is not arriving at the
global minimum, but rather obtaining an acceptable local
minimum, S ¼ 5:5� 10�14, reasonably quickly. For each
set of simulation parameters (shrinking threshold, margin
size, �mut, and �rec), several simulations, each with a
different random seed for the initial distribution of indi-
viduals in the search space, are executed and then aver-
aged. The mutation and recombination factors, �mut and
�rec, are described in the Appendix.

The fastest convergence below the prescribed S thresh-
old of 5:5� 10�14 is achieved with �mut ¼ 106, �rec ¼ 0,
shrinking threshold of 0.99, and margin size of 0.001.
These simulations take about 261	 35 steps, depending
on the initial random seed. The same simulations without
shrinking takes about 302	 125 steps.

In comparison, the simplex optimizer in ELEGANT

reaches its final local minimum in about 300 iterations.
(Other ELEGANT optimizers, such as grid-based and ran-
dom walk, did not reach the same level of performance.)
It is important to remember that the GA is globally
convergent, unlike the simplex optimizer in ELEGANT,
which finds the local extremum nearest to the initial
starting point of the search. Because of the nature of
the algorithms, the ELEGANT simplex optimizer only
searches for a local minimum and is therefore sensitive
to the starting conditions and the parameters of the
algorithms. Achieving the optimal number of iterations
requires significant hand tuning, and in some instances
fails altogether. Therefore, the GA is both more efficient
and more robust. The resulting decoupling of the injector
line is illustrated in Fig. 16.

This study demonstrates the viability of GAs for an
electron beam decoupling. The algorithm shows
robust convergence to near-optimal points. An important

improvement to automatically reduce the area of search
produces a measurable improvement of 15% in algorithm
efficiency. This approach may also prove useful in imple-
mentation of GA for other problems.

IV. ACCELERATOR PHYSICS APPLICATIONS
OF GENETIC ALGORITHMS:

MULTIOBJECTIVE PROBLEMS

Multiobjective optimization problems in accelerator
physics were tackled in two ways until the advent of GA-
based frameworks. The first was to simplify the problem as
much as possible to reduce it to a single-objective optimi-
zation or to construct a weighted-sum single-objective
function from the multiple objectives and then apply stan-
dard single-objective optimization techniques to find a
solution. The downside to this method is that creating a
single objective for a multiobjective problem can result in
an objective function whose behavior does not accurately
reflect the dynamics of the multiobjective system. Further,
the optimal solution of the ersatz problem may not produce
the desired results in the multiobjective system. Weighted-
sum objective functions are unsatisfactory because the
solution found and the rate of convergence depend heavily
on the weighting factors. Tuning the weighting factors can
be frustrating and unfruitful. The second approach was to
perform parameter scans on a subset of the objectives and
analyze the results. Systematic parameter scans are often
prohibitively computationally intensive, especially for
problems with more than say 2–3 degrees of freedom
(e.g., see III A 2). While these approaches are effective in
spite of the pitfalls, ensuring the solutions found are robust
and not just optimal in a local sense is onerous and
often impossible. These techniques were appropriate in
computationally limited resource environments. With
ever increasing computational power at decreasing cost,
multiobjective optimization problems can now be ad-
dressed without the compromises of the past.
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GA-based algorithms are adept at both single- and mul-
tiobjective optimization. In contrast to the first approach
which involved constructing a single-objective problem
description for the multiobjective system, the complete
multiobjective optimization can be solved with GA meth-
ods. This leads to greater confidence in the solutions
found because fewer simplifying assumptions are required.
GA-based algorithms, also, can quickly identify promising
regions in the global search space, a marked improvement
over parameter scans.

In this section, we present two GA-based multiobjective
optimizations. First, we reconsider the single-objective
dynamic aperture optimization (III B) seeking to addition-
ally minimize chromatic effects. The second optimizes the
brightness of an rf gun-based injector and uses constraints
based on model evaluator results to restrict the search. Both
problems are sufficiently complex that parameter scans are
untenable, yet they are tractable with GA methods.

A. Optimization of the dynamic aperture and
chromaticity correction in a collider ring

Section III B discusses challenges associated with or-
ganizing a low-� IP in a collider and describes an approach
to mitigate them using field and orbital symmetries in the
IR design [41]. This approach is applied to the challenging
case of a high-chromaticity small-� MEIC ion collider
ring [40,42]. In Sec. III B 1, the GA is used to maximize
the dynamic aperture by finding the optimal fractional
betatron tunes �x and �y in the range between 0 and 1.

The optimum ð�x; �yÞ working point is found to be (0.994,

0.001). However, that single-objective optimization does
not consider the impact of varying the betatron tunes on the
ring’s momentum acceptance. After compensating the lin-
ear chromaticities, the momentum acceptance is deter-
mined by the higher-order ones, which depend on the
choice of the working point. In general, the smaller the
2nd-order chromaticities, the larger the momentum accep-
tance. Large 2nd-and higher-order chromaticities drive
particles into beam resonances causing their loss. This
necessitates an approach in which the GA is used to
optimize dynamic aperture and momentum acceptance
simultaneously.

