
Quantum Recommendation System
Iordanis Kerenidis∗1 and Anupam Prakash†2

1 CNRS, IRIF, Université Paris Diderot, Paris, France and Centre for Quantum
Technologies, National University of Singapore, Singapore
jkeren@liafa.univ-paris-diderot.fr

2 Centre for Quantum Technologies and School of Physical and Mathematical
Sciences, Nanyang Technological University, Singapore
aprakash@ntu.edu.sg

Abstract
A recommendation system uses the past purchases or ratings of n products by a group of m
users, in order to provide personalized recommendations to individual users. The information is
modeled as an m× n preference matrix which is assumed to have a good rank-k approximation,
for a small constant k.

In this work, we present a quantum algorithm for recommendation systems that has running
time O(poly(k)polylog(mn)). All known classical algorithms for recommendation systems that
work through reconstructing an approximation of the preference matrix run in time polynomial
in the matrix dimension. Our algorithm provides good recommendations by sampling efficiently
from an approximation of the preference matrix, without reconstructing the entire matrix. For
this, we design an efficient quantum procedure to project a given vector onto the row space
of a given matrix. This is the first algorithm for recommendation systems that runs in time
polylogarithmic in the dimensions of the matrix and provides an example of a quantum machine
learning algorithm for a real world application.

1998 ACM Subject Classification G.1.3 Numerical Linear Algebra

Keywords and phrases Recommendation systems, quantum machine learning, singular value
estimation, matrix sampling, quantum algorithms

Digital Object Identifier 10.4230/LIPIcs.ITCS.2017.49

1 Introduction

A recommendation system uses information about past purchases or ratings of products
by a group of users in order to provide personalized recommendations to individual users.
More precisely, we assume there are m users, for example clients of an online platform like
Amazon or Netflix, each of whom have some inherent preference or utility about n products,
for example books, movies etc. The user preferences are modeled by an m × n matrix P ,
where the element Pij denotes how much the user i values product j. If the preference matrix
P had been known in advance, it would have been easy to make good recommendations to
the users by selecting elements of this matrix with high value. However, this matrix is not
known a priori. Information about P arrives in an online manner each time a user buys a
product, writes a review, or fills out a survey. A recommendation system tries to utilize the

∗ IK was partially supported by projects ANR RDAM, ERC QCC and EU QAlgo.
† AP was supported by the Singapore National Research Foundation under NRF RF Award No. NRF-

NRFF2013-13.

© Iordanis Kerenidis and Anupam Prakash;
licensed under Creative Commons License CC-BY

8th Innovations in Theoretical Computer Science Conference (ITCS 2017).
Editor: Christos H. Papadimitrou; Article No. 49; pp. 49:1–49:21

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Dagstuhl Research Online Publication Server

https://core.ac.uk/display/132422780?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://dx.doi.org/10.4230/LIPIcs.ITCS.2017.49
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

49:2 Quantum Recommendation Systems

already known information about all users in order to suggest products to individual users
that have high utility for them and can eventually lead to a purchase.

There has been an extensive body of work on recommendation systems, since it is a very
interesting theoretical problem and also of great importance to the industry. We cite the
works of [5, 18, 8, 4] who studied the problem in a combinatorial or linear algebraic fashion.
There has also been a series of works in the machine learning community many of them
inspired by a practical challenge by Netflix on real world data [14, 6, 13].

We next discuss the low rank assumption on the preference matrix underlying recom-
mendation systems and the way this assumption is used to perform matrix reconstruction
in classical recommendation systems. We then describe the computational model for our
quantum recommendation algorithm that is based on matrix sampling and compare it to
classical recommendation algorithms based on matrix reconstruction. We provide a high
level overview of our algorithm in section 1.1 and then, we compare it with previous work on
quantum machine learning in section 1.2.

The low-rank assumption

The underlying assumption in recommendation systems is that one can infer information
about a specific user from the information about all other users because, in some sense, the
majority of users belong to some well-defined “types". In other words, most people’s likes are
not unique but fall into one of a small number of categories. Hence, we can aggregate the
information of “similar" users to predict which products have high utility for an individual
user.

More formally, the assumption in recommendation systems is that the preference matrix
P can be well approximated (according to some distance measure) by a low-rank matrix.
There are different reasons why this assumption is indeed justified. First, from a philosophical
and cognitive science perspective, it is believed that there are few inherent reasons why
people buy or not a product: the price, the quality, the popularity, the brand recognition,
etc. (see for example [5, 21]). Each user can be thought of as weighing these small number of
properties differently but still, his preference for a product can be computed by checking how
the product scores in these properties. Such a model produces a matrix P which has a good
rank-k approximation, for a small k, which can be thought of as a constant independent
of the number of users m or the number of products n. Moreover, a number of theoretical
models of users have been proposed in the literature which give rise to a matrix with good
low-rank approximation. For example, if one assumes that the users belong to a small number
of “types", where a type can be thought of as an archetypical user, and then each individual
user belonging to this type is some noisy version of this archetypical user, then the matrix
has a good low-rank approximation [8, 18]. In addition, preference matrices that come from
real data have been found to have rank asymptotically much smaller than the size of the
matrix.

For these reasons, the assumption that the matrix P has a good low-rank approximation
has been widely used in the literature. In fact, if we examine this assumption more care-
fully, we find that in order to justify that the recommendation system provides high-value
recommendations, we assume that users “belong" to a small number of user types and also
that they agree with these types on the high-value elements. For contradiction, imagine that
there are k types of users, where each type has very few high-value elements and many small
value elements. Then, the users who belong to each type can agree on all the small value
elements and have completely different high-value elements. In other words, even though
the matrix is low-rank, the recommendations would be of no quality. Hence, the assumption

I. Kerenidis and A. Prakash 49:3

that has been implicitly made, either by philosophical reasons or by modeling the users, is
that there are k types of users and the users of each type “agree" on the high-value elements.

Recommendations by Matrix Reconstruction

One of the most powerful and common ways to provide competitive recommendation systems
is through a procedure called matrix reconstruction. In this framework, we assume that there
exists a hidden matrix A, in our case the preference matrix, which can be well approximated
by a low-rank matrix. The reconstruction algorithm gets as input a number of samples
from A, in our case the previous data about the users’ preferences, and outputs a rank-k
matrix with the guarantee that it is “close" to A according to some measure (for example,
the 2- or the Frobenius norm). For example, the reconstruction algorithm can perform
a Singular Value Decomposition on the subsample matrix Â, where Â agrees with A on
known samples and is 0 on the remaining entries, and output the projection of Â onto the
space spanned by its top-k singular vectors. The “closeness" property guarantees that the
recommendation system will select an element that with high probability corresponds to a
high-value element in the matrix A and hence it is a good recommendation ([8, 5]). Another
commonly used algorithm for matrix reconstruction is a variant of alternating minimization,
this has been successful in practice [14] and has been recently analyzed theoretically [11].
Note that all known algorithms for matrix reconstruction require time polynomial in the
matrix dimensions.

An important remark is that matrix reconstruction is a harder task than recommendation
systems, in the sense that a good recommendation system only needs to output a high value
element of the matrix and not the entire matrix [20, 3]. Nevertheless, classical algorithms
perform a reconstruction of the entire matrix as the resources required for finding high value
elements are the same as the resources needed for full reconstruction.

Computational resources and performance

In order to make a precise comparison between classical recommendation systems and our
proposed system, we discuss more explicitly the computational resources in recommendation
systems. We are interested in systems that arise in the real world, for example on Amazon
or Netflix, where the number of users can be about 100 million and the products around
one million. For such large systems, storing the entire preference matrix or doing heavy
computations every time a user comes into the system is prohibitive.

The memory model for an online recommendation system is the following. A data
structure is maintained that contains the information that arrives into the system in the
form of elements Pij of the preference matrix. We require that the time needed to write the
tuple (i, j, Pij) into the memory data structure and to read it out is polylogarithmic in the
matrix dimensions. In addition, we require that the total memory required is linear (up to
polylogarithmic terms) in the number of entries of the preference matrix that have arrived
into the system. For example, one could store the elements (i, j, Pij) in an ordered list.

Most classical recommendation systems use a two stage approach. The first stage involves
preprocessing the data stored in memory. For example, a matrix reconstruction algorithm can
be performed during the preprocessing stage to produce and store a low-rank approximation
of the preference matrix. This computation takes time polynomial in the matrix dimensions,
poly(mn), and the stored output is the top-k row singular vectors that need space O(nk).
The second stage is an online computation that is performed when a user comes into the
system. For example, one can project the row of the subsample matrix that corresponds to

ITCS 2017

49:4 Quantum Recommendation Systems

this user onto the already stored top-k row singular vectors of the matrix and output a high
value element in time O(nk).

