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UNIVERSITA DELL’INSUBRIA

Abstract
DIPARTIMENTO DI SCIENZA E ALTA TECNOLOGIA

Doctor of Philosophy

Equations and Systems of Nonlinear Equations: from high order

Numerical Methods to fast Eigensolvers for Structured Matrices and

Applications

by Fayyaz Ahmad

The narrative of our thesis concerns the construction of numerical methods for

the solution of nonlinear equations and systems of nonlinear equations, in order to

compute simple roots or roots with multiplicities and in several context, ranging

from differential problems to the eigenvalues of structured matrices.

After an introduction containing the description and a brief history of the problems

with pointers to the relevant literature, we present eight chapters containing our

new findings.

First, a parametrized multi-step Newton method is constructed for widening the

region of convergence of classical multi-step Newton method. The second improve-

ment is proposed in the context of multi-step Newton methods, by introducing

preconditioners to enhance their accuracy, without disturbing their original order

of convergence and the related computational cost (in most of the cases).

In this proposal, we cover both cases of multi-step Newton methods with and

without derivatives aimed at computing simple roots. To find roots with unknown

multiplicities preconditioners are also effective when they are applied to the New-

ton method for roots with unknown multiplicities. Frozen Jacobian higher order

multi-step iterative method for the solution of systems of nonlinear equations are

developed and the related results better than those obtained when employing the

classical frozen Jacobian multi-step Newton method.



To get benefit from the past information that is produced by the iterative method,

we constructed iterative methods with memory for solving systems of nonlinear

equations. Iterative methods with memory have a greater rate of convergence,

if compared with the iterative method without memory. In terms of computa-

tional cost, iterative methods with memory are marginally superior comparatively.

Numerical methods are also introduced for approximating all the eigenvalues of

banded symmetric Toeplitz and preconditioned Toeplitz matrices.

Our proposed numerical methods work very efficiently, when the generating sym-

bols of the considered Toeplitz matrices are bijective: the remarkable feature of

the presented methods is the computational cost which is negligible since we do

not even need to store the considered matrices, thanks to specific extrapolation

techniques.

We finally stress that all the algorithms presented in the current thesis are accom-

panied by numerical tests taking into account different applications.
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Chapter 1

Introduction

Most of the phenomena in nature are nonlinear. The mathematical models that

represent them are nonlinear models. Some of the nonlinear models can be ex-

pressed directly in terms of nonlinear equations or systems of nonlinear equations.

In most of the cases the models lead to nonlinear differential or integrodifferential

equations or systems of equations: when this scenario occurs we end up to large

systems of nonlinear equations after a proper numerical approximation. In gen-

eral, it is hard to find an analytical solution in closed form for a nonlinear equation

and systems of nonlinear equations. The solution of the general quintic equation

cannot be expressed algebraically which is demonstrated by Abel’s Theorem [12].

In such a scenario numerical iterative methods play an important role to find nu-

merical solutions of nonlinear equations or systems of nonlinear equations. A wide

class of nonlinear boundary value problems (BVPs) can be written as

L(u) + f(u) = p(x) under some boundary conditions , (1.1)

where L is a linear differential operator, f(·) is a nonlinear function and p(x) is a

source term. A suitable discretization of (1.1) leads to

L(uuu) + f(uuu) = p(x) , (1.2)

where L is a discrete approximation of linear differential operator L and uuu, x are

vectors of appropriate dimensions. Equation (1.2) represents compactly a system

of nonlinear equations. This system of nonlinear equations has a linear part L(uuu)

and a nonlinear part f(uuu). Due to this form, it can be considered a system of mildly

1



Chapter 1. Introduction 2

nonlinear equations. Solving this system of nonlinear equations (1.2) means that

we are indirectly solving a suitable nonlinear boundary value problem. In the

theory of iterative methods to solve nonlinear equations Ostrowski [2] and Traub

[1] contributed in a significant manner. Iterative methods can be divided into two

classes namely the single-point method and multi-point [1]. Other classifications

are

• single-point iterative methods with- and without-memory

• multi-point iterative methods with- and without-memory.

Higher order (≥ 3) single-point iterative methods often suffer from numerical

stability. While multi-point iterative methods give the higher order of convergence

and numerical stability. Some one-point iterative methods without-memory of

different orders, are:







xn+1 = xn − p1 (2nd order Newton-Raphson)

xn+1 = xn − p1 − p2 (3rd order)

xn+1 = xn − p1 − p2 − p3 (4th order)

xn+1 = xn − p1 − p2 − p3 − p4 (5th order)

xn+1 = xn − p1 − p2 − p3 − p4 − p5 (6th order),

(1.3)

where p1 = f(xn)/f
′(xn), p2 = c2p

2
1, p3 = (−c3 + 2c22)p

3
1, p4 = (−5c2c3 + 5c32 +

c4)p
4
1, p5 = (−c5 + 3c23 + 14c42 − 21c3c

2
2 + 6c2c4)p

5
1, c2 = f ′′(xn)/2!f

′(xn), c3 =

f (3)(xn)/3!f
′(xn), c4 = f (4)(xn)/4!f

′(xn), c5 = f (5)(xn)/5!f
′(xn), and f(x) = 0 is

a nonlinear equation.

According to Kung-Traub conjecture [1] if a multi-point iterative method without

memory uses n function evaluations its order of convergence is bounded from

above by 2n−1. Iterative methods achieving 2n−1 convergence order with n function

evaluations are called optimal iterative methods. The classical iterative methods

due to Newton and Ostrowski are examples of optimal iterative methods for finding

a simple root of a nonlinear equation. The efficiency of an the iterative method

depends on

• the order of convergence,

• the computational cost,



Chapter 1. Introduction 3

• the region of convergence.

The efficiency index of the considered iterative method to find the solution of

nonlinear equations can be defined as

Efficiency index = ρ1/n ,

where ρ is the convergence order of the iterative method and n is the total number

of function evaluations. Usually, the factor of the computational cost of binary

operations is not included in the efficiency index in the case of nonlinear equations.

But computational cost becomes important when we deal with systems of nonlinear

equations. The convergence radius of a given iterative method can be observed by

plotting the dynamics in the complex plane [13–30].

The well-known Newton-Raphson iterative method for the system of nonlinear

equations can be expressed as







F′(xxxn)φφφ1 = F(xxxn),

xn+1 = xn − φφφ1,
(1.4)

where F(x) = 000 is the system of nonlinear equations. The computational cost

of a single step of the Newton method is given by the total number of function

evaluations that is n2 + n and the solution of a system of linear equations. The

considered iteration has quadratic convergence order. The fourth-order Jarratt

[31] iterative scheme can be written as







F′(xn)φφφ1 = F(xn),

xn = xn − 2
3φφφ1,

(3F′(xn)− F′(xn))φφφ2 = 3F′(xn) + F(xn),

xn+1 = xn − 1
2φφφ2φφφ1.

(1.5)

H. Montazeri et al. [102] proposed an efficient iterative method with four convergence-
order that is







F′(xn)φφφ1 = F(xn),

xn = xn − 2
3φφφ1,

F′(xn)T = F′(xn),

φφφ2 = Tφφφ1,

φφφ3 = Tφφφ2,

xn+1 = xn − 23
8 φφφ1 + 3φφφ2 − 9

8φφφ3.

(1.6)
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A huge source of information regarding iterative methods for solving systems

of nonlinear equation can be found in [2, 32–37, 39, 40, 40, 51, 52, 56, 57, 62–

65, 70, 71] and references therein.

Multi-step iterative methods are fascinating because of their low computational

cost. The classical Newton multi-step method (NR) can be written as

NR =







Number of steps = m ≥ 1

CO = m+ 1

Function evaluations = m

Jacobian evaluations = 1

Number of LU-factors = 1

Vector-vector multiplications = 0

Number of solutions of lower

and upper triangular systems = m







Base method →







F′(x0)φφφ1 = F(x0)

x1 = x0 −φφφ1

Multi-step part →







for s = 1,m− 1

F′(x0)φφφs+1 = F(xs)

xs+1 = xs −φφφs+1

end

,

Multi-step iterative methods can be divided into two parts, i.e., base method and

multi-step part. In the multi-step part we use the information contained in the

frozen Jacobian that was computed in the base method. We use the LU-factors

of the frozen Jacobian over and over to solve the system of linear equations in

the multi-step part, which makes the method computationally economical. In the

NR method there is an increment of one in the convergence order per multi-step.