1. Optimization problem

We use ELEGANT to compute two objective functions
that are to be optimized simultaneously, namely, the
dynamic aperture and the 2nd-order chromatic function

�ð2Þ defined as a sum of relative magnitudes of the

2nd-order chromaticities: �ð2Þ � jj@2�x=@�
2j � 1000j þ

jj@2�y=@�
2j � 2500j. The dynamic aperture is obtained

following the procedure described in Sec. III B 1. The
2nd-order chromaticities are calculated in ELEGANT by
concatenating the ring’s transfer matrix for a set of
�p=p values and finding the trace of the off-momentum

matrices [28]. We then use the GA described in Sec. II to
optimize these two objective functions simultaneously. In
this case, optimization entails minimizing the inverse of
the dynamic aperture and the value of the chromatic func-

tion �ð2Þ. There are two independent variables, as before:
the fractional parts of the betatron tunes, �x and �y, varying

between 0 and 1. Therefore, this is a 2D, multiobjective,
nonlinear optimization problem.

2. Results

Figure 17 shows the results of the GA run by plotting the

Pareto-optimal front of the chromatic function �ð2Þ versus
the inverse dynamic aperture 1=A after 24 generations of
64 individuals. Note the resemblance of Fig. 17 to Fig. 1
resulting from the conceptual similarity of the underlying
problems. Two conclusions can be drawn immediately
from Fig. 17. First, the Pareto front is composed of a few
sections that form individual islands in the ð�x; �yÞ tune
space. Since the islands are isolated from each other,
locating the global optimum would have been impossible
using conventional optimization techniques, which would
only converge to the nearest local extremum. Second, there

is an inverse relationship between �ð2Þ and 1=A, i.e., the
objectives conflict with each other. This means the point
with the largest dynamic aperture (point A in Fig. 17 with

the minimum 1=A value) has the largest �ð2Þ and, therefore,
the smallest momentum acceptance and vice versa (point C
in Fig. 17).
From the nonlinear dynamics point of view, the choice

of the optimal working point is a balance between the
momentum acceptance and dynamic aperture being both
reasonably large such as point B in Fig. 17. Note that, in
case of MEIC, due to its aggressively small collision point
� values, further nonlinear optimization is required to have
both the dynamic aperture and momentum acceptance
adequately large [40]. This can be done by optimizing
multiple sextupole and octupole families. The argument
for choosing an optimal working point that gives a balance
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between the dynamic aperture and momentum acceptance,
however, remains valid.

The dynamic aperture and momentum acceptance cor-
responding to points A, B, and C are compared in Figs. 18
and 19, respectively. Figure 18 plots the dynamic aperture
in the x-y space. Figure 19 shows the fractional betatron
tunes �x and �y as a function of momentum offset �p=p.

The horizontal extent of the lines in Fig. 19 indicates the
size of the momentum acceptance.

B. rf gun optimization for injector brightness

As demonstrated in III C, for linac-based accelerators,
the beam quality at the exit of the particle source or injector
determines the quality of the final beam of the entire
machine. Another example is light source brilliance and
6D brightness [53],

Bn ¼ N

"n;x"n;y"n;z
;

where N is the number of electrons in the particle bunch
and "n;x, "n;y, and "n;z are the normalized transverse and

longitudinal emittances of the injector. Bn directly affects
the brilliance of a linac light source. In general, it is crucial
for the injector to produce the highest quality beam
to ensure that each new machine meets ever more aggres-
sive application requirements, and for a linac-based
light source, this translates to maximizing Bn. For a fixed
bunch charge, minimizing the injector "n;x, "n;y, and "n;z
maximizes Bn.
Here we describe an optimization system that can vary

the shape of the field profile of an rf gun in response to the
performance of the beam dynamics [24–26,54]. Often rf
guns are used in linac-based light sources. The typical rf
gun design consists of a half-cell cavity containing the
photocathode optionally joined to one or more full cells.
The photocathode is inside the half-cell cavity at the center
of the upstream cavity end plate (centered at the origin in
Fig. 20). The peak field is at the cathode, and for multicell
designs, the field profile is balanced, meaning the peak
field amplitude is equal in each cell as shown in Fig. 21. We
use the GA optimization to investigate if this design can be
improved to increase source Bn. We discuss the field
generation method and present results for an rf gun-based
injector similar to the rf gun injector developed by the
Photo Injector Test Facility Zeuthen (PITZ) [55]. The
PITZ gun is the injector for the Deutsches Elektronen-
Synchrotron (DESY) Free-Electron Laser in Hamburg
(FLASH) [56]. Note that, while the optimization system
is used to minimize normalized emittances in this example,
it is general purpose and can be used to optimize rf gun-
based injectors with respect to other beam dynamics and
cavity performance criteria. Also, in contrast to varying an
idealized numerical model of the field profile [24] or
interpolating between field profiles in a catalog of exter-
nally produced profiles for different gun geometries [57],
physical dimensions of the gun are varied and a field solver
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is automatically invoked to produce new field profiles
during optimization execution.