The goal is to minimize the time needed to provide an online recommendation while at the
same time keeping the time and the extra memory needed for the preprocessing reasonable.
In general, the preprocessing time is polynomial in the dimensions of the preference matrix,
i.e. poly(mn), the extra memory is O(nk), while the time for the online recommendation
is O(nk). Note that in real world applications, it is prohibitive to have a system where
the preprocessing uses memory O(mn), even though with such large memory the online
recommendation problem becomes trivial as all the answers can be pre-computed and stored.

A recommendation system performs well, when with high probability and for most users it
outputs a recommendation that is good for a user. The performance of our recommendation
system is similar to previous classical recommendation systems based on matrix reconstruction
and depends on how good the low-rank approximation of the matrix is. Our algorithm works
for any matrix, but as in the classical case, it guarantees good recommendations only when
the matrix has a good low-rank approximation.

1.1 Our results
In this section, we provide a high level overview of our quantum recommendation algorithm
which requires time polylogarithmic in the matrix dimensions and polynomial only in the rank
of the matrix, which as we have argued is assumed to be much smaller than the dimension
of the matrix. This is the first algorithm for recommendation systems with complexity
polylogarithmic in the matrix dimensions.

Our model

First, we describe a simple and general model for online recommendation systems. We start
with a hidden preference matrix T , where the element Tij takes values 0 or 1 and indicates
whether product j is "good" for user i. Such boolean matrices arise naturally in a "thumbs up
/ thumbs down" system, where users can declare whether they like or not a certain product.
We can also easily construct such matrices from non-boolean preference matrices. For each
user, we split the products into two categories, the “good" and the “bad" recommendations,
based on the matrix entries. This categorization can be done in different ways and we do not
have to impose any constraints. For example, good recommendations can be every product
with value higher than a threshold or the 100 products with the highest values etc.

Our assumption is that the matrix T has a good low-rank approximation. The reasons
that justify this assumption are the ones used already in the literature. As before, we believe
that there is a small number of user types, and within each type the users “agree" on the
high-value elements. This modelling of the users gives rise to a matrix T with a good low-rank
approximation. Once we have defined the matrix T , then any algorithm that reconstructs a
matrix close to T , will provide a good recommendation, since T is the indicator matrix of
good recommendations.

Recommendations by Matrix Sampling

The low-rank approximation of the matrix T can be computed as follows: first, define the
matrix T̂ , where with some probability each element of T̂ is equal to the corresponding
element in T normalized and otherwise it is zero. This matrix, that we call a subsample
matrix, corresponds to the information the recommendation system has already gathered
about the matrix T . Then, by performing a Singular Value Decomposition and computing

I. Kerenidis and A. Prakash 49:5

the projection of this matrix to its top-k row singular vectors, we compute a matrix T̂k which
can be proven to be close to the matrix T , as long as T had a good rank-k approximation.

As we remarked, in principle, we do not need to explicitly compute the entire matrix
T̂k. It is sufficient to be able to sample from the matrix T̂k which is close to T . Since T
is a 0-1 matrix, sampling from T̂k means finding with high probability a 1-element in T .
By the fact that T indicates the good recommendations, our algorithm will output a good
recommendation with high probability. Hence, we reduce the question of providing good
recommendations to being able to sample from the matrix T̂k. In fact, since we want to be
able to recommend products to any specific user i, we need to be able, given an index i, to
sample from the i-th row of the matrix T̂k, denoted by (T̂k)i, i.e. output an element (T̂k)ij
with probability |(T̂k)ij |2/‖(T̂k)i‖2. Note that the row (T̂k)i is the projection of the row T̂i
onto the top-k row singular vectors of T̂ .

An efficient quantum algorithm for Matrix Sampling

Here is where quantum computing becomes useful: we design a quantum procedure that
samples from the row (T̂k)i in time polylog(mn). Note that the quantum algorithm does
not output the row (T̂k)i, which by itself would take time linear in the dimension n, but
only samples from this row. But this is exactly what is needed for recommendation systems:
Sample a high-value element of the row, rather than explicitly output the entire row. More
precisely, we describe an efficient quantum procedure that takes as input a vector, a matrix,
and a threshold parameter and generates the quantum state corresponding to the projection
of the vector onto the space spanned by the row singular vectors of the matrix whose
corresponding singular value is greater than the threshold. From the outcome of this
procedure it is clear how to sample a product by just measuring the quantum state in the
computational basis.

1.2 Comparisons with related work
The development of quantum algorithms for linear algebra was initiated by the breakthrough
algorithm of Harrow, Hassidim, Lloyd [10]. The HHL algorithm takes as input a sparse (the
number of non zero entries in each row of the matrix is polylogarithmic) and well-conditioned
system of linear equations and in time polylogarithmic in the dimension of the system outputs
a quantum state which corresponds to the classical solution of the system. Note that this
algorithm does not explicitly output the classical solution, nevertheless, the quantum state
enables one to sample from the solution vector. This is a very powerful algorithm and has
been very influential in recent times, where several works [16, 15, 17] obtained quantum
algorithms for machine learning problems based on similar assumptions. However, when
looking at these applications, one needs to be extremely careful about two things: first,
the assumptions that one needs to make on the input in order to achieve efficient running
time, since, for example, the running time of the HHL algorithm is polylogarithmic only
when the matrix is well conditioned (i.e. the minimum singular value is at least inverse
polynomially big) and sparse; and second, whether the quantum algorithm solves the original
classical problem or a weaker variant to account for the fact that the classical solution is not
given explicitly but is encoded in a quantum state [1, 17]. In addition, we mention a recent
but orthogonal proposal to use techniques inspired by the structure of quantum theory for
classical recommender systems [22].

Let us be more explicit about our algorithm’s assumptions. We assume the data is
stored in a classical data structure which enables the quantum algorithm to efficiently create

ITCS 2017

49:6 Quantum Recommendation Systems

superpositions of rows of the subsample matrix. The HHL algorithm also needs to be able to
efficiently construct quantum states from classical vectors given as inputs. In the Appendix,
we describe a classical data structure for storing the matrix T̂ . The data structure maintains
some extra information about the matrix entries, so that, the total memory needed is linear
(up to polylogarithmic terms) in the number of entries in the subsample matrix, the data
entry time remains polylogarithmic in the matrix dimensions, and an algorithm with quantum
access to the data structure can create the necessary superpositions in polylogarithmic time.
Note also, that even in the case the data has been stored as a normal array or list, we can
preprocess it in linear time to construct our needed data structure. Thus, our quantum
algorithm works under the same memory model as any other quantum query algorithm (e.g.
Grover’s algorithm): it assumes that there exists a classical data structure to which we can
make quantum queries. Overall, our system retains the necessary properties for the data
entry and retrieval stage. Moreover, the classical complexity of matrix reconstruction does
not change given the new data structure.

Importantly, in our system, we do not perform any preprocessing nor do we need any
extra memory. Our recommendation algorithm just performs an online computation that
requires time poly(k)polylog(mn). This can be viewed as exponentially smaller than the
classical time if the rank k is a small constant and the matrix dimensions are of the same
order. Unlike the HHL algorithm, our running time does not depend on the sparsity of the
input matrix nor on its condition number, i.e. its smallest singular value. In other words,
we do not make any additional assumptions about the classical data beyond the low rank
approximation assumptions made by classical recommendation systems.

It is also crucial to note that we have not changed what one needs to output, as was the
case for the HHL algorithm and its applications, where instead of explicitly outputting a
classical solution, they construct a quantum state that corresponds to this solution. We have
instead described a real world application, where the ability to sample from the solution is
precisely what is needed. Our work also suggests a new avenue for classical recommendation
systems, which we state below as an open problem.

I Open Problem 1. Find a classical recommendation algorithm using matrix sampling that
requires time O(poly(k)polylog(mn)) or prove a lower bound that rules out the existence of
such an algorithm.

The rest of this paper is organized as follows. We introduce some preliminaries in section
2. In sections 3 and 4 we show that sampling from an approximate reconstruction of the
matrix T suffices to provide good recommendations and that if the sub-samples T̂ are
uniformly distributed then projecting onto the top k singular vectors of T̂ is an approximate
reconstruction for T . In section 5 we describe an efficient quantum algorithm for projecting
a vector onto the space of singular vectors of T̂ whose corresponding singular values are
greater than a threshold. In section 6 we combine these components to obtain a quantum
recommendation algorithm and analyze its performance and running time.

