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Abstract 
 

In this paper, we proposed hybrid conjugate gradient method using the convex combination of FR 

and PRP conjugate gradient methods for solving Large-scale symmetric nonlinear equations via 

Andrei approach with nonmonotone line search. Logical formula for obtaining the convex 

parameter using Newton and our proposed directions was also proposed. Under appropriate 

conditions global convergence was established. Reported numerical results show that the proposed 

method is very promising.  

 

Keywords:  Backtracking line search; Secant equation; symmetric nonlinear equations; 

Conjugate gradient method  
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1.  Introduction 
 

Let us consider the systems of nonlinear equations  
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 0,=)(xF  (1) 

 

 where nn RRF :  is a nonlinear mapping. Often, the mapping, F  is assumed to satisfy the 

following assumptions: 

 

A1.  There exists an nRx *  s.t 0=)( *xF . 

A2.  F  is a continuously differentiable mapping in a neighborhood of *x . 

A3.  )( *xF   is invertible. 

A4.  The Jacobian )(' xF  is symmetric. 

 

The prominent method for finding the solution of (1) is the classical Newton's method which 

generates a sequence of iterates }{ kx  from a given initial point 0x  via  

 

                                    ),())((= 1

1 kk

'

kk xFxFxx 

                        (2) 

 

where 0,1,2=k . The attractive features of this method are rapid convergence, and ease of 

implementation. Nevertheless, Newton's method requires the computation of the Jacobian matrix, 

which requires the first-order derivative of the systems. In practice, computations of some 

function’s derivatives are quite costly and sometimes they are not available or could not be done 

precisely. In this case Newton's method cannot be applied directly. 

 

In this work, we are interested in handling large-scale problems for which the Jacobian is either not 

available or requires a low amount of storage. The best method is CG approach. It is vital to 

mention that the conjugate gradient methods are among the popular used methods for 

unconstrained optimization problems. They are particularly efficient for handling large-scale 

problems due to their convergence properties, simplicity to implement and low storage (Zhou and 

Shen(2015)). Not withstanding, the study of conjugate gradient methods for large-scale symmetric 

nonlinear systems of equations is scanty, and this is what motivated us to have this paper. 

 

In general, CG methods for solving nonlinear systems of equations generate an iterative points 

}{ kx  from initial given point 0x  using  

                         ,=1 kkkk dxx                                              (3) 

 where 0>k  is attained via line search, and directions kd  are obtained using  

 

                          








,1,)(

,0=,)(
=

kifdxF

kifxF
d

kkk

k

k


                      (4) 

  

k  is term as conjugate gradient parameter. 

 

This problem under study may arise from an unconstrained optimization problem, a saddle point 

problem, Karush-Kuhn-Tucker (KKT) of equality constrained optimization problem, the 

discritized two-point boundary value problem, the discritized elliptic boundary value problem, and 
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etc. Equation (1) is the first-order necessary condition for the unconstrained optimization problem 

when F is the gradient mapping of some function, 

 

                                          RRf n :  

        min ( ), .nf x x R  (5) 

For the equality constrained problem  

 min ( ),f x  (6) 

 . ( ) = 0,s t h z  

 

where h  is a vector-valued function. The KKT conditions can be represented as the system (1) 

with ),,(= vzx  and  

 

 )),(,)()((=),( zhvzhzFvzF   (7) 

 

where v is the vector of Lagrange multipliers. Notice that the Jacobian ),( vzF  is symmetric for 

all ),( vz  (see, e.g., (Ortega and Rheinboldt (1970)). Problem (1) can be converted to the 

following global optimization problem (5) with our function f  defined by  

 

 .||)(||
2

1
=)( 2xFxf  (8) 

 

A large number of efficient solvers for large-scale symmetric nonlinear equations have been 

proposed, analyzed, and tested in the last decade. Among them the most classic one entirely due to 

(Li and Fukushima (1999)), in which a Gauss-Newton-based BFGS method is developed. The 

global and superlinear convergence are also established. Its performance is further improved by 

(Gu et al. (2002)), where a norm descent BFGS method is designed. Norm descent type BFGS 

methods especially coorporating with trust regions strategy are presented in the literature which 

showed their moderate effectiveness experimentally (Yuan et al. (2009)). Still the matrix storage 

and solving of n-linear systems are required in the BFGS type methods presented in the literature. 

The recent designed nonmonotone spectral gradient algorithm (Cheng and Chen (2013)) falls 

within the frame work of matrix-free.  