1. Optimization problem

Two programs, a field solver and beam dynamics simu-
lation code, are used together to calculate the objective
function values in this rf gun optimization system. APISA
provides an interface to ASTRA, the beam dynamics code
from DESY, and we have added one to POISSON SUPERFISH

[29], a field solver for cylindrically symmetric rf cavities
from Los Alamos National Laboratory. Results from
ASTRA and POISSON SUPERFISH can be used as objective

function values, but for the example problem presented
here, only ASTRA data are used as objectives.

With the addition of the field solver to APISA, the
optimization can vary user-specified aspects of the gen-
eralized geometry description shown in Fig. 22. It passes
the cavity geometry description to a program that pro-
duces an on-axis accelerating or 	-mode field profile.
This program encapsulates the geometry description
translation to POISSON SUPERFISH’s format and all
POISSON SUPERFISH processing required to find the on-

axis 	-mode. The program does not tune the cavity
geometry to a desired frequency. Instead, as discussed
below, constraints on frequency defined as part of the
optimization problem can be used to guide the optimiza-
tion to the desired frequency. In addition to the 	-mode
frequency, the program provides to the optimization field
characteristics calculated by POISSON SUPERFISH that can
be used in constraints and objectives. The generated field
profile is then used in an ASTRA simulation to determine
the effect on the beam dynamics.

While presently limited to straight line geometries, the
generalized geometry description is versatile and can de-
scribe simple pillbox cavities as well as approximations for
elliptical and reentrant cavity geometries as shown in

Fig. 23. In the geometry description, each cell is described
by a distinct entity or block, and a multicell cavity descrip-
tion is an ordered list of these blocks. This localizes each
change to an individual element including changes in cell
length that affect the entire cavity structure. Also, by
varying, for example, the cell wall angles, a pillbox can
be easily morphed into reentrant and elliptical cavity ge-
ometries, allowing optimizations that can consider all three
geometries concurrently.
The cavity morphing method has been used to study the

PITZ rf gun injector shown in Fig. 24. This injector con-
sists of a 1300 MHz 1.5 cell gun with a cylindrically
symmetric coaxial coupler located between two solenoids
[55]. The downstream solenoid is an emittance compensat-
ing solenoid, and the upstream one, known as the bucking
solenoid, is used to ensure that the magnetic field at the gun
cathode is zero. For production beam delivery, the bucking
solenoid’s field strength is set to cancel residual magnetic

FIG. 22. Beam tube and cell parameters in general cavity
description [25]: (a) beam tube or iris; (b) cell. The beam enters
each element on the left.

FIG. 23. Straight line approximations for elliptical (far left),
reentrant (three middle), and pillbox (far right) cell geometries.
Each cell radius is 6 cm, and the total length is 31.2 cm.
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field from the emittance compensation solenoid at the
cathode.

For this study, the injector is simplified to include only
the gun and emittance compensating solenoid. Further, the
coaxial coupler is omitted, and the rf gun cavity is modeled
with a straight line approximation of the actual curvilinear
geometry. In the curvilinear geometry, edges where two
surfaces meet (e.g., outer cavity wall and cell end plate)
have rounded corners whereas in the model geometry, hard
corners are used as shown in Fig. 20. Figure 21 shows that
the field profile for the straight line model geometry fairly
well reproduces the profile from the curvilinear geometry.

The beam bunch is modeled in the optimization with a
800 pC distribution containing 2000 macroparticles. The
transverse beam positions in the ASTRA macroparticle dis-
tribution [23] are uniformly distributed radially giving a
0.485 mm beam size, �x;y. The temporal profile is a 24 ps

FWHM flattop pulse with 6 ps rise and fall times. The
momentum distribution is isotropic with a 0.55 eVaverage
kinetic energy corresponding to the net energy of electrons
photoemitted from the gun’s Cs2Te cathode.

The optimization varies dimensions of the cavity (radii
and lengths of the two cells and the intervening beam tube),
the rf phase, and solenoid field strength while keeping the
peak electric field fixed at 40 MV=m to find an optimal gun
design and operating parameters that minimize "n;x, "n;y,

"n;z, and the transverse beam sizes, �x and �y. Because the

beam is cylindrically symmetric, the transverse dimensions

are the same, so the optimization is essentially minimizing
three unique quantities,�x, "n;x, and "n;z. The total number

of independent variables, listed in Table III, is eight. The
results for this 8D, three objective problem with bounded
inputs and additional search space constraints, discussed
next, are presented for the case of ten generations with 96
individuals per generation.