2 Preliminaries

2.1 Linear algebra

The set {1, 2, · · · , n} is denoted by [n], the standard basis vectors in Rn are denoted by
ei, i ∈ [n]. For any matrix A ∈ Rm×n, the Frobenius norm is defined as ‖A‖2

F =
∑
ij A

2
ij =∑

i σ
2
i , where σi are the singular values. We also say that we sample from the matrix A

I. Kerenidis and A. Prakash 49:7

when we pick an element (i, j) with probability |Aij |2/‖A‖2
F , and write (i, j) ∼ A. For a

vector x ∈ Rn we denote the norm ‖x‖2 =
∑
i x

2
i .

The matrix A is unitary if AA∗ = A∗A = I, the eigenvalues of a unitary matrix have
unit norm. A matrix P ∈ Rn×n is a projector if P 2 = P . If A is a matrix with orthonormal
columns, then AAt is the projector onto the column space of A.

Singular value decomposition The singular value decomposition of A ∈ Rm×n is a decom-
position of the form A = UΣV t where U ∈ Rm×m, V ∈ Rn×n are unitary and Σ ∈ Rm× n
is a diagonal matrix with positive entries. The SV D can be written as A =

∑
i∈[r] σiuiv

t
i

where r is the rank of A. The column and the row singular vectors ui and vi are the columns
of U and V respectively. The Moore Penrose pseudo-inverse is defined as A+ = V Σ+U t,
where A+ =

∑
i∈[r]

1
σi
viu

t
i. It follows that AA+ is the projection onto the column space

Col(A) while A+A is the projection onto the row space Row(A). The truncation of A to the
space of the singular vectors that correspond to the k largest singular values is denoted by
Ak, that is Ak =

∑
i∈[k] σiuiv

t
i . We denote by A≥σ the projection of the matrix A onto the

space spanned by the singular vectors whose corresponding singular value is bigger than σ,
that is A≥σ =

∑
i:σi≥σ σiuiv

t
i .

2.2 Quantum information

We use the standard bra-ket notation to denote quantum states. We use the following
encoding for representing n dimensional vectors by quantum states,

I Definition 2. The vector state |x〉 for x ∈ Rn is defined as 1
‖x‖
∑
i∈[n] xi |i〉.

In case x ∈ Rmn, we can either see it as a vector in this space or as a matrix with dimensions
m× n and then we can equivalently write 1

‖x‖
∑
i∈[m],j∈[n] xij |i, j〉.

A quantum measurement (POVM) is a collection of positive operators Ma � 0 such
that

∑
aMa = In. The probability of obtaining outcome a when state |φ〉 is measured is

Tr(〈φ|Maφ〉). If |x〉 is measured in the standard basis, then outcome i is observed with
probability x2

i /‖x‖2.
We also use a well-known quantum algorithm called phase estimation. The phase

estimation algorithm estimates the eigenvalues of a unitary operator U with additive error ε
in time O(T (U) logn/ε) if T (U) is the time required to implement the unitary U .

I Theorem 3. Phase estimation [12]: Let U be a unitary operator, with eigenvectors |vj〉 and
eigenvalues eιθj for θj ∈ [−π, π], i.e. we have U |vj〉 = eιθj |vj〉 for j ∈ [n]. For a precision
parameter ε > 0, there exists a quantum algorithm that runs in time O(T (U) logn/ε) and
with probability 1−1/poly(n) maps a state |φ〉 =

∑
j∈[n] αj |vj〉 to the state

∑
j∈[n] αj |vj〉 |θj〉

such that θj ∈ θj ± ε for all j ∈ [n].

Note that we use ι to denote the imaginary unit i to avoid confusion with summation indices.
The analysis of phase estimation shows that the algorithm outputs a discrete valued estimate
for each eigenvalue that is within additive error ε with probability at least 0.8, the probability
is boosted to 1 − 1/poly(n) by repeating O(logn) times and choosing the most frequent
estimate.

ITCS 2017

49:8 Quantum Recommendation Systems

3 A model for recommendation systems

3.1 The preference matrix
We define a simple and general model for recommendation systems. We define a preference
matrix T of size m× n, where every row corresponds to a user, every column to a product,
and the element Tij is 0 or 1 and denotes whether product j is a good recommendation for
user i or not.

I Definition 4. A product j is a good recommendation for user i iff Tij = 1, otherwise it is
bad. We also write it as the pair (i, j) is a good or bad recommendation.

Such matrices arise in systems where the information the users enter is binary, for example
in a "thumbs up / thumbs down" system. We can also construct such matrices from more
general preference matrices where the users use a star system to grade the products. One
can imagine, for example, that the good recommendations could be the products for which
the user has a preference higher than a threshold, or the hundred products with highest
preference etc.

3.2 Sampling an approximation of the preference matrix
Note that sampling from the preference matrix T would always yield a good recommendation,
since the products that correspond to bad recommendations have probability 0. This remains
true even when we want to sample from a specific row of the matrix in order to provide a
recommendation to a specific user. Our goal now is to show that sampling from a matrix
that is close to the matrix T under the Frobenius norm yields good recommendations with
high probability for most users.

I Lemma 5. Let T̃ be an approximation of the matrix T such that ‖T − T̃‖F ≤ ε‖T‖F .
Then, the probability a sample according to T̃ is a bad recommendation is

Pr
(i,j)∼T̃

[(i, j) bad] ≤
(

ε

1− ε

)2

Proof. By the theorem’s assumption and triangle inequality, we have

(1 + ε)‖T‖F ≥ ‖T̃‖F ≥ (1− ε)‖T‖F .

We can rewrite the approximation guarantee as

ε2‖T‖2
F ≥ ‖T − T̃‖2

F =
∑

(i,j):good

(1− T̃ij)2 +
∑

(i,j):bad

T̃ 2
ij ≥

∑
(i,j):bad

T̃ 2
ij (1)

The probability that sampling from T̃ provides a bad recommendation is

Pr[(i, j) bad] =
∑

(i,j):bad T̃
2
ij

‖T̃‖2
F

≤
∑

(i,j):bad T̃
2
ij

(1− ε)2‖T‖2
F

≤
(

ε

1− ε

)2
. (2)

J

The above can be rewritten as follows denoting the i-th row of T by Ti,

Pr[(i, j) bad] =
∑

(i,j):bad T̃
2
ij

‖T̃‖2
F

=
∑
i∈[m]

‖T̃i‖2
F

‖T̃‖2
F

·
∑
j:(i,j)bad T̃

2
ij

‖T̃i‖2
F

≤
(

ε

1− ε

)2
. (3)

I. Kerenidis and A. Prakash 49:9

We can see that the above lemma provides the guarantee that the probability of a bad
recommendation for an average user is small, where the average is weighted according to the
weight of each row. In other words, if we care more about users that have many products
they like and less for users that like almost nothing, then the sampling already guarantees
good performance.

While this might be sufficient in some scenarios, it would be nice to also have a guarantee
that the recommendation is good for most users, where now every user has the same
importance. Note that only with the closeness guarantee in the Frobenius norm, this may
not be true, since imagine the case where almost all rows of the matrix T have extremely
few 1s and a few rows have almost all 1s. In this case, it might be that the approximation
matrix is close to the preference matrix according to the Frobenius norm, nevertheless the
recommendation system provides good recommendations only for the very heavy users and
bad ones for almost everyone else.

Hence, if we would like to show that the recommendation system provides good recom-
mendations for most users, then we need to assume that most users are “typical", meaning
that the number of products that are good recommendations for them is close to the average.
We cannot expect to provide good recommendations for example to users that like almost
nothing. One way to enforce this property is, for example, to define good recommendations
for each user as the 100 top products, irrespective of how high their utilities are or whether
there are even more good products for some users. In what follows we prove our results in
most generality, where we introduce parameters for how many users are typical and how far
from the average the number of good recommendations of a typical user can be.

