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1. Introduction 

In vivo Corneal Confocal Microscopy (CCM) is a fast non-

invasive clinical technique for acquiring images and quantifying 

morphological changes in the cornea to provide insights into a 

range of endothelial pathologies and infections [1][2]. As shown 

in Fig.1, the cornea is the anterior transparent part of the eye, 

which transfers and focuses light onto the retina. It is composed 

of five different layers, covering crucial internal structures of the 

human eye, including the iris, pupil, lens, and anterior chamber 

[3][4]. Corneal transparency is primarily dependent on corneal 

stromal hydration, which is maintained by an active transport 

mechanism in the corneal endothelium [5]. The corneal 

endothelium is a connected single-layer of hexagonal uniformly 

sized cells on the posterior surface of the human cornea [6]. 

Several factors can damage this regular tessellation and cause cell 

loss, including aging, intraocular surgery, inflammation or other 

ocular or systemic pathologies [7]. Damage to the endothelial 

cells can lead to altered hydration of the corneal stroma and 

visual loss, which may be associated with irreversible endothelial 

cell pathology requiring corneal transplantation (Keratoplasty) 

[8]. The corneal endothelial loss is compensated by an 

enlargement and migration of neighbouring cells due to a lack of 

regenerative capacity of the corneal endothelium. This results in 

a decrease in cell density, increase in the variation of the cell 

surface area and deformation of the hexagonal pattern of 

endothelial cells, which can cause disruption of endothelial layer 

function as a fluid barrier [9].  

In-vitro quantitative analysis of the corneal endothelium is 

currently undertaken at eye hospitals to assess the functional 

capacity of the corneal endothelium, and hence the quality of the 

donor cornea prior to transplantation [10]. A minimum 

Endothelial Cell Density (ECD) of 400 to 600 (cells/mm
2
) is an 

indicator of corneal endothelial health and most donor corneas 

should have an ECD of at least 2000 (cells/mm
2
) to be authorized 

for Keratoplasty [7][11]. The corneal endothelium should also 

ideally have 100% Hexagonality, with 60% being accepted as an 

indicator of a healthy corneal endothelium [9]. The most 

commonly used features to quantify endothelial cell health are: 

Endothelial Cell Density (ECD) (cell/mm
2
), polymegathism 

(Coefficient of Variation in cell size), pleomorphism (Percentage 

of Hexagonality Coefficient), Mean Cell Area (MCA) (µm
2
) and 

Mean Cell Perimeter (MCP). However, these features are not 

frequently used in the clinical setting due to the considerable 

errors of cell boundary detection [12]. Recently even healthy 

control subjects have been shown to have significant differences 

in ECD and pleomorphism in central and peripheral areas of the 

cornea [1]. To date, the quantitative analysis of the corneal 

endothelium has been manually performed by visual inspection 

of images by ophthalmologists. ECD is derived by experts 

counting all the endothelial cells inside a selected Region of 

Interest (ROI) aided using a digital image tool that allows them 

to place a mark on each endothelial cell [10]. This manual 

procedure is tedious, time-consuming, highly subjective, and 

error prone, and does not allow the geometric analysis of 

endothelial cell shape [5]. This limits the quantification of the 

additional morphometric features to clinical research and does 
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not allow adoption for routine clinical use. However, the 

additional morphometric features can be easily measured if the 

endothelial cell boundaries are correctly identified [6]. An 

objective and fully-automated segmentation and quantification 

system enabling rapid quantitative analysis of the corneal 

endothelium would facilitate translation to the clinical setting. 

Whilst several prototype systems have been proposed to 

automatically detect endothelial cell boundaries, the quality of 

the captured images (e.g., images are often blurred and noisy) can 

result in significant issues in the detection of cell boundaries 

requiring operator interaction to guide the detection process and 

hence reducing the speed of analysis, more details are provided in 

Section 2.  

In this paper, a totally automatic, robust and real-time system 

is proposed, termed the Corneal Endothelium Analysis System 

(CEAS) for the segmentation and computation of the different 

morphological parameters of endothelial cells in the human 

cornea obtained by in vivo corneal confocal microscopy. First, an 

FFT-Band-pass filter is applied to reduce noise and enhance the 

image quality to make the cells more visible. Secondly, a 

watershed transform and a Voronoi tessellation are applied to 

detect all the endothelial cells in the image, which facilitates the 

robust and accurate extraction of the endothelial cell contour. 

This paper is organized as follows: Related endothelial research 

work is discussed in Section 2. The description of the materials 

used and the proposed endothelium segmentation and 

quantification system are explained in Section 3. The 

experimental results are presented in Section 4. Finally, 

conclusions and future research directions are presented in 

Section 5.  

 

 
 

Figure 1. The anatomy of the human eye and the cornea (a) Section of the 

frontal part of the human eye, (b) Six layers from the anterior to the posterior 

cornea, (c) In vivo corneal confocal microscopy image of the corneal 

endothelium layer [8]. 

2. Discussion 

Several researchers have shown an increased interest in the 

field of automatic segmentation of corneal endothelial cell 

images. Foracchia and Ruggeri [13] proposed a corneal 

endothelial cell segmentation approach based on a neural 

network architecture whose weighted parameters (numerical 

filters) were specifically prepared for a border detection problem 

and obtained from the Boundary Contour System (BCS). In this 

study, the “expert correction” approach was proposed to recover 

missing boundaries and tentative splitting or merging of cell 

bodies. However, this algorithm used endothelial images 

collected from 3 different ophthalmic instruments with no 

information given about these instruments. In 2005, Ruggeri et 

al. [10] presented a fully automated estimation algorithm for 

endothelial cell density based on extracting the spatial 

frequencies included in digital endothelial images using a 2D-

Discrete Fourier Transform (DFT) approach. The frequency 

information obtained from a circular band in the 2D-DFT of the 

endothelial images contains information related to the endothelial 

cell density. The performance was evaluated on 100 corneal 

endothelial images obtained by following the same procedures 

usually employed at the Berlin Cornea Bank. The endothelial 

images of these corneas were acquired using an inverse phase 

contrast microscope. The mean difference between automated 

and manual densities was 14 (cells/mm
2
), with a standard 

deviation of 119 (cells/mm
2
) and the running time was (1-2) 

