13 research outputs found

    Non-Uniform Robust Network Design in Planar Graphs

    Get PDF
    Robust optimization is concerned with constructing solutions that remain feasible also when a limited number of resources is removed from the solution. Most studies of robust combinatorial optimization to date made the assumption that every resource is equally vulnerable, and that the set of scenarios is implicitly given by a single budget constraint. This paper studies a robustness model of a different kind. We focus on \textbf{bulk-robustness}, a model recently introduced~\cite{bulk} for addressing the need to model non-uniform failure patterns in systems. We significantly extend the techniques used in~\cite{bulk} to design approximation algorithm for bulk-robust network design problems in planar graphs. Our techniques use an augmentation framework, combined with linear programming (LP) rounding that depends on a planar embedding of the input graph. A connection to cut covering problems and the dominating set problem in circle graphs is established. Our methods use few of the specifics of bulk-robust optimization, hence it is conceivable that they can be adapted to solve other robust network design problems.Comment: 17 pages, 2 figure

    The Fast Heuristic Algorithms and Post-Processing Techniques to Design Large and Low-Cost Communication Networks

    Full text link
    It is challenging to design large and low-cost communication networks. In this paper, we formulate this challenge as the prize-collecting Steiner Tree Problem (PCSTP). The objective is to minimize the costs of transmission routes and the disconnected monetary or informational profits. Initially, we note that the PCSTP is MAX SNP-hard. Then, we propose some post-processing techniques to improve suboptimal solutions to PCSTP. Based on these techniques, we propose two fast heuristic algorithms: the first one is a quasilinear time heuristic algorithm that is faster and consumes less memory than other algorithms; and the second one is an improvement of a stateof-the-art polynomial time heuristic algorithm that can find high-quality solutions at a speed that is only inferior to the first one. We demonstrate the competitiveness of our heuristic algorithms by comparing them with the state-of-the-art ones on the largest existing benchmark instances (169 800 vertices and 338 551 edges). Moreover, we generate new instances that are even larger (1 000 000 vertices and 10 000 000 edges) to further demonstrate their advantages in large networks. The state-ofthe-art algorithms are too slow to find high-quality solutions for instances of this size, whereas our new heuristic algorithms can do this in around 6 to 45s on a personal computer. Ultimately, we apply our post-processing techniques to update the bestknown solution for a notoriously difficult benchmark instance to show that they can improve near-optimal solutions to PCSTP. In conclusion, we demonstrate the usefulness of our heuristic algorithms and post-processing techniques for designing large and low-cost communication networks

    Primal-dual approaches to the Steiner problem

    Get PDF
    We study several old and new algerithms for computing lower and upper bounds for the Steiner problem in networks using dual-ascent and primal-dual strategies. These strategies have been proven to be very useful. for the algorithmic treatment of the Steiner problem. We show that none of the known algorithms can both generate tight lower bounds empirically and guarantee their quality theoretically; and we present a new algorithm which combines both features. The new algorithm has running time O(re log n) and guarantees a ratio of at most two between the generated upper and lower bounds, whereas the fastest previous algorithm with comparably tight empiricalbounds has running time O(e²) without a constant approximation ratio. We show that the approximation ratio two between the bounds can even be achieved in time O(e + n log n), improving the.previous time bound of O(n² log n). The presented insights can also behelpful for the development of further relaxation based approximation algorithms for the Steiner problem

    Algoritmos de aproximação para problemas de roteamento e conectividade com múltiplas funções de distância