I Theorem 6. Let T be an m× n matrix. Let S be a subset of rows of size |S| ≥ (1− ζ)m
(for ζ > 0) such that for all i ∈ S,

1
1 + γ

‖T‖2
F

m
≤ ‖Ti‖2 ≤ (1 + γ)‖T‖

2
F

m
(4)

for some γ > 0. Let T̃ be an approximation of the matrix T such that ‖T − T̃‖F ≤ ε‖T‖F .
Then, there exists a subset S′ ⊆ S of size at least (1−δ−ζ)m (for δ > 0), such that on average
over the users in S′, the probability that a sample from the row T̃i is a bad recommendation is

Pr
i∼US′ ,j∼T̃i

[(i, j) bad] ≤

(
ε(1+ε)

1−ε

)2

(
1/
√

1 + γ − ε/
√
δ
)2

(1− δ − ζ)
.

Proof. We first use the guarantee that the matrices T and T̃ are close in the Frobenius norm
to conclude that there exist at least (1− δ)m users for which

‖Ti − T̃i‖2 ≤ ε2‖T‖2
F

δm
. (5)

If not, summing the error of the strictly more than δm users for which equation 5 is false we
get the following contradiction,

‖T − T̃‖2
F > δm

ε2‖T‖2
F

δm
> ε2‖T‖2

F .

Then, at least (1− δ− ζ)m users both satisfy equation 5 and belong to the set S. Denote this
set by S′. Using equations (4) and (5) and the triangle inequality ‖T̃i‖ ≥ ‖Ti‖ − ‖Ti − T̃i‖,
we have that for all users in S′

‖T̃i‖2
F ≥

‖T‖2
F

m

(
1√

1 + γ
− ε√

δ

)2
≥ ‖T̃‖2

F

(1 + ε)2m

(
1√

1 + γ
− ε√

δ

)2
. (6)

ITCS 2017

49:10 Quantum Recommendation Systems

We now use equations (3) and (6) and have

(
ε

1− ε

)2
≥
∑
i∈[m]

‖T̃i‖2
F

‖T̃‖2
F

·
∑
j:(i,j)bad T̃

2
ij

‖T̃i‖2
F

≥

(
1/
√

1 + γ − ε/
√
δ
)2

(1 + ε)2m

∑
i∈S′

∑
j:(i,j)bad T̃

2
ij

‖T̃i‖2
F

. (7)

We are now ready to conclude that,

Pr
i∼US′ ,j∼T̃i

[(i, j) bad] = 1
|S′|

∑
i∈S′

∑
j:(i,j)bad T̃

2
ij

‖T̃i‖2
F

≤

(
ε(1+ε)

1−ε

)2

(
1/
√

1 + γ − ε/
√
δ
)2

(1− δ − ζ)
.

J

We note that by taking reasonable values for the parameters, the error does not increase
much from the original error. For example, if we assume that 90% of the users have preferences
between 1/1.1 and 1.1 times the average, then the error over the typical users has increased by
at most a factor of 1.5. Note also that we can easily make the quality of the recommendation
system even better if we are willing to recommend a small number of products, instead of
just one, and are satisfied if at least one of them is a good recommendation. This is in fact
what happens in practical systems.

4 Matrix Sampling

We showed in the previous section that providing good recommendations reduces to being
able to sample from a matrix T̃ which is a good approximation to the recommendation
matrix T in the Frobenius norm. We will now define the approximation matrix T̃ , by
extending known matrix reconstruction techniques. The reconstruction algorithms provides
good guarantees under the assumption that the recommendation matrix T has a good k-rank
approximation for a small k, i.e. ‖T − Tk‖F ≤ ε‖T‖F (for some small constant ε ≥ 0).

Let us now briefly describe the matrix reconstruction algorithms. In general, the input
to the reconstruction algorithm is a subsample of some matrix A. There are quite a few
different ways of subsampling a matrix, for example, sampling each element of the matrix
with some probability or sampling rows and/or columns of the matrix according to some
distribution. We present here in more detail the first case as is described in the work of
Achlioptas and McSherry [2]. Each element of the matrix A that has size m× n is sampled
with probability p and rescaled so as to obtain the random matrix Â where each element is
equal to Âij = Aij/p with probability p and 0 otherwise. Note that E[Â] = A and that it is
assumed that k and ‖A‖F are known.

The reconstruction algorithm computes the projection of the input matrix Â onto its
k-top singular vectors; we denote the projection by Âk. The analysis of the algorithm shows
that the approximation error ‖A− Âk‖ is not much bigger than ‖A−Ak‖. Projecting onto
the top k singular vectors of the subsampled matrix Â thus suffices to reconstruct a matrix
approximating A.

The intuition for the analysis is that Â is a matrix whose entries are independent random
variables, thus with high probability the top k spectrum of Â will be close to the one of its
expectation matrix E[Â] = A. This intuition was proven in [2].

I Theorem 7. [2] Let A ∈ Rm×n be a matrix and b = maxij Aij . Define the matrix Â to be
a random matrix obtained by subsampling with probability p = 16nb2/(η‖A‖F)2 (for η > 0)

I. Kerenidis and A. Prakash 49:11

and rescaling, that is Âij = Aij/p with probability p and 0 otherwise. With probability at
least 1− exp(−19(logn)4) we have for any k

‖A− Âk‖F ≤ ‖A−Ak‖F + 3√ηk1/4‖A‖F . (8)

Here, we will need to extend this result in order to be able to use it together with
our quantum procedure. First, we will consider the matrix which is not the projection on
the k-top singular vectors, but the projection on the singular vectors whose corresponding
singular values are larger than a threshold. For any matrix A and any σ ≥ 0, we denote by
A≥σ the projection of the matrix A onto the space spanned by the singular vectors whose
corresponding singular value is bigger than σ. Intuitively, since the spectrum of the matrix
is highly concentrated on the top k singular vectors, then the corresponding singular values
should be of order O(‖A‖F√

k
).

Note that we do not use anything about how the matrix Â was generated, only that it
satisfies equation 8. Hence our results hold for other matrix reconstruction algorithms as
well, as long as we have a similar guarantee in the Frobenius norm.

I Theorem 8. Let A ∈ Rm×n be a matrix such that maxij Aij = 1. Define the matrix Â to
be a random matrix obtained by subsampling with probability p = 16n/η2(‖A‖F)2 (for η > 0)
and rescaling, that is Âij = Aij/p with probability p and 0 otherwise. Let µ > 0 a threshold
parameter and denote σ =

√
µ
k ||Â||F . With probability at least 1− exp(−19(logn)4) we have

‖A− Â≥σ‖F ≤ ‖A−Ak‖F + (3√ηk1/4µ−1/4 +
√
µ/p)‖A‖F . (9)

If ‖A−Ak‖F ≤ ε‖A‖F for some ε > 0 and ‖A‖F ≥ 36
√

2(nk)1/2

ε3 then we can choose η, µ such
that ‖A− Â≥σ‖F ≤ 3ε‖A‖F .

Proof. Let σi denote the singular values of Â. Let ` the largest integer for which σ` ≥√
µ
k ||Â||F . Note that ` ≤ k

µ . Then, by theorem 7, we have

‖A− Â≥σ‖F = ‖A− Â`‖F ≤ ‖A−A`‖F + 3√η`1/4‖A‖F .

Define the random variable X =
∑
i,j Â

2
ij so that X = ‖Â‖2

F and E[X] = ‖A‖2
F /p.

The random variables Âij are independent, using the Chernoff bounds we have Pr[‖Â‖2
F >

(1 + β)‖A‖2
F /p] ≤ e−β

2‖A‖2
F /3p for β ∈ [0, 1]. The probability that ‖Â‖2

F > 2‖A‖2
F /p is

exponentially small.
We distinguish two cases.
If ` ≥ k, then ‖A−A`‖F ≤ ‖A−Ak‖F , since A` contains more of the singular vectors of

A.
If k > `, then ‖A− A`‖F ≤ ‖A− Ak‖F + ‖Ak − A`‖F , which dominates the two cases.

For the second term we have ‖Ak −A`‖2
F =

∑k
i=`+1 σ

2
i ≤ k

µ
k ‖Â‖

2
F ≤

2µ
p ‖A‖

2
F . Hence,

‖A− Â≥σ‖F ≤ ‖A−Ak‖F + (3√ηk1/4µ−1/4 +
√

2µ/p)‖A‖F .