 

The conjugate gradient methods for symmetric nonlinear equations has received a good attention 

and taken an appropriate progress. However, (Li and Wang (2011)) proposed a modified 

Flectcher-Reeves conjugate gradient method which is based on the work of (Zhang et al. (2006)), 

and the results illustrate that their proposed conjugate gradient method is promising. In line with 

this development, further studies on conjugate gradient are inspired for solving large-scale 

symmetric nonlinear equations. (Zhou and Shen (2014)) extended the descent three-term 

polak-Rebiere-Polyak of (Zhang et al. (2006)) for solving (1) by combining with the work of (Li 

and Fukushima (1999)). Meanwhile the classic polak-Rebiere-Polyak is successfully used to solve 

symmetric Equation (1) by (Zhou and Shen (2015)). 

 

Subsequentely (Xia, et al.(2015)) proposed a method based on well-known conjugate gradient of 

(Hager and Zhang (2005)). The proposed method converges globally. Extensive numerical 
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experiments showed that each over-mentioned method performs quite well. Some related papers 

on symmetrics nolinear systems are (Romero-Cadava et al, (2013), Sabi'u (2017), Sabi'u and 

Sanusi (2016) and Waziri and Sabi'u (2016)). In this work, we propose to present a hybrid CG 

method using FR and PRP CG parameters. Our anticipation is to suggest a good CG parameter that 

will lead to a solution with less computational cost. 

 

We organized the paper as follows: In the next section, we present the details of the proposed 

method. Convergence results are presented in Section 3. Some numerical results are reported in 

Section 4. Finally, conclusions are made in Section 5. 

 

2.  Effective Modified Hybrid CG Method (MHCG) 
 

This section presents effective modified hybrid conjugate gradient method (FR and PRP) using 

some fundamental approach of (Andrei (2008)) by incorporating the nonnegative restriction of the 

CG parameter suggested by (Powell (1984)).  

 

We are motivated by the work of (Li and Fukushima (1999)), i.e., globally and superlinearly 

Gauss-Newton-based BFGS method for symmetric nonlinear system. In their work, an 

approximate gradient is obtained without taking the derivative, i.e., 

  

                           ,
)(

=
k

kkkk

k

FFxF
g



 
                                 (9) 

 

and the search direction kd  is produced by solving the linear equations kkk gdB = . where k  

is the stepsize to be obtained by some line search, and the matrix kB  is updated by the BFGS 

formula  

 

 .=1

k

T

k

T

kk

kk

T

k

k

T

kkk

kk
sy

yy

sBs

BssB
BB   

 

In view of the above fact, we further present the convex combination of FR and PRP conjugate 

gradient methods to obtain:  

 

                           ,)(1=* PRP

kk

FR

kk

H

k                               (10) 

 

where  

 

    
2

1 1
12 2

|| ( ) || ( )
= , = and = ( ) ( ),

|| ( ) || || ( ) ||

T
FR PRPk k k
k k k k k

k k

f x f x y
y f x f x

f x f x
  



 
 

 
       (11) 

 

k  is a scalar satisfying 10  k . By substituting (11) in to (10) we have 
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               .
||)(||

)(

||)(||

||)(||
)(1=

2

1

2

2

1*

k

k

T

k

k

k

k

k

H

k
xf

yxf

xf

xf









                         (12) 

 

Using (4) and (12), our new direction becomes:  

 

       ,
||)(||

)(

||)(||

||)(||
)(1)(=

2

1

2

2

1

11 k

k

k

T

k

kk

k

k

kkk d
xf

yxf
d

xf

xf
xfd









 

              (13) 

 

 or equvalently,  

 

         .
||)(||

)(

||)(||

||)(||
)(1)(=

2

1

2

2

1
11 k

k

k

T

k
kk

k

k
kkk s

xf

yxf
s

xf

xf
xfd









 

               (14) 

 

However, in order to guarantee a good selection of k , k , we equate the Newton direction with 

our proposed direction, due to the fact that "It is remarkable that if the point 1kx  is close enough 

to a local minimizer *x , then a good direction to follow is the Newton direction"  

 

      ,
||)(||

)(

||)(||

||)(||
)(1)(=)(

2

1

2

2

1

11

1

k

k

k

T

k

kk

k

k

kkk s
xf

yxf
s

xf

xf
xfxfJ









 



      (15) 

 

to get  

 

     .
||)(||

)(

||)(||

||)(||

||)(||

||)(||
)(=)(

2

1

2

2

1

2

2

1

11

1

k

k

k

T

k

kk

k

k

kk

k

k

kk s
xf

yxf
s

xf

xf
s

xf

xf
xfxfJ














 