seconds per image. An approach to derive the density of 

endothelial cells without determining the cell boundaries was 

also proposed in [14] and assumes an approximately regular 

tessellation of hexagonal shapes. The approach calculates the 

inverse transpose of a matrix (aka basis) producing this cellular 

lattice and is used to estimate the cell density. Due to the 

different sizes and spatial orientations of endothelial cells 

throughout the image, the basis matrix could differ significantly 

from one region to another and a local estimation is performed to 

reduce the effects of this variability. The performance of this 

approach was evaluated on a set of 21 corneal endothelial images 

captured by an inverse phase-contrast microscope in the Berlin 

corneal bank. The mean difference between the manual and 

automated endothelial cell densities was -0.1% (6.5% for 

absolute differences). Foracchia and Ruggeri [5] have presented a 

new automatic detection and analysis approach based on a set of 

single cell boundary models, which statistically describe 

individual endothelial cells in terms of shape a priori information 

and a-posteriori image representation. Each cell is individually 

determined (by Maximum Posteriori estimation) in an image 

given a starting point and a Simulated Annealing (SA) as an 

optimization algorithm. While a cell field is estimated, further 

information is introduced and the overall model identification is 

improved by using the interaction between cell models. The 

results show an improvement in the detection of cell contours of 

specular microscope images. Hiroyasu et al. [15] proposed a 

corneal endothelial cell segmentation system based on 

constructing a tree-structural image-processing filter, which can 

be applied to images of regions with different statistics. This 

system produces two types of nodes (e.g., one type represents 

well-known image-processing filters and the second represents 

conditional branches), their combination is optimized using 

genetic programming (GP). However, experiments were 

undertaken on only two corneal endothelial images captured 

using a phase-contrast microscope.  

Scarpa and Ruggeri [6] proposed a segmentation system 

identifying endothelial cell boundaries based on a genetic 

algorithm technique. The operation of the genetic algorithm is 

mainly dependent on combining information about the model 

regularity of endothelial cell appearance with the intensity of the 

actual pixels in the corneal image. 15 corneal endothelial images 

captured with a specular endothelial microscope were compared 

with ground truth acquired from manually drawn endothelial cell 

boundaries. The average difference between the manual and 

automated approach was 4%, and the maximum difference was 

lower than 7%. Poletti and Ruggeri [16] have also presented an 

analysis method based on a supervised classification system for 

endothelial cell segmentation. This method was used to extract 

the cell boundary polygon in terms of its three elements: vertices, 

sides and body, employing a multi-scale approach with 2D 

matched filters. In particular, three kernels were prepared to 



extract the three endothelial cell components’ signatures. These 

components’ signatures were used as features to train a Support 

Vector Machine (SVM) classifier, to provide the final endothelial 

cell segmentation. The performance of the suggested method was 

evaluated on a set of 20 images acquired by in-vivo specular 

microscopy and the running time was 5 to 10 seconds per image. 

Two approaches to analyze and quantify corneal endothelial cells 

captured by in vivo white light slit-scanning confocal microscopy 

were presented by Selig et al. [4]. The first approach depends on 

a spatial frequency spectrum analysis approach to evaluate the 

ECD. In the second approach, endothelial cells are automatically 

segmented by employing a stochastic watershed approach after 

randomly placing seeds over the whole image. Due to noise in 

the input image, and hence over segmentation, a smoothing filter 

with a Gaussian kernel and H-minima transform is applied before 

applying the stochastic watershed approach to estimate 

endothelial cell density, polymegathism and pleomorphism. 

However, in some cases an operator interaction is required to 

correct the final segmented results, which can take approximately 

30 seconds and altogether 4 minutes are required to estimate the 

cell density, limiting real-time application in the clinic. The 

performance of the two algorithms was evaluated on a set of 52 

corneal endothelial images captured from 23 patients using a 

white-light slit-scanning confocal microscope and compared with 

the NAVIS software. Sharif et al. [3] developed a hybrid model 

for analyzing confocal endothelial images based on a 

combination of Active Contour version of the Snake (S) model 

and a Particle Swarm Optimization (PSO) approach (S-PSO). 

Firstly, a pre-processing procedure was employed using DFT 

combined with a Band-pass Butterworth filter to enhance the 

quality and reduce the noise level of the input image. Then, 

boundaries of the corneal endothelial cells were traced using the 

(S-PSO) approach. Results from 11 abnormal confocal 

endothelial images were compared with manual and two other 

approaches based on morphological operations. The mean 

differences between manual and automated cell densities were 

5%, 7% and 13%, respectively. Recently, several studies have 

proposed supervised approaches to accurately detect the 

endothelial cell contours in images captured using specular 

microscopy. For instance, Katafuchi and Yoshimura [17] 

proposed a new segmentation algorithm based on Convolutional 

Neural Network (CNN) to detect the cell contours regardless to 

the scale of cells. Fabijanska [18] developed an efficient 

algorithm to address the problem of corneal endothelium image 

segmentation using Feed-Forward Neural Network (F-FNN), 

trained to recognize pixels whether they belong to the cell 

borders or not. However, the main issue of using the supervised 

segmentation approaches is the time required for training the 

neural network in order to be able to accurately detect the cell 

contours. Finally, Gavet and Pinoli [19] presented a supervised 

segmentation evaluation methodology to compare between three 

endothelial cell segmentation methods, namely: Vincent and 

Masters’ method, Angulo and Matou’s method and Gavet and 

Pinoli’s method. In this study, a database consisting of 30 grey-

tone images of the human corneal endothelium captured with a 

specular microscope was employed to evaluate these 

segmentation methods. Habrat et al. [20] proposed an algorithm 

for the detection of corneal endothelium cells in images obtained 

with confocal microscopy, termed as KH algorithm. The KH 

algorithm starts by reducing the effects of the noise and non-

uniform illumination in endothelial images using a binary filter 

of size (5×5) pixels. This is followed by applying the binarization 

process using four morphological operators of size (9×9) pixels; 

two of them were rotated by 45◦ and the remaining two by 90◦. 

As a result, four different binary images were obtained by 

convolving the original image with these four filters. Finally, 

these four images were fused together to produce the final output 

after removing all the objects smaller than 40 pixels, which 

probably correspond to cell nuclei. 

This review on corneal endothelial cells segmentation and 

quantification systems has highlighted a number of limitations 

which need to be addressed. Firstly, most previous studies have 

used images acquired using a specular microscope which 

provides high contrast between the different endothelial tissues 

and creates good, high contrast, images with trivial light 

dispersal. Despite increasing use of in vivo corneal confocal 

microscopy for both clinical and research purposes, little research 

has been undertaken to develop a fast and fully-automated 

segmentation algorithm for quantifying corneal endothelial 

images acquired with in vivo corneal confocal microscopy. 

Secondly, most studies have utilized very small sets of corneal 

endothelial images which are insufficient to reveal the real-world 

performance of the proposed approaches. Finally, some systems 

require an operator interaction to revise the incorrect results 

presented in the final segmented image, including missing cell 

boundaries and merging or splitting of cell bodies. A rapid 

objective user-independent fully-automatic endothelial cell 

segmentation and quantification system is required to overcome 

these issues. 

