3 research outputs found

    Energy efficiency and traffic offloading in wireless mesh networks with delay bounds

    Get PDF
    In this paper, we study a wireless access network based on the Institute of Electrical and Electronics Engineers 802.11 standard and enriched with features such as caching and mesh networking. This system is analysed in terms of energy efficiency and traffic offloading, two objectives that are somewhat in contrast but both relevant to network and service providers as they directly impact the operational cost. In addition, QoS is also accounted for in the form of guaranteed bandwidth and bounded delay. To this aim, we developed a mathematical model of the system and solved it to optimality by means of integer linear programming. We can thus show how much can be saved both in terms of energy and traffic, also considering various tradeoff points among the two contrasting objectives. As a last step, we provide an investigation on the benefits of adding traffic aggregation features to the mathematical model

    Study and analysis of innovative network protocols and architectures

    Get PDF
    In the last years, some new paradigms are emerging in the networking area as inspiring models for the definition of future communications networks. A key example is certainly the Content Centric Networking (CCN) protocol suite, namely a novel network architecture that aims to supersede the current TCP/IP stack in favor of a name based routing algorithm, also introducing in-network caching capabilities. On the other hand, much interest has been placed on Software Defined Networking (SDN), namely the set of protocols and architectures designed to make network devices more dynamic and programmable. Given this complex arena, the thesis focuses on the analysis of these innovative network protocols, with the aim of exploring possible design flaws and hence guaranteeing their proper operation when actually deployed in the network. Particular emphasis is given to the security of these protocols, for its essential role in every wide scale application. Some work has been done in this direction, but all these solutions are far to be considered fully investigated. In the CCN case, a closer investigation on problems related to possible DDoS attacks due to the stateful nature of the protocol, is presented along with a full-fledged proposal to support scalable PUSH application on top of CCN. Concerning SDN, instead, we present a tool for the verification of network policies in complex graphs containing dynamic network functions. In order to obtain significant results, we leverage different tools and methodologies: on the one hand, we assess simulation software as very useful tools for representing the most common use cases for the various technologies. On the other hand, we exploit more sophisticated formal methods to ensure a higher level of confidence for the obtained results
    corecore