        

(16) 

It is well-known that )()(=||)(|| 11

2

1   k

T

kk xfxfxf , Therefore we obtain 

 

      .
||)(||

))(()(

||)(||

||)(||
)(=)(

2

11

2

2

1

11

1

k

k

kk

T

k

kk

k

k

kk s
xf

xfyxf
s

xf

xf
xfxfJ









 



         (17) 

 

By the definition of )()(= 1 kkk xfxfy    we arrive at  

 

             .
||)(||

)()(

||)(||

||)(||
)(=)(

2

1

2

2

1

11

1

k

k

k

T

k

kk

k

k

kk s
xf

xfxf
s

xf

xf
xfxfJ









 



          (18) 

 

Multiplying (18) by T

kk sJ 1 , we have  

 

   ,
||)(||

)()(

||)(||

||)(||
)(=)(

2

1

12

2

1

1111 k

k

k

T

kT

kkkk

k

kT

kkk

T

kkk

T

k s
xf

xfxf
sJs

xf

xf
sJxfsJxfs









 





     

(19) 
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and hence, after some algebraic manipulations, we have 

  

 .

||)(||

)())(

||)(||

||)(||
)()(

=

12

1

12

2

1

111

kk

T

k

k

k

T

k

kk

T

k

k

k

kk

T

kk

T

k

k

sJs
xf

xfxf

sJs
xf

xf
xfJsxfs




















               (20) 

 

Due to the essential property of low memory requirements for the CG methods, we apply the 

modified secant equation proposed by (Babaie-Kafaki and Ghanbari (2014)),  

 

                              ,
||||

2=
2

1

1 k

k

T

k

k

kk s
ys

y
yJ 


                                         (21) 

   

 or, equivalently  

                        .=
||||2

1
=

21 kk

k

k

T

k

kk zy
y

ys
sJ 

                                  (22) 

 

 Substituting (22) into (20) we obtained the following hybridization parameter  

 

        .
)()(

||)(||||)(||)()(
=

1

2

1

2

1

k

T

kk

T

k

kk

T

kkk

T

kk
k

xfxfsz

xfszxfxfzs







                      (23) 

 

Replacing the terms )( 1 kxf  and )( kxf  by 1kg  and kg  in (9) respectively, yield  

 

 .=,
||||||||)(

= 1

1

2

1

2

1
kkk

k

T

kk

T

k

kk

T

kkk

T

kk
k xxs

ggsz

gszggzs







               (24) 

 

 Having derived the CG parameter ( *H

k ) in (10), we then present our direction as  

 

 1,2=,=,)(= *

1100 kdgdxgd k

H

kkk   ,                (25) 

 

 where  

 

 ,)(1=* PRP

kk

FR

kk

H

k                                (26) 

 

 and given by (24)k  with 

 

                          .=
||||

=,
||||

||||
= 12

1

2

2

1
kkk

k

k

T

kPRP

k

k

kFR

k ggyand
g

yg

g

g


          (27)  
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It is vital to note that, the hybridization parameter k  given by (24) may be outside the interval 

[0,1]. However, in order to have convex combination in (26), we adopt the consideration of 

(Andrei 2008)) in the sense that if 0<k , then we let 0=k , and if 1>k , then we let 0=k

. 

Finally, we present our scheme as  

 

 .=1 kkkk dxx                                     (28) 

 

Moreover, the direction kd  given by (25) may not be a descent direction of (8), in which case the 

standard wolfe and Armijo line searches cannot be used to compute the stepsize directly. 

Therefore, we use the nonmonotone line search proposed in (Zhou and Shen (2014)) to compute 

our stepsize k . Let 0>1 , 0>2 , (0,1)r  be constants and  k  be a given positive 

sequence such that  

 

 .<
0=




k

k

                                       (29) 

 

 Let  = max 1, k

k r  satisfy 

 

     ).(||||||)(||)()( 2

2

2

1 kkkkkkkkkk xfdxFxfdxf                  (30) 

 

Now, we can describe the algorithm for our proposed method as follows: 

 

Algorithm (MHCG)  
 

Step 1:  Given 0x  , 0>  , (0,1) , (0,1)r  and a positive sequence k  satisfying 

(29), and set 0=k . 

Step 2 :  Test a stopping criterion. If yes, then stop; otherwise continue with Step 3.  

Step 3 :  Compute kd  by (25). 

Step 4 :  Compute k  by the line search (30). 