If ‖A−Ak‖F ≤ ε‖A‖F , for some ε ≥ 0 then we choose µ = ε2p/2 and we can select any
η ≤ 2n1/4ε3/2

3(2k)1/4‖A‖1/2
F

so that 3√ηk1/4µ−1/4 ≤ ε and the overall error ‖A − Â≥σ‖F ≤ 3ε‖A‖F .
Indeed,

3√ηk1/4µ−1/4 = 3η1/2(2k)1/4

ε1/2p1/4 = 3η‖A‖1/2
F (2k)1/4

2ε1/2n1/4 ≤ ε

Note that for this choice of µ and η, the sampling probability must be at least p ≥ 36
√

2(nk)1/2

‖A‖F ε3 ,
the assumption in the theorem statement ensures that p ≤ 1. J

ITCS 2017

49:12 Quantum Recommendation Systems

Our quantum procedure will almost produce this projection. In fact, we will need to
consider a family of matrices which denote the projection of the matrix A onto the space
spanned by the union of the singular vectors whose corresponding singular value is bigger
than σ and also some subset of singular vectors whose corresponding singular value is in the
interval [(1−κ)σ, σ). Think of κ as a constant, for example 1/3. This subset could be empty,
all such singular vectors, or any in-between subset. We denote byA≥σ,κ any matrix in this
family.

The final theorem we will need is the following

I Theorem 9. Let A ∈ Rm×n be a matrix and maxij Aij = 1. Define the matrix Â to be a
random matrix obtained by subsampling with probability p = 16n/(η‖A‖F)2 and rescaling,
that is Âij = Aij/p with probability p and 0 otherwise. Let µ > 0 a threshold parameter
and denote σ =

√
µ
k ||Â||F . Let κ > 0 a precision parameter. With probability at least

1− exp(−19(logn)4),

‖A− Â≥σ,κ‖F ≤ 3‖A−Ak‖F

+
(

3√ηk1/4µ−1/4(2 + (1− κ)−1/2) + (3− κ)
√

2µ/p
)
‖A‖F . (10)

If ‖A−Ak‖F ≤ ε‖A‖F for some ε > 0 and ‖A‖F ≥ 36
√

2(nk)1/2

ε3 then we can choose η, µ such
that ‖A− Â≥σ,κ‖F ≤ 9ε‖A‖F .

Proof. We have

‖A− Â≥σ,κ‖F ≤ ‖A− Â≥σ‖F + ‖Â≥σ − Â≥σ,κ‖F
≤ ‖A− Â≥σ‖F + ‖Â≥σ − Â≥(1−κ)σ‖F
≤ ‖A− Â≥σ‖F + ‖A− Â≥σ‖F + ‖A− Â≥(1−κ)σ‖F
≤ 2‖A− Â≥σ‖F + ‖A− Â≥(1−κ)σ‖F .

We use Theorem 8 to bound the first term as

‖A− Â≥σ‖F ≤ ‖A−Ak‖F + (3√ηk1/4µ−1/4 +
√

2µ/p)‖A‖F

For the second term, we can reapply Theorem 8 where now we need to rename µ as (1−κ)2µ

and have

‖A− Â≥(1−κ)σ‖F ≤ ‖A−Ak‖F + (3√ηk1/4(1− κ)−1/2µ−1/4 + (1− κ)
√

2µ/p)‖A‖F .

Overall we have

‖A− Â≥σ,κ‖F ≤ 3‖A−Ak‖F +
(

3√ηk1/4µ−1/4(2 + (1− κ)−1/2) + (3− κ)
√

2µ/p
)
‖A‖F .

Let ‖A−Ak‖F ≤ ε‖A‖F , for some ε ≥ 0. We choose κ = 1/3, µ = ε2p/2 and we can select
any η ≤ 2n1/4ε3/2

3(2k)1/4‖A‖1/2
F

to have

‖A− Â≥σ,κ‖F ≤ 3ε‖A‖F +
(

2ε+ ε√
1− κ

+ (3− κ)ε
)
‖A‖F ≤ 9ε‖A‖F . (11)

As in theorem 8, the sampling probability must be at least p ≥ 36
√

2(nk)1/2

‖A‖F ε3 . J

I. Kerenidis and A. Prakash 49:13

We have shown that the task of providing good recommendations for a user i reduces
to being able to sample from the i-th row of the matrix T̂≥σ,κ, in other words sample from
the projection of the i-th row of T̂ onto the space spanned by all row singular vectors with
singular values higher than σ and possibly some more row singular vectors with singular
values in the interval [(1− κ)σ, σ).

In the following section, we show a quantum procedure, such that given a vector (e.g. the
i-th row of T̂), a matrix (e.g. the matrix T̂), and parameters σ and κ, outputs the quantum
state |(T̂≥σ,κ)i〉, which allows one to sample from this row by measuring in the computational
basis. The algorithm runs in time polylogarihmic in the matrix dimensions and polynomial
in k, since it depends inverse polynomially in σ, which in our case is inverse polynomial in k.

5 Quantum projections in polylogarithmic time

The main quantum primitive required for the recommendation system is a quantum projection
algorithm that runs in time polylogarithmic in the matrix dimensions.

5.1 The data structure

The input to the quantum procedure is a vector x ∈ Rn and a matrix A ∈ Rm×n. We
assume that the input is stored in a classical data structure such that an algorithm that has
quantum access to the data structure can create the quantum state |x〉 corresponding to the
vector x and the quantum states |Ai〉 corresponding to each row Ai of the matrix A, in time
polylog(mn).

It is in fact possible to design a data structure for a matrix A that supports the efficient
construction of the quantum states |Ai〉. Moreover, we can ensure that the size of the data
structure is optimal (up to polylogarithmic factors), and the data entry time, i.e. the time
to store a new entry (i, j, Aij) that arrives in the system is just polylog(mn). Note that just
writing down the entry takes logarithmic time.

I Theorem 10. Let A ∈ Rm×n be a matrix. Entries (i, j, Aij) arrive in the system in an
arbitrary order and w denotes the number of entries that have already arrived in the system.
There exists a data structure to store the entries of A with the following properties:
(i) The size of the data structure is O(w · log2(mn)).
(ii) The time to store a new entry (i, j, Aij) is O(log2(mn)).
(iii) A quantum algorithm that has quantum access to the data structure can perform the

mapping Ũ : |i〉 |0〉 → |i〉 |Ai〉, for i ∈ [m], corresponding to the rows of the matrix
currently stored in memory and the mapping Ṽ : |0〉 |j〉 → |Ã〉 |j〉, for j ∈ [n], where
Ã ∈ Rm has entries Ãi = ‖Ai‖ in time polylog(mn).

The explicit description of the data structure is given in the appendix. Basically, for
each row of the matrix, that we view as a vector in Rn, we store an array of 2n values as
a full binary tree of n leaves. The leaves hold the individual amplitudes of the vector and
each internal node holds the sum of the squares of the amplitudes of the leaves rooted on
this node. For each entry added to the tree, we need to update log(n) nodes in the tree.
The same data structure can of course be used for the vector x as well. One need not use a
fixed array of size 2n for this construction, but only ordered lists of size equal to the entries
that have already arrived in the system.Alternative solutions for vector state preparation are
possible, another solution based on a modified memory is described in [19].

ITCS 2017

49:14 Quantum Recommendation Systems

5.2 Quantum Singular Value Estimation
The second tool required for the projection algorithm is an efficient quantum algorithm for
singular value estimation. In the singular value estimation problem we are given a matrix A
such that the vector states corresponding to its row vectors can be prepared efficiently. Given
a state |x〉 =

∑
i αi |vi〉 for an arbitrary vector x ∈ Rn the task is to estimate the singular

values corresponding to each singular vector in coherent superposition. Note that we take
the basis {vi} to span the entire space by including singular vectors with singular value 0.

I Theorem 11. Let A ∈ Rm×n be a matrix with singular value decomposition A =
∑
i σiuiv

t
i

stored in the data structure in theorem 10. Let ε > 0 be the precision parameter. There is
an algorithm with running time O(polylog(mn)/ε) that performs the mapping

∑
i αi |vi〉 →∑

i αi |vi〉 |σi〉, where σi ∈ σi ± ε‖A‖F for all i with probability at least 1− 1/poly(n).

Here, we present a quantum singular value estimation algorithm, in the same flavor as the
quantum walk based algorithm by Childs [7] for estimating eigenvalues of a matrix, and show
that given quantum access to the data structure from theorem 10, our algorithm runs in
time O(polylog(mn)/ε). A different quantum algorithm for singular value estimation can be
based on the work of [16] with running time O(polylog(mn)/ε3), and for which a coherence
analysis was shown in [19].