Similarly, a derivative-free Newton multi-step method can be expressed as

Base method −→







x0 = initial guess

uuu = x0 + β F(x0)

[uuu,x0;F]φφφ1 = F (x0)

x1 = x0 − φφφ1

Multi-step part→







for j = 2,m

[uuu,x0;F]φφφj = F (xj−1)

xj = xj−1 − φφφj

end

x0 = xm

, (1.7)

where β is a scalar parameter and the [., .;F] : D × D ⊂ R
n × R

n −→ L(Rn) is

divided difference operator of F. We remind that the divided difference operator
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is defined as

[x+ h,x;F] =

1
∫

0

F
′(x+ th) dt, ∀x,h ∈ R

n = F
′(x) +

1

2
F

′′(x)h+
1

6
F

′′′(x)h2 +O
(

h
3), (1.8)

where hi =

i times
︷ ︸︸ ︷

(h,h, · · · ,h). The convergence order of (1.7) is m + 1 and m is

the number of multi-steps. This derivative-free method (1.7) is computationally

more expensive compared with the NR method because the number of function

evaluations in divided difference operator are more compare to that of Jacobian.

There are higher order multi-step methods. Taking note of the convergence order

and of the computational cost, multi-step higher order method (HJ) [63, 102] can

be described as

HJ =







Number of steps = m ≥ 2

Convergence order = 2m

Function evaluations = m − 1

Jacobian evaluations = 2

LU decomposition = 1

Matrix vector multiplications = m

Vector vector multiplications = 2m

Number of solutions of systems

of lower and upper triangular

systems of equations = 2m − 1







Base method −→























































F′ (xk)φφφ1 = F (xk)

x1 = xk − 2
3 φφφ1

F′ (xk)φφφ2 = F′ (x1)φφφ1

F′ (xk)φφφ3 = F′ (x1)φφφ2

x2 = xk − 23
8 φφφ1 + 3φφφ2 − 9

8 φφφ3

Multi-step part →























































for s = 1,m − 2

F′ (xk)φφφ2s+2 = F (xs+1)

F′ (xk)φφφ2s+3 = F′ (x1)φφφ2s+2

xs+2 = xs+1 − 5
2 φφφ2s+2 + 3

2 φφφ2s+3

end

The base method in a HJ method has a convergence order of four and involves

one LU decomposition, one function evaluation, and two Jacobian evaluations.

Each step of the multi-step part increases the convergence order by two. In 2015,

Malik et al. [70] developed another efficient multi-step iterative method (MSF) for

solving nonlinear systems arising from particular ODEs which can be described as

MSF =







Number of steps = m

Convergence-order = 3m

Function evaluations = m

Jacobian evaluations = 2

Second-order Fréchet derivative = 1

LU decomposition = 1

Matrix vector multiplications = 2m − 2

Vector vector multiplications = m + 2

Number of solutions of systems

of lower and upper triangular

systems of equations = 3m − 1







Base method −→























F′ (xk)φφφ1 = F (xk)

F′ (xk)φφφ2 = F′′ (xk)φφφ
2
1

x1 = xk − φφφ1 − 1
2 φφφ2

Multi-step part →











































































for s = 1,m − 1

F′ (xk)φφφ3s = F (xs)

F′ (xk)φφφ3s+1 = F′ (x1)φφφ3s

F′ (xk)φφφ3s+2 = F′ (x1)φφφ3s+1

xs+1 = xs − 3φφφ3s + 3φφφ3s+1

−φφφ3s+2

end
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Further improvements in multi-step method are possible in the direction of reusing

the available information. There are a few works related to iterative methods

with memory of high orders for nonlinear systems. Researchers have introduced

iterative methods with memory to solve systems of nonlinear equations. In 2014,

Sharma et al. [51] proposed a derivative-free iterative method with fourth order

of convergence. In detail we have







yk = xk − [xk,wk,F]
−1F(xk),

xk+1 = yk − (aI+G(k)((3− 2a)I+ (a− 2)G(k)))[xk,wk,F]
−1F(xk),

(1.9)

where wk = (xk + bF(xk), zk = yk + cF(xk), a ∈ R, b, c ∈ R\{0}, G(k) =

[xk,wk,F]
−1[zk,yk,F], and I is the identity matrix of appropriate size.

Recently, the authors in [48] improved the convergence speed of (1.9) to 2 +
√
5

when a 6= 3 and 2 +
√
6, when a = 3, by considering







B(k) = −[wk−1,xk−1;F]
−1, k ≥ 1,

yk = xk − [xk,wk,F]
−1F(xk), k ≥ 0,

xk+1 = yk−
(aI+G(k)((3− 2a)I+ (a− 2)G(k)))[xk,wk,F]

−1F(xk),

(1.10)

where wk = xk +B(k)F(xk).

In the direction of preconditioning, Aslam and his co-researcher [112] proposed a

preconditioned double Newton method with quartic convergence order for solv-

ing a system of nonlinear equations. We now describes shortly the considered

algorithmic proposal. Let

F(x) = [f1(x), f2(x), · · · , fn(x)]T = 0 (1.11)

be the system of nonlinear equations and let us suppose that only simple roots are

present. Here x = [x1, x2, · · · , xn]T . Assume G(x) = [g1(x), g2(x), · · · , gn(x)]T is

a function which is non-zero everywhere in its definition domain. We define a new

function

Q(x) = G(x)⊙ F(x) = [[G(x)]]F(x) = [[F(x)]]G(x), (1.12)

where ⊙ is the element-wise multiplication and [[·]] represent the diagonal matrix,

having as main diagonal its argument. The first order Fréchet derivative of (1.12)
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can be computed as

Q′(x) = [[F(x)]]G′(x) + [[G(x)]]F′(x)

= [[G(x)]]
(
F′(x) + [[F(x)]] [[G(x)]]−1

G′(x)
)
. (1.13)

The application of the Newton method to (1.12) leads to

xk+1 = xk −Q′(xk)
−1 Q(xk)

= xk −
(
F′(xk) + [[F(xk)]] [[G(xk)]]

−1
G′(xk)

)−1
F(xk).

(1.14)

The convergence order of (1.14) is quadratic, because the considered scheme is

the Newton method for solving the preconditioned system of nonlinear equations

Q(x) = 0. If we take G(x) = exp(βββ ⊙ x) then (1.14) can be written as

xk+1 = xk − (F′(xk) + [[βββ ⊙ F(xk)]])
−1

F(xk), (1.15)

where βββ = [β1, β2, · · · , βn]T .

When the system of nonlinear equations have unknown multiplicities, a modified

Newton method for finding zeros with multiplicity greater than one for nonlinear

equations can be written as







x0 = initial guess

xk+1 = xk −m φ(xk)
φ′(xk)

, k = 0, 1, · · · .
(1.16)

Hueso et al. [110] proposed the multidimensional version of of (1.16) as







x0 = initial guess

xk+1 = xk − F′(xk)
−1 [[m]]F(xk), k = 0, 1, · · · ,

(1.17)

where m = [m1,m2, · · · ,mn]
T is a vector of multiplicities for the system of nonlin-

ear equations F(x) = 0. The proof of quadratic convergence of (1.17) is provided

in [110]. W. Wu [109] proposed a variant of the Newton method with the help of

an auxiliary exponential function used as preconditionor. We define a new system
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of nonlinear equation with a nonlinear preconditioner function, having the same

root

U(x) = ev⊙x ⊙ F(x) = 0 . (1.18)

The application of the Newton method for (1.18) implies

xk+1 = xk −U′(xk)
−1 U(xk) ,

xk+1 = xk −
(
[[ev⊙xk ]] (F′(xk) + [[v ⊙ F(xk)]])

)−1
ev⊙xk ⊙ F(xk) ,

xk+1 = xk − (F′(xk) + [[v ⊙ F(xk)]])
−1

[[ev⊙xk ]]
−1
ev⊙xk ⊙ F(xk) ,

xk+1 = xk − (F′(xk) + [[v ⊙ F(xk)]])
−1

F(xk).

(1.19)

The rate of convergence of (1.19) is quadratic. A modification [110] in (1.16) is

proposed by using an exponential preconditioner

U(x) = ev⊙x ⊙ F(x)1/m = 0, (1.20)

where 1/m = [1/m1, 1/m2, · · · , 1/mn]
T and power of F(x) is component-wise.