Step 5 :  Compute kkkk dxx  =1 . 

Step 6 :  Consider 1= kk  and go to step 2. 

  

3.  Convergence Result 
 
This section presents global convergence results of hybrid CG method. To begin with, let us define 

the level set as:  

                                    .)()(|= 0xfexfx n                      (31)  

 

To analyze the convergence of our method, we will make the following assumptions on nonlinear 

systems (1). 
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Assumption 1 
  

(i)  The level set   defined by (31) is bounded. 

(ii)  There exists *x  such that 0=)( *xF  , )(xF   is continuous for all x .   

(iii)  In some neighborhood N  of  , the Jacobian is Lipschitz continous, i.e there exists a 

positive constant 0>L  such that  

 

 ,)()( yxLyFxF                                (32) 

 

 for all Nyx ,  . 

 

Properties (i) and (ii) imply that there exists positive constants 1M , 2M  and 1L  such that  

 

 ,,||)(||,||)(|| 21 NxMxJMxF                           (33) 

  

 .,,||)(||||,||||)()(|| 21 NyxMxJyxLyfxf                (34) 

 

Lemma 1.1.  (Zhou and Shen (2014))  

 

Let the sequence  kx  be generated by the algorithms above. Then the sequence  |||| kF  

converges and Nxk   for all 0k .  

 

Lemma 1.2.   

 

Let the properties of (1) above hold. Then we have  

 

 0,||=||lim||=||lim k
k

kk
k

sd


                               (35) 

  

 .0||=||lim kk
k

F


                                   (36) 

 

 Proof: 

 

 By (29) and (30) we have for all 0>k ,  

 

.||||||||||||||||||)(|||||| 22

1

22

2

2

1

2

2 kkkkkkkkkk FFFdxFd           (37) 

 

 By summing the above k  inequality, we obtain  

 

        .||||)(1|||||||| 2

1

0=

22

0=

2 








  ki

k

i

kkk

k

i

FFd                               (38) 
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From (33) and the fact that  k  satisfies (29), the series 2

0=
|||| kk

k

i
d  is convergent. This 

implies (35). By a similar way, we can prove that (36) holds. 

  

The following result shows that Modified hybrid CG method algorithm is globally convergent. 

 

Theorem 1.1.  

 

Let the properties of (1) above hold. Then the sequence  kx  generated by Modified hybrid CG 

method algorithm converges globally; that is,  

 

 0.||=)(||liminf k
k

xf


                                 (39) 

 

Proof: 

 

We prove this theorem by contradiction. Suppose that (39) is not true, then there exists a positive 

constant   such that  

 

 0.,||)(||  kxf k                                  (40) 

 

 Since kkk FJxf =)( , (40) implies that there exists a positive constant 1  satisfying  

 

 0.,|||| 1  kFk                                    (41) 

 

Case (i):  
 

0.>limsup kk



 Then by (36), we have 0||=||liminf kk F . This and Lemma (1.1.) show that 

0||=||lim kk F , which contradicts (40). 

 

Case (ii):  
 

0=limsup kk



. Since 0k , this case implies that  

 

 0.=lim k
k




                                      (42) 

 

By definition of kg  in (9) and the symmetry of the Jacobian, we have  

 

 ,||
)(

||=||)(||
1

1

k

T

k

k

kkkk

kk FJ
FFxF

xfg 










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               ,||))(||= 1

1

0
kkkkk dtFJFtxJ     

  

                              ,1

2

1  kLM        (43) 

 

where we use (33) and (34) in the last inequality. Equations and/or inequalities (29), (30) and (40) 

show that there exist a constant 0>2  such that 

  

 0.,|||| 2  kgk                                    (44) 

 

By (9) and (33), we get  

 

 0.,||)(||=|| 211

1

0
  kMMdtFFtxJg kkkkk                     (45) 

 

From (45) and (34), we obtain  

 

 ,||||=|||| 1 kkk ggy  

  

 ,||)()(||||)(||||)(|| 111   kkkkkk xfxfxfgxfg  

  

 .||||)( 1121

2

1   kkk sLLM                              (46) 

 

This together with (42) and (36) shows that 0||=||lim kk y . Clearly kz  is bounded, and 

therefore from (33), (46) and (44), we have  

 

 ,0
||||||||

||||||||||||||)(||
||

1

2

1

2

1 







k

T

kk

T

k

kk

T

kkk

T

kk

k
ggsz

gszggzs
                 (47) 

 

meaning there exists a constant (0,1)  such that for sufficiently large k   

 