2. Using constraints to guide search

For a multicell cavity, the resonance frequency and the
field profile shape are very sensitive to small changes in the
cell radii [25]. The resonance frequency for the 	-mode
alone is not sufficient to determine if a cavity geometry
produces a reasonable field profile because for very small
changes in cavity dimensions, while the frequency may
remain the same, the relative field amplitudes in the field
profile can change significantly. A figure of merit, such as
field flatness, related to the field profile characteristics is
needed to differentiate between these cases [25]. Field
flatness is a gross characterization of the relative differ-
ences in peak field amplitude across a cavity. The follow-
ing definition for field flatness, pflatness, is used [58]:

pflatness ¼ 100
jEpeakjmax � jEpeakjmin

1
ncells

ðPncells
i¼1 jEpeakjiÞ

; (3)

where jEpeakjmax and jEpeakjmin are maximum and mini-

mum peak electric field amplitudes across the cavity,
jEpeakji is the peak electric field amplitude in the ith cell,

and ncells is the number of cells, independent of their
relative lengths. For a 1.5 cell cavity, ncells is two, and its
on-axis 	-mode field profile has two peaks. Notice under
this definition that a balanced field profile has a field flat-
ness of 0%. The field flatness definition can be improved
with the addition of a sign to indicate the relative order
along the beam line (z) of the maximum and minimum
peak field amplitudes in the cavity. This signed field flat-
ness, psigned, is defined as

psigned ¼
��pflatness zjEpeakjmax

< zjEpeakjmin

pflatness otherwise:
(4)

Using psigned and APISA’s strict inequality constraints,

four constraints steer the optimization toward cavities with
the desired frequency (1300	 0:5 MHz) and reasonable
signed field flatness (� 101%< psigned < 101%). Note

that for ncells ¼ 2, 100% field flatness means jEpeakjmax ¼
3jEpeakjmin [25]. Thus, the signed field flatness constraints

are not overly restrictive and allow the optimization to
consider a variety of relative peak field amplitude
configurations.
The progression of the average signed field flatness and

frequency with generation is shown in Figs. 25 and 26. In
the first generation, the individuals in the population
(offspring) are randomly generated from the bounds

TABLE III. Injector optimization independent variables and
ranges

Variable Unit Lower bound Upper bound

rf phase

(relative to crest)

degrees �10 15

Main solenoid

strength

Tesla �0:180 �0:1

Iris radius cm 2.4529 2.5029

Iris length cm 1.9073 2.0073

Cell 1 radius cm 8.9249 8.9449

Cell 1 length cm 5.3763 5.4763

Cell 2 radius cm 8.9586 8.9786

Cell 2 length cm 9.8864 9.9864

FIG. 24. Schematic of PITZ injector used in the optimization.
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information for the independent variables. As expected,
this leads to a large spread in values. For the first generation
in a minimization problem, the individuals in the front are
those members of the initial population that have the small-
est objective values and meet the constraint limits. In
subsequent generations, the front contains the individuals
across the present and all past generations that have the
best objective values while meeting the constraints. After
the first generation, the offspring, under SPEA2 [20], are
produced from the archive which contains the front and
better individuals from the population. In each generation,
the front has a smaller spread than the offspring, and with
each generation the spread in the population decreases and
eventually matches the front. Figure 26 shows that in three
generations the offspring are within the 1 MHz band of
acceptable frequencies, and in four generations the spread
of the offspring matches the front. These figures demon-
strate that the constraints are effective in guiding the
optimization toward cavity geometries with the prescribed
characteristics.

3. Results

The initial geometry dimensions are provided in
Table IV. Without geometry optimization, the straight
line PITZ model geometry produces the emittance product
("n;x

2"n;z) 167:88 	3 mm3 mrad2 keV for the 800 pC

bunch charge where "n;x ¼ 2:2020 	mmmrad, "n;z ¼
34:6229 	mmkeV, and �x ¼ 0:137 54 mm when the rf
phase is �2� off-crest and the main solenoid strength is
�0:168 87 T. After running ten generations with 96
individuals per generation, the optimization achieves
"n;x

2"n;z ¼ 146:70 	3 mm3 mrad2 keV with "n;x ¼
2:1467 	mmmrad and "n;z ¼ 31:834 	mmkeV. The

corresponding beam size is �x ¼ 0:166 49 mm, slightly
larger. The rf phase and main solenoid strength settings
are comparable at �2:25� off-crest and �0:1514 T, re-
spectively. This solution represents a 13% improvement in
brightness over the initial model geometry. The similarity
in operational settings, rf phase, and solenoid setting, sup-
ports the conclusion that the changes in geometry are the
driving force behind the improved brightness. Figure 27
shows that the objective values exhibit the same behavior
as the constraints. The spread in longitudinal emittance is
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TABLE IV. Optimization initial and optimized straight line
geometry dimensions

Geometry dimension (cm) Initial Optimized

Cell 1 radius 8.9349 8.933 32

Cell 1 length 5.4513 5.381 51

Iris radius 2.4779 2.482 67

Iris length 1.9823 1.912 88

Cell 2 radius 8.9686 8.972 12

Cell 2 length 9.9114 9.977 16

Exit tube radius 2.9734 2.9734

Exit tube length 8.9203 8.9203

Total length 26.2653 26.191 85

 5

 10

 15

 20

 25

 30

 35

 40

 0  2  4  6  8  10

Lo
ng

itu
di

na
l e

m
itt

an
ce

 (
π 

m
m

 k
eV

)

Generation Number

Front
Offspring

FIG. 27. Average longitudinal emittance for the Pareto-optimal
front and offspring for each generation.