3. The Proposed Methodology 

The proposed CEAS system is a fully-automated system 

which requires no user intervention to accurately detect the cell 

contours. Unlike, other supervised segmentation approaches 

[17][18], which require a long time for training the neural 

network to detect the cell contours, no training procedure is 

required using the proposed CEAS system. It also enables the 

quantification of the additional morphometric features (e.g. 

polymegathism, pleomorphism, etc.), which is a limitation in 

many of the built-in tools. For example, the built-in software 

included in the HRT Rostock Cornea Module (Heidelberg 

Engineering GmbH; Heidelberg; Germany) can only measure the 

cell density. As depicted in Fig.2, the proposed CEAS system 

consists of two essential stages: a cell segmentation stage and a 

morphometric parameter quantification stage. The former stage 

can be further divided into two steps: a preprocessing step to 

enhance the image quality and a cell contour detection step to 

accurately detect the cell boundaries. In the latter stage, a number 

of useful clinical parameters are calculated, including: Mean Cell 

Density (ECD), Polymegathism, Pleomorphism, Mean Cell Area 

(MCA) and Mean Cell Perimeter (MCP). These additional 

morphologic parameters may play a significant role in the early 

diagnosis of corneal pathology and in determining the health 

status of corneas for transplantation. 

3.1 Materials  

In this paper, a total of 80 images of corneal endothelial cells 

were acquired using a laser CCM (Heidelberg Retinal 

Tomograph III Rostock Cornea Module HRT III RCM; 

Heidelberg Engineering GmbH; Heidelberg; Germany) according 

to an established protocol [21]. The images were taken from the 

central cornea using the section mode and saved in BMP format 

with 8-bit grey levels and size (384×384) pixels (400×400 μm), 

corresponding to a square pixel of size 1.0417μm. Examples of 

original, unprocessed images of the endothelial cell layer are 

shown in Fig.3. It is important to note that the images used in this 

paper were extremely challenging with the very low quality 

compared to those in the literature. These images were divided 

into two databases, each containing 40 images.   

 



Figure 2. An illustration of the proposed CEAS system: (a) a cell segmentation stage and (b) a morphometric quantification stage. 

 
Figure 3. Examples of original corneal endothelial cell images from: (a) Control subject, (b) Morbidly obese patient, and (c) Diabetic patient showing a lower 

ECD and alteration in the size and shape of cells. 

 

3.2 Pre-processing Step 

The images acquired using CCM usually suffer from different 

types of artefact (e.g., blurring, noise, specular reflections, low 

contrast and non-uniform illumination) which makes the accurate 

detection of the cell contour a challenging task (Fig.3). The main 

reasons for the poor quality images are related to a number of 

factors in the acquisition process [22][2]  including: (i) saccadic 

eye movement during image acquisition resulting in blurred 

images, (ii) differences in the pressure applied between the CCM 

Tomocap and cornea, (iii) the spherical shape of the cornea leads 

to non-regular distribution of the lighting in different corneal 

areas. The pre-processing stage aims to address these problems. 

An FFT based band-pass filter is applied for noise reduction to 

enhance the image quality and make the cell borders more 

visible, especially when there is a significant difference in pixel 

intensity between the inner cell bodies and intercellular space 

[23][24]. Firstly, an input image is transformed into a 2D 

representation of FFT's frequencies, and then a simple Band-pass 

filter is applied to suppress the frequency coefficients below and 

above a low and high threshold, respectively. In this work, Band-

pass high and low frequency cut-offs are set to be 20 pixels and 3 

pixels, respectively. Thus, the noise and slow variations in 

illumination are eliminated [25][26]. This is followed by 

applying the Inverse Fast Fourier Transform (IFFT) to transfer  

 

the image back into the spatial domain [2]. In this paper, the 

FFT-Band-pass filter is applied six times, and each time we 

observe that the cell boundaries are significantly enhanced, 

especially in the dark regions at the corner of the images. The 

output of this step is shown in Fig.4 (b). Next, an image 

binarization process is applied using a mean value threshold, 

which is automatically determined using a grey level histogram 

of the input image. In this process, all pixels in an endothelial 

image having intensity values less than the pre-defined threshold 

are set to 0 (black pixels), while the rest are set to 1 (white 

pixels). As shown in Fig.4 (c), the binarized image consists of 

circular cell markers which sometimes are linked with each other 

in a rosary manner. In this paper, these linked markers are 

separated by applying the watershed approach on top of the 

Euclidian distance map which is computed from the binarized 

image, explained in the next sub-section. 
 

3.3 Cell Contour Detection Step 

In this stage, an efficient segmentation algorithm based on 

watershed transformation and Voronoi Tessellation approach is 

employed to efficiently and automatically detect the endothelial 

cell boundaries. The watershed transformation approach is 

applied to the pre-processed image after calculating its Euclidean 

distance map to automatically separate merged markers obtained 

from the pre-processed image.  



Figure 4. Corneal cell segmentation system outputs: (a) Original corneal image, (b) Applying FFT-Band-pass filtering, (c) Binarized image, (d) Applying 
watershed approach, (e) Applying Voronoi tessellation, (f) Labeling of endothelial cells (g) Final endothelial cells segmentation result, and (h) Automatically 

traced endothelial cells boundaries. 

 

The Euclidean distance map has each original black pixel 

replaced by the value of its distance to the nearest edge pixel to 

generate a clearer grey level image. Therefore, the centre of each 

cell will be represented by the smallest value, as it represents the 

farthest point from the cell borders. This generated Euclidean 

distance map is then reinterpreted as a topographic map with its 

pixel values representing altitude which can be easily identified, 

with mountains, valleys and water catchment regions using the 

watershed approach, as water flows downhill in any direction 

from mountains (peaks and ridges) to valleys (lowest points) 

[27][28][29]. Here, the main aim of the watershed approach is to 

find the frontiers between the water catchment regions, and then 

the linked rosary markers in the binarized image are separated 

using these frontiers (Fig.4 d). In this paper, the watershed 

approach works best with smooth convex objects with less 

overlapping between them [27]. The Voronoi Tessellation 

approach is the second step of the proposed segmentation 

algorithm, which is applied to the output of the watershed 

approach in order to produce the final polygonal borders map 
using the coordinates of the cell centres as an input. Several 

studies have demonstrated the efficiency of the Voronoi 

Tessellation approach for morphometric cell analysis including 

the corneal endothelium [30][31]. Suppose that we have an image 

with a set of circular markers M = {m1,..., mn }, a Voronoi 

Tessellation approach divides this image into n cells, one for 

each circular marker in M where each point p lies in the cell 

corresponding to a circular marker mi if dist(mi, p) < dist(mj, p) 

for i distinct
1
 from j. The borders of endothelial cells are found 

by drawing lines of equidistant points between each two nearest 

circular markers' centres. In other words, these polygons 

produced from drawing lines around every centre marker 

represent the borders of endothelial cells. In the image produced, 

the pixel value inside each endothelial cell is set to zero, while 

the pixel values on the borders of the cells are equal to the 

distance between the two nearest marked centres (Fig.4 e-f). 
 