The application of the Newton method to (1.20) leads to

xk+1 = xk − (F′(xk) + [[v ⊙ F(xk)]])
−1

[[m]]F(xk). (1.21)

We remind that the original idea of a nonlinear preconditioner function was pro-

posed in [109]. Noor et al. [112] have proposed Newton method with general

preconditioners. They defined a preconditioned system of nonlinear equations as

follows

U(x) = G(x)⊙ F(x) = 0, (1.22)

where G(x) 6= 0. Notice that the roots of U(x) = 0 and F(x) = 0 coincide

because G(x) 6= 0 for all x. The first order Fréchet derivative of (1.22) can be

computed as

Ψi(x) = Φi(x) Λi(x),

∇Ψi(x)
T = Φi(x)∇Λi(x)

T + Λi(x)∇Φi(x)
T , i = 1, 2, · · · , n,

(1.23)
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











∇Ψ1(x)
T

∇Ψ2(x)
T

∇Ψ3(x)
T

...

∇Ψn(x)
T













=













Φ1(x) 0 · · · 0

0 Φ2(x) · · · 0

0 0 · · · 0
...

...
...

...

0 0 · · · Φn(x)

























∇Λ1(x)
T

∇Λ2(x)
T

∇Λ3(x)
T

...

∇Λn(x)
T













+













Λ1(x) 0 · · · 0

0 Λ2(x) · · · 0

0 0 · · · 0
...

...
...

...

0 0 · · · Λn(x)

























∇Φ1(x)
T

∇Φ2(x)
T

∇Φ3(x)
T

...

∇Φn(x)
T













.

From (1.23), the Fréchet derivative of F(x)⊙G(x) is

(F(x)⊙G(x))′ = [[F(x)]]G′(x) + [[G(x)]]F′(x) ,

U′(x) = [[G(x)]]F′(x) + [[F(x)]]G′(x) ,

U′(x) = [[G(x)]]
(
F′(x) + [[F(x)]] [[G(x)]]−1

G′(x)
)
.

(1.24)

If we apply the Newton method to (1.22), we obtain

xk+1 = xk −
(
F′(xk) + [[F(xk)]] [[G(xk)]]

−1
G′(xk)

)−1
[[G(xk)]]

−1
G(xk)⊙ F(xk) ,

xk+1 = xk −
(
F′(xk) + [[F(xk)]] [[G(xk)]]

−1
G′(xk)

)−1
F(xk).

(1.25)

The convergence order of (1.25) is two. The iterative method (1.21) with a general

preconditioner can be written as

xk+1 = xk −
(
F′(xk) + [[F(xk)]] [[G(xk)]]

−1
G′(xk)

)−1
[[m]]F(xk). (1.26)

The convergence order of (1.26) is also two. The modified Newton method [1, 7, 8]

for solving nonlinear equations with unknown multiplicity can be developed in this

way. We define a new function

s(x) =
φ(x)

φ′(x)
. (1.27)
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The application of the Newton method to (1.27) gives

xk+1 = xk −
s(xk)

s′(xk)
,

xk+1 = xk −
φ′(xk)φ(xk)

φ′(xk)2 − φ′′(xk)φ(xk)
.

(1.28)

The order of convergence of (1.28) is two. Noor and his co-researchers [111] have

constructed a family of methods for solving nonlinear equations with unknown

multiplicity by introducing a preconditioner. They defined a further function

q(x) =
φ(x)λ(x)

φ′(x)
(1.29)

and the application of the Newton method to (1.29) leads to

xk+1 = xk −
q(xk)

q′(xk)
,

xk+1 = xk −
φ′(xk)φ(xk)λ(xk)

φ′(xk)(φ(xk)λ(xk))′ − φ′′(xk)φ(xk)λ(xk)
,

(1.30)

where λ(x) is a non-zero function. The order of convergence of (1.30) is again two.

Eigenvalues are the roots of characteristics polynomials. Recently Ekström et

al. [137] have introduced a numerical method to extrapolate the eigenvalues of

small-size structured matrices in order to compute the eigenvalues of much larger

structured matrices. Our new contribution goes along the same lines but con-

cerns a further class of matrices with hidden structure, that is a special class of

“preconditioned” Toeplitz matrices.

A matrix of size n, having a fixed entry along each diagonal, is called Toeplitz and
enjoys the expression

[ai−j ]
n
i,j=1 =

































a0 a−1 a−2 · · · · · · a−(n−1)

a1
. . .

. . .
. . .

...

a2
. . .

. . .
. . .

. . .
...

...
. . .

. . .
. . .

. . . a−2

...
. . .

. . .
. . . a−1

an−1 · · · · · · a2 a1 a0

































.
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Given a complex-valued Lebesgue integrable function φ : [−π, π] → C, the n-th

Toeplitz matrix generated by φ is defined as

Tn(φ) =
[
φ̂i−j

]n

i,j=1
,

where the quantities φ̂k are the Fourier coefficients of φ, which means

φ̂k =
1

2π

∫ π

−π

φ(θ) e−ikθdθ, k ∈ Z.

We refer to {Tn(φ)}n as the Toeplitz sequence generated by φ, which in turn is

called the generating function of {Tn(φ)}n. In the case where φ is real-valued,

all the matrices Tn(φ) are Hermitian and much is known about their spectral

properties, from the localization of the eigenvalues to the asymptotic spectral

distribution in the Weyl sense: in particular φ is the spectral symbol of {Tn(φ)}n,
see [9, 11] and the references therein.

More in detail, if φ is real-valued and not identically constant, then any eigenvalue

of Tn(φ) belongs to the open set (mφ,Mφ), with mφ, Mφ being the essential infi-

mum, the essential supremum of φ, respectively. The case of a constant φ is trivial:

in that case if φ = m almost everywhere then Tn(φ) = mIn with In denoting the

identity of size n. Hence if Mφ > 0 and φ is nonnegative almost everywhere, then

Tn(φ) is Hermitian positive definite.

In the current work we focus our attention on the following setting.

• We consider two real-valued cosine trigonometric polynomials (RCTPs) f, g,

that is

f(θ) = f̂0 + 2

m1∑

k=1

f̂k cos(kθ), f̂0, f̂1, . . . , f̂m1 ∈ R, m1 ∈ N,

g(θ) = ĝ0 + 2

m2∑

k=1

ĝk cos(kθ), ĝ0, ĝ1, . . . , ĝm2 ∈ R, m2 ∈ N,

so that Tn(f), Tn(g) are both real symmetric.

• We assume that Mg = max g > 0 and mg = min g ≥ 0, so that Tn(g) is

positive definite.

• We consider Pn(f, g) = T−1
n (g)Tn(f) the “preconditioned” matrix and we

define the new symbol r = f/g.



Chapter 1. Introduction 12

The n-th Toeplitz matrix generated by φ ∈ {f, g} is the real symmetric banded

matrix of bandwidth 2m + 1, m ∈ {m1,m2} (m = m1 if φ = f and m = m2 if

φ = g), given by

Tn(φ) =

































φ̂0 φ̂1 · · · φ̂m

φ̂1

. . .
. . .

. . .

...
. . .

. . .
. . .

. . .

φ̂m

. . .
. . .

. . .
. . .

. . .
. . .

. . .
. . .

. . .

φ̂m · · · φ̂1 φ̂0 φ̂1 · · · φ̂m

. . .
. . .

. . .
. . .

. . .

. . .
. . .

. . .
. . . φ̂m

. . .
. . .

. . .
. . .

...

. . .
. . .

. . . φ̂1

φ̂m · · · φ̂1 φ̂0

































.

Matrices of the form Pn(f, g) are important for the fast solution of large Toeplitz

linear systems (in connection with the preconditioned conjugate gradient method

[134–136, 142] or of more general preconditioned Krylov methods [139, 140]). Fur-

thermore, up to low rank corrections, they appear in the context of the spectral

approximation of differential operators in which a low rank correction of Tn(g) is

the mass matrix and a low rank correction of Tn(f) is the stiffness matrix.

Their spectral features have been studied in detail. More precisely, under the

assumption that r = m identically Pn(f, g) = rIn, while if mr < Mr, then any

eigenvalue of Pn(f, g) belongs to the open set (mr,Mr), see [136], and the whole

sequence {Pn(f, g)}n is spectrally distributed in the Weyl sense as r = f/g (see

[143]).

In our context, we say that a function is monotone if it is either increasing or

decreasing over the interval [0, π].