 .||  k                                        (48) 

 

Again, from the definition of our *

k  we obtain 

 

 ,0||||2
||||

||||
||

||||

||||
|)(1||| 212

1

2

2

1*  

k

k

k

T

k

k

k

k

k

H

k yMM
g

yg

g

g
           (49) 

 

which implies there exists a constant (0,1)  such that for sufficiently large k   

 

                                               .|| *  H

k                                  (50) 
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Without loss of generality, we assume that the above inequalities hold for all 0k . Then we get  

 

               |||||||||||||||||| 21

*

11 kk

H

kkk dMMdgd   
,                     (51) 

 

which shows that the sequence  1kd  is bounded. Since 0=lim kk  , then 
r

k
k


 ='  does not 

satisfy (30), namely  

 

 ),(||||||)(||)(>)( 2'

2

2'

1

'

kkkkkkkkkk xfdxFxfdxf               (52) 

 

which implies that 

  

 .||||||)(||>
)()( 2'

2

2'

1'

'

kkkk

k

kkkk dxF
xfdxf








                (53) 

 

By the Mean Value Theorem, there exists (0,1)k  such that  

 

 .)(=
)()( '

'

'

k

T

kkkk

k

kkkk ddxf
xfdxf








                     (54) 

 

Since   kx  is bounded, without loss of generality, we assume .*xxk   By (9) and (25), we 

have  

 

 ),(=limlim=lim
**

11 xfdgd k

H

k
k

k
k

k
k


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
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


                      (55) 

 

where we use (49), (30) and the fact that the sequence  1kd  is bounded.  

On the other hand, we have  

 

 ).(=)(lim
*' xfdxf kkkk

k




                             (56) 

 

Hence, from (53) - (56), we obtain 0)()( **  xfxf T
, which means 0||=)(|| *xf . This 

contradicts (40). The proof is then completed. 

 

 

4.  Numerical results 
 

In this section, we compare the performance of our method for solving nonlinear Equation (1) with 

norm descent conjugate gradient method for symmetric nonlinear equations (Xia, et al (2016)).   

 

 Modified hybrid CG method (MHCG): We set ω1 = ω2 = 10−4, α0 = 0.01, r = 0.3 and

. 
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 For the norm descent (NDCG) conjugate gradient method for symmetric nonlinear 

equations, we set  and θ = 0.2. 

 

The code for both MHCGM and NDCGM methods were written in Matlab 7.4 R2010a and run on 

a personal computer 1.8 GHz CPU processor and 4 GB RAM memory. We stopped the iteration if 

the total number of iterations exceeds 2000 or ||Fk|| ≤ 10−4.We use “-” to represent failure due one 

of the following: 

 

Memory requirement 

(i) Number of iteration exceed 2000. 

(ii) If ||Fk|| is not a number (NaN). 

 

We tested the methods on ten test problems with different initial points and values. Problem 2-7 

are from (Zhou and Shen (2015)) while problems 1, 8, and 10 are from (La Cruz (2006)). 
 

Problem 1.  

 

The strictly convex function: 

 
𝐹𝑖(𝑥) = 𝑒𝑥𝑖 − 1; 𝑖 =2, ,... , 𝑛 

 
Problem 2. 

1)(=)( 2

2

2

111  xxxxF  

1,1,2,=;1)2(=)( 2

1

22

1   nixxxxxF iiiii   

).(=)( 2

1 nnnn xxxxF 
 

 
Problem 3. 

 (n is multiple of 3) for i = 1, 2, …, n/3. 

1,=)( 2

3132323  iiii xxxxF   

2,=)( 2

13

2

233132313   iiiiii xxxxxxF   

.
1323

3 =)( 





 i
x

i
x

eexiF  

 
Problem 4.  

 

The variable band function:  

 

10.5232=)( 321

2

11  xxxxxF   

11.532=)( 11

2   iiiii xxxxxF  for 1,2,3,= ni    

10.532=)( 1

2  nnnn xxxxF  

 

Problem 5.  

 

The Exponential function:  
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Problem 6.  

 

Trigonometric Function:  

 

))(2)(12(=)(
1= iij

n

jiii cosxsinxcosxsinxcosxinxF    for ni ,...1,2,=  

 

Problem 7. 

 

 

Tx

n

x eexxF 1),1,(

21

1

121

12

=)( 1 







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
























 . 

 

Problem 8.  