3.4 Morphometric Parameters Quantification Stage 

At this stage, a number of clinically useful features are 

extracted from the segmented endothelial cell images in an 

automated and objective manner to accurately describe the health 

of the corneal endothelial cells based on quantifying MCD 

(cell/mm
2
), polymegathism (%), pleomorphism (%), MCA (µm

2
) 

and MCP (µm). These extracted morphological features obtained 

with the proposed CEAS system are reported as a readable text 

file (Fig.5). Due to the poor quality of the captured images (e.g., 

some regions are of high reflectivity or they are extremely dark 

and blurred), accurate cell segmentation and estimation of the 

morphological features in these regions is very challenging  

(Fig.6 a). To address this issue and make the analysis more 

applicable clinically, the proposed system allows an 

ophthalmologist to choose and crop the clearest ROI in the 

segmented image. The morphological features are then calculated 

automatically only for the cropped region, by including cells that 

intersect only with two adjacent borders of the frame, and  

——— 
1
 The distance between points is calculated using the 

Euclidean distance. 



Figure 5. A readable text file format showing morphological features of the corneal endothelium. 
 

 

Figure 6. (a) Original corneal endothelial image and (b) Endothelial cell segmentation results with red color indicating the cells that have been ignored. 
 

Figure 7. (a) Final endothelial cells segmentation result and (b) Using the color of a cell to indicate its number of neighbors using the color code given on the 

right. The most common color is orange corresponding to six neighbors. 

excluding those intersecting with other borders. However, if the 

whole image is used, all the outermost cells are excluded from 

the statistical calculation to avoid any inaccurately segmented 

cells on the edge of the input image. 

 Mean Cell Density (MCD) is calculated as the number of 

endothelial cells (𝑪𝒏𝒖𝒎𝒃𝒆𝒓) in the cropped ROI (or whole 

image) divided by the total size (𝑨) of the cropped ROI (or 

whole image), as follows: 

𝑴𝑪𝑫 =
 𝑪𝒏𝒖𝒎𝒃𝒆𝒓

𝑨
                                              (𝟏) 

 Polymegathism (Coefficient of Variation (CV)) is used 

to describe the variation in the area of the endothelial 

cells. An increase in the standard deviation (𝑺𝑫) of the 

MCA leads to an inaccurate estimation for the MCD. 

Hence, an increase in polymegathism leads to a 

decrease in the accuracy of the estimated MCA [9]. 

Polymegathism is calculated as follows: 

𝑷𝒐𝒍𝒚𝒎𝒆𝒈𝒂𝒕𝒉𝒊𝒔𝒎 =  
𝑺𝑫𝒄𝒆𝒍𝒍 𝒂𝒓𝒆𝒂

𝑴𝑪𝑨
∗ 𝟏𝟎𝟎                     (𝟐)                          

Here, 𝑺𝑫𝒄𝒆𝒍𝒍 𝒂𝒓𝒆𝒂 is the standard deviation of cell area divided 

by the MCA. 



 Pleomorphism (Hexagonality Coefficient (HC)) is calculated 

as the number of cells with an approximately hexagonal 

shape (Six-sided) (Chexagonal) divided by the total number of 

cells in the cropped ROI (or whole image) (Cimage), as 

follows: 

𝑷𝒍𝒆𝒐𝒎𝒐𝒓𝒑𝒉𝒊𝒔𝒎 =  
𝑪𝒉𝒆𝒙𝒂𝒈𝒐𝒏𝒂𝒍

𝑪𝒊𝒎𝒂𝒈𝒆

∗ 𝟏𝟎𝟎                     (𝟑) 

The endothelial cells are shown in Fig.7 (a) in different 

colors. In Fig.7 (b) they are shown color coded with all cells with 

the same number of neighbors filled with the same color. Cells 

with six sides (roughly hexagonal in shape) are shown in sky 

blue color. 

4. Experimental Results 

A total of 80 images of corneal endothelial cells were 

acquired using a laser in vivo CCM to assess the performance of 

the proposed CEAS system. These images were divided into two 

databases, named Database_1 and Database_2, each one 

consisting of 40 images. However, due to the lack of availability 

of a manual dataset containing manual measurements for all the 

morphologic parameters obtained from these images, a manual 

version from each database was obtained by a cornea imaging 

expert from the University of Manchester using two different 

programs. Initially, the performance of the proposed CEAS 

system was evaluated on Database_1, where an open-source 

GNU Image Manipulation Program (GIMP)
2
 was used to 

manually trace cell contours and create a binary image from 

selected ROIs with a manual estimation of the morphometric 

parameters (Fig.8). Using Database_1, two experiments were 

conducted to assess the accuracy of the proposed CEAS system. 

In the first experiment, the performance of the proposed 

segmentation algorithm was evaluated against the ground-truth 

reference images (binary images) generated using GIMP software 

(Fig.8 c). The evaluation procedure is based on the computation 

of the seven quantitative performance measures: Probabilistic 

Rand Index (PRI) [32], Structural SIMilarity (SSIM) Index [33], 

Gradient Magnitude Similarity Deviation (GMSD) [34], 

Variation of Information (VoI) [35], Mean Square Error (MSE), 

Normalized Absolute Error (NAE) [36] and Global Consistency 

Error (GCE) [37]. These full-reference quantitative metrics are 

widely employed in the literature for assessing the efficiency and 

accuracy of segmentation systems and are defined as follows: 

1. The Probabilistic Rand Index (PRI) is a similarity function 

that counts the fraction of pairs of pixels whose labels are 

consistent between the segmented and the ground-truth 

images, through averaging across multiples of ground-truth 

images to account for scale-variation in human perception. 

The PRI value ranges between 0 and 1, and a higher value 

points to a better similarity.  

2. The Structural SIMilarity (SSIM) Index is a full-reference 

metric for measuring the similarity between two images by 

taking the product of three types of similarities: Luminance 

Similarity (LS), Contrast Similarity (CS) and Structural 

Similarity (SS). Suppose that X and Y are the segmented 

images and the ground-truth image respectively, the overall 

quality measure of the entire image is obtained by calculating 

the mean of the SSIM index (MSSIM) as follows: 

𝑴𝑺𝑺𝑰𝑴(𝑿, 𝒀) =  
𝟏

𝑴
 ∑ 𝑺𝑺𝑰𝑴(𝒙𝒊, 𝒚𝒊)

𝑴

𝒊=𝟏

                        (𝟒) 

——— 
2 https://www.gimp.org/ 

Here, 𝒙𝒊and 𝒚𝒊 are the image contents within the i-th local 

window, M is the number of local windows in the image and 

the MSSIM value ranges between 0 and 1, the higher value 

pointing to greater similarity. 

