26 research outputs found

    Extension of Modified Polak-Ribière-Polyak Conjugate Gradient Method to Linear Equality Constraints Minimization Problems

    Get PDF
    Combining the Rosen gradient projection method with the two-term Polak-Ribière-Polyak (PRP) conjugate gradient method, we propose a two-term Polak-Ribière-Polyak (PRP) conjugate gradient projection method for solving linear equality constraints optimization problems. The proposed method possesses some attractive properties: (1) search direction generated by the proposed method is a feasible descent direction; consequently the generated iterates are feasible points; (2) the sequences of function are decreasing. Under some mild conditions, we show that it is globally convergent with Armijio-type line search. Preliminary numerical results show that the proposed method is promising

    Improved Fletcher-Reeves Methods Based on New Scaling Techniques

    Get PDF
    This paper introduces a scaling parameter to the Fletcher-Reeves (FR) nonlinear conjugate gradient method. The main aim is to improve its theoretical and numerical properties when applied with inexact line searches to unconstrained optimization problems. We show that the sufficient descent and global convergence properties of Al-Baali for the FR method with a fairly accurate line search are maintained. We also consider the possibility of extending this result to less accurate line search for appropriate values of the scaling parameter. The reported numerical results show that several values for the proposed scaling parameter improve the performance of the FR method significantly

    Quasi-Newton-Based Preconditioning and Damped Quasi-Newton Schemes for Nonlinear Conjugate Gradient Methods

    Get PDF
    In this paper, we deal with matrix-free preconditioners for Nonlinear Conjugate Gradient (NCG) methods. In particular, we review proposals based on quasi-Newton updates, and either satisfying the secant equation or a secant-like equation at some of the previous iterates. Conditions are given proving that, in some sense, the proposed preconditioners also approximate the inverse of the Hessian matrix. In particular, the structure of the preconditioners depends both on low-rank updates along with some specific parameters. The low-rank updates are obtained as by-product of NCG iterations. Moreover, we consider the possibility to embed damped techniques within a class of preconditioners based on quasi-Newton updates. Damped methods have proved to be effective to enhance the performance of quasi-Newton updates, in those cases where the Wolfe linesearch conditions are hardly fulfilled. The purpose is to extend the idea behind damped methods also to improve NCG schemes, following a novel line of research in the literature. The results, which summarize an extended numerical experience using large-scale CUTEst problems, is reported, showing that these approaches can considerably improve the performance of NCG methods

    Effective Modified Hybrid Conjugate Gradient Method for Large-Scale Symmetric Nonlinear Equations

    Get PDF
    In this paper, we proposed hybrid conjugate gradient method using the convex combination of FR and PRP conjugate gradient methods for solving Large-scale symmetric nonlinear equations via Andrei approach with nonmonotone line search. Logical formula for obtaining the convex parameter using Newton and our proposed directions was also proposed. Under appropriate conditions global convergence was established. Reported numerical results show that the proposed method is very promising

    Modified parameter of Dai Liao conjugacy condition of the conjugate gradient method

    Full text link
    The conjugate gradient (CG) method is widely used for solving nonlinear unconstrained optimization problems because it requires less memory to implement. In this paper, we propose a new parameter of the Dai Liao conjugacy condition of the CG method with the restart property, which depends on the Lipschitz constant and is related to the Hestenes Stiefel method. The proposed method satisfies the descent condition and global convergence properties for convex and non-convex functions. In the numerical experiment, we compare the new method with CG_Descent using more than 200 functions from the CUTEst library. The comparison results show that the new method outperforms CG Descent in terms of CPU time, number of iterations, number of gradient evaluations, and number of function evaluations.Comment: 20 Pages, 4 figure

    Global convergence of new conjugate gradient method with inexact line search

    Get PDF
    In this paper, We propose a new nonlinear conjugate gradient method (FRA) that satisfies a sufficient descent condition and global convergence under the inexact line search of strong wolf powell. Our numerical experiment shaw the efficiency of the new method in solving a set of problems from the CUTEst package, the proposed new formula gives excellent numerical results at CPU time, number of iterations, number of gradient ratings when compared to WYL, DY, PRP, and FR methods

    A Family of Hybrid Stochastic Conjugate Gradient Algorithms for Local and Global Minimization Problems

    Get PDF
    This paper contains two main parts, Part I and Part II, which discuss the local and global minimization problems, respectively. In Part I, a fresh conjugate gradient (CG) technique is suggested and then combined with a line-search technique to obtain a globally convergent algorithm. The finite difference approximations approach is used to compute the approximate values of the first derivative of the function f. The convergence analysis of the suggested method is established. The comparisons between the performance of the new CG method and the performance of four other CG methods demonstrate that the proposed CG method is promising and competitive for finding a local optimum point. In Part II, three formulas are designed by which a group of solutions are generated. This set of random formulas is hybridized with the globally convergent CG algorithm to obtain a hybrid stochastic conjugate gradient algorithm denoted by HSSZH. The HSSZH algorithm finds the approximate value of the global solution of a global optimization problem. Five combined stochastic conjugate gradient algorithms are constructed. The performance profiles are used to assess and compare the rendition of the family of hybrid stochastic conjugate gradient algorithms. The comparison results between our proposed HSSZH algorithm and four other hybrid stochastic conjugate gradient techniques demonstrate that the suggested HSSZH method is competitive with, and in all cases superior to, the four algorithms in terms of the efficiency, reliability and effectiveness to find the approximate solution of the global optimization problem that contains a non-convex function
    corecore