28,415 research outputs found

    PresenceSense: Zero-training Algorithm for Individual Presence Detection based on Power Monitoring

    Full text link
    Non-intrusive presence detection of individuals in commercial buildings is much easier to implement than intrusive methods such as passive infrared, acoustic sensors, and camera. Individual power consumption, while providing useful feedback and motivation for energy saving, can be used as a valuable source for presence detection. We conduct pilot experiments in an office setting to collect individual presence data by ultrasonic sensors, acceleration sensors, and WiFi access points, in addition to the individual power monitoring data. PresenceSense (PS), a semi-supervised learning algorithm based on power measurement that trains itself with only unlabeled data, is proposed, analyzed and evaluated in the study. Without any labeling efforts, which are usually tedious and time consuming, PresenceSense outperforms popular models whose parameters are optimized over a large training set. The results are interpreted and potential applications of PresenceSense on other data sources are discussed. The significance of this study attaches to space security, occupancy behavior modeling, and energy saving of plug loads.Comment: BuildSys 201

    Adaptive Channel Recommendation For Opportunistic Spectrum Access

    Full text link
    We propose a dynamic spectrum access scheme where secondary users recommend "good" channels to each other and access accordingly. We formulate the problem as an average reward based Markov decision process. We show the existence of the optimal stationary spectrum access policy, and explore its structure properties in two asymptotic cases. Since the action space of the Markov decision process is continuous, it is difficult to find the optimal policy by simply discretizing the action space and use the policy iteration, value iteration, or Q-learning methods. Instead, we propose a new algorithm based on the Model Reference Adaptive Search method, and prove its convergence to the optimal policy. Numerical results show that the proposed algorithms achieve up to 18% and 100% performance improvement than the static channel recommendation scheme in homogeneous and heterogeneous channel environments, respectively, and is more robust to channel dynamics

    A Harmonic Extension Approach for Collaborative Ranking

    Full text link
    We present a new perspective on graph-based methods for collaborative ranking for recommender systems. Unlike user-based or item-based methods that compute a weighted average of ratings given by the nearest neighbors, or low-rank approximation methods using convex optimization and the nuclear norm, we formulate matrix completion as a series of semi-supervised learning problems, and propagate the known ratings to the missing ones on the user-user or item-item graph globally. The semi-supervised learning problems are expressed as Laplace-Beltrami equations on a manifold, or namely, harmonic extension, and can be discretized by a point integral method. We show that our approach does not impose a low-rank Euclidean subspace on the data points, but instead minimizes the dimension of the underlying manifold. Our method, named LDM (low dimensional manifold), turns out to be particularly effective in generating rankings of items, showing decent computational efficiency and robust ranking quality compared to state-of-the-art methods

    Quantum Recommendation Systems

    Get PDF
    A recommendation system uses the past purchases or ratings of nn products by a group of mm users, in order to provide personalized recommendations to individual users. The information is modeled as an mĂ—nm \times n preference matrix which is assumed to have a good rank-kk approximation, for a small constant kk. In this work, we present a quantum algorithm for recommendation systems that has running time O(poly(k)polylog(mn))O(\text{poly}(k)\text{polylog}(mn)). All known classical algorithms for recommendation systems that work through reconstructing an approximation of the preference matrix run in time polynomial in the matrix dimension. Our algorithm provides good recommendations by sampling efficiently from an approximation of the preference matrix, without reconstructing the entire matrix. For this, we design an efficient quantum procedure to project a given vector onto the row space of a given matrix. This is the first algorithm for recommendation systems that runs in time polylogarithmic in the dimensions of the matrix and provides an example of a quantum machine learning algorithm for a real world application.Comment: 22 page

    Multiple-Play Bandits in the Position-Based Model

    Full text link
    Sequentially learning to place items in multi-position displays or lists is a task that can be cast into the multiple-play semi-bandit setting. However, a major concern in this context is when the system cannot decide whether the user feedback for each item is actually exploitable. Indeed, much of the content may have been simply ignored by the user. The present work proposes to exploit available information regarding the display position bias under the so-called Position-based click model (PBM). We first discuss how this model differs from the Cascade model and its variants considered in several recent works on multiple-play bandits. We then provide a novel regret lower bound for this model as well as computationally efficient algorithms that display good empirical and theoretical performance

    Safe Exploration for Optimization with Gaussian Processes

    Get PDF
    We consider sequential decision problems under uncertainty, where we seek to optimize an unknown function from noisy samples. This requires balancing exploration (learning about the objective) and exploitation (localizing the maximum), a problem well-studied in the multi-armed bandit literature. In many applications, however, we require that the sampled function values exceed some prespecified "safety" threshold, a requirement that existing algorithms fail to meet. Examples include medical applications where patient comfort must be guaranteed, recommender systems aiming to avoid user dissatisfaction, and robotic control, where one seeks to avoid controls causing physical harm to the platform. We tackle this novel, yet rich, set of problems under the assumption that the unknown function satisfies regularity conditions expressed via a Gaussian process prior. We develop an efficient algorithm called SafeOpt, and theoretically guarantee its convergence to a natural notion of optimum reachable under safety constraints. We evaluate SafeOpt on synthetic data, as well as two real applications: movie recommendation, and therapeutic spinal cord stimulation
    • …
    corecore