3. The Gradient Magnitude Similarity Deviation (GMSD) is 

an image quality assessment method which computes the 

Local Quality Map (LQM) by locally comparing the gradient 

magnitude maps of segmented image X and ground-truth 

image Y. This is followed by applying the standard deviation 

of LQM as the pooling strategy to produce the final quality 

score, as follows: 
 

𝑮𝑴𝑺𝑫 =  √
𝟏

𝑵
 ∑ (𝑮𝑴𝑺(𝒊) − 𝑮𝑴𝑺𝑴(𝒊))𝟐

𝑵

𝒊=𝟏
             (𝟓) 

where, N is the total number of pixels in the image, GMSM 

represents the mean of the GMS map, which is computed in a 

pixel-wise manner using the gradient magnitude images 

𝒎𝒙 and 𝒎𝒚. 

4. The Variation of Information (VoI) is a non-negative 

metric that measures the distance between segmentations 

(e.g., automatic and manual) in terms of the information loss 

and gain between them. The VoI metric mainly depends on 

entropy and mutual information to compute the distance 

between two segmentations. The VoI between segmented 

image X and the ground-truth image Y is computed as 

follows: 

𝑽𝒐𝑰 (𝑿, 𝒀) = 𝑯(𝑺) + 𝑯(𝒀) − 𝟐𝑰 (𝑿, 𝒀)                     (𝟔) 

Here, H and I represent the entropy and the mutual 

information, respectively and they are computed as in [38]. 
The VoI value ranges between 0 and ∞, and a lower value 

indicates greater similarity. 

5. The Mean Square Error (MSE) is one of the most widely 

used image quality measurement metrics, defined as the sum 

over all squared value pixel differences divided by the size of 

the image, where a lower value of MSE indicates a higher 

similarity. The MSE between the segmented image X and the 

ground-truth image Y of equal size (M×N) pixel is defined as 

follows: 

𝑴𝑺𝑬 =
𝑰

𝑴𝑵
∑ ∑(𝑿(𝒎, 𝒏) − 𝒀(𝒎, 𝒏))𝟐

𝑵

𝒏=𝟏

𝑴

𝒎=𝟏

               (𝟕) 

6. The Normalized Absolute Error (NAE) between the 

segmented image X and the ground-truth image Y both of size 

(M×N) pixel is given in Eq.10, where a lower NAE points to 

a higher similarity. 

 

𝑵𝑨𝑬 =  ∑ ∑|(𝑿(𝒎, 𝒏) − 𝒀(𝒎, 𝒏))| 

𝑵

𝒏=𝟏

𝑴

𝒎=𝟏

∑ ∑|𝑿(𝒎, 𝒏)| (𝟖)

𝑵

𝒏=𝟏

𝑴

𝒎=𝟏

⁄  

 

7. The Global Consistency Error (GCE) is a region-based 

segmentation consistency metric, which is computed to 

quantify the consistency between two segmentations and to 

what extent that the segmented image can be viewed as a 

refinement of the ground-truth image. The GCE between 

segmented image X and the ground-truth image Y is given by 

Eq.9, and ranges between 0 and 1, a lower value indicates 

greater similarity. 

𝑮𝑪𝑬(𝑿, 𝒀) =
𝟏

𝒏
𝒎𝒊𝒏 {∑ 𝑬(𝑿, 𝒀, 𝒑𝒊), ∑ 𝑬(𝒀, 𝑿, 𝒑𝒊)

𝒊𝒊

}   (𝟗) 
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 Figure 8. GIMP program outputs: (a) Original image, (b) A representative example of manually traced cell contours, (c) Generated binary image used as a 
ground-truth manual segmentation inside the ROI. 

 

 

Figure 9. Descriptive statistics of the CEAS segmentation system 

performance on Database_1, where a higher value of PRI and SSIM is better 

and a lower value of GMSD, VoI MSE, NAE and GCE is better. 

Here, 𝑬(𝑿, 𝒀, 𝒑𝒊) represents the local refinement error 

between segmented image X and the ground-truth image Y. 

The overall average of the seven quantitative metrics is 

computed for 40 images in this database, as shown in Fig.9. 

Significantly, the results obtained demonstrate the efficiency and 

reliability of the proposed CEAS system, and the potentiality of 

using it as a fully-automatic system to accurately trace cell 

contours and measure the morphometric parameters for clinical 

diagnostic purposes, due to the high similarity rates obtained 

between the automatically segmented images and the manually 

traced images. Furthermore, a simple experiment was conducted 

to testing the segmentation accuracy between the automatically 

segmented output using the proposed CEAS system and the 

ground-truth manual segmentation (Fig. 8 c). In this experiment, 

the segmentation overlap between the manual and automatic 

outputs was done using the BestFit system
3
 [39], and then the 

similarity of the cell border location for both images is produced, 

as descried in [40] and shown in Fig. 10. The red line describes 

the ground-truth manual image, blue the line the output of the 

CEAS system, while the black line shows the common border. 

Here, it is important to note that most of the segmentation 

approaches and commercially available image software systems 

(e.g., GIMP) are edge-based segmentation approaches, whereas 

——— 
3
 home.agh.edu.pl/~pioro/bestfit 

in this study an alternative region-based segmentation approach 

based on the Voronoi Tessellation is employed to accurately 

extract size and shape data of the endothelial cells. In this work, 

using the Voronoi Tessellation, as a region-based segmentation 

approach ensures that a wider range of corneal endothelial 

parameters can be derived and analysed than edge-based 

segmentation approaches, by dividing the surface of the 

endothelial image into different regions (Voronoi cells) based on 

the distance to the cell markers' centres. In addition, the Voronoi 

Tessellation approach produces straight-borders of cells of 

optimum size and shape compared to the edge-based 

segmentation approaches, which produce cell shapes composed 

of non-uniform curves. This will enhance the reliability of the 

proposed CEAS system in calculating polymegathism and 

pleomorphism data of the endothelial cells [41]. Finally, as 

reported by Reem [41], the Voronoi Tessellation approach 

provides a high degree of geometric stability with respect to 

small changes in the position of the cell markers' centres, with 

only a small change in the corresponding Voronoi cells. 

In the second experiment, a clinical evaluation procedure was 

performed in order to accurately assess the robustness and 

effectiveness of the CEAS system in term of extracting useful 

morphometric parameters. In the work, automatic estimations of 

five morphometric parameters (e.g., MCD, MCA, MCP, 

Polymegathism, and Pleomorphism) were compared with 

reference values, which were calculated by simply applying the 

definition of these parameters on 40 binary images generated 

using GIMP software (Fig.8 c). Firstly, the output from the 

proposed CEAS system was generated from each corneal 

endothelial image, and then the same ROI was captured with the 

largest area of clearly visible cells and selected to be used as a 

representative image for that input image. Next, an automatic 

estimation of morphometric parameters was computed by the 

proposed CEAS system for this ROI and directly compared with 

the reference values. The overall average, standard deviation, 

maximum and minimum of each parameter for both manual and 

automatic images, along with the difference and the percentage 

difference between them are reported in Table 1. No significant 

difference was found between manual and automatic estimations 

of morphometric parameters. It is interesting to note that the 

average difference between manual and automatic estimations 

was less than 2%, 3.5%, 1%, 1.5%, and 8.5 % for MCD, MCA, 

MCP, Polymegathism, and Pleomorphism, respectively. 