 

The discretized Chandrasehar's H-equation:  

 

1

=1
( ) = (1 ) , = 1,2, , ,

2

n i j

i i j
i j

xc
F x x fori n

n



 

 


  

with [0,1)c  and ,
0.5

=
n

i 
  for .1 ni   (In our experiment we take 0.9=c ).  

 

Problem 9.  

 

The Hanbook function:  

 

1))((21))2((11)(1)((21)0.05(=)(
1=

2

1=1=
  j

n

jij

n

jj

n

jii xsinxxxsinxxF ,  

                                                for = 1,2, , .i n  

 

Problem 10.  

 

The Singular function:  
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2

2

3

11
2

1

3

1
=)( xxxF  ,  
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1

32

1
=)( 2

1

32   nixx
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xxF iiii  ,  

32
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n
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Table 1. Numerical comparison of MHCG and NDCG methods, where e = ones (n, 1) 

MHCG    NDCG 

Problem 

(P) 

x0 n Iter Time(s) 

||Fk|| 

Iter Time(s) 

||Fk|| 

p1 0.1e 10 5 0.004152 2.4960E-05 235 0.251744 3.1176E-05 

  50 5 0.004607 5.5812E-05 230 0.282388 1.2279E-05 

  100 7 0.009444 3.6665E-05 312 0.37925 7.7940E-05 

  500 4 0.01209 1.4583E-05 204 0.383154 6.1127E-05 

  1000 5 0.018002 8.7573E-06 135 0.372201 6.1921E-05 

  5000 5 0.112358 3.7836E-05 74 0.73449 1.0212E-05 

  10000 9 0.221436 2.0444E-05 285 5.00552 9.2574E-05 

  50000 7 0.812091 3.4157E-06 367 20.626543 9.4568E-05 

  100000 7 1.417428 4.8325E-06 385 34.784479 9.0007E-05 

  500000 7 7.595506 1.0807E-05 89 71.106104 1.9135E-05 

  1000000 7 18.224465 1.5284E-05 277 406.040124 9.4690E-05 

 e 10 19 0.01448 1.1763E-05 - - - 

  100 21 0.030856 5.1622E-05 - - - 

  500 25 0.045411 2.8848E-05 - - - 

  1000 25 0.06173 4.0994E-05 - - - 

  10000 32 0.466721 2.3620E-05 - - - 

  100000 47 4.960312 8.7077E-05 - - - 

  1000000 63 72.485452 7.3879E-05 - - - 

p2 e 10 79 0.111057 9.3580E-05 168 0.289391 6.8854E-06 

  50 84 0.116964 9.9343E-05 185 0.336684 9.4672E-05 

  500 107 0.286147 8.8335E-05 135 0.381733 7.1119E-05 

  1000 226 1.30509 9.8852E-05 157 0.623079 8.8394E-05 
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Table 1. 

continued 

   MHCG   NDCG  

Problem (P) x0 n Iter Time(s) ||Fk|| Iter Time(s) ||Fk|| 

 e 5000 155 2.963333 9.6521E-05 292 4.814973 1.3971E-05 

 0.1e 10 46 0.073089 8.9342E-05 223 0.374284 3.0425E-05 

  100 59 0.076713 9.8640E-05 228 0.432298 1.7266E-05 

  500 51 0.127444 9.6700E-05 219 0.62414 4.2528E-05 

  1000 58 0.175864 8.4562E-05 377 1.437893 8.7058E-05 

  5000 55 0.725417 9.7917E-05 146 2.101225 2.8329E-05 

  10000 

 

71 

 

1.58523415 9.9975E-05 

 

210 

 

5.408932 

 

2.6493E-05 

 

p3 e 10 8 0.024324 2.9125E-05 233 0.47707 3.5503E-05 

  50 10 0.023204 2.0405E-05 118 0.266849 3.3633E-05 

  100 10 0.028512 2.9305E-05 169 0.388876 3.1052E-05 

  500 10 0.033674 2.0351E-05 177 0.597558 3.3359E-05 

  1000 10 0.063004 2.7138E-05 133 0.64563 3.9039E-05 

  5000 11 0.24179 2.0352E-05 270 4.367515 1.0791E-06 

  10000 11 0.355453 2.8786E-05 210 6.300244 8.5089E-05 

  50000 12 1.452452 5.6790E-05 163 20.954907 1.0481E-06 

  100000 12 2.927537 8.0315E-05 32 8.758414 2.5414E-05 

  500000 14 23.389424 2.4469E-05 286 491.747866 4.2218E-05 

p4 0.01e 10 33 0.04127 3.5860E-05 79 0.149806 4.8545E-05 

  500 47 0.140095 7.5112E-05 214 0.633073 9.7820E-05 

  5000 33 0.482501 6.0489E-05 186 2.856924 9.1662E-05 

  10000 34 0.895003 9.1386E-05 281 8.228554 7.6931E-05 
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Table 1. 