Under the assumption that r = f/g is monotone, we show experimentally that

for every integer α ≥ 0, every n and every j = 1, . . . , n, the following asymptotic
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expansion holds:

λj(Pn(f, g)) = r(θj,n) +
α∑

k=1

ck(θj,n)h
k + Ej,n,α, (1.31)

where:

• the eigenvalues of Pn(f, g) are arranged in nondecreasing or nonincreasing

order, depending on whether r is increasing or decreasing;

• {ck}k=1,2,... is a sequence of functions from [0, π] to R which depends only on

r;

• h = 1
n+1

and θj,n = jπ
n+1

= jπh;

• Ej,n,α = O(hα+1) is the remainder (the error), which satisfies the inequality

|Ej,n,α| ≤ Cαh
α+1 for some constant Cα depending only on α and r.

In the pure Toeplitz case, that is for g = 1 identically, so that Pn(f, g) = Tn(f) and

r = f , the result is proven in [131–133], if the RCTP f is monotone and satisfies

certain additional assumptions, which include the requirements that f ′(θ) 6= 0 for

θ ∈ (0, π) and f ′′(θ) 6= 0 for θ ∈ {0, π}. The symbols

fq(θ) = (2− 2 cos θ)q, q = 1, 2, . . . , (1.32)

arise in the discretization of differential equations and are therefore of particular

interest. Unfortunately, for these symbols the requirement that f ′′(0) 6= 0 is not

satisfied if q ≥ 2. In [138] several numerical evidences are reported, showing that

the higher order approximation (8.1) holds even in this “degenerate case”.

Furthermore, in [138], the authors employed the asymptotic expansion (8.1) for

computing an accurate approximation of λj(Tn(f)) for very large n, provided that

the values λj1(Tn1(f)), . . . , λjs(Tns(f)) are available for moderate sizes n1, . . . , ns

with θj1,n1 = · · · = θjs,ns = θj,n, s ≥ 2.
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Overview of thesis

The first chapter encloses the introduction. The second chapter covers the con-

struction of a parametric multi-step Newton method. Parametric multi-step New-

ton method is the generalization of the classical Newton method to widen the

region of convergence. Widening the convergence regions gives a richer choice for

setting the initial guess. The inclusion of multi-steps with help of frozen Jacobian

provide a computationally economical iterative method. A set of nonlinear bound-

ary value problems is solved by using parametric multi-step Newton method. Re-

sults show that the use of a parameter gives high accuracy and convergence when

the classical Newton method fails. The effect of preconditioners on frozen multi-

step Newton method is explored in the third chapter. The preconditioners are

introduced in a way that they do not affect the order of convergence of the frozen

Jacobian multi-step Newton method. The computational cost of both methods

is almost the same. The simple roots of original systems of nonlinear equations

are not affected by preconditioners, because in the domain of definition of the

considered systems of nonlinear equations, the preconditioners do not have any

root. Many examples are solved numerically in order to show the influence of pre-

conditioners. The fourth chapter is concerned with the study of preconditioners

for derivative-free frozen Jacobian multi-step iterative methods, when solving a

system of nonlinear equations in the case of simple roots. In this study, we found

that the considered preconditioners make the method more efficient in terms of

accuracy. The computational cost is almost the same, when sparse preconditioners

are used. The numerical examples clearly exhibit the benefits of preconditioners.

All the above methods are constructed for the computation of simple roots i.e.,

roots with multiplicity one. The preconditioners are also equally effective when

we are solving a system of nonlinear equations with unknown multiplicities. The

design of preconditioners guarantees a similar computational cost and computa-

tion of roots with multiplicities of the original system of nonlinear equations. This

topic is covered in the fifth chapter. Chapter six presents the construction of

higher order frozen Jacobian multi-step methods for solving a system of nonlinear

equations for finding simple roots. The order of convergence of this method is

3m− 4 and here m(≥ 2) is the number of steps. The inversion of Jacobian is not

performed directly, instead we compute the LU-factors and we use them in the

multi-step part, to solve the system of linear equations over and over for making the

method computationally economical. Different types of nonlinear boundary value
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problems are solved with the help of our proposed method to highlight related

efficiencys. Iterative methods for solving a system of nonlinear equations produce

a sequence of approximations to the roots. To collect benefit from the previous

information, researchers have developed iterative methods with memory to solve

nonlinear equations and systems of nonlinear equations. Chapter seven covers

derivative-free iterative methods with memory to find simple roots of systems of

nonlinear equations. This chapter also includes the construction and the proof of

the convergence order. Dense and mildly nonlinear systems of equations are solved

in order to show the efficiency and accuracy of our proposed methods. Chapters

eight and nine deal with computations of eigenvalues of structured Toeplitz ma-

trices. Chapter eight contains the expansion of the eigenvalues of preconditioned

banded symmetric Toeplitz matrices. With the help of this expansion, we can

extrapolate the eigenvalues of the large size of preconditioned banded symmetric

Toeplitz matrices, by using the computed eigenvalues of much smaller matrices.

This numerical method works well orredwhen the generating symbol is bijective.

In non-bijective cases, the efficiency of this method degrades. In chapter nine, a

robust numerical method is presented to extrapolate and interpolate the eigen-

values of banded symmetric Toeplitz matrices without any eigenvalue expansion.

The numerical method is equally valid for the extrapolation and interpolation of

eigenvalues of preconditioned banded symmetric Toeplitz matrices, but we do not

cover this topic in this thesis. Again the method is efficient in the bijective part

of the generating symbol. Many numerical examples are presented to present the

numerical accuracy and stability of numerical methods covered in chapters eight

and nine.

The last chapter encloses the summary of the thesis and future work.

Papers:

1. F. Ahmad, E. Tohidi, J. A. Carrasco, A parameterized multi-step Newton

method for solving systems of nonlinear equations, Numerical Algorithms,

71(3) (2016) 631–653.

2. F. Ahmad, M. Z. Ullah, S. Ahmad, A. S. Alshomrani, A. M. Alqahtani, L.

Alzaben, Multi-step preconditioned Newton methods for solving systems of

nonlinear equations, SeMA Journal, 75(1) (2018) 127–137.



Chapter 1. Introduction 16

3. F. Ahmad, Multi-step derivative-free preconditioned Newton method for

solving systems of nonlinear equations, SeMA Journal, 75(1) (2018) 45–56.

4. F. Ahmad. E. Tohidi, M. Z. Ullah, J. A. Carrasco, Higher order multi-step

Jarratt-like method for solving systems of nonlinear equations: Application

to PDEs and ODEs, Computers & Mathematics with Applications, 70(4)

(2015) 624–636.

5. F. Ahmad. F. Soleymani, F. K. Haghani, S. Serra-Capizzano, Higher order

derivative-free iterative methods with and without memory for systems of

nonlinear equations, Applied Mathematics and Computation, 314(1) (2017)

199–211.

6. F. Ahmad, E. S. Al-Aidarous, D. A. Alrehaili, S.-E. Ekström, I. Furci, S.

Serra-Capizzano, Are the eigenvalues of preconditioned banded symmetric

Toeplitz matrices known in almost closed form? Numerical Algorithms, 78(2)

(2018) 867–893.

The following chapters report in a faithful manner the published papers, with the

exception of chapter 9 which contains unpublished findings. In chapters 2-8 only

minor language or notation changes occur with respect to the published papers,

in order to make the presentation as uniform as possible.



Chapter 2

A Parameterized Multi-step

Newton Method for Solving

Systems of Nonlinear Equations

We construct a novel family of multi-step iterative methods, for solving

systems of nonlinear equations, by introducing a parameter θ to generalize

the multi-step Newton method, while keeping its order of convergence and

computational cost. By an appropriate selection of θ, the new method can

both have faster convergence and have larger radius of convergence. The

new iterative method only requires one Jacobian inversion per iteration,

and, therefore, can be efficiently implemented using Krylov subspace meth-

ods. The new method can be used for solving nonlinear systems of partial

differential equations, such as complex generalized Zakharov systems of par-

tial differential equations. The idea is to transform them into systems of

nonlinear equations by discretizing approaches in both spatial and temporal

dimensions such as, for instance, the Chebyshev pseudo-spectral discretizing

method. Quite extensive tests show that the new method can have signif-

icantly faster convergence and sensibly larger radius of convergence than

that exhibited by the multi-step Newton method.

2.1 Introduction

Numerical methods for solving nonlinear systems of equations are an important

research topic. Nonlinear systems of equations usually arise when discretizing

17



Chapter 2. A Parameterized Multi-step Newton Method for Solving Systems of
Nonlinear Equations 18

ordinary differential equations (ODEs) and partial differential equations (PDEs).