The idea for our singular value estimation algorithm is to find isometries P ∈ Rmn×m
and Q ∈ Rmn×n that can be efficiently applied, and such that A

‖A‖F = P tQ. Using P and Q,
we define a unitary matrix W acting on Rmn, which is also efficiently implementable and
such that the row singular vector vi of A with singular value σi is mapped to an eigenvector
Qvi of W with eigenvalue eιθi such that cos(θi/2) = σi/‖A‖F (note that cos(θi/2) > 0 as
θi ∈ [−π, π]). The algorithm consists of the following steps: first, map the input vector∑
i αi |vi〉 to

∑
i αi |Qvi〉 by applying Q; then, use phase estimation as in theorem 3 with

unitary W to compute an estimate of the eigenvalues θi and hence of the singular values
σi = ‖A‖F cos(θi/2); and finally undo Q to recover the state

∑
i αi |vi〉 |σi〉. This procedure

is described in algorithm 1.
It remains to show how to construct the mappings P,Q and the unitary W that satisfy all

the properties mentioned above that are required for the quantum singular value estimation
algorithm.

I Lemma 12. Let A ∈ Rm×n be a matrix with singular value decomposition A =
∑
i σiuiv

t
i

stored in the data structure in theorem 10. Then, there exist matrices P ∈ Rmn×m, Q ∈
Rmn×n such that
(i) The matrices P,Q are a factorization of A, i.e. A

‖A‖F = P tQ. Moreover, P tP = Im,
QtQ = In, and multiplication by P,Q, i.e. the mappings |y〉 → |Py〉 and |x〉 → |Qx〉
can be performed in time O(polylog(mn)).

(ii) The unitary W = U · V , where U, V are the reflections U = 2PP t − Imn and V =
2QQt − Imn can be implemented in time O(polylog(mn)).

(iii) The isometry Q : Rn → Rmn maps a row singular vector vi of A with singular value σi
to an eigenvector Qvi of W with eigenvalue eιθi such that cos(θi/2) = σi/‖A‖F .

Proof. Let P ∈ Rmn×m be a matrix with column vectors ei ⊗ Ai
‖Ai‖ for i ∈ [m]. In quantum

notation multiplication by P can be expressed as

|Pei〉 = |i, Ai〉 = 1
‖Ai‖

∑
j∈[n]

Aij |i, j〉 , for i ∈ [m].

I. Kerenidis and A. Prakash 49:15

Let Ã ∈ Rm be the vector of Frobenius norms of the rows of the matrix A, that is Ãi = ‖Ai‖
for i ∈ [m]. Let Q ∈ Rmn×n be a matrix with column vectors Ã

‖A‖F ⊗ ej for j ∈ [n]. In
quantum notation multiplication by Q can be expressed as

|Qej〉 = |Ã, j〉 = 1
‖A‖F

∑
i∈[m]

‖Ai‖ |i, j〉 , for j ∈ [n].

The factorization A = P tQ follows easily by expressing the matrix product in quantum
notation,

(P tQ)ij = 〈i, Ai|Ã, j〉 = ‖Ai‖
‖A‖F

Aij
‖Ai‖

= Aij
‖A‖F

.

The columns of P,Q are orthonormal by definition so P tP = Im andQtQ = In. Multiplication
by P and Q can be implemented in time polylog(mn) using quantum access to the data
structure from theorem 10,

|y〉 → |y, 0dlogne〉 =
∑
i∈[m]

yi |i, 0dlogne〉 Ũ−→
∑
i∈[m]

yi |i, Ai〉 = |Py〉

|x〉 → |0dlogme, x〉 =
∑
j∈[n]

xj |0dlogme, j〉 Ṽ−→
∑
j∈[n]

xj |Ã, j〉 = |Qx〉 . (12)

To show (ii), note that the unitary U is a reflection in Col(P) and can be implemented as
U = ŨR1Ũ

−1 where Ũ is the unitary in first line of equation (12) and R1 is the reflection
in the space |y, 0dlogne〉 for y ∈ Rm. It can be implemented as a reflection conditioned on
the second register being in state |0dlogne〉. The unitary V is a reflection in Col(Q) and can
be implemented analogously as V = Ṽ R0Ṽ

−1 where V̂ is the unitary in the second line of
equation (12) and R0 is the reflection in the space |0dlogme, x〉 for x ∈ Rn.

It remains to show that Qvi is an eigenvector for W with eigenvalue eιθi such that
cos(θi/2) = σi/‖A‖F . For every pair of singular vectors (ui, vi) of A, we define the two
dimensional subspacesWi = Span(Pui, Qvi) and let θi/2 ∈ [−π/2, π/2] be the angle between
Pui and ±Qvi. Note that Wi is an eigenspace for W which acts on it as a rotation by ±θi,
since W is a reflection in the column space of Q followed by a reflection in the column space
of P . Moreover, the relation cos(θi/2) = σi/‖A‖F is a consequence of the factorization in
lemma 12, since we have

PP tQvi = PAvi
‖A‖F

= σi
‖A‖F

Pui and QQtPui = QAtui
‖A‖F

= σi
‖A‖F

Qvi. (13)

J

Using the primitives from the preceding lemma, we next describe the singular value estimation
algorithm and analyze it to prove theorem 11.

5.2.0.1 Analysis

The phase estimation procedure [12] with unitary W and precision parameter ε on input
|Qvi〉 produces an estimate such that |θi − θi| ≤ 2ε. The estimate for the singular value is
σi = cos(θi/2)‖A‖F . The error in estimating σi = cos(θi/2)‖A‖F can be bounded as follows,

|σi − σi| = | cos(θi/2)− cos(θi/2)|‖A‖F ≤ sin(φ) |θi − θi|2 ‖A‖F ≤ ε‖A‖F (14)

ITCS 2017

49:16 Quantum Recommendation Systems

Algorithm 1 Quantum singular value estimation
Require: A ∈ Rm×n, x ∈ Rn in the data structure from theorem 10, precision parameter

ε > 0.

1. Create |x〉 =
∑
i αi |vi〉.

2. Append a first register |0dlogme〉 and create the state |Qx〉 =
∑
i αi |Qvi〉 as in eq.

(12).
3. Perform phase estimation with precision parameter 2ε > 0 on the input |Qx〉 for the

unitaryW = U ·V where U, V are the unitaries in lemma 12 and obtain
∑
i αi |Qvi, θi〉.

4. Compute σi = cos(θi/2)‖A‖F where θi is the estimate from phase estimation, and
uncompute the output of the phase estimation.

5. Apply the inverse of the transformation in step 2 to obtain
∑
i αi |vi〉 |σi〉.

where φ ∈ [θi/2 − ε, θi/2 + ε]. Algorithm 1 therefore produces an additive error ε‖A‖F
estimate of the singular values, the running time is O(polylog(mn)/ε) by theorem 3 as the
unitary W is implemented in time O(polylog(mn)) by lemma 12. This concludes the proof
of theorem 11.

One can define an algorithm for singular value estimation with input |y〉 =
∑
i βi |ui〉.

where ui are the column singular vectors, by using the operator P from lemma 12 instead of
Q in algorithm 1. The correctness follows from the same argument as above.

5.3 Quantum projection with threshold
Let A =

∑
i σiuiv

t
i . We recall that A≥σ =

∑
σi≥σ σiuiv

t
i is the projection of the matrix A

onto the space spanned by the singular vectors whose singular values are bigger than σ. Also,
A≥σ,κ is the projection of the matrix A onto the space spanned by the union of the singular
vectors whose corresponding singular values is bigger than σ and some subset of singular
vectors whose corresponding singular values are in the interval [(1− κ)σ, σ).

Algorithm 2 presents a quantum algorithm that given access to vector state x, a matrix
A and parameters σ, κ, outputs the state |A+

≥σ,κA≥σ,κx〉, namely the projection of x onto
the subspace spanned by the union of the row singular vectors whose corresponding singular
values are bigger than σ and some subset of row singular vectors whose corresponding singular
values are in the interval [(1− κ)σ, σ).

For simplicity, we present the algorithm without a stopping condition and we will compute
the expected running time. By stopping the algorithm after a number of iterations which
is log(n) times more than the expected one, we can easily construct an algorithm with
worst-case running time guarantees and whose correctness probability has only decreased by
a factor of (1− 1/poly(n)).

Let {vi} denote an orthonormal basis for Rn that includes all row singular vectors of the
matrix A. We think of κ as a constant, for example 1/3.

For the running time, note that the singular value estimation takes time O(polylog(mn)/ε),
while the probability we obtain |0〉 in step 5 is

||A+
≥σ,κA≥σ,κx||

2

‖x‖2 ≥
||A+
≥σA≥σx||

2

‖x‖2 .