Generally, no morphometric parameter has a relative difference 

(> 10%) between the manual and automatic estimations. Pearson 

correlation tests were used to confirm clinical validity and 

usefulness of the proposed CEAS system as an effective tool to  
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Figure 10. Segmentation differences between the manual and automatic output obtained using CEAS system,  where red and blue lines in (b) describe the 

ground-truth manual image and the output of the CEAS system,  respectively. While the black line shows the common border between 

them. 
 

Table 1. Performance comparison made between the manual and automated estimations of five morphometric parameters in 40 corneal images of Database_1. 
The differences between the manual and automatic estimates are listed and also as a percentage. 

 Manual MCD (cells/mm
2
) Auto. MCD (cells/mm

2
) Diff Diff % 

Average 3103.52 3047.25 56.27 1.83 
STD 389.54 308 81.54 23.35 
Max 3760 3640 120 3.24 
Min 2243 2482 -239 -10.1 

 Manual MCA (µm
2
) Auto. MCA (µm

2
) Diff Diff % 

Average 292.3 282.43 9.87 3.43 
STD 41.77 34.57 7.2 18.87 
Max 395 386 9 2.3 
Min 229 220 9 4 

 Manual MCP (µm) Auto. MCP (µm) Diff Diff % 

Average 61.5 61 0.5 0.78 
STD 4.61 3.52 1.09 26.8 
Max 74 70 4 5.56 
Min 55 54 1 1.83 

 Manual Polymegathism % Auto. Polymegathism % Diff Diff % 

Average 46.5 45.95 0.55 1.02 
STD 5.96 4.68 1.28 24.09 
Max 61 59 2 3.33 
Min 36 37 -1 -2.74 

 Manual Pleomorphism % Auto. Pleomorphism % Diff Diff % 

Average 37.45 34.5 2.95 8.21 
STD 5.84 4.83 1.01 18.84 
Max 50 47 3 6.2 
Min 24 25 -1 -4.1 

  



Figure 11. Correlation plots for each pair of manual and automatic morphometric parameters from Database_1, showing significant correlations. The solid lines 
are the linear regression lines: (a) Cell density, (b) Cell area, (c) Cell perimeter, (d) Polymegathism, and (e) Pleomorphism. 

 

 

Figure 12. Bland-Altman plots showing difference versus average for each pair of manual and automatic estimations of: (a) Cell density, (b) Cell area, (c) Cell 

perimeter, (d) Polymegathism, and (e) Pleomorphism from Database_1. Solid lines (mean differences), dashed lines (95% limits of agreement). 



Table 2. Performance comparison between the manual and automated cell density estimates on the Database_2. 

 Manual MCD (cells/mm
2
) Auto. MCD (cells/mm

2
) Diff Diff % 

Average 3390.18 3343.65 46.53 1.38 
STD 715 415 300 53.01 
Max 4960 4247 713 15.49 
Min 1941 2473 -532 -24.1 

 

 

Figure 13. Comparison between manual and automated segmentation 

outputs: (a) Original image, (b) Manually traced cells, (c) Automatically 

segmented cells. 
 

provide an accurate and automatic estimation of the endothelial 

cell parameters. There were statistically significant correlations 

between the automated and manual estimations of morphometric 

parameters with Pearson’s correlation r and p coefficient of: (r = 

0.91, p < 0.0001) for MCD, (r = 0.91, p < 0.0001) for MCA, (r = 

0.82, p < 0.0001) for MCP, (r = 0.85, p < 0.0001) for 

polymegathism, and (r = 0.74, p < 0.0001) for pleomorphism 

(Fig.11). Bland–Altman plots of differences versus means for all 

the morphometric parameters were generated to assess agreement 

between the automated analysis and manual analysis 

(Fig.12).The proposed CEAS system produces an accurate 

estimation for detecting endothelial cells with more than 95% of 

the data presented between 2SD agreement lines, and cell 

densities ranging from 2400 to 3700 (cell/mm
2
), cell area ranging 

from 230 to 400 (µm
2
), cell perimeter ranging from 50 to 75 

(µm), polymegathism ranging from 35 to 40 %, and 

pleomorphism ranging from 25 to 50%. Fig. 13 shows a 

comparison between manual and automated segmentation output 

images, where the incorrectly detected cell boundaries are 

marked in red color. 

Further evaluation was performed on an independent 

database, named Database_2 in which a manual database 

containing 40 images (11 from control subjects, 16 from obese 

subjects and 13 from patients with diabetes) was constructed to 

efficiently validate the performance of the proposed corneal cell 

segmentation and quantification system. The cell densities were 

manually counted by an expert from the University of 

Manchester using a semi-automatic system (cell count feature) 

offered by the HRT Rostock Cornea Module (Heidelberg 

Engineering GmbH; Heidelberg; Germany). In the manual 

measurements, the user selects the clearest ROI from the original 

corneal endothelial image and then crops it. After magnifying the 

cropped region to make it easier to view, the user picks the cells 

using the count function and the MCD is calculated according to 

the number of cells within the given ROI. A snapshot of this 

semi-automatic system is shown in Fig.14. These manual cell 

densities were compared with automatically computed cell 

densities using the CEAS system for the same ROI. The results 

demonstrate the ability of the proposed CEAS system to detect 

corneal endothelial cells effectively in clinical real-time, with an 

execution time of about 6 seconds per image using a PC with a 

Windows 8.1 operating system, a 1.80 GHz Core i5-3337U CPU 

and 6 GB of RAM. The system code was written in MATLAB 

R2015a. The main reason for differences between the manual and 

automated cell densities is the loss of image quality at the borders 

of the images, and there may be some cells in the cropped ROI, 

which are over selected in the manual image or are not picked at 

all (Fig.15). As shown in Table 2, there was no significant 

difference in manual compared to automated endothelial cell 

density and the average difference was less than 2%. There was a 

highly significant correlation between automated and manual 

densities (r = 0.9, p < 0.0001) (Fig.16). The proposed segmented 

endothelial cell detection algorithm provides a precise estimation 

for detecting endothelial cells with cell densities ranging from 

2000 to 5000 (cells/mm
2
) and the Bland-Altman method shows 

that 95% of data are presented between 2SD agreement lines. 

Based on the agreement plot the difference between the two 

methods is larger when the density is higher (Fig.17). The results 

obtained demonstrate the effectiveness and robustness of the 

proposed CEAS system, and its suitability to be used as a fully 

automatic cell segmentation system to provide useful clinical 

information for early diagnosis and monitoring of the corneal 

endothelium over time and in relation to the effect of therapies, 

by achieving a high similarity between the cell density obtained 

automatically and the cell density obtained manually. 
 

