7 research outputs found

    An efficient intelligent analysis system for confocal corneal endothelium images

    Get PDF
    A confocal microscope provides a sequence of images of the corneal layers and structures at different depths from which medical clinicians can extract clinical information on the state of health of the patient's cornea. A hybrid model based on snake and particle swarm optimisation (S-PSO) is proposed in this paper to analyse the confocal endothelium images. The proposed system is able to pre-process images (including quality enhancement and noise reduction), detect cells, measure cell densities and identify abnormalities in the analysed data sets. Three normal corneal data sets acquired using a confocal microscope, and three abnormal confocal endothelium images associated with diseases have been investigated in the proposed system. Promising results are presented and the performance of this system is compared with manual and two morphological based approaches. The average differences between the manual and the automatic cell densities calculated using S-PSO and two other morphological based approaches is 5%, 7% and 13% respectively. The developed system will be deployable as a clinical tool to underpin the expertise of ophthalmologists in analysing confocal corneal images

    Automated Morphometric Analysis of in-vivo Human Corneal Endothelium

    Get PDF
    In-vivo specular and confocal microscopy provide information on the corneal endothelium health state. The reliable estimation of the clinical parameters requires the accurate detection of cell contours. We propose a method for the automatic segmentation of cell contour. The centers of the cells are detected by convolving the original image with Laplacian of Gaussian kernels, whose scales are set according to the cell size preliminary estimated through a frequency analysis. A structure made by connected vertices is derived from the centers, and it is fine-tuned by combining information about the typical regularity of endothelial cells shape with the pixels intensity of the actual image. Ground truth values for the clinical parameters were obtained from manually drawn cell contours. An accurate automatic estimation is achieved on 30 images: for each clinical parameter, the mean difference between its manual estimation and the automated one is always less than 7%

    Automatic image processing applied to corneal endothelium cell count and shape characterization

    Get PDF
    Corneal endothelium cell count, as well as cell hexagonality percent characterization, are of great importance nowadays to detect anomalies and pathologies of human eye, such as glaucoma. Prevalent technologies used are mainly based in both microscopy and a later image analysis. However, automatic cell count made by microscopes’ built-in software is rather inconsistent, therefore many laboratories opt for using manual count as the most reliable alternative. This count is a tedious and time-consuming task, that can lead to human error, for this reason, several proposals to automate the process have been made. Present communication shows a procedure for the automatic pre-processing, segmentation and analysis of the images obtained by a confocal microscope, using watershed transform, and the graphics user interface (GUI) created with Matlab® to apply this procedure. In order to quantify the procedure’s quality, 30 corneal endothelium images with a number of cells between 90 and 170 were analysed, resulting in a mean error in cell count of 4.3%, which can be considered a reasonably good result. However, results achieved for hexagonality percent using this method, and with the available image quality, are not as good as expected, which invites to improving image quality, focusing in areas with better cell homogeneity or even considering the application of other algorithms, such as neural networks, for future works.This work was supported by the Thematic Network for Co-Operative Research in Health (RETICS-RD16/0008/0012), financed by the Carlos III Health Institute and the European Regional Development Fund (FEDER)

    Corneal confocal microscopy detects a reduction in corneal endothelial cells and nerve fibres in patients with acute ischemic stroke

    Get PDF
    YesEndothelial dysfunction and damage underlie cerebrovascular disease and ischemic stroke. We undertook corneal confocal microscopy (CCM) to quantify corneal endothelial cell and nerve morphology in 146 patients with an acute ischemic stroke and 18 age-matched healthy control participants. Corneal endothelial cell density was lower (P<0.001) and endothelial cell area (P<0.001) and perimeter (P<0.001) were higher, whilst corneal nerve fbre density (P<0.001), corneal nerve branch density (P<0.001) and corneal nerve fbre length (P=0.001) were lower in patients with acute ischemic stroke compared to controls. Corneal endothelial cell density, cell area and cell perimeter correlated with corneal nerve fber density (P=0.033, P=0.014, P=0.011) and length (P=0.017, P=0.013, P=0.008), respectively. Multiple linear regression analysis showed a signifcant independent association between corneal endothelial cell density, area and perimeter with acute ischemic stroke and triglycerides. CCM is a rapid non-invasive ophthalmic imaging technique, which could be used to identify patients at risk of acute ischemic stroke.Qatar National Research Fund Grant BMRP2003865

    A fully automated cell segmentation and morphometric parameter system for quantifying corneal endothelial cell morphology

    Get PDF
    YesBackground and Objective Corneal endothelial cell abnormalities may be associated with a number of corneal and systemic diseases. Damage to the endothelial cells can significantly affect corneal transparency by altering hydration of the corneal stroma, which can lead to irreversible endothelial cell pathology requiring corneal transplantation. To date, quantitative analysis of endothelial cell abnormalities has been manually performed by ophthalmologists using time consuming and highly subjective semi-automatic tools, which require an operator interaction. We developed and applied a fully-automated and real-time system, termed the Corneal Endothelium Analysis System (CEAS) for the segmentation and computation of endothelial cells in images of the human cornea obtained by in vivo corneal confocal microscopy. Methods First, a Fast Fourier Transform (FFT) Band-pass filter is applied to reduce noise and enhance the image quality to make the cells more visible. Secondly, endothelial cell boundaries are detected using watershed transformations and Voronoi tessellations to accurately quantify the morphological parameters of the human corneal endothelial cells. The performance of the automated segmentation system was tested against manually traced ground-truth images based on a database consisting of 40 corneal confocal endothelial cell images in terms of segmentation accuracy and obtained clinical features. In addition, the robustness and efficiency of the proposed CEAS system were compared with manually obtained cell densities using a separate database of 40 images from controls (n = 11), obese subjects (n = 16) and patients with diabetes (n = 13). Results The Pearson correlation coefficient between automated and manual endothelial cell densities is 0.9 (p < 0.0001) and a Bland–Altman plot shows that 95% of the data are between the 2SD agreement lines. Conclusions We demonstrate the effectiveness and robustness of the CEAS system, and the possibility of utilizing it in a real world clinical setting to enable rapid diagnosis and for patient follow-up, with an execution time of only 6 seconds per image
    corecore