continued 

   MHCG   NDCG  

Problem (P) x0 n Iter Time(s) ||Fk|| Iter Time(s) ||Fk|| 

 

0.001e 10 35 0.060447 8.4854E-05 177 0.326855 4.7498E-05 

  50 46 0.083761 8.0748E-05 255 0.495556 3.8617E-05 

  500 41 0.125483 4.9550E-05 379 1.092658 6.3674E-05 

  1000 41 0.166901 8.5368E-05 139 0.599892 5.6769E-05 

  5000 29 0.460581 7.2133E-05 392 5.754014 5.6338E-05 

  10000 35 0.90796 6.7369E-05 280 8.174312 9.4021E-05 

  20000 34 1.700239 8.2940E-05 231 12.645075 9.8815E-05 

  50000 45 5.844213 8.5623E-05 277 37.495468 9.1351E-05 

p5 e 10 133 0.10697 9.9772E-05 - - - 

  50 55 0.04746 9.9431E-05 7 0.016028 7.4037E-06 

  100 43 0.053795 9.8712E-05 20 0.040105 9.9909E-05 

  500 18 0.036476 9.7176E-05 13 0.053968 9.0816E-05 

  1000 15 0.068315 9.7219E-05 - - - 

  5000 4 0.215689 7.6433E-05 - - - 

  15000 4 0.330219 7.2615E-06 - - - 

  30000 3716 4.827528 7.2792E-05 - - - 

  50000 11 1.583376 2.8123E-05 - - - 

  100000 96 55.04375 8.2132E-08 - - - 

 0.1e 1000 13 0.051755 9.1051E-05 12 0.066409 7.1595E-05 

  5000 9 0.169597 7.0957E-05 - - - 

  20000 8 0.461551 2.7286E-05 - - - 
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Table 1. 

continued 

   MHCG   NDCG  

Problem (P) x0 n Iter Time(s) ||Fk|| Iter Time(s) ||Fk|| 

         

  1000 13 0.051755 9.1051E-05 12 0.066409 7.1595E-05 

  5000 9 0.169597 7.0957E-05 - - - 

  20000 8 0.461551 2.7286E-05 - - - 

  50000 6 0.866973 5.2762E-07 - - - 

p6 E 10 13 0.053413 4.7789E-05 177 0.48445 2.2000E-05 

  50 18 0.071534 4.0043E-05 147 0.322498 1.3126E-05 

  100 9 0.027004 9.5626E-05 - - - 

  500 22 0.914638 9.2132E-05 - - - 

  5000 14 2.293433 4.2411E-06 - - - 

 

0.1e 10 6 0.008789 4.0631E-05 127 0.230204 9.5134E-05 

  50 10 0.019359 5.1482E-05 213 0.418617 8.0372E-05 

  100 14 0.066004 6.8445E-05 - - - 

  500 13 0.117027 4.7709E-05 - - - 

  1000 17 0.57157 4.5758E-05 29 0.463226 4.7256E-05 

  5000 9 0.809446 1.5873E-05 - - - 

p7 E 10 54 0.816463 6.5835E-05 124 2.350906 8.8127E-05 

  50 60 0.912231 9.6271E-05 263 5.075185 5.0509E-06 

  100 44 0.797073 9.1718E-05 206 4.682255 9.9856E-05 

  500 140 5.519014 7.5260E-05 232 11.018316 3.4086E-05 

  1000 153 11.901384 7.8253E-05 556 35.780475 7.4905E-05 

  2000 209 39.099584 7.8232E-05 - - - 

 

0.1e 50 51 0.758937 7.3703E-05 171 3.563202 9.4258E-05 

  100 32 0.537904 8.6058E-05 125 2.956756 9.9212E-05 

  500 34 1.371598 7.0056E-05 288 14.107912 2.0809E-05 

  1000 35 3.724081 8.5141E-05 184 21.638344 9.4503E-05 

  2000 39 9.942265 7.2008E-05 160 39.072358 1.9009E-05 

  5000 57 63.210408 9.0709E-05 226 331.4083 4.3878E-05 
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Table 1. 