-100

-50

 0

 50

 100

 0  2  4  6  8  10

S
ig

ne
d 

fie
ld

 fl
at

ne
ss

 (
pe

rc
en

t)

Generation Number

Front
Offspring

FIG. 25. Average signed field flatness for the Pareto-optimal
front and offspring for each generation.

ALICIA HOFLER et al. Phys. Rev. ST Accel. Beams 16, 010101 (2013)

010101-18



large initially and decreases quickly. In the fifth generation
and onward, it matches the front characteristics.

Table IVand Figs. 20 and 21 provide the dimensions for
the optimized geometry and its field profile. One distinc-
tive feature of the field profile for the optimized geometry
is that it is not balanced. In fact, its signed field flatness is
�31:14%. Recall that from the definition for a two cell
cavity negative flatness means that jEpeakjmax is in the gun

cell, and this is consistent with having the peak electric
field on the cathode in the gun cell for smaller emittance
growth [59]. However, it is contrary to the cavity design
goal of 0% field flatness. Although the constraints loosely
limited the range of the signed flatness to	101% (notably
including positive flatness), the individuals with the small-
est emittances and beam size, those that constitute the front
for a generation, have negative field flatness values in every
generation including the first. More importantly, every
front in Fig. 25 consists only of gun cavity geometries
with negative field flatness values. These are all indications
that better brightness sources are possible if the peak field
is in the gun cell, and the field profile is unbalanced.

V. DISCUSSION AND CONCLUSION

Using GAs, we have found solutions to accelerator
physics design problems that are too computationally pro-
hibitive to be solved using standard optimization tech-
niques. For example, the landscape of the luminosity and
dynamic aperture as a function of the betatron tunes in III B
is rather complicated with many local maxima due to
numerous beam resonances of various orders with different
relative importance. This makes a robust, global optimiza-
tion with any technique other than the GA, e.g., conjugate
gradient, steepest descent, etc., extremely difficult if not
impossible. Each solution presented is an advancement for
the field and can serve as a model for similar design
problems in other machines since the GA method and
our script-based tool are very general and are not tied to
a specific machine type or layout. We have shown that GAs
can be used to solve single-objective problems. Our multi-
objective examples further outline the challenges and in-
tricacies of multidimensional, multiobjective optimization
and demonstrate the suitability of GAs to solve them. This
section outlines challenges encountered in using GAs and
solutions to manage them, identifies advanced problems
where GAs can be used to make a difference, and provides
recommendations for future development for these power-
ful nature-based optimization methods.

A. Challenges

GAs can manage the fine interplay between global in-
formation and local detail. They also allow for searches of
the whole parameter space without any prior knowledge of
favorable regions. These strengths make GAs powerful
tools to solve difficult multidimensional nonlinear
problems. We observe a recurring theme throughout the

optimizations using GAs: the more constrained the search
space—either by invoking physical reasoning, by imple-
menting the shrinking of the search space within the algo-
rithm itself (III C 2), or by using additional inequality
constraints (IVB2)—the faster the convergence to a
near-optimal solution. It is important to properly constrain
the system to succinctly and accurately restrict the search
space with as much a priori knowledge as possible to
reduce the amount of time GAs spend sampling regions
of the search space that are not relevant.
GA execution time depends on two operational factors,

and both have to be considered to minimize the overall
optimization execution time. The first is the time for one
generation to complete, and the other is the number of
generations to perform. The product of these two numbers
determines how long it will take the optimization to run,
and both of these depend on the time to evaluate the
problem model. Therefore, it is important to ensure that
the model execution time is minimized and that parameter
changes have deterministic effects on the problem model.
The former has a clear impact on the time for a generation
to complete, and the latter affects the number of genera-
tions needed. Two examples from the rf gun injector opti-
mization application (IVB) are provided to demonstrate
the effects and how they can be mitigated.
In the initial design of the rf gun-based injector optimi-

zation system, the program that encapsulates the field
solver execution also tuned the cavity geometry to a given
frequency. This proved to be problematic because it made
the time to complete one generation difficult to predict and
did not reliably produce good candidate cavity geometries.
Two tuning approaches were used. The first naive method
assumed independent, linear relationships between the
cavity frequency and each designated cavity tuning pa-
rameter [25]. The second method used standard nonlinear
optimization methods on a single-objective function, the
weighted sum of the errors in frequency and signed field
flatness. This failed to converge in many instances even
after many iterations. Using constraints on frequency and
signed field flatness removed the variability in the per-
generation execution time at the expense of using addi-
tional initial generations to locate reasonable regions in the
cavity parameter space as shown in Figs. 25 and 26. With
the constraints approach, a generation completes in a rea-
sonable amount of time and produces usable cavity
designs.
For the optimization to succeed, it is important to ensure

that the values for independent variables, objectives, and
constraints have common references between individuals.
This is important because the optimization draws conclu-
sions about the relative goodness of various independent
variable settings by comparing the objective values
from one individual with those from the present generation
and any archived individuals. If there are no common
references, the changes that the optimization generates in
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independent variable values and observes among individu-
als become arbitrary, and the model behavior is artificially
randomized. This leads the optimization to perform more
generations to converge or fail to converge irrespective of
the number of generations performed. A simple example is
using rf phase as an independent variable. If the phase
reference is relative to the cavity crest phase, when the
cavity generates maximum energy gain in the beam, the
phase value of one individual compared to another has a
physical meaning and a predictive behavior in the model. If
the phase reference is internal to the simulation model,
then the phase effect of one individual is random compared
to the effect in another. It is important to identify such
instances in an optimization problem and ameliorate them
if possible.

