383 research outputs found

    VANET addressing scheme incorporating geographical information in standard IPv6 header

    Get PDF

    Directional Routing Techniques in VANET

    Get PDF
    Vehicle Ad hoc Networks (VANET) emerged as a subset of the Mobile Ad hoc Network (MANET) application; it is considered to be a substantial approach to the ITS (Intelligent Transportation System). VANETs were introduced to support drivers and improve safety issues and driving comfort, as a step towards constructing a safer, cleaner and more intelligent environment. At the present time vehicles are equipped with a number of sensors and devices, including On Board Units (OBU); this enables vehicles to sense situations affecting other vehicles and manage communications, by exploiting infrastructures such as the Road Side Unit (RSU); creating a Vehicle to Infrastructure (V2I) pathway, or interacting directly with other vehicles creating a Vehicle to Vehicle (V2V) pathway. Owing to the lack of infrastructures and difficulties involved in providing comprehensive coverage for all roads because of the high expense associated with installation, the investigation in this research concentrates on the V2V communication type rather than theV2I communication type. Many challenges have emerged in VANET, encouraging researchers to investigate their research in an attempt to meet these challenges. Routing protocol issues are considered to be a critical dilemma that needs to be tackled in VANET, particularly in a sparse environment, by designing an effcient routing mechanism that impacts on enhancing network performance in terms of disseminating messages to a desireddestination, balancing the generated packet (overhead) on the network and increasing the ratio of packet delivery with a reduced time delay. VANET has some unique characteristics compared to MANET; specifically it includes high mobility and constrained patterns restricted by roads, which lead to generation of a disconnected area occurring continuously between vehicles creating a Delay Tolerant Network (DTN). This is in opposition to applying the multi-hope technique properly to deliver the packet to its desire destination. The aim in this thesis comprises two main contributions. First developing novel routing protocols for a sparse environment in VANET with the context of utilising the mobility feature, with the aid of the equipped devices, such as Global Position System (GPS) and Navigation System (NS). This approach exploits the knowledge of Second Heading Direction (SHD), which represents the knowledge of the next road direction the vehicle is intending to take, in order to increase the packet delivery ratio, and to increase the route stability by decreasing instances of route breakage. This approach comprises two approaches; the first approach was designed for a highway scenario, by selecting the next hop node based on a filtration process, to forward the packet to the desired destination, while the second approach was developed for the intersection and roundabout scenario, in order to deliver the packet to the destination (unknown location). The formalising and specification of the VSHDRP has been performed using the CCA (Calculus of Context-aware Ambient), in order to evaluate the protocols behaviours, the protocol has been validated using the ccaPL. In addition the performance of the VSHDRP has been evaluated using the NS-2 simulator; comparing it with Greedy Perimeter Stateless Routing (GPSR) protocol, to reveal the strengths and weaknesses of the protocol. Second, developing a novel approach to broadcasting the HELLO beacon message adaptively in VANET based on the node's circumstances (direction and speed), in order to minimise the broadcasting of unnecessary HELLO beacon messages. A novel architecture has been built based on the adaptive HELLO beacon message, which clarifies how the OBU components are interacting with the connected sensors, in order to portray any changes in the vehicle's circumstances, so as to take the right decision to determine appropriate action. This architecture has been built based on the concept of a context aware system, which divides the architecture into three main phases; sensing processing and acting

    A RELIABILITY-BASED ROUTING PROTOCOL FOR VEHICULAR AD-HOC NETWORKS

    Get PDF
    Vehicular Ad hoc NETworks (VANETs), an emerging technology, would allow vehicles to form a self-organized network without the aid of a permanent infrastructure. As a prerequisite to communication in VANETs, an efficient route between communicating nodes in the network must be established, and the routing protocol must adapt to the rapidly changing topology of vehicles in motion. This is one of the goals of VANET routing protocols. In this thesis, we present an efficient routing protocol for VANETs, called the Reliable Inter-VEhicular Routing (RIVER) protocol. RIVER utilizes an undirected graph that represents the surrounding street layout where the vertices of the graph are points at which streets curve or intersect, and the graph edges represent the street segments between those vertices. Unlike existing protocols, RIVER performs real-time, active traffic monitoring and uses this data and other data gathered through passive mechanisms to assign a reliability rating to each street edge. The protocol then uses these reliability ratings to select the most reliable route. Control messages are used to identify a node’s neighbors, determine the reliability of street edges, and to share street edge reliability information with other nodes

    Communication technologies to design vehicle-to-vehicle and vehile-to-infrastructures applications

    Get PDF
    Intelligent Transport Systems use communication technologies to offer real-time traffic information services to road users and government managers. Vehicular Ad Hoc Networks is an important component of ITS where vehicles communicate with other vehicles and road-side infrastructures, analyze and process received information, and make decisions according to that. However, features like high vehicle speeds, constant mobility, varying topology, traffic density, etc. induce challenges that make conventional wireless technologies unsuitable for vehicular networks. This paper focuses on the process of designing efficient vehicle-to-vehicle and vehicle-to road-side infrastructure applications.Peer ReviewedPostprint (published version

    Supporting Protocols for Structuring and Intelligent Information Dissemination in Vehicular Ad Hoc Networks

    Get PDF
    The goal of this dissertation is the presentation of supporting protocols for structuring and intelligent data dissemination in vehicular ad hoc networks (VANETs). The protocols are intended to first introduce a structure in VANETs, and thus promote the spatial reuse of network resources. Segmenting a flat VANET in multiple cluster structures allows for more efficient use of the available bandwidth, which can effectively increase the capacity of the network. The cluster structures can also improve the scalability of the underlying communication protocols. The structuring and maintenance of the network introduces additional overhead. The aim is to provide a mechanism for creating stable cluster structures in VANETs, and to minimize this associated overhead. Further a hybrid overlay-based geocast protocol for VANETs is presented. The protocol utilizes a backbone overlay virtual infrastructure on top of the physical network to provide geocast support, which is crucial for intervehicle communications since many applications provide group-oriented and location-oriented services. The final contribution is a structureless information dissemination scheme which creates a layered view of road conditions with a diminishing resolution as the viewing distance increases. Namely, the scheme first provides a high-detail local view of a given vehicle\u27s neighbors and its immediate neighbors, which is further extended when information dissemination is employed. Each vehicle gets aggregated information for road conditions beyond this extended local view. The scheme allows for the preservation of unique reports within aggregated frames, such that safety critical notifications are kept in high detail, all for the benefit of the driver\u27s improved decision making during emergency scenarios

    Stable Infrastructure-based Routing for Intelligent Transportation Systems

    Get PDF
    Intelligent Transportation Systems (ITSs) have been instrumental in reshaping transportation towards safer roads, seamless logistics, and digital business-oriented services under the umbrella of smart city platforms. Undoubtedly, ITS applications will demand stable routing protocols that not only focus on Inter-Vehicle Communications but also on providing a fast, reliable and secure interface to the infrastructure. In this paper, we propose a novel stable infrastructure- based routing protocol for urban VANETs. It enables vehicles proactively to maintain fresh routes towards Road-Side Units (RSUs) while reactively discovering routes to nearby vehicles. It builds routes from highly stable connected intersections using a selection policy which uses a new intersection stability metric. Simulation experiments performed with accurate mobility and propagation models have confirmed the efficiency of the new protocol and its adaptability to continuously changing network status in the urban environment
    • …
    corecore