I Theorem 13. Algorithm 2 outputs |A+
≥σ,κA≥σ,κx〉 with probability at least 1− 1/poly(n)

and in expected time O(polylog(mn)‖A‖F ‖x‖2

σ||A≥σA+
≥σx||

2).

It is important to notice that the running time of the quantum projection algorithm
depends only on the threshold σ (which we will take to be of the order ‖A‖F√

k
) and not on

I. Kerenidis and A. Prakash 49:17

Algorithm 2 Quantum projection with threshold
Require: A ∈ Rm×n, x ∈ Rn in the data structure from Theorem 10; parameters σ, κ > 0.

1. Create |x〉 =
∑
i αi |vi〉.

2. Apply the singular value estimation on |x〉 with precision ε=̂κ
2

σ
‖A‖F to obtain the

state∑
i

αi |vi〉 |σi〉

3. Apply on a second new register the unitary V that maps |t〉 |0〉 7→ |t〉 |1〉 if t < σ− κ
2σ

and |t〉 |0〉 7→ |t〉 |0〉 otherwise, to get the state∑
i∈S

αi |vi〉 |σi〉 |0〉+
∑
i∈S

αi |vi〉 |σi〉 |1〉 ,

where S is the union of all i’s such that σi ≥ σ and some i’s with σi ∈ [(1− κ)σ, σ).
4. Apply the singular value estimation on the above state to erase the second register∑

i∈S
αi |vi〉 |0〉+

∑
i∈S

αi |vi〉 |1〉 = β |A+
≥σ,κA≥σ,κx〉 |0〉+

√
1− |β|2 |A+

≥σ,κA≥σ,κx〉
⊥ |1〉 ,

with β =
||A+
≥σ,κA≥σ,κx||
‖x‖ .

5. Measure the second register in the standard basis. If the outcome is |0〉, output the
first register and exit. Otherwise repeat step 1.

the condition number of A which may be very large. We will also show in the next section
that in the recommendation systems, for most users the ratio

||A+
≥σA≥σx||

2

‖x‖2 is constant. This
will conclude the analysis and show that the running time of the quantum recommendation
system is polynomial in k and polylogarithmic in the matrix dimensions.

One could also use amplitude amplification to improve the running time of algorithm 2,
once a careful error analysis is performed as the reflections are not exact. As we will see that
the

||A+
≥σA≥σx||

2

‖x‖2 is constant for most users, this will not change asymptotically the running
time of the algorithm and hence we omit the analysis.

6 Quantum recommendation systems

We have all the necessary ingredients to describe the quantum algorithm that provides good
recommendations for a user i and that runs in time polylogarithmic in the dimensions of the
preference matrix and polynomial in the rank k. As we said, in recommendation systems we
assume that for the matrix T we have ‖T − Tk‖F ≤ ε||T ||F for some small approximation
parameter ε and small rank k (no more than 100). In Algorithm 3, as in the classical
recommendation systems, we assume we know k but in fact we just need to have a good
estimate for it.

Note again that we do not put a stopping condition to the algorithm and we compute the
expected running time. Again we can turn this into an algorithm with worst-case running
time guarantees by stopping after running for log(n) times more than the expected running
time, and the correctness probability has only decreased by a factor of 1− 1/poly(n).

ITCS 2017

49:18 Quantum Recommendation Systems

Algorithm 3 Quantum recommendation algorithm.

Require: A subsample matrix T̂ ∈ Rm×n (with sampling probability p) stored in the data
structure from Theorem 10 and satisfying the conditions in Theorem 9; a user index i.

1: Apply the quantum projection procedure 2 with the matrix T̂ , the vector corresponding
to the i-th row T̂i, with σ =

√
ε2p
2k ‖T̂‖F and κ = 1/3.

The algorithm runs in expected time O(polylog(mn)
√
k‖T̂i‖2/

√
p‖T̂+
≥σT̂≥σT̂i‖2) and

returns with probability at least 1− 1/poly(n) the state |T̂+
≥σ,κT̂≥σ,κT̂i〉.

2: Measure the above state in the computational basis to get a product j.

6.1 Analysis
Correctness

Let us check the correctness of the algorithm. Note that T̂+
≥σ,κT̂≥σ,κT̂i = (T̂≥σ,κ)i, i.e. the i-th

row of the matrix T̂≥σ,κ. Hence, the quantum projection procedure outputs with probability
at least 1 − 1/poly(n) the state |(T̂≥σ,κ)i〉, meaning that our quantum recommendation
algorithm with high probability outputs a product by sampling the i-th row of the matrix
T̂≥σ,κ.

By Theorem 9, and by setting the parameters appropriately to get equation (11), we have
that with probability at least 1− exp(−19(logn)4),

‖T − T̂≥σ,κ‖F ≤ 9ε‖T‖F .

In this case, we can apply Theorem 6 with matrix T̃ = T̂≥σ,κ to show that there exists a
subset of users S′ of size at least (1 − δ − ζ)m (for δ > 0), such that on average over the
users in S′, the probability that our quantum algorithm provides a bad recommendation is

Pr
i∼US′ ,j∼(T̂≥σ,κ)i

[(i, j) bad] ≤

(
9ε(1+9ε)

1−9ε

)2

(
1/
√

1 + γ − 9ε/
√
δ
)2

(1− δ − ζ)
.

Expected running time

We prove the following theorem

I Theorem 14. For at least (1 − ξ)(1 − δ − ζ)m users in the subset S′, we have that the
expected running time of Algorithm 3 is O(polylog(mn)poly(k)).

Proof. First, by the conditions of Theorem 9, we must have p ≥ 36
√

2(nk)1/2

‖A‖F ε3 . That is the
theorem works even for a p which is sub-constant. However, in order to have the desired
running time, we need to take p to be some constant, meaning that we need to subsample a
constant fraction of the matrix elements. This is also the case for classical recommendation
systems [5, 8].

Second, we need to show that for most users the term Wi ≡ ||T̂i||2

||(T̂≥σ,κ)i||2
that appears in

the running time of the quantum projection algorithm is a constant. This is to be expected,
since most typical rows of the matrix project very well onto the space spanned by the top
singular vectors, since the spectrum of the matrix is well concentrated on the space of the
top singular vectors.

I. Kerenidis and A. Prakash 49:19

As in Theorem 6, we focus on the users in the subset S′, with |S′| ≥ (1 − δ − ζ)m,
for which equations 4 and 6 hold. For these users we can use equation 6 with the matrix
T̃ = T̂≥σ,κ and error 9ε. We have

Ei∈S′ [Wi] = Ei∈S′ [
||T̂i||2

||(T̂≥σ,κ)i||2
] ≤ Ei∈S′ [||T̂i||2]

‖T̂‖2
F

(1+ε)2m

(
1√

1+γ −
9ε√
δ

)2 ≤
||T̂ ||2F

(1−δ−ζ)m

‖T̂‖2
F

(1+ε)2m

(
1√

1+γ −
9ε√
δ

)2

≤ (1 + ε)2

(1− δ − ζ)
(

1√
1+γ −

9ε√
δ

)2 .

By Markov’s inequality, for at least (1−ξ)|S′| users in S′ we haveWi ≤ (1+ε)2

ξ(1−δ−ζ)
(

1√
1+γ
− 9ε√

δ

)2 ,

which for appropriate parameters is a constant. Hence, for at least (1−ξ)(1−δ−ζ)m users, the
quantum recommendation algorithm has an expected running time of O(poly(k)polylog(mn))
and produces good recommendations with high probability. As we said we can easily turn this
into a worst-case running time, by stopping after running log(n) times more than the expected
running time and hence decreasing the correctness only by a factor of 1− 1/poly(n). J

References
1 Scott Aaronson. Read the fine print. Nature Physics, 11(4):291–293, 2015.
2 Dimitris Achlioptas and Frank McSherry. Fast computation of low rank matrix approxim-

ations. In Proceedings of the thirty-third annual ACM symposium on Theory of computing,
pages 611–618. ACM, 2001.

3 Gediminas Adomavicius and Alexander Tuzhilin. Toward the next generation of recom-
mender systems: A survey of the state-of-the-art and possible extensions. Knowledge and
Data Engineering, IEEE Transactions on, 17(6):734–749, 2005.

4 Baruch Awerbuch, Boaz Patt-Shamir, David Peleg, and Mark Tuttle. Improved recommend-
ation systems. In Proceedings of the sixteenth annual ACM-SIAM symposium on Discrete
algorithms, pages 1174–1183. Society for Industrial and Applied Mathematics, 2005.