B. Further applications of GAs

GAs are excellent tools for design optimization as the
variety of challenging applications presented here exem-
plify. Their deceptively simplistic algorithms make them
flexible and easily adaptable to machine and component
design. We propose that GAs can be used to design and
solve problems for next generation machines such as a
muon collider and to continue to automate accelerator
component design like a multifaceted cavity design
process.

1. Muon colliders

There is an increasing interest in a high-luminosity high-
energy muon collider to enable a new generation of
fundamental particle physics exploration [60,61]. Such a
machine would have the energy-frontier capability nor-
mally found in hadron colliders combined with the preci-
sion of electron-positron colliders. Designing a muon
collider is an extremely challenging task. Muons are gen-
erated stochastically with a large initial 6D phase space.
Because of their short lifetime, muons have to be quickly
captured, cooled, accelerated, and injected into a collider
ring where they must interact with an incident muon beam
providing a reasonable luminosity. GA optimization is
integral to essentially every aspect of a muon collider
design.

One scenario for the final stage of muon beam cooling
is parametric-resonance ionization cooling [62,63]. It is
accomplished by inducing a half-integer parametric reso-
nance in a muon cooling channel. The beam is then natu-
rally focused with a period of the channel’s free
oscillations. The channel is designed with correlated values
of the horizontal and vertical betatron periods so that
focusing occurs in both planes simultaneously. Absorber
plates for ionization cooling followed by energy-restoring
rf cavities are placed at the beam focal points. At the
absorbers, ionization cooling limits the beam angular
spread while the parametric resonance causes a strong
reduction of the beam spot size. The most challenging

aspect of parametric-resonance ionization cooling is com-
pensation of beam aberrations from one absorber location
to another. Both chromatic and spherical aberrations must
be compensated to a degree where they are small compared
to the beam size at the absorber. GAs are well suited for
minimizing the aberrations in this multiparameter space.
Another potential application of GAs is in designing

muon recirculating linear accelerators with multipass arcs
[64,65]. A return-arc optics design has been demonstrated,
in which linear combined functions magnets with variable
dipole and quadrupole field components are used to trans-
port two consecutive passes with very different energies
through the same string of magnets. The design requires
that the arc has periodic solutions for the orbit and Twiss
functions at both energies and that the periodic orbit offset,
dispersion, and their slopes are all zero at the beginning
and at the end of the arc at both energies. Conceptually, the
number of passes through the arc is not limited to two;
however, finding a solution for three or more passes is more
complicated due to the increased number of independent
variables and optimization criteria compounding the num-
ber of nonunique solutions to resolve. GAs can overcome
or greatly simplify these optimization difficulties.
The design of a muon collider ring faces many of the

same challenges as the collider rings of an electron-ion
collider, only taken to extreme [66]. To make the most
efficient use of expensive muons and reach desired lumi-
nosity levels, the muon beams have to be focused into very
small spots at the IPs. This leads to an even greater problem
with momentum acceptance and dynamic aperture than in
an electron-ion collider. GAs can optimize these quantities.

2. Cavity design

GAs can still be used to improve and automate accel-
erator component design, especially rf and SRF structures.
The primary cavity design goal is to optimize the cavity
geometry to achieve the required operating frequency.
Designs also need to be checked for adverse effects such
as multipacting, the emission of secondary electrons from
the cavity surface due to incident primary electrons that
can lead to thermal breakdown, and higher-order modes
that can be excited by the beam and create wakefields that
degrade the beam. GAs can improve the cavity design
process fundamentally by managing the complexity of
the initial cavity geometry optimization. More broadly,
GAs can streamline the design optimization and verifica-
tion process managing the optimization of the cavity
through a progression of cavity performance analysis tools
to mitigate multipacting and higher-order modes.

C. Future directions: Additional capabilities

Three recommendations for increasing the power of GAs
relate to problem definition and data analysis. The rf gun
injector optimization shows how effective and powerful
constraints are in guiding the optimization. Expanding the
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types of permissible constraints can fine-tune the guidance
provided by the constraints. Including equality and weak
inequality constraints as well as relative constraints be-
tween characteristics in the model allows for more precise
descriptions of the preferred characteristics of candidate
solutions. In the course of a GA optimization, several
individuals are considered, deemed unsuitable, and
discarded. For problems where little is known of the
search space landscape, it would be useful to have tools
to analyze the individuals and generations, progressions
of the front and constraints, and poorly performing
solutions to learn more about the behavior of system.
Finally, as studying the genome of living creatures is
beneficial to understand migration of biological popula-
tions, tracing the family trees of individuals in the front
may prove useful to understand how GAs arrive at the front
by delineating the various paths the GA followed through
the search space.