 

 
Figure 14. An illustration of the semi-automatic corneal endothelium system 

for cell density estimation. 

 

Figure 15. (a) the original image, (b) Manually over picked cells 

as shown in the red circle, (c) Automatically segmented cells. 

 

 

 

 

 



 

Figure 16. Correlation plot of automated and manual cell densities with a 

significant correlation on Database_2. 
 

 

Figure 17. Bland-Altman plot showing mean difference and limits of 
agreement between manual and automated cell densities on Database_2. 

 

5. Conclusions and Future Work     

In this paper, a real-time and fully automated endothelial cell 

segmentation and morphological parameter quantification system 

is proposed, named the Corneal Endothelium Analysis System 

(CEAS) which requires no user intervention. In the CEAS 

system, A FFT-Band-pass filter was applied for noise reduction 

to enhance the image quality and endothelial cell boundaries 

were detected using the watershed approach and Voronoi 

tessellations enabling quantification of endothelial cell density 

and additionally cell area, cell perimeter, polymegathism and 

pleomorphism. The extracted clinical features from two 

databases (each one consisting of 40 images), were compared 

with ‘ground-truth’ derived by manually detecting the cell 

contours aided by two difference programs on the same ROI with 

an average difference of less than 2%, 4%, 1%, 1.5%, 8% for 

MCD, MCA, MCP, polymegathism, and pleomorphism, 

respectively. This shows the efficiency and reliability of the 

CEAS system, and the possibility of utilizing it in a real world 

clinical setting to enable rapid diagnosis and patient follow-up. 

This promising pilot data encourages us to develop an automated 

machine learning system for the early diagnosis of endothelial 

cell abnormalities. Hence, we need a larger image database to 

construct a learning-based module, and feed it with the 5 

morphometric parameters extracted from each subject to produce 

a more comprehensive morphological feature vector for each 

subject, to enable more reliable diagnosis and confirm our 

findings. 

 

Conflicts of Interest  

The authors declare no conflict of interest. 

 

References  

[1] T. Zheng, Q. Le, J. Hong, and J. Xu, “Comparison of human corneal 

cell density by age and corneal location: an in vivo confocal 
microscopy study,” BMC Ophthalmol., vol. 16, no. 1, p. 109, 2016. 

[2] S. Al-Fahdawi, R. Qahwaji, A. S. Al-Waisy, and S. Ipsopn, “An 

automatic corneal subbasal nerve registration system using FFT and 
phase correlation techniques for an accurate DPN diagnosis,” Comput. 

Inf. Technol. Ubiquitous Comput. Commun. Dependable, Auton. Secur. 

Comput. Pervasive Intell. Comput. (CIT/IUCC/DASC/PICOM), 2015 
IEEE Int. Conf. on. IEEE, pp. 1035–1041, 2015. 

[3] M. S. Sharif, R. Qahwaji, E. Shahamatnia, R. Alzubaidi, S. Ipson, and 
A. Brahma, “An efficient intelligent analysis system for confocal 

corneal endothelium images,” Comput. Methods Programs Biomed., 

vol. 122, no. 3, pp. 421–436, 2015. 
[4] B. Selig, K. A. Vermeer, B. Rieger, T. Hillenaar, and C. L. Luengo 

Hendriks, “Fully automatic evaluation of the corneal endothelium from 

in vivo confocal microscopy.,” BMC Med. Imaging, vol. 15, no. 1, p. 
13, 2015. 

[5] M. Foracchia and A. Ruggeri, “Corneal endothelium cell field analysis 

by means of interacting bayesian shape models,” Annu. Int. Conf. IEEE 
Eng. Med. Biol. - Proc., pp. 6035–6038, 2007. 

[6] F. Scarpa and A. Ruggeri, “Segmentation of Corneal Endothelial Cells 

Contour by Means of a Genetic Algorithm,” in Proceedings of the 
Ophthalmic Medical Image Analysis Second International Workshop, 

OMIA 2015, Held in Conjunction with MICCAI 2015, Munich, 

Germany, 2015, pp. 25–32. 
[7] E. Hatipoglu, C. Arici, O. S. Arslan, F. Dikkaya, P. Sultan, P. 

Kadioglu, and S. Gundogdu, “Corneal endothelial cell density and 

morphology in patients with acromegaly,” Growth Horm IGF Res, vol. 
24, no. 6, pp. 260–263, 2014. 

[8] J. Navaratnam, T. P. Utheim, V. K. Rajasekhar, and A. Shahdadfar, 

“Substrates for Expansion of Corneal Endothelial Cells towards 
Bioengineering of Human Corneal Endothelium.,” J. Funct. Biomater., 

vol. 6, no. 3, pp. 917–45, 2015. 

[9] B. E. McCarey, H. F. Edelhauser, and  and M. J. Lynn, “Review of 
Corneal Endothelial Specular Microscopy for FDA Clinical Trials of 

Refractive Procedures, Surgical Devices and New Intraocular Drugs 

and Solutions,” Cornea, vol. 27, no. 1, pp. 1–16, 2008. 
[10] A. Ruggeri, E. Grisan, and J. Jaroszewski, “A new system for the 

automatic estimation of endothelial cell density in donor corneas,” Br. 

J. Ophthalmol., vol. 89, no. 3, pp. 306–11, 2005. 
[11] P. Gain, G. Thuret, L. Kodjikian, Y. Gavet, P. H. Turc, C. Theillere, S. 

Acquart, J. C. Le Petit, J. Maugery, and L. Campos, “Automated tri-

image analysis of stored corneal endothelium,” Br. J. Ophthalmol., vol. 
86, no. 7, pp. 801–8, 2002. 

[12] M. J. Doughty and B. M. Aakre, “Further analysis of assessments of 

the coefficient of variation of corneal endothelial cell areas from 
specular microscopic images,” Clin. Exp. Optom., vol. 91, no. 5, pp. 

438–446, 2008. 

[13] M. Foracchia and A. Ruggeri, “Cell contour detection in corneal 
endothelium in-vivo microscopy,” Proc. 22nd Annu. Int. Conf. IEEE 

Eng. Med. Biol. Soc., vol. 2, pp. 1033–1035, 2000. 

[14] E. Grisan, A. Paviotti, N. Laurenti, and A. Ruggeri, “A lattice 
estimation approach for the automatic evaluation of corneal 

endothelium density,” Conf. Proc.  ... Annu. Int. Conf. IEEE Eng. Med. 

Biol. Soc. IEEE Eng. Med. Biol. Soc. Annu. Conf., vol. 2, no. 1, pp. 
1700–3, 2005. 