The classical Newton-Raphson method [1] is a basic iterative method for solving

nonlinear systems of equations. A large number of papers have considered that

method and variants. For instance, Cruz et al. [59] have proposed some gradient-

free inexact forms of Newton-Raphson. Moreover, An and Bai [60] have discussed

a globally convergent iterative scheme using the GMRES method. It should be

noted that they assumed that the Jacobian matrix associated with the consid-

ered nonlinear system of equations had a sparse form. In all those methods, LU

decomposition or an efficient iterative linear system solver such as the NSCGNR

algorithm [61] can be used to avoid the calculation of the inverse of the Jacobian

matrix.

Since in multi-step methods the inverse of the Jacobian matrix is computed sev-

eral times, robust iterative schemes such as Krylov subspace methods [62–64]

should be considered. For instance, the authors of [65] introduced a class of multi-

step iterative methods for solving nonlinear systems of equations which avoid the

computation of high order Fréchet derivatives. In summary, multi-step iterative

methods are computationally attractive. It should be noted that those iterative

methods provide an effective way of constructing highly accurate solutions with

low computational cost. As a typical iterative method, one can mention the multi-

step variant of Newton method [1, 66]. That variant will be called here NR. The

NR method for solving a nonlinear system F(x) = 0 can be described as

Base method→







F′(x0)φφφ1 = F(x0)

x1 = x0 − φφφ1

Multi-step part→







for s = 1,m− 1

F′(x0)φφφs+1 = F(xs)

xs+1 = xs − φφφs+1

end

where F′(·) is the Fréchet derivative [3, 70] or Jacobian of F(·), x0 is the initial

approximation vector x for the solution of F(x) = 0, and xm is the approximation

vector x for the solution of F(x) after an iteration of NR. The NR method uses m

(≥ 1) steps to obtain am+1 convergence order, makesm function evaluations and

one Jacobian evaluation, and requires only one LU decomposition and m solutions

of lower and upper triangular systems. We will construct a new multi-step method
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which enhances the radius of convergence and the speed of convergence of NR. We

will develop the new method by introducing a parameter in NR. A similar idea

for scalar algebraic equations has been suggested in [71]. Although we use LU

decompositions for solving linear systems in both the base method and the multi-

step part, iterative methods such as restarted GMRES could also be used.

2.2 New multi-step iterative method

Our new iterative method came out by an attempt to increase the convergence

radius in NR without changing its convergence rate and its computational cost.

The resulting method (ATC) can be described as

Base method→







F′(x0)φφφ1 = F(x0)

y1 = x0 − (1 + θ − θ2) φφφ1

F′(x0)φφφ2 = F
(
x0 − 1

θ
φφφ1

)

x2 = x1 − θ2φφφ2

Multi-step part→







For s = 1, m− 2

F′(x0)φφφs+2 = F(xs+1)

xs+2 = xs+1 − φφφs+2

end

where θ 6= 0, x0 is the initial aproximation vector x for the solution of F(x) = 0 and

xm is the approximation vector x for the solution of F(x) = 0 after an iteration of

the method. The ATC method needs m (≥ 2) steps to obtain a m+1 convergence

order, makes m function evaluations and one Jacobian evaluation, and requires

one LU decomposition, 3 vector-vector multiplications and m solutions of lower

and upper triangular systems. The more computationally expensive operations

are the LU factorization of the Jacobian and the solutions of the upper and lower

triangular systems. Picking up θ = 1 reduces the new method ATC to NR, so the

new method can be seen as a generalization of NR keeping the same convergence

order. It is clear that by an appropriate selection for the θ parameter the new

method can be made to have faster convergence than NR and to have larger

convergence radius than NR. While we don’t currently have a strategy for picking

up a good value for θ, it is possible that such strategies can be developed in the
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future for particular instances or classes of functions F(·) such as functions F(·)
arising when solving the Poisson partial differential equation. We will verify that

faster convergence is achieved in ATC with respect to NR. That faster convergence

must be attributed to the fact that the leading term of the error has smaller value

in norm in ATC.

2.3 Convergence analysis

In this section we first prove that the order of convergence of ATC is four when

m = 3. Later, we will prove via induction that the order of convergence of ATC

is m+ 1. In the constructed proof, we require that the function F(·) should have

at least three Fréchet derivatives. The function F : Γ ⊆ R
n → R

r is Fréchet

differentiable [3] at x ∈ interior(Γ) if there is an A ∈ L(Rn,Rr) such that

lim
h→0

||F(x+ h)− F(x)−Ah||
||h|| = 0 .

The linear operator A is denoted by F′(x) and is called the Fréchet derivative of

F(·) at x. The higher-order Fréchet derivative of F(x) with respect to x can be

calculated recursively

F′(x) = Jacobian (F(x)) ,

Fs(x)vs−1 = Jacobian
(
Fs−1(x)vs−1

)
, s ≥ 2 ,

where v is vector.

Theorem 2.1. Let F : Γ ⊆ R
n → R

n be a function with up to third order

Fréchet derivative on an open convex neighborhood Γ of x∗ ∈ R
n with F(x∗) = 0

and det(F′(x∗)) 6= 0, where F′(x) denotes the Fréchet derivative of F(x). Let

A1 = F′(x∗) and As = 1
s!
F′(x∗)−1

F(s)(x∗), for s ≥ 2, where F(s)(x) denotes s-

order Fréchet derivative of F(x). Then, for m = 3, with an initial guess in the

neighborhood of x∗, the sequence {xk} generated by ATC converges to x∗ with local

order of convergence at least four and error

ek+1 = Lek
4 +O

(
ek

5
)
,
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where ek = xk − x∗, ek
p =

p times
︷ ︸︸ ︷

(ek, ek, . . . , ek), and L = − (2 (1− 1/θ) A2A3 − 4A3
2)

is a 4-linear function, i.e. L ∈ L(Rn,Rn,Rn,Rn) with Lek
4 ∈ R

n.

Proof. Let F : Γ ⊆ R
n → R

n be a function with up to third order Fréchet

derivative in Γ. The qth Fréchet derivative of F at v ∈ R
n, q ≥ 1, is a q-linear

function F(q)(v) :

q times
︷ ︸︸ ︷

R
n
R

n · · ·Rn with F(q)(v)(u1, u2, · · · , uq) ∈ R
n . Taylor’s series

expansion of F(xk) around x∗ is

F (xk) = F (x∗ + xk − x∗) = F(x∗ + ek)

= F (x∗) + F′(x∗) ek +
1

2!
F′′(x∗) e2k +

1

3!
F(3)(x∗) e3k+

1

4!
F(4)(x∗) e4k + · · ·

= F′(x∗)
(

ek +
1

2!
F′(x∗)

−1
F′′(x∗) e2k +

1

3!
F′(x∗)

−1

F(3)(x∗) e3k +
1

4!
F′(x∗)

−1
F(4)(x∗) e4k + · · ·

)

= A1

(

ek +A2 e
2
k +A3 e

3
k +A4 e

4
k +O

(
ek

5
)
)

.

(2.1)

Computing the Fréchet derivative of F with respect to ek, we get

F′(xk) = A1

(

I+ 2A2ek + 3A3ek
2 + 4A4ek

3 +O
(
ek

4
)
)

,

where I is the identity matrix. Computing its inverse using a symbolic mathemat-

ical package Maple, we obtain

F′(xk)
−1

=

(

I− 2A2ek +
(

4A2
2 − 3A3

)

e2k +
(

6A3A2 + 6A2A3−

8A3
2 − 4A4

)

e3k +
(

8A4A2 + 9A2
3 + 8A2A4 − 5A5 − 12A3A

2
2

− 12A2A3A2 − 12A2
2A3 + 16A4

2

)

e4k +O
(

ek
5
))

A−1
1 .

(2.2)

To clarify the notation in the rest of the proof, we note that xk is the vector x0

used in the description of ATC and that xk+1 is the vector x3 in the description of

ATC. The vectors φφφ1, φφφ2, φφφ3, x1, and x2 will denote the vectors with same names

in the description of ATC which allow to go from xk to xk+1 when ATC is applied.
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Using φφφ1 = F′(xk)
−1
F(xk), we get

φφφ1 =
(
I− 2A2ek +

(
4A2

2 − 3A3

)
e2k +

(
6A3A2 + 6A2A3 − 8A3

2 − 4A4

)
e3k+

(
8A4A2 + 9A2

3 + 8A2A4 − 5A5 − 12A3A
2
2 − 12A2A3A2 − 12A2

2A3

+ 16A4
2

)
e4k +O

(
ek

5
))(

ek +A2 e
2
k +A3 e

3
k +O

(
ek

4
))

= ek −A2 e
2
k +

(
2A2

2 − 2A3

)
e3k +

(
4A2A3 + 3A3A2 − 4A3

2 − 3A4

)
e4k

+
(
4A4A2 + 6A2

3 + 6A2A4 + 8A4
2 − 6A3A

2
2 − 6A2A3A2 − 8A2

2A3

− 4A5

)
e5k +O

(
ek

6
)
.