In addition to GAs, there are other nature-inspired algo-
rithms for solving multidimensional nonlinear optimiza-
tion problems. One such example is the particle-swarm
algorithm (PSA) [67]. The basic strategy behind this algo-
rithm is to mimic the dynamics of a swarm of living
organisms in their quest for sustenance. By elegantly and
simply appropriating the proven techniques of nature, the
PSA succeeds in being easy to control, easy to understand,
and potentially quite effective. Because of its simplicity,
flexibility, and inherent parallelizability, the PSA has the
potential to be a very useful tool for nonlinear parallel
optimization.

Another promising avenue of research is creating a
hybrid approach by combining the GA with traditional
methods for improved convergence. The traditional,
gradient-based methods, including adjoint-based methods,
have the advantage of a relatively low complexity and fast
convergence. The disadvantage of these gradient-based
methods is that they converge to a local extremum, and
as such the optimal solution depends on the initial state.
The GA and PSA methods, on the other hand, are theo-
retically capable of converging to the global extremum.
This motivates a hybrid optimization approach: first GA
does the preliminary search until the problem has con-
verged to the neighborhood of a single local extremum,
followed by a gradient-based local search which provides a
rapid convergence to the local extremum.

A very important property of the GAs is that they lend
themselves naturally to massive parallelization. All indi-
viduals of the same generation are evaluated concurrently,
and independently of each other. Depending on whether
the objective function evaluator at the heart of the GA is
parallelized or not, the simulations are either executed on
the multi-CPU clusters or on computer farms consisting of
many single-CPU nodes. However, in instances when the
objective function can be executed on a hybrid platform
consisting of both CPUs and graphical processing units,

additional improvement in efficiency of the algorithm
execution can be expected.
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APPENDIX: MUTATION AND RECOMBINATION
PROBABILITY DENSITY FUNCTIONS

The independent variable variations produced by muta-
tion and recombination in these optimizations are governed
by probability density functions (pdfs) with exact polyno-
mial representations. Each pdf has a user-configurable
parameter to tune the polynomial and the resulting distri-
bution in independent variable variations. In this
Appendix, we provide a brief description of the forms of
the GA operators used, their associated pdfs, and tuning
parameters.

1. Mutation

In mutation, the value xo of an independent variable x is
perturbed with a randomly generated small offset to pro-
duce xom . The trend of offsets produced depends on the

mutation operator employed, and these optimizations use
polynomial mutation [19,68,69]. The underlying pdf has
two forms, and they differ only by a normalization factor.
The first form, provided to illustrate the effect of the tuning
parameter �mut � 0, is

pð�Þ ¼ 1
2ð1þ �mutÞð1� j�jÞ�mut (A1)

for j�j � 1. The simple expression to create xom is

xom ¼ xo þ ��max; (A2)

where �max, set by the user, is the maximum permissible
incremental change in any instance of x. In concert,
Eqs. (A1) and (A2) assume the domain for independent
variable x in the optimization is the entire space �1 �
x � þ1, and therefore, mutation can produce any value
for xom .

Figure 28(a) shows Eq. (A1) for three values of �mut.
The exponent �mut affects the distribution of the variations
in a fairly straightforward manner. When �mut ¼ 0, the
independent variable variations ��max are distributed uni-
formly between��max and�max. As �mut is increased, the
distribution becomes skewed toward smaller variations. In
the limit as �mut ! 1, the pdf approaches a Dirac delta
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function located at � ¼ 0, �Dð�Þ, and mutation is sup-
pressed producing xom ¼ xo.

When an independent variable is bounded, xL � x �
xU, the domain of � has to be restricted to ensure that
Eq. (A2) obeys the bounds on x for a bounded xo.
Judiciously rescaling Eq. (A1) with a factor that depends
on xo, x

L, and xU adjusts the domain of � while preserving
the pdf’s symmetry about � ¼ 0.�max is redefined in terms
of the bounds to be

�max ¼ xU � xL

and is used to define the minimum relative distance be-
tween xo and the edge of the search space,

� ¼ min½xo � xL; xU � xo�
�max

:

� forms the basis of the pdf scaling factor and determines
the domain of � (j�j � � where 0���1

2). The bounded

version of Eq. (A1), a function of both �mut and �, is

pð�Þ ¼
8<
:
�Dð�Þ � ¼ 0

1
2
ð1þ�mutÞð1�j�jÞ�mut

1�ð1��Þ1þ�mut
0< � � 1

2

(A3)

customized to each xo.
Figure 28(b) shows Eq. (A3) for �mut ¼ 5 and three

values of �. Comparing �mut ¼ 5 curves in Figs. 28(a)
and 28(b), the shapes are the same, so the effect of �mut is
unchanged by the scaling factor. However, the extent in �
and the scaling of the curves do change with � demon-
strating that the scaling factor is effective. When xo is near
the edge of the search space, e.g., � ¼ 0:1 giving j�j �
0:1, the variation in the resulting independent variable
values, ��max, is much smaller than when xo is at the
center of the search space (� ¼ 0:5 or j�j � 0:5). This
also shows that preserving the symmetry of Eq. (A1) in
some ways overly restricts the variation in mutations.
When xo is one of the boundary values, � ¼ 0, so xom ¼
xo effectively turning off mutation. Arguably, in this ex-
ample, xom can take on any value in the search space, and

this could be achieved if symmetry were dropped and the
pdf domain shifted to 0 � � � 1 for xo ¼ xL or �1 �
� � 0 for xo ¼ xU.

