5 research outputs found

    Accurate Spectral Algorithms for Solving Variable-order Fractional Percolation Equations

    Get PDF
    A high accurate spectral algorithm for one-dimensional variable-order fractional percolation equations (VO-FPEs) is considered.We propose a shifted Legendre Gauss-Lobatto collocation (SL-GLC) method in conjunction with shifted Chebyshev Gauss-Radau collocation (SC-GR-C) method to solve the proposed problem. Firstly, the solution and its space fractional derivatives are expanded as shifted Legendre polynomials series. Then, we determine the expansion coefficients by reducing the VO-FPEs and its conditions to a system of ordinary differential equations (SODEs) in time. The numerical approximation of SODEs is achieved by means of the SC-GR-C method. The under-study’s problem subjected to the Dirichlet or non-local boundary conditions is presented and compared with the results in literature, which reveals wonderful results

    Numerical Study of Soliton Solutions of KdV, Boussinesq, and Kaup-Kuperschmidt Equations Based on Jacobi Polynomials

    Get PDF
    In this paper, a numerical method is developed to approximate the soliton solutions of some nonlinear wave equations in terms of the Jacobi polynomials. Wave are very important phenomena in dispersion, dissipation, diffusion, reaction, and convection. Using the wave variable converts these nonlinear equations to the nonlinear ODE equations. Then, the operational Collocation method based on Jacobi polynomials as bases is applied to approximate the solution of ODE equation resulted. In addition, the intervals of the solution will be extended using an rational exponential approximation (REA). The KdV, Boussinesq, and Kaup–Kuperschmidt equations are studied as the test examples. Finally, numerical computation of the conservation values shows the effectiveness and stability of the proposed method

    Space-Time Spectral Collocation Algorithm for the Variable-Order Galilei Invariant Advection Diffusion Equations with a Nonlinear Source Term

    Get PDF
    This paper presents a space-time spectral collocation technique for solving the variable-order Galilei invariant advection diffusion equation with a nonlinear source term (VO-NGIADE). We develop a collocation scheme to approximate VONGIADE by means of the shifted Jacobi-Gauss-Lobatto collocation (SJ-GL-C) and shifted Jacobi-Gauss-Radau collocation (SJ-GR-C) methods. We successfully extend the proposed technique to solve the two-dimensional space VO-NGIADE. The discussed numerical tests illustrate the capability and high accuracy of the proposed methodologies

    Equations and systems of nonlinear equations: from high order numerical methods to fast Eigensolvers for structured matrices and applications

    Get PDF
    A parametrized multi-step Newton method is constructed for widening the region of convergence of classical multi-step Newton method. The second improvement is proposed in the context of multistep Newton methods, by introducing preconditioners to enhance their accuracy, without disturbing their original order of convergence and the related computational cost (in most of the cases). To find roots with unknown multiplicities preconditioners are also effective when they are applied to the Newton method for roots with unknown multiplicities. Frozen Jacobian higher order multistep iterative method for the solution of systems of nonlinear equations are developed and the related results better than those obtained when employing the classical frozen Jacobian multi-step Newton method. To get benefit from the past information that is produced by the iterative method, we constructed iterative methods with memory for solving systems of nonlinear equations. Iterative methods with memory have a greater rate of convergence, if compared with the iterative method without memory. In terms of computational cost, iterative methods with memory are marginally superior comparatively. Numerical methods are also introduced for approximating all the eigenvalues of banded symmetric Toeplitz and preconditioned Toeplitz matrices. Our proposed numerical methods work very efficiently, when the generating symbols of the considered Toeplitz matrices are bijective

    Buildings and Structures under Extreme Loads II

    Get PDF
    Exceptional loads on buildings and structures are known to take origin and manifest from different causes, like natural hazards and possible high-strain dynamic effects, human-made attacks and impact issues for load-bearing components, possible accidents, and even unfavorable/extreme operational conditions. All these aspects can be critical for specific structural typologies and/or materials that are particularly sensitive to external conditions. In this regard, dedicated analysis methods and performance indicators are required for the design and maintenance under the expected lifetime. Typical issues and challenges can find huge efforts and clarification in research studies, which are able to address with experiments and/or numerical analyses the expected performance and capacity of a given structural system, with respect to demands. Accordingly, especially for existing structures or strategic buildings, the need for retrofit or mitigation of adverse effects suggests the definition of optimal and safe use of innovative materials, techniques, and procedures. This Special Issue follows the first successful edition and confirms the need of continuous research efforts in support of building design under extreme loads, with a list of original research papers focused on various key aspects of structural performance assessment for buildings and systems under exceptional design actions and operational conditions
    corecore