(2.3)

Using x1 = xk −
(
1 + θ − θ2

)
φφφ1 and plugging (2.3) we get

y1 − x∗ = xk − x∗ −
(
1 + θ + θ2

)
φφφ1

= ek −
(
1 + θ + θ2

)(
ek −A2 e

2
k +

(
2A2

2 − 2A3

)
e3k +

(
4A2A3

+ 3A3A2 − 4A3
2 − 3A4

)
e4k +

(
4A4A2 + 6A2

3 + 6A2A4+

8A4
2 − 6A3A

2
2 − 6A2A3A2 − 8A2

2A3 − 4A5

)
e5k +O

(
ek

6
))

=
(
θ2 − θ

)
ek −

(
θ2 − θ − 1

)
A2 e

2
k +

(
(
θ2 − θ − 1

)(
A2

2

−A3

)
)

e3k +

(
(
θ2 − θ − 1

)(
− 4A3

2 + 3A3A2 + 4A2A3

− 3A4

)
)

e4k +O
(
ek

5
)
.

(2.4)

Using φφφ2 = F′(xk)
−1

F(xk − φφφ1/θ) and substituting (2.2) and (2.1) we get

φφφ2 =
(
I− 2A2ek +

(
4A2

2 − 3A3

)
e2k +

(
6A3A2 + 6A2A3 − 8A3

2 − 4A4

)
e3k

+
(
8A4A2 + 9A2

3 + 8A2A4 − 5A5 − 12A3A
2
2 − 12A2A3A2 − 12A2

2A3

+ 16A4
2

)
e4k +O

(
ek

5
))

(

ek −
φφφ1

θ
+A2

(

ek −
φφφ1

θ

)2

+A3

(

ek −
φφφ1

θ

)3

+A4

(

ek −
φφφ1

θ

)4

+O
(
(

ek −
φφφ1

θ

)5
)

)

=

(

1− 1

θ

)

ek +

(

− 1 +
1

θ
+

1

θ2

)

A2 e
2
k +

(

2

(

1− 1

θ
− 2

θ2

)

A2
2+

(

− 2 +
2

θ
+

3

θ2
− 1

θ3

)

A3

)

e3k +

(

3

(

1− 1

θ
− 3

θ2
− 1

θ3

)

A3A2+

(

− 4 +
4

θ
+

13

θ2

)

A3
2 + 2

(

2− 2

θ
− 5

θ2
+

1

θ3

)

A2A3

+
(
− 3 +

3

θ
+

6

θ2
− 4

θ3
+

1

θ4
)
A4

)

e4k +O
(
ek

5
)
.

(2.5)
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Using x2 = x1 − θ2φφφ2 and substituting (2.4) and (2.5),

x2 − x∗ = x1 − x∗ − θ2φφφ2

=

(

θ2 − θ

)

ek −
(

θ2 − θ − 1

)

A2 e
2
k +

((

θ2 − θ − 1

)

(

A2
2 −A3

))

e3k +

((

θ2 − θ − 1

)(

− 4A3
2 + 3A3A2+

4A2A3 − 3A4

))

e4k +O

(

ek
5

)

− θ2

((

1− 1

θ

)

ek +

(

− 1 +
1

θ
+

1

θ2

)

A2 e
2
k +

(

2

(

1− 1

θ
− 2

θ2

)

A2
2 +

(

− 2 +
2

θ
+

3

θ2
− 1

θ3

)

A3

)

e3k

+

(

3

(

1− 1

θ
− 3

θ2
− 1

θ3

)

A3A2 +

(

− 4 +
4

θ
+

13

θ2

)

A3
2 + 2

(

2− 2

θ
−

5

θ2
+

1

θ3

)

A2A3 +

(

− 3 +
3

θ
+

6

θ2
− 4

θ3
+

1

θ4

)

A4

)

e4k +O

(

ek
5

))

=

(

2A2
2 +

(

1− 1

θ

)

A3

)

e3k +

(

3

(

2− 1

θ

)

A3A2 − 9A3
2 + 2

(

3− 1

θ

)

A2A3 +

(

− 3 +
4

θ
− 1

θ2

)

A4

)

e4k +O

(

ek
5

)

.

(2.6)

Substituting xk by x2 in (2.1) we get, replacing xk by the previous expression for
x2 − x∗, and with z = x∗ + (θ2 − θ)ek − (θ2 − θ − 1)A2 e

2
k + ((θ2 − θ − 1)(A2

2 −
A3))e

3
k + ((θ2 − θ − 1)(−4A3

2 + 3A2A2 + 4A2A3 − 3A4))e
4
k +O(e5k),

F(x2) = F

(

x∗ +

(

θ2 − θ

)

ek −
(

θ2 − θ − 1

)

A2 e
2
k +

((

θ2 − θ − 1

)

(

A2
2 −A3

))

e3k +

((

θ2 − θ − 1

)(

− 4A3
2 + 3A3A2 + 4A2A3−

3A4

))

e4k +O

(

ek
5

))

= A1

(

z+A2 z
2 +A3 z

3 +A4 z
4 +O

(

z5
))

= A1

((

2A2
2 +

(

− 1 +
1

θ

)

A3

)

e3k +

((

− 3 +
4

θ
− 1

θ2

)

A4+

2

(

3− 1

θ

)

A2A3 + 3

(

2− 1

θ

)

A3A2 − 9A3
2

)

e4k +O

(

ek
5

))

.

(2.7)
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Using φφφ3 = F′(xk)
−1
F(x2) and substituting (2.2) and (2.7),

φφφ3 = F′(xk)
−1
F(x2) =

(

I− 2A2ek +

(

4A2
2 − 3A3

)

e2k +

(

6A3A2+

6A2A3 − 8A3
2 − 4A4

)

e3k +

(

8A4A2 + 9A2
3 + 8A2A4 − 5A5−

12A3A
2
2 − 12A2A3A2 − 12A2

2A3 + 16A4
2

)

e4k +O

(

ek
5

))

((

2A2
2 +

(

− 1 +
1

θ

)

A3

)

e3k +

((

− 3 +
4

θ
− 1

θ2

)

A4+

2

(

3− 1

θ

)

A2A3 + 3

(

2− 1

θ

)

A3A2 − 9A3
2

)

e4k +O

(

ek
5

))

=

(

2A2
2 +

(

− 1 +
1

θ

)

A3

)

e3k +

((

2− 1

θ

)(

3A3A2 + 4A2A3

)

−

13A3
2 +

(

− 3− 1

θ
+

4

θ2

)

A4

)

e4k +O

(

ek
5

)

.

(2.8)

Using x3 = x2 − φφφ3 and substituting (2.6) and (2.8),

x3 − x∗ = x2 − x∗ − φφφ3 =

((

2A2
2 +

(

1− 1

θ

)

A3

)

e3k +

(

3

(

2− 1

θ

)

A3A2−

9A3
2 + 2

(

3− 1

θ

)

A2A3 +

(

−3 + 4

θ
− 1

θ2

)

A4

)

e4k +O
(
ek

5
)

)

((

2A2
2 +

(

−1 + 1

θ

)

A3

)

e3k +

((

2− 1

θ

)

(3A3A2 + 4A2A3)−

13A3
2 +

(

−3− 1

θ
+

4

θ2

)

A4

)

e4k +O
(
ek

5
)

)

= 2A2

((
1

θ
− 1

)

A3 + 2A2
2

)

e4k +O
(
ek

5
)
.

Note that to work with non-commutative algebra one may use following commands

in Maple.

with(Physics):
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Setup(mathematicalnotation = true):

quantumOperators := {A1, A2, A3, A4}:

Setup(quantumoperators = quantumOperators):

Theorem 2.2. Let F : Γ ⊆ R
n → R

n has at least third order Fréchet derivative

on an open convex neighborhood Γ of x∗ ∈ R
n with F(x∗) = 0 and det(F′(x∗)) 6= 0.

Then, the multi-step ATC iterative method has, for m ≥ 2, local convergence order

at least m+ 1.

Proof. The proof can be obtained via mathematical induction as done in [70].