5 Yossi Azar, Amos Fiat, Anna Karlin, Frank McSherry, and Jared Saia. Spectral analysis of
data. In Proceedings of the thirty-third annual ACM symposium on Theory of computing,
pages 619–626. ACM, 2001.

6 Robert M Bell and Yehuda Koren. Lessons from the netflix prize challenge. ACM SIGKDD
Explorations Newsletter, 9(2):75–79, 2007.

7 Andrew M Childs. On the relationship between continuous-and discrete-time quantum
walk. Communications in Mathematical Physics, 294(2):581–603, 2010.

8 Petros Drineas, Iordanis Kerenidis, and Prabhakar Raghavan. Competitive recommend-
ation systems. In Proceedings of the thirty-fourth annual ACM symposium on Theory of
computing, pages 82–90. ACM, 2002.

9 Lov Grover and Terry Rudolph. Creating superpositions that correspond to efficiently
integrable probability distributions. arXiv preprint quant-ph/0208112, 2002.

10 Aram W Harrow, Avinatan Hassidim, and Seth Lloyd. Quantum algorithm for linear
systems of equations. Physical review letters, 103(15):150502, 2009.

11 Prateek Jain, Praneeth Netrapalli, and Sujay Sanghavi. Low-rank matrix completion using
alternating minimization. In Proceedings of the forty-fifth annual ACM symposium on
Theory of computing, pages 665–674. ACM, 2013.

12 A Yu Kitaev. Quantum measurements and the abelian stabilizer problem. arXiv preprint
quant-ph/9511026, 1995.

ITCS 2017

49:20 Quantum Recommendation Systems

13 Yehuda Koren and Robert Bell. Advances in collaborative filtering. In Recommender
systems handbook, pages 145–186. Springer, 2011.

14 Yehuda Koren, Robert Bell, and Chris Volinsky. Matrix factorization techniques for recom-
mender systems. Computer, 42(8):30–37, 2009.

15 Seth Lloyd, Masoud Mohseni, and Patrick Rebentrost. Quantum algorithms for supervised
and unsupervised machine learning. Arxiv preprint:1307.0411, 2013.

16 Seth Lloyd, Masoud Mohseni, and Patrick Rebentrost. Quantum self analysis. Arxiv
preprint:1307.1401, 2013.

17 Seth Lloyd, Masoud Mohseni, and Patrick Rebentrost. Quantum support vector machine
for big feature and big data classification. Arxiv preprint:1307.0471, 2013.

18 Christos H Papadimitriou, Hisao Tamaki, Prabhakar Raghavan, and Santosh Vempala.
Latent semantic indexing: A probabilistic analysis. In Proceedings of the seventeenth ACM
SIGACT-SIGMOD-SIGART symposium on Principles of database systems, pages 159–168.
ACM, 1998.

19 Anupam Prakash. Quantum algorithms for linear algebra and machine learning. Ph.D
Thesis, University of California, Berkeley., 2014.

20 Anand Rajaraman and Jeffrey D Ullman. Mining of massive datasets, volume 77. Cam-
bridge University Press Cambridge, 2012.

21 Elaine Rich. User modeling via stereotypes*. Cognitive science, 3(4):329–354, 1979.
22 Cyril Stark. Recommender systems inspired by the structure of quantum theory. arXiv

preprint arXiv:1601.06035, 2016.

A The data structure

We prove the following theorem.

I Theorem 15. (Theorem 10 restated) Let A ∈ Rm×n be a matrix. Entries (i, j, Aij) arrive
in the system in some arbitrary order, and w denotes the number of entries that have already
arrived in the system. There exists a data structure to store the matrix A with the following
properties:
(i) The size of the data structure is O(w log2(mn)).
(ii) The time to store a new entry (i, j, Aij) is O(log2(mn)).
(iii) A quantum algorithm that has quantum access to the data structure can perform the

mapping Ũ : |i〉 |0〉 → |i〉 |Ai〉, for i ∈ [m], corresponding to the rows of the matrix
currently stored in memory and the mapping Ṽ : |0〉 |j〉 → |Ã〉 |j〉, for j ∈ [n], where
Ã ∈ Rm has entries Ãi = ‖Ai‖ in time polylog(mn).

Proof. The data structure consists of an array of m binary trees Bi, i ∈ [m]. The trees Bi
are initially empty. When a new entry (i, j, Aij) arrives the leaf node j in tree Bi is created
if not present and updated otherwise. The leaf stores the value A2

ij as well as the sign of Aij .
The depth of each tree Bi is at most dlogne as there can be at most n leaves. An internal
node v of Bi stores the sum of the values of all leaves in the subtree rooted at v, i.e. the sum
of the square amplitudes of the entries of Ai in the subtree. Hence, the value stored at the
root is ‖Ai‖2. When a new entry arrives, all the nodes on the path from that leaf to the tree
root are also updated. The different levels of the tree Bi are stored as ordered lists so that
the address of the nodes being updated can be retrieved in time O(logmn). The binary tree
for a 4-dimensional unit vector for which all entries have arrived is illustrated in figure 1.

The time required to store entry (i, j, Aij) is O(log2 mn) as the insertion algorithm makes
at most dlogne updates to the data structure and each update requires time O(logmn) to
retrieve the address of the updated node.

I. Kerenidis and A. Prakash 49:21

1.0

0.32

0.16 0.16

0.68

0.64 0.04

Let |φ〉 = 0.4 |00〉+ 0.4 |01〉+ 0.8 |10〉+ 0.2|11〉.
Rotation on qubit 1:
|0〉 |0〉 → (

√
0.32 |0〉+

√
0.68 |1〉) |0〉

Rotation on qubit 2 conditioned on qubit 1:

(
√

0.32 |0〉+
√

0.68 |1〉) |0〉 →
√

0.32 |0〉 1√
0.32

(0.4 |0〉+ 0.4 |1〉)+

√
0.68 |1〉 1√

0.68
(0.8 |0〉+ 0.2 |1〉)

Figure 1 Vector state preparation illustrated for 4-dimensional state |φ〉.

The memory requirement for the data structure is O(w log2 mn) as for each entry (i, j, Aij)
at most dlogne new nodes are added, each node requiring O(logmn) bits.

We now show how to perform Ũ in time polylog(mn) if an algorithm has quantum
access to this classical data structure. The state preparation procedure using pre-computed
amplitudes is well known in the literature, for instance see [9]. The method is illustrated
for a 4-dimensional state |φ〉 corresponding to a unit vector in figure 1. The amplitudes
stored in the internal nodes of Bi are used to apply a sequence of conditional rotations to
the initial state |0〉dlogne to obtain |Ai〉. Overall, there are dlogne rotations applied and for
each one of them we need two quantum queries to the data structure (from each node in the
superposition we query its two children).

The amplitude stored at an internal node of Bi at depth t corresponding to k ∈ {0, 1}t is,

Bi,k :=
∑

j∈[n],j1:t=k

A2
ij

where j1:t denotes the first t bits in the binary representation for j. Note that Bi,k is the
probability of observing outcome k if the first t bits of |Ai〉 are measured in the standard
basis. Conditioned on the first register being |i〉 and the first t qubits being in state |k〉 the
rotation is applied to the (t+ 1) qubit as follows

|i〉 |k〉 |0〉 → |i〉 |k〉 1√
Bi,k

(√
Bi,k0 |0〉+

√
Bi,k1 |1〉

)
.

The sign is included for rotations applied to the dlogne-th qubit

|i〉 |k〉 |0〉 → |i〉 |k〉 1√
Bi,k

(
sgn(Ak0)

√
Bi,k0 |0〉+ sgn(Ak1)

√
Bi,k1 |1〉

)
.

Last, we show how to perform Ṽ in time polylog(mn). Note that the amplitudes of the
vector Ã are equal to ‖Ai‖, and the values stored on the roots of the trees Bi are equal
to ‖Ai‖2. Hence, by a similar construction (another binary tree) for the m roots, we can
perform the unitary Ṽ efficiently.

J

ITCS 2017

	Introduction
	Our results
	Comparisons with related work

	Preliminaries
	Linear algebra
	Quantum information

	A model for recommendation systems
	The preference matrix
	Sampling an approximation of the preference matrix

	Matrix Sampling
	Quantum projections in polylogarithmic time
	The data structure
	Quantum Singular Value Estimation
	Quantum projection with threshold

	Quantum recommendation systems
	Analysis

	The data structure

