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Abstract. In-vivo specular and confocal microscopy provide information on the 

corneal endothelium health state. The reliable estimation of the clinical 

parameters requires the accurate detection of cell contours. We propose a 

method for the automatic segmentation of cell contour. The centers of the cells 

are detected by convolving the original image with Laplacian of Gaussian 

kernels, whose scales are set according to the cell size preliminary estimated 

through a frequency analysis. A structure made by connected vertices is derived 

from the centers, and it is fine-tuned by combining information about the 

typical regularity of endothelial cells shape with the pixels intensity of the 

actual image. Ground truth values for the clinical parameters were obtained 

from manually drawn cell contours. An accurate automatic estimation is 

achieved on 30 images: for each clinical parameter, the mean difference 

between its manual estimation and the automated one is always less than 7%. 

Keywords: Corneal endothelium, corneal images, specular microscopy, confo-

cal microscopy, in vivo microscopy, cells contour segmentation. 

1 Introduction 

Human corneal endothelium is a single layer of uniformly sized cells with a pre-

dominantly hexagonal shape covering the posterior corneal surface. It stabilizes the 

corneal hydration and assures its transparency. Since endothelial cells do not repro-

duce, the activity and space of a dead cell is replaced by the surrounding cells. Conse-

quently, the total number of cells, their size and regular tessellation are affected by 

age and pathologies [1]. Thus, the analysis of the main morphometric parameters of 

corneal endothelium provides clinical information capable to describe the cornea 

health state. Namely, endothelial cell density (ECD), pleomorphism (or hexagonality 

coefficient, fraction of hexagonal cells over the total number of cells) and 

polymegethism (or coefficient of variation, differences in cell size expressed as frac-

tional standard deviation of cell areas) are commonly used as parameters to quantita-

tively characterize the endothelial cells’ condition [2]. In-vivo specular and confocal 

microscopy allow acquiring noninvasively images of the human corneal endothelial 

layer, from which density and morphometric parameters can be derived [3]. 

In order to make this analysis practical in clinical settings, a computerized method 

that fully automates the accurate recognition of cell boundaries would be needed 
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[2,4]. The automatic segmentation of images from specular and confocal microscopy 

is a challenging task because of acquisition noise, illumination drifts and un-focused 

areas, which all make the contour difficult to be distinguished even by an expert, and 

the differences among images as regards size and appearance of the cells, due to the 

different state of health of the cornea. Whereas ECD is often estimated with accepta-

ble accuracy, the quantitative estimation of pleomorphism and polymegethism is sig-

nificantly affected by errors in contour detection even in few cells, making the relia-

ble estimation of these parameters quite difficult [4]. 

Several computer programs have been proposed to accomplish this task [2,5,6,7], 

even if to the best of our knowledge the software used in clinical practice are only 

semi-automated, or work in a non-clinical context, e.g., with stained cells [8]. In the 

former case, the cell border detection provided by the computer needs to be edited by 

the user to correct inaccuracies by manual adjustment. Although manual correction 

improves the accuracy of this estimation, it usually requires an adjustment of about 50 

to 75 per cent of the cell borders, making it tedious, time-consuming and thus imprac-

tical in a clinical setting [9]. This often leads the user to reduce the number of outlined 

cells to just a few tens, greatly affecting the accuracy of estimated parameters and 

thus the reliability of the clinical outcome. Indeed, it has been reported that at least 75 

cells should be evaluated for a reliable estimation of clinical parameters [10], as well 

as the area covered by the segmented cells should be at least 0.04 mm
2
 [11]. 

We propose here a further development of a recently developed automated algo-

rithm for the segmentation of endothelial cell contours [12,13]. The same reliability of 

the derived automated morphometric analysis of endothelial cells has been obtained 

but the execution time of the algorithm we propose now is much lower and more suit-

ed for clinical applications. 

2 Material 

Images acquired with two different instruments were considered in this work: 15 

images acquired by the SP-3000P (Topcon, Japan) specular microscope and 15 imag-

es acquired by the Confoscan4 (Nidek Technologies, Italy) confocal microscope. 

Both datasets consisted of images acquired from both healthy and pathological sub-

jects, originally collected at various clinical centers and anonymized for further stud-

ies. Images acquired with the specular microscope covered an area of 0.25 x 0.5 mm 

and were saved as 240 x 480 pixel grayscale images (Fig. 1-A,B,C). Images acquired 

with the confocal microscope covered an area of 0.46 x 0.35 mm and were saved as 

768 x 576 pixel grayscale images (Fig. 1-D,E). 

In order to assess the accuracy of the morphometric parameters estimated by the 

computerized procedure, ground truth reference values were obtained. For each im-

age, all visible cell contours were manually traced with care by using a public-domain 

image manipulation program (GIMP v. 2.8, http://www.gimp.org), so as to outline the 

polygonal shape of each cell. On average, 150 cells were manually segmented in both 

specular and confocal microscopy images, covering an area of about 0.1 mm
2
, which 

is wide enough to allow a reliable estimation of the morphometric parameters [10,11]. 
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Ground truth parameter values were then estimated from these manually segmented 

images. 