The error equation for the m-step iterative method ATC is calculated by using

the Maple symbolic toolbox that can be written as

xm − x∗ = (2A2)
m−2

((
1

θ
− 1

)

A3 + 2A2
2

)

em+1 +O
(
em+2

)
, m ≥ 2. (2.9)

The highest Fréchet derivative in the error equation (2.9) is third order. So, the

m-step iterative method ATC has m + 1 convergence order and it requires that

the nonlinear function F(·) should have at least three Fréchet derivatives. Note

that wide classes of important ODEs and PDEs, such as those arising in the Bratu

problem, the Frank-Kamenetzkii problem [72], the Lene-Emden equation [73], the

Burgers equation [74], the Klein-Gordon equation [75], the two-dimensional sinh-

Poisson equation [76], and the three-dimensional nonlinear Poisson equation [77],

heat equation, wave equation, Euler’s beam equation etc., give rise to F(x) func-

tions with high order Fréchet derivatives. Then, the multi-step iterative method

ATC is applicable to wide classes of important problems. The real parameter

θ( 6= 0) in ATC can be replaced by a vector of non-zero real numbers when Aj for

j ≥ 2 are diagonal matrices and usually it is the case in the systems of nonlinear

equations associated with ODEs and PDEs. The diagonal matrices can be treated

as vectors and we define binary and unary operations for them as










v1

v2
...

vn



















u1

u2

...

un










=










v1 u1

v2 u2

...

vn un










,










v1

v2
...

vn










−1

=










1/v1

1/v2
...

1/vn



















v1

v2
...

vn










± constant =










v1 ± constant

v2 ± constant
...

vn ± constant










,

(2.10)
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and the error equation (2.9) is verified as

xm − x∗ =

((
1

θ
− 1

)

(2A2)
m−2

A3 + 2 (2A2)
m

)

em+1 +O
(
em+2

)
, m ≥ 2.

In that error equation, (2A2)
m−2

A3e
m+1 and (2A2)

m
em+1 are vectors and

(
1
θ
− 1

) (
(2A2)

m−2
A3e

m+1
)
is calculated using (2.10).

2.4 A real test problem

In this section, to illustrate the application of the multi-step ATC iterative method,

we will consider the nonlinear complex generalized Zakharov system (GZS) of one

dimensional PDEs with the Chebyshev pseudo-spectral method for discretize it in

spatial and temporal dimensions to reduce it to a nonlinear system of algebraic

equations.

2.4.1 The nonlinear complex generalized Zakharov system

The nonlinear complex Zakharov system has importance in plasma physics [78].

The system includes two coupled nonlinear PDEs which can be written as

i ∂t ψ(x, t) + δ1∂tt ψ(x, t)− δ2 ψ(x, t)w(x, t) + δ3 |ψ(x, t)|2ψ(x, t) = 0

∂ttw(x, t)− c2s∂xxw(x, t)− δ4 ∂xx |ψ(x, t)|2 = 0

for (x, t) ∈ (ax, bx)× (at, bt),

(2.11)

subject to the initial and boundary conditions

ψ(ax, t) = ψ1(t) , ψ(bx, t) = ψ2(t)

ψ(x, 0) = ψ0(x) , w(ax, t) = w1(t)

w(bx, t) = w2(x) , w(x, 0) = w3(x)

, (x, t) ∈ [ax, bx]× [at, bt] . (2.12)

Several numerical methods have been proposed recently for approximating the

solution of (2.11)–(2.12) such as the homotopy method [79], the finite difference

method [80, 81], and the variational iteration method [82]. Also, Bao et al. [83]
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suggested some high-accurate numerical methods for solving numerically (2.11)–

(2.12). Bao and Sun [84] applied a new technique based on time-splitting dis-

cretization for approximating the solution of a variant of (2.11)–(2.12).

One can split (2.11) using the real and imaginary parts of ψ(x, t), u(x, t) and

v(x, t), as

∂t u(x, t) + δ1∂xx v(x, t)− δ2v(x, t)w(x, t) + δ3
(
u2(x, t) + v2(x, t)

)

v(x, t) = 0 ,

− ∂t v(x, t) + δ1∂xx u(x, t)− δ2u(x, t)w(x, t) + δ3
(
u2(x, t) + v2(x, t)

)

u(x, t) = 0 ,

∂ttw(x, t)− c2s∂xxw(x, t)− 2δ4
(
u(x, t)∂xx u(x, t) +

(
∂x u(x, t)

)2

+ v(x, t)∂xx v(x, t) +
(
∂x v(x, t)

)2)
= 0 ,

(2.13)

with the initial and boundary conditions

u(ax, t) = α1(t) , u(bx, t) = α2(t)

v(ax, t) = α3(t) , v(bx, t) = α4(t)

w(ax, t) = α5(t) , w(bx, t) = α6(t)

u(x, at) = β1(x) , v(x, at) = β2(x)

w(x, at) = β3(x) , wt(x, at) = β4(x)

, (x, t) ∈ [ax, bx]× [at, bt] . (2.14)

The matrix form of the nonlinear system (2.13) is







∂t δ1∂xx 0

δ1∂xx −∂t 0

0 0 ∂tt − c2s∂xx













u

v

w






+







q1(u, v, w)

q2(u, v, w)

q3(u, v, w)






=







0

0

0






, (2.15)

where

q1 = −δ2v(x, t)w(x, t) + δ3
(
u2(x, t) + v2(x, t)

)
v(x, t) ,

q2 = −δ2u(x, t)w(x, t) + δ3
(
u2(x, t) + v2(x, t)

)
u(x, t) ,

q3 = −2δ4
(
u(x, t)∂xx u(x, t) + (∂x u(x, t))

2 + v(x, t)∂xx v(x, t) + (∂x v(x, t))
2) ,

the constants δ1, δ2, δ3, δ4 and cs are given, and the functions αi(t), 1 ≤ i ≤ 6 and

βj(x), 1 ≤ j ≤ 4 are known.
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In the next section, we will use the Chebyshev pseudo-spectral method for dis-

cretizing (2.15) subject to the initial and boundary conditions (2.14) to reduce

(2.15) to a system of nonlinear algebraic equations.

2.4.2 The Chebyshev pseudo-spectral method

Spectral methods are the best methods for approximating the solutions of problems

in applied mathematics and engineering when the solutions are smooth and their

domains are simple. Many researchers have used those methods for the numerical

solution of nonlinear PDEs [85], fractional ODEs [86], high-order boundary value

problems [87], systems of Volterra integral equations [88], optimal control problems

governed by Volterra integral equations [89], Quasi Bang-Bang optimal control

problems [90], and ODEs of degenerate types [91]. In relation to many other

methods, spectral methods give highly accurate results.

To discretize (2.15) subject to the initial and boundary conditions (2.14) using the

Chebyshev pseudo-spectral method, we define the following transformations

y =
2

bx − ax
x− ax + bx

bx − ax
,

τ =
2

bt − at
t− at + bt

bt − at
,

where (y, τ) ∈ [−1, 1] × [−1, 1]. The partial derivatives with respect to the

variables associated with the new domain are related to the partial derivatives

with respect to the variables associated with the previous domain as

∂x =

(
2

bx − ax

)

∂y , ∂xx =

(
2

bx − ax

)2

∂yy ,

∂t =

(
2

bt − at

)

∂τ , ∂tt =

(
2

bt − at

)2

∂ττ .

Let nx and nt be the number of grid points in, respectively, the spatial and tem-

poral domains associated with the variables y and τ . The partitions of [−1, 1]

in the space and time directions are performed using Chebyshev-Gauss-Lobatto
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(CGL) points. The number of grid points is n = nxnt. Let

U = [u1,1, u1,2, · · · , u1,nt , u2,1, u2,2, · · · , u2,nt , · · · , unx,1, unx,2, · · · , unx,nt ]
T ,

V = [v1,1, v1,2, · · · , v1,nt , v2,1, v2,2, · · · , v2,nt , · · · , vnx,1, unx,2, · · · , vnx,nt ]
T ,

W = [w1,1, w1,2, · · · , w1,nt , w2,1, w2,2, · · · , w2,nt , · · · , wnx,1, wnx,2, · · · , wnx,nt ]
T

be vectors collecting the values of the functions u(y, τ), v(y, τ) and w(y, τ) at the

grid points. The discrete approximations for the partial derivatives are

∂y ≈ Dy ⊗ Iτ , ∂yy ≈ D2
y ⊗ Iτ ,

∂τ ≈ Iy ⊗Dτ , ∂ττ ≈ Iy ⊗D2
τ ,

(2.16)

where Dy, Dτ , Iy, Iτ are, respectively, the Chebyshev differentiation and identity

matrices for variables y and τ , the dimensions for subscripts y and τ are, respec-

tively, nx and nt, and ⊗ denotes the Kronecker product. Finally, we define the

partial derivative operators as

Ax =
2

bx − ax
Dy ⊗ Iτ , Axx =

2

bx − ax
D2

y ⊗ Iτ ,

At =
2

bt − at
Iy ⊗Dτ , Att =

2

bt − at
Iy ⊗D2

τ .