2. Recombination

Recombination, also known as crossover, is a pairwise
operation where portions of parent genes, xp1 and xp2 , are

exchanged through a process specific to each operator to
produce offspring genes, xo1 and xo2 . These optimizations

use simulated binary crossover (SBX) [19,68,69]. Its name
alludes to the original GAs that performed operations on
genes represented as binary strings, sets of bits. In the
binary form, mutation flipped a bit from on to off or vice
versa, and recombination exchanged sequences of bits
between genes. SBX is the real valued approximation of
the binary string form of recombination. To model this
behavior, SBX maintains a spread, proportional distance,
between the parents and offspring. The spread is defined as

� ¼
��������
xo1 � xo2
xp1 � xp2

��������
assuming xp1 � xp2 . The offspring are calculated using

xo1 ¼ 1
2fðxp1 þ xp2Þ � �jxp1 � xp2 jg; (A4)

xo2 ¼ 1
2fðxp1 þ xp2Þ þ �jxp1 � xp2 jg: (A5)

By design, xo1 � xo2 , and each is equidistant from

ðxp1 þ xp2Þ=2. Table V summarizes the expected results of

Eqs. (A4) and (A5) for various ranges of �.
A pdf determines the distribution of � values. As

with polynomial mutation, there are two forms of the
pdf for bounded and unbounded independent variables.
The unbounded version is
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FIG. 28. Probability density functions used in polynomial mu-
tation: (a) when the independent variable domain is uncon-
strained for three values of �mut [Eq. (A1)]; (b) when the
independent variable domain is restricted to xL � x � xU

[Eq. (A3)]. In (b), �mut is fixed, and � is varied.
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pð�Þ ¼ 1

2
ð1þ �recÞ

���rec 0 � � � 1

��ð2þ�recÞ 1<�
(A6)

with tuning parameter, �rec � 0. Unlike the polynomial
mutation pdf, Eq. (A6), shown in Fig. 29(a), is not sym-
metric, and the domain of � does not have a finite upper
bound.

The effect of the tuning parameter �rec parallels the
influence of the polynomial mutation parameter �mut. As
�rec is increased, the variation decreases producing off-
spring closer to the parent values. As �rec ! 1, the pdf
approaches �Dð�� 1Þ turning off recombination since
� ¼ 1. The pdf when �rec ! 0 is broader leading to
greater variation with an increasing probability of produc-
ing offspring farther away from the parents (� � 1).
When �rec ¼ 0, the variations are uniformly distributed
for � � 1 producing offspring between the parent values.
For �> 1 when the parents are between the offspring,
there is higher probability that the offspring will be close
to the parents, but the probability of producing� � 1with
offspring far away from the parents is not zero.
When the independent variable is bounded, xL � x �

xU, the pdf has to be similarly rescaled to guarantee that
Eqs. (A4) and (A5) produce offspring within the indepen-
dent variable bounds provided the parents obey the bounds.
For � � 1, Eqs. (A4) and (A5) always produce offspring
within the bounds, but for �> 1, there is an upper limit
that depends on the relative distance between the parents
and the independent variable bounds. The upper bound, B,
is defined as

��¼min½xp1�xL;xp2 �xL;xU�xp1 ;x
U�xp2� (A7)

B ¼ 1þ 2��

jxp2 � xp1 j
: (A8)

With a B-dependent factor Eq. (A6) is rescaled to give the
bounded pdf

pð�Þ¼ 1þ�rec

2�B�ð1þ�recÞ

���rec 0���1

��ð2þ�recÞ 1<��B
(A9)

shown in Fig. 29(b).
B depends on the ratio of two distances: the minimum

from the parents to the edges of the search space and the
full distance between the parents. The ratio approaches
zero as one of the parents nears an edge of the search
space. This corresponds in Fig. 29(b) to the B ¼ 1 curve
where a parent is exactly on a search space edge, and the
solutions to Eqs. (A4) and (A5) are viable only for � � 1.
There is more than one path to producing B � 1, but the
most significant one is when the parents are very close to
the center of the search space, ðxU þ xLÞ=2. An example of
B � 1 is the B ¼ 2 curve in Fig. 29(b) allowing for greater
variation in the offspring since 0 � � � 2.
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[36] B. Terzić and Y. Zhang, in Proceedings of the
IPAC’10 Conference, Kyoto, Japan (ICR, Kyoto, 2010),
pp. 1910–1912.
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