continued 

   MHCG   NDCG  

Problem (P) x0 N Iter Time(s) ||Fk|| Iter Time(s) ||Fk|| 

P8 E 10 17 0.029083 7.2091E-05 50 0.084757 2.3241E-05 

  50 11 0.021257 6.8699E-05 74 0.141314 9.1207E-05 

  100 10 0.016507 7.1078E-05 163 0.273333 4.9044E-05 

  500 12 0.036932 4.1607E-05 79 0.222944 1.1367E-06 

  1000 12 0.051807 2.6772E-05 157 0.57454 5.4836E-05 

  5000 11 0.171281 3.4441E-05 154 2.255789 4.1824E-05 

  10000 12 0.300283 5.7333E-05 248 6.268214 9.8647E-05 

  50000 13 1.480605 5.3580E-05 281 35.16018 9.6746E-05 

 

0.1e 10 4 0.03124 7.1016E-05 167 0.262213 5.3532E-05 

  50 14 0.026881 5.4923E-06 169 0.392761 9.1171E-05 

  100 18 0.023023 4.3557E-05 160 0.291968 3.9346E-05 

  500 7 0.027501 5.1791E-05 146 0.391374 1.4168E-05 

  1000 11 0.056615 4.1336E-05 151 0.565461 5.1639E-05 

  5000 9 0.208535 6.5285E-05 106 1.520818 9.6602E-05 

  10000 10 0.343272 8.1834E-05 220 5.882597 8.3914E-05 

  50000 11 1.413084 5.6720E-05 115 14.40985 1.4589E-05 

  100000 11 3.367426 8.5590E-05 240 70.253769 7.7427E-06 

p9 0.1e 10 56 0.169638 3.9729E-05 - - - 

  100 10 0.057726 5.7167E-05 - - - 

  500 8 0.081221 8.0811E-06 - - - 

 

0.01e 10 15 0.062492 7.0866E-05 - - - 

  50 14 0.077303 9.8245E-05 - - - 

  100 19 0.115998 9.9150E-05 - - - 

  200 14 0.083182 3.7953E-05 - - - 

p10 0.01e 50 171 0.176647 9.9377E-05 489 0.582798 9.9980E-05 

  100 141 0.17417 9.9845E-05 292 0.428702 9.9908E-05 

  500 24 0.09636 9.9089E-05 107 0.384409 9.9874E-05 
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  1000 72 0.379641 9.9692E-05 72 0.484194 9.9444E-05 

 

 
τ 

                  Figure 1. Comparison of the performance of MHCG and NDCG methods (in term of CPU time) 

 

 
τ 

              Figure 2. Comparison of the performance of MHCG and NDCG methods (in term of number of iterations) 

 

Table 1 lists the numerical results, where Iter and Time stand for the total number of all iterations 

and the CPU time in seconds, respectively. ||Fk|| is the norm of the residual at the stopping point. 

One can see that MHCG solves most of the problems successfully while NDCG failed to solve 

more than 31 test problems, and this is a clear indication that MHCG is more efficient than NDCG 

compared to the number of iterations and CPU time respectively. 

 

Furthermore, on the average, our ||F(xk)|| is very small, which signifies that the solution obtained is 

a better approximation of the exact solution compared to the NDCG. However, from Figures 1 and 

2 one can easily see that our claim is justified i.e. less number of iteration and CPU time to 

converge to approximate solution. 

 

It is important to mention that in this paper βk
H∗ is obtained using the convex combination of βk

FR 

and βk
PRP, which is quite different from our method (waziri and Sabi’u (2015)), where βk was 

obtained by combining Birgin and Mart´inez direction with classical Newton direction. However, 

in this research we proposed a hybridization parameter σk ∈ [0, 1] (24), which will guarantee a 

good convex combination as suggested by(Andrei (2008). 

5. Conclusion 

In this paper, we developed effective hybrid conjugate gradient methods based on Andrei’s 
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approach of hybridizing CG parameters using well-known convex combination as in (Andrei 

(2008), Andrei (2008)). A new convex parameter was proposed using the proposed direction in 

this paper and the famous Newton direction. A modified secant equation was used in obtaining the 

hybridization parameter together with the nonnegative restriction of the conjugate gradient 

parameter as suggested by (Kafaki and Ghanbari (2012)). The proposed method has less number 

of iterations and CPU time compared to the existing algorithms. In addition, the interesting aspect 

of method is that, the method is a fully derivative-free iterative procedure with global convergence 

property under some reasonable conditions. Numerical comparisons using a set of large-scale test 

problems show that the proposed method is very promising. However, to extend the method to 

general smooth and non-smooth nonlinear equations will be our further research. 
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