    Get PDF
    Orientador: Lehilton Lelis Chaves PedrosaDissertação (mestrado) - Universidade Estadual de Campinas, Instituto de ComputaçãoResumo: Nesta dissertação, estudamos algumas generalizações de problemas clássicos de roteamento e conectividade cujas instâncias são compostas por um grafo completo e múltiplas funções de distância. Por exemplo, existe o Problema do Caixeiro Alugador (CaRS), no qual um viajante deseja visitar um conjunto de cidades alugando um ou mais carros disponíveis. Cada carro tem uma função de distância e uma taxa de retorno ao local do aluguel. CaRS é uma generalização do Problema do Caixeiro Viajante (TSP). Nós lidamos com esses problemas usando algoritmos de aproximação, que são algoritmos eficientes que produzem soluções com garantia de qualidade. Neste trabalho, são apresentadas duas abordagens, uma baseada em uma redução linear que preserva o fator de aproximação e outra baseada na construção de instâncias de dois problemas distintos. Os problemas considerados são o Steiner TSP, o Problema do Passeio com Coleta de Prêmios e o Problema da Floresta Restrita. Generalizamos cada um desses problemas considerando múltiplas funções de distância e, para cada um deles, apresentamos um algoritmo de aproximação com fator O(logn), onde n é o número de vértices (cidades). Essas aproximações são assintoticamente ótimas, já que não há algoritmos com fator o(log n), a não ser que P = NPAbstract: In this dissertation, we study some generalizations of classical routing and connectivity problems whose instances are composed of a complete graph and multiple distance functions. As an example, there is the Traveling Car Renter Problem (CaRS) in which a traveler wants to visit a set of cities by renting one or more available cars. Each car is associated to a distance function and a service fee to return to the rental location. CaRS is a generalization of the Traveling Salesman Problem (TSP). We deal with these problems using approximation algorithms which are efficient algorithms that produce solutions with quality guarantee. In this work, two approaches are presented, one based on a linear reduction that preserves the approximation factor and the other based on the construction of instances of two distinct problems. The studied problems are the Steiner TSP, the Profitable Tour Problem, and the Constrained Forest Problem. We generalize these problems by considering multiple distance functions and, for each of them, we present an O(log n)-approximation algorithm, where n is the number of vertices (cities). The factor is asymptotically optimal, since there is no approximation algorithm with factor o(log n) unless P = NPMestradoCiência da ComputaçãoMestra em Ciência da Computação001CAPE

    Design of large scale transportation service networks with consolidation : models, algorithms and applications

    Get PDF
    Thesis (S.M.)--Massachusetts Institute of Technology, Dept. of Civil and Environmental Engineering; and, (S.M.)--Massachusetts Institute of Technology, Sloan School of Management, Operations Research Center, 1998.Includes bibliographical references (leaves 94-103).by Niranjan Krishnan.S.M

    Distributed control architecture for multiservice networks

    Get PDF
    The research focuses in devising decentralised and distributed control system architecture for the management of internetworking systems to provide improved service delivery and network control. The theoretical basis, results of simulation and implementation in a real-network are presented. It is demonstrated that better performance, utilisation and fairness can be achieved for network customers as well as network/service operators with a value based control system. A decentralised control system framework for analysing networked and shared resources is developed and demonstrated. This fits in with the fundamental principles of the Internet. It is demonstrated that distributed, multiple control loops can be run on shared resources and achieve proportional fairness in their allocation, without a central control. Some of the specific characteristic behaviours of the service and network layers are identified. The network and service layers are isolated such that each layer can evolve independently to fulfil their functions better. A common architecture pattern is devised to serve the different layers independently. The decision processes require no co-ordination between peers and hence improves scalability of the solution. The proposed architecture can readily fit into a clearinghouse mechanism for integration with business logic. This architecture can provide improved QoS and better revenue from both reservation-less and reservation-based networks. The limits on resource usage for different types of flows are analysed. A method that can sense and modify user utilities and support dynamic price offers is devised. An optimal control system (within the given conditions), automated provisioning, a packet scheduler to enforce the control and a measurement system etc are developed. The model can be extended to enhance the autonomicity of the computer communication networks in both client-server and P2P networks and can be introduced on the Internet in an incremental fashion. The ideas presented in the model built with the model-view-controller and electronic enterprise architecture frameworks are now independently developed elsewhere into common service delivery platforms for converged networks. Four US/EU patents were granted based on the work carried out for this thesis, for the cross-layer architecture, multi-layer scheme, measurement system and scheduler. Four conference papers were published and presented
    corecore