[15] T. Hiroyasu, S. Sekiya, S. Nunokawa, N. Koizumi, N. Okumura, and 

U. Yamamoto, “Extracting rules for cell segmentation in corneal 
endothelial cell images using GP,” Proc. - 2013 IEEE Int. Conf. Syst. 

Man, Cybern. SMC 2013, pp. 1811–1816, 2013. 
[16] E. Poletti and A. Ruggeri, “Segmentation of Corneal Endothelial Cells 

Contour through Classification of Individual Component Signatures,” 

IFMBE Proc., vol. 41, pp. 658–661, 2014. 
 

 

 



[17] S. Katafuchi and M. Yoshimura, “Convolution neural network for 
contour extraction of corneal endothelial cells,” Katafuchi, S., 

Yoshimura, M. (2017, May). Convolution neural Netw. contour Extr. 

corneal Endothel. cells. Thirteen. Int. Conf. Qual. Control by Artif. Vis. 
2017, vol. 10338, p. 103380L, 2017. 

[18] A. Fabijańska, “Corneal Endothelium Image Segmentation Using 

Feedforward Neural Network,” in Proceedings of the Federated 
Conference on Computer Science and Information Systems, 2017, vol. 

11, pp. 629–637. 

[19] Y. Gavet and J. C. Pinoli, “Comparison and supervised learning of 
segmentation methods dedicated to specular microscope images of 

corneal endothelium,” Int. J. Biomed. Imaging, vol. 2014, no. ii, 2014. 

[20] K. Habrat, M. Habrat, J. Gronkow-Skaserafin, and A. Piórkowski, 
“Cell detection in corneal endothelial images using directional filters,” 

Adv. Intell. Syst. Comput., vol. 389, pp. 113–123, 2015. 

[21] M. Tavakoli and R. A. Malik, “Corneal Confocal Microscopy: A 
Novel Non-invasive Technique to Quantify Small Fibre Pathology in 

Peripheral Neuropathies,” J. Vis. Exp., no. 47, pp. 1–7, 2011. 

[22] M. S. Sharif, R. Qahwaji, S. Hayajneh, S. Ipson, R. Alzubaidi, and A. 
Brahma, “An efficient system for preprocessing confocal corneal 

images for subsequent analysis,” 2014 14th UK Work. Comput. Intell. 

UKCI 2014 - Proc., 2014. 
[23] J.W. Cooley and J.W. Tukey, “An algorithm for the machine 

calculation of complex Fourier Series,” Math. Comput., vol. 19, no. 90, 

p. pp 297-301, 1965. 
[24] R. Gonzalez and R. Woods, Digital image processing. Digital image 

processing, 2008. 
[25] S. W. Smith, “Digital signal processing. ” California Technical 

Publishing, 1999. 

[26] M. N. Haque and M. S. Uddin, “Accelerating Fast Fourier 
Transformation for Image Processing using Graphics Processing Unit,” 

J. Emerg. Trends Comput., vol. 2, no. 8, pp. 367–375, 2011. 

[27] F. Meyer, “The watershed concept and its use in segmentation : a brief 
history,” arXiv preprint arXiv,  pp. 1–11, 2012. 

[28] S. Beucher and C. Lantuejoul, “Use of Watersheds in Contour 

Detection,” Int. Work. Image Process. Real-time Edge Motion Detect., 
no. JANUARY 1979, pp. 12–21, 1979. 

[29] S. Beucher and F. Meyer, “The Morphological Approach to 

Segmentation : The Watershed Transformation,” in Optical 
Engineering-New York-Marcel Dekker Incorporated- 34, 1993, pp. 

433–481. 

[30] Y.-Y. Kim, B.-M. Kim, H.-J. Park, K.-B. Im, J.-S. Lee, and D.-Y. Kim, 
“Image Analysis Algorithm for the Corneal Endothelium,” J. Biomed. 

Eng. Res., vol. 27, no. 3, pp. 125–130, 2006. 

[31] N. H. Brookes, “Morphometry of organ cultured corneal endothelium 
using Voronoi segmentation,” Cell Tissue Bank., vol. 18, no. 2, pp. 

167–183, 2017. 

[32] J. Kaur, S. Agrawal, and R. Vig, “Integration of Clustering, 
Optimization and Partial Differential Equation Method for Improved 

Image Segmentation,” Int. J. Image, Graph. Signal Process., vol. 4, no. 

11, pp. 26–33, 2012. 
[33] Z. Wang, A. C. Bovik, H. R. Sheikh, S. Member, E. P. Simoncelli, and 

S. Member, “Image Quality Assessment : From Error Visibility to 

Structural Similarity,” IEEE Trans. IMAGE Process., vol. 13, no. 4, 
pp. 1–14, 2004. 

[34] W. Xue, L. Zhang, X. Mou, and A. C. Bovik, “Gradient magnitude 

similarity deviation: A highly efficient perceptual image quality 
index,” IEEE Trans. Image Process., vol. 23, no. 2, pp. 668–695, 2014. 

[35] M. Meilă, “Comparing Clusterings – An Information Based Distance,” 

J. Multivar. Anal., vol. 98, no. 5, pp. 873–895, 2007. 
[36] K. Mallikarjuna, K. Satya Prasad, and M. Venkata Subramanyam, 

“Image Compression and Reconstruction using Discrete Rajan 

Transform Based Spectral Sparsing,” Int. J. Image, Graph. Signal 
Process., vol. 8, no. 1, pp. 59–67, 2016. 

[37] D. Martin, C. Fowlkes, D. Tal, and J. Malik, “A database of human 

segmented natural images and its application toevaluating 
segmentation algorithms and measuring ecological statistics,” Proc. 

Eighth IEEE Int. Conf. Comput. Vision. ICCV 2001, vol. 2, no. July, 

2001. 
[38] S. Al-Fahdawi, R. Qahwaji, A. S. Al-Waisy, S. Ipson, R. A. Malik, A. 

Brahma, and X. Chen, “A fully automatic nerve segmentation and 

morphometric parameter quantification system for early diagnosis of 
diabetic neuropathy in corneal images,” Comput. Methods Programs 

Biomed., vol. 135, pp. 151–166, 2016. 

[39] A. Piórkowski, “Best-Fit Segmentation Created Using Flood-Based 
Iterative Thinning,” Springer, vol. 525, pp. 61–68, 2017. 

[40] A. Piorkowski, K. Nurzynska, J. Gronkowska-Serafin, B. Selig, C. 
Boldak, and D. Reska, “Influence of applied corneal endothelium 

image segmentation techniques on the clinical parameters,” Comput. 
Med. Imaging Graph., vol. 55, pp. 13–27, 2017. 

[41] D. Reem, “The geometric stability of Voronoi diagrams with respect to 

small changes of the sites,” in In Proceedings of the twenty-seventh 
annual symposium on Computational geometry, ACM, 2011, pp. 254–

263. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 