 

Fig. 1. Example of corneal endothelial images acquired in a normal subject (A), a subject with 

mild polymegethism (B) and a subject with severe polymegethism (C), with the SP-3000P 

(Topcon) specular microscope. Example of corneal endothelial images acquired in a normal 

subject (D) and a subject with severe polymegethism (E), with the Confoscan4 (Nidek Tech-

nologies) confocal microscope. 

3 Methods 

In both specular and confocal microscopy images, cells appear in the image as rela-

tively regular polygons with different sizes, orientations and numbers of sides. Pixel 

intensity in the contour (dark) is different from the intensity in the inner body (light) 

of the cell Fig. 2-A. The proposed approach is based on the following steps:  

 

Fig. 2. Successive steps of the proposed algorithm on two representative images. 

3.1 Cells size estimation 

Illumination correction and contrast enhancement 

A homomorphic filter is used to make the illumination of the image uniform [14]. 

It increases high-frequency components in the log-intensity domain and suppresses 

very low-frequency components through a Gaussian high pass filter with standard 

deviation set to 9 and 20 pixels for specular and confocal microscopy images respec-

tively. Contrast enhancement is achieved with the addition of the top-hat transform 
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and the successive subtraction of the bottom-hat transform to the image [15]. Top-hat 

and bottom-hat transform are defined as the difference between the input image and 

its opening (top-hat) and closing (bottom-hat) by a disk with radius equal to 10 and 21 

pixels for specular and confocal microscopy images respectively (Fig. 2-B). 

The standard deviation of the Gaussian filter and the radius of the disk have been 

chosen according to the size of the image and its features, independently from the size 

of the cells. 

 

Cell contours enhancement 

The eigenvectors of the Hessian are used to compute the likelihood of an image re-

gion to contain lines or other ridges, according to the method described in [16]. The 

Hessian of the image is computed with a Gaussian 2
nd

 derivative filter at three differ-

ent values of standard deviation (i.e. 3,5,7 for specular microscopy images and 5,7,9 

for confocal microscopy images). For each pixel, eigenvectors and their correspond-

ing eigenvalues are derived for each value of standard deviation, and the maximum 

response (i.e. combination of the first and second eigenvalue) among the different 

values of standard deviation is associated to the analyzed pixel (Fig. 2-C). A high 

response reveals that the analyzed pixel belongs to a line (i.e. a cell contour). 

This is a general technique to highlight objects alike lines in an image, because it 

does not require a priori information about direction, length and thickness of the lines. 

Spatial frequency analysis and cells size estimation 

A spatial frequency analysis is applied to the images with enhanced cell contours 

by means of the two dimensional discrete Fourier transform. The magnitude of fre-

quencies is computed (Fig. 2-D) and its maximum value in concentric circular rings, 

with equally spaced increasing radii, is determined. It has been shown in [17] that the 

radius of the ring corresponding to the second peak of the computed function repre-

sents the average spatial frequency of the cells’ repetitive pattern and is strictly related 

to cell density. Thus, the radius corresponding to the second peak is computed, cell 

density is derived as in [17] and subsequently cell size d (i.e. mean diameter of cells) 

is estimated. 

3.2 Cell centers recognition 

The centers of endothelial cells are automatically detected by convolving the ac-

quired image with a customized two-dimensional Laplacian of Gaussian kernel [18]. 

Convolution is carried out at three different scales of the filter, with the standard devi-

ation of the original Gaussian prior to the Laplacian operator set to σ=d/(2∙√2) (with 

cell size d estimated in the previous section), σ−σ∙20% and σ+σ∙20% respectively. 

The maximum response among the scales is recorded and used to obtain an image 

with highlighted cell bodies. Cell centers are then derived by finding the regional 

maxima, i.e. connected components of pixels with a constant intensity value and 

whose adjacent pixels all have a lower value (Fig. 2-E). 
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3.3 Cell contours extraction 

The Euclidean skeleton of the recognized cell centers is then derived. It is the set of 

the connected median lines which are equally distant from nearest centers. From this 

skeleton, a structure made by connected vertices (Fig. 2-F) is easily derived, since the 

vertices are the intersection points of the lines and connections between vertices are 

the lines themselves. 

 

3.4 Cell contours refinement through a genetic algorithm 

The derived structure of connected vertices is used as starting population for the 

genetic algorithm previously developed [12,13]. The location of each vertex is ran-

domly modified, as well as polygons can be modified by adding new vertexes or by 

splitting, merging, deleting some existing vertices, or modifying some connection 

between them. Each modification is evaluated considering regularity and pixel inten-

sity, and eventually accepted or not. Indeed, regularity is a well-known anatomical 

feature of endothelial cells (guaranteed in each image, albeit with different grades), 

while pixel intensity is relative to the specific image under investigation. The final 

entire population of vertices forms a set of polygons that fits the underlying cells con-

tours (Fig. 2-G). 

