52,180 research outputs found

    Providing Freshness for Cached Data in Unstructured Peer-to-Peer Systems

    Get PDF
    Replication is a popular technique for increasing data availability and improving perfor- mance in peer-to-peer systems. Maintaining freshness of replicated data is challenging due to the high cost of update management. While updates have been studied in structured networks, they have been neglected in unstructured networks. We therefore confront the problem of maintaining fresh replicas of data in unstructured peer-to-peer networks. We propose techniques that leverage path replication to support efficient lazy updates and provide freshness for cached data in these systems using only local knowledge. In addition, we show that locally available information may be used to provide additional guarantees of freshness at an acceptable cost to performance. Through performance simulations based on both synthetic and real-world workloads from big data environments, we demonstrate the effectiveness of our approach

    System support for keyword-based search in structured Peer-to-Peer systems

    Get PDF
    In this dissertation, we present protocols for building a distributed search infrastructure over structured Peer-to-Peer systems. Unlike existing search engines which consist of large server farms managed by a centralized authority, our approach makes use of a distributed set of end-hosts built out of commodity hardware. These end-hosts cooperatively construct and maintain the search infrastructure. The main challenges with distributing such a system include node failures, churn, and data migration. Localities inherent in query patterns also cause load imbalances and hot spots that severely impair performance. Users of search systems want their results returned quickly, and in ranked order. Our main contribution is to show that a scalable, robust, and distributed search infrastructure can be built over existing Peer-to-Peer systems through the use of techniques that address these problems. We present a decentralized scheme for ranking search results without prohibitive network or storage overhead. We show that caching allows for efficient query evaluation and present a distributed data structure, called the View Tree, that enables efficient storage, and retrieval of cached results. We also present a lightweight adaptive replication protocol, called LAR that can adapt to different kinds of query streams and is extremely effective at eliminating hotspots. Finally, we present techniques for storing indexes reliably. Our approach is to use an adaptive partitioning protocol to store large indexes and employ efficient redundancy techniques to handle failures. Through detailed analysis and experiments we show that our techniques are efficient and scalable, and that they make distributed search feasible

    Broadcasting in Prefix Space: P2P Data Dissemination with Predictable Performance

    Full text link
    A broadcast mode may augment peer-to-peer overlay networks with an efficient, scalable data replication function, but may also give rise to a virtual link layer in VPN-type solutions. We introduce a simple broadcasting mechanism that operates in the prefix space of distributed hash tables without signaling. This paper concentrates on the performance analysis of the prefix flooding scheme. Starting from simple models of recursive kk-ary trees, we analytically derive distributions of hop counts and the replication load. Extensive simulation results are presented further on, based on an implementation within the OverSim framework. Comparisons are drawn to Scribe, taken as a general reference model for group communication according to the shared, rendezvous-point-centered distribution paradigm. The prefix flooding scheme thereby confirmed its widely predictable performance and consistently outperformed Scribe in all metrics. Reverse path selection in overlays is identified as a major cause of performance degradation.Comment: final version for ICIW'0

    DOH: A Content Delivery Peer-to-Peer Network

    Get PDF
    Many SMEs and non-pro¯t organizations su®er when their Web servers become unavailable due to °ash crowd e®ects when their web site becomes popular. One of the solutions to the °ash-crowd problem is to place the web site on a scalable CDN (Content Delivery Network) that replicates the content and distributes the load in order to improve its response time. In this paper, we present our approach to building a scalable Web Hosting environment as a CDN on top of a structured peer-to-peer system of collaborative web-servers integrated to share the load and to improve the overall system performance, scalability, availability and robustness. Unlike clusterbased solutions, it can run on heterogeneous hardware, over geographically dispersed areas. To validate and evaluate our approach, we have developed a system prototype called DOH (DKS Organized Hosting) that is a CDN implemented on top of the DKS (Distributed K-nary Search) structured P2P system with DHT (Distributed Hash table) functionality [9]. The prototype is implemented in Java, using the DKS middleware, the Jetty web-server, and a modi¯ed JavaFTP server. The proposed design of CDN has been evaluated by simulation and by evaluation experiments on the prototype

    The essence of P2P: A reference architecture for overlay networks

    Get PDF
    The success of the P2P idea has created a huge diversity of approaches, among which overlay networks, for example, Gnutella, Kazaa, Chord, Pastry, Tapestry, P-Grid, or DKS, have received specific attention from both developers and researchers. A wide variety of algorithms, data structures, and architectures have been proposed. The terminologies and abstractions used, however, have become quite inconsistent since the P2P paradigm has attracted people from many different communities, e.g., networking, databases, distributed systems, graph theory, complexity theory, biology, etc. In this paper we propose a reference model for overlay networks which is capable of modeling different approaches in this domain in a generic manner. It is intended to allow researchers and users to assess the properties of concrete systems, to establish a common vocabulary for scientific discussion, to facilitate the qualitative comparison of the systems, and to serve as the basis for defining a standardized API to make overlay networks interoperable

    Exploiting the Synergy Between Gossiping and Structured Overlays

    Get PDF
    In this position paper we argue for exploiting the synergy between gossip-based algorithms and structured overlay networks (SON). These two strands of research have both aimed at building fault-tolerant, dynamic, self-managing, and large-scale distributed systems. Despite the common goals, the two areas have, however, been relatively isolated. We focus on three problem domains where there is an untapped potential of using gossiping combined with SONs. We argue for applying gossip-based membership for ring-based SONs---such as Chord and Bamboo---to make them handle partition mergers and loopy networks. We argue that small world SONs---such as Accordion and Mercury---are specifically well-suited for gossip-based membership management. The benefits would be better graph-theoretic properties. Finally, we argue that gossip-based algorithms could use the overlay constructed by SONs. For example, many unreliable broadcast algorithms for SONs could be augmented with anti-entropy protocols. Similarly, gossip-based aggregation could be used in SONs for network size estimation and load-balancing purposes
    • …
    corecore