The evaluation of regularity is performed for each vertex using ratios between an-

gles and lengths of its connections with other vertices [12,13], thus it is independent 

from the size of the cell. Pixel intensity is evaluated on three pre-processed images: 

one with highlighted vertices, one with highlighted sides and one with highlighted 

body of the cells (see section 3.2). Each pre-processed image is obtained by convolv-

ing the original image with customized two-dimensional kernels [18] at three different 

scales, which are set based on the cell size derived in section 3.1. 

The proposed algorithm has been implemented using the Matlab language (The 

Mathworks Inc., Natick, MA, USA, release 2013b). The procedure analyzes about 

150 cells per image and requires less than 1 minute per image. 

4 Results 

The final contour segmentation in representative images can be seen in Fig. 3. 

For each pair of segmented images (automated and manual), only contours posi-

tioned in the same region were considered, to avoid that differences in the estimation 

of the clinical parameters be due to differences in the selected cells. The regions ana-

lyzed automatically and manually were wide (0.1 mm
2
) and largely overlapped 

(≈90%), thus providing a mean number of overlapped analyzed cells per image equal 

to 130 in both specular and confocal microscopy images. 
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Fig. 3. Automated segmentation of corneal endothelial cell contours in representative images. 

Starting from cell contours, the estimation of ECD, pleomorphism, and 

polymegethism was carried out (Table 1 and Table 2). ECD was computed as the total 

number of cells divided by the sum of individual cell areas. Pleomorphism was com-

puted by counting for each cell the number of neighboring cells (cells along the bor-

der of the analyzed area were excluded from this computation) and taking the per-

centage of cells with hexagonal shape. Polymegethism was computed as the fractional 

standard deviation of all cell areas. 

For all morphometric parameters, a two-sided Wilcoxon rank sum test revealed no 

statistically significant difference between automated and manual estimate (p-

value>0.6 for specular microscopy and p-value>0.3 for confocal microscopy). 

Table 1. Automated and manual estimates of the morphometric parameters in specular images, 

and their percent absolute differences. They are computed on each image and their mean, 

standard deviation, minimum and maximum are computed across all images. 

SP-3000P (Topcon) specular microscope 

ECD 

(cells/mm2) 
Automated Manual 

Absolute 

Difference 

mean 2578 2511 3.32 % 

sd 686 636 1.93 % 

min 458 493 1.04 % 

max 3407 3199 7.64 % 

Pleomorphism 

(%) 
Automated Manual 

Absolute 

Difference 

mean 55.59 55.25 4.25 % 

sd 11.41 10.90 4.76 % 

min 36.90 36.70 0.00 % 

max 75.00 71.10 16.05 % 

Polymegethism 

(%) 
Automated Manual 

Absolute 

Difference 

mean 37.23 38.03 6.62 % 

sd 6.86 6.41 4.44 % 

min 22.50 24.90 0.64 % 

max 45.70 48.30 16.43 % 
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Table 2. Automated and manual estimates of the morphometric parameters in confocal images, 

and their percent absolute differences. They are computed on each image and their mean, 

standard deviation, minimum and maximum are computed across all images. 

Confoscan4 (Nidek Technologies) confocal microscope 

ECD 

(cells/mm2) 
Automated Manual 

Absolute 

Difference 

mean 2096 2083 1.20 % 

sd 580 562 1.54 % 

min 446 445 0.05 % 

max 2879 2780 5.90 % 

Pleomorphism 

(%) 
Automated Manual 

Absolute 

Difference 

mean 65.25 64.36 3.21 % 

sd 8.16 8.03 2.84 % 

min 54.20 51.10 0.00 % 

max 85.70 83.30 10.19 % 

Polymegethism 

(%) 
Automated Manual 

Absolute 

Difference 

mean 28.47 29.68 5.61 % 

sd 4.23 4.28 4.19 % 

min 21.80 22.70 0.98 % 

max 37.80 39.90 13.76 % 

5 Conclusions 

We present here a completely automated system for the estimation of cornea endo-

thelium morphometric parameters. The estimates of the clinical parameters provided 

by the proposed algorithm are in very good agreement with ground truth, obtained 

with a careful manual analysis. The algorithm is based on the typical endothelial cells 

regularity and on general image processing techniques, so that it can successfully 

work with minimal changes in images acquired with specular or confocal micro-

scopes. 

The proposed algorithm is based on many steps, the last of which is an adaptation of a 

previously developed genetic algorithm [12,13]. The pre-processing steps, not present 

in the original algorithm, provide a preliminary structure made by connected vertices. 

It is a good starting point for the genetic algorithm, which now reaches the optimal 

solution very quickly on the whole image, instead of starting from a small structure in 

the center of the image that is stepwise increased until the whole area of the image is 

covered. With respect to the original algorithm, the current one allows a significant 

reduction in the execution time (less than a minute instead of tens of minutes) with the 

same accuracy in the estimation of morphometric parameters (see results in [12]).. 

The proposed algorithm appears capable of reliably obtaining the contour of hun-

dreds of cells in regions covering a large area (on average 0.1 mm
2
), and thus of 

providing an accurate estimation of ECD and also pleomorphism and polymegethism. 
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