The discrete form of (2.15) is, using xm×n to denote an m× n matrix x,







At δ1Axx O

δ1Axx −At O

O O Att − c2sAxx













U

V

W






+







Q1(U,V,W)

Q2(U,V,W)

Q3(U,V,W)






=







0n×1

0n×1

0n×1






, (2.17)

where

Q1 = −δ2V ⊙W + δ3 (U⊙U+V ⊙V)⊙V ,

Q2 = −δ2U⊙W + δ3 (U⊙U+V ⊙V)⊙U ,

Q3 = −2δ4
(

U⊙ (AxxU) + (AxU)⊙ (AxU) +V ⊙ (AxxV) + (AxV)⊙ (AxV)

)

,

with ⊙ denoting the point-wise multiplication between vectors.

The compact form of (2.17) is

F(S) ≡ AS+Q−B = 0 , (2.18)
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where

A =





At δ1Axx O

δ1Axx −At O

O O Att − c2sAxx





3n×3n

,S =





U

V

W





3n×1

,

Q =





Q1(U,V,W)

Q2(U,V,W)

Q3(U,V,W)





3n×1

,B =





0n×1

0n×1

0n×1





3n×1

.

Our aim is to solve the nonlinear system of algebraic equations (2.18) by the

proposed new multi-step ATC method presented in Section 2.2. We have to adapt

the structure of F(S) = 0 to the initial and boundary conditions. Using Matlab-

like notation, the initial and boundary conditions can be written as

Initial conditions

for i = 1 : nx

indx1 = (i− 1)nt + 1 , indx2 = (i− 1)nt + 2 ,

A(indx1, :) = 0 , A(n+ indx1, :) = 0 ,

A(indx1, 1 : n) = D1(i, :) , A(n+ indx1, n+ 1 : 2n) = D1(i, :) ,

A(2n+ indx1, :) = 0 , A(2n+ indx2, :) = 0 ,

A(2n+ indx1, 2n+ 1 : 3n) = D1(i, :) , A(2n+ indx2, 2n+ 1 : 3n) = D2(i, :) ,

B(indx1) = β1(i) , B(n+ indx1) = β2(i) ,

B(2n+ indx1) = β3(i) , B(2n+ indx2) = β4(i) ,

end

(2.19)

where D1 = Ix ⊗ It(1, :) and D2 = Ix ⊗
(

2
bt−at

)

Dτ , and

Boundary conditions

A(1 : nt, :) = 0 , B = 0 ,

A(1 : nt, 1 : nt) = It , B(1 : nt) = α1(1 : nt) ,

A(n− nt + 1 : n, :) = 0 , B(n− nt + 1 : n) = α2(1 : nt) ,

A(n− nt + 1 : n, n− nt + 1 : n) = It , B(n+ 1 : n+ nt) = α3(1 : nt) ,

A(n+ 1 : n+ nt, :) = 0 , B(2n− nt + 1 : 2n) = α4(1 : nt) ,

A(n+ 1 : n+ nt, n+ 1 : n+ nt) = It , B(2n+ 1 : 2n+ nt) = α5(1 : nt) ,

A(2n− nt + 1 : 2n, :) = 0 , B(3n− nt + 1 : 3n) = α6(1 : nt) ,

A(2n− nt + 1 : 2n, 2n− nt + 1 : 2n) = It , A(2n+ 1 : 2n+ nt, :) = 0 ,

A(2n+ 1 : 2n+ nt, 2n+ 1 : 2n+ nt) = It , A(3n− nt + 1 : 3n, :) = 0 ,

A(3n− nt + 1 : 3n, 3n− nt + 1 : 3n) = It ,

(2.20)
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Finally the rows of Q and Jacobian of Q get zeros where B gets values from

initial and boundary conditions. After these modifications, nonlinear system of

algebraic equations will be updated and can be solved by any iterative methods

such as ATC or NR.

2.5 Numerical analysis

In this section we show the accuracy and performance of the multi-step iterative

method ATC when used to solve a system of nonlinear equations obtained by

using the Chebyshev pseudo-spectral method to discretize the nonlinear complex

generalized Zakharov system (GZS) of partial differential equations. In [78], two

test problems concerning GZS have been solved with good accuracy by using the

Jacobi pseudo-spectral collocation method. As a comparison we will solve the

same two test problems with higher accuracies than those reported in [78]. The

errors will be computed using the || · ||∞ norm over the entire grid as

Eu = max
(x,t)∈Λ

|u(x, t)− unum(x, t)| ,

Ev = max
(x,t)∈Λ

|v(x, t)− vnum(x, t)| ,

Ew = max
(x,t)∈Λ

|w(x, t)− wnum(x, t)| ,

(2.21)

where Λ is the grid of values for (x, t) used in the discretization, and unum(x, t),

vnum(x, t) and wnum(x, t) are the computed numerical values of the functions u(x, t),

v(x, t) and w(x, t). In all computations, the initial guesses for U, V and W will

be taken equal to the zero vector On×1.

2.5.1 Complex Zakharov equation

The first test problem is the GZS [78]:

i ∂t ψ − ∂xx ψ − ψ w = 0

∂ttw − ∂xxw + ∂xx |ψ|2 = 0 ,
(2.22)

with domain Λ = [−1, 1]× [0, 3.3]. That GZS has the analytical solution
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Figure 2.1: Errors under ATC and NR for the first test problem.

ψ(x, t) = u(x, t) + i v(x, t) =
√
3 ei(x+t) tanh

(
1√
2
(x+ 2t)

)

w(x, t) = 1− tanh2

(
1√
2
(x+ 2t)

)

.

(2.23)

We choose the parameter θ = 1.0−0.001 rand(3n, 1), where rand(3n, 1) is a uniform
random vector of dimension 3n in the interval [0, 1] for each component. The role of

the parameter θ is important because θ may affect the actual speed of convergence

and the convergence radius. We solved the complex Zakharov equation in the

domain [−1, 1] × [0, 3.3] with nx = 23 grid points for the space dimension and

nt = 48 grid points for the time dimension. Table 2.1 compares the errors obtained

by ATC and the NR multi-step method as a function of the number of steps m.

The table also gives the execution time of ATC for m = 38 and NR for m = 42,

numbers of steps under which the errors in both methods are sufficiently small

and similar. We can note that for the same number of steps the errors under ATC

are significantly smaller than under NR, particularly when the number of steps m

becomes large. With similar error targets, the ATC method is about 7% faster

than the NR method. Figure 2.1 shows the errors in u, v and w in logarithmic

scale against the number of steps m for methods ATC and NT. Figures 2.2, 2.3

and 2.4 plot, respectively, u(x, t), v(x, t) and w(x, t) at the grid points.
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ATC method NR method

Execution time for m = 38 = 49.285 s Execution time for m = 42 = 53.096 s

m Eu Ev Ew Eu Ev Ew

1 0.47454 0.49695 0.85826 0.47463 0.49733 0.85754

2 1.1371 1.2102 3.72 1.1361 1.21 2.8038

3 4.9923 3.019 3.7464 5.0242 3.0273 3.2173

4 3.2748 5.5037 5.1003 3.2919 5.5702 5.1487

5 3.3246 2.1363 18.102 3.815 2.1929 18.948

10 1.0611 1.8962 3.0289 2.0823 4.5914 8.0358

15 0.047661 0.12338 0.53352 0.31678 0.5274 5.7334

20 0.081501 0.020402 0.0076958 1.0876 0.76647 0.33485

25 0.00029604 5.9708e-05 0.0027184 0.0040615 0.0019482 0.028504

30 4.143e-06 2.3705e-06 3.5209e-06 2.0652e-05 1.3753e-05 8.1167e-05

35 1.8722e-09 9.1849e-10 4.1729e-08 2.1499e-07 7.2315e-08 1.4055e-06

36 2.6555e-09 2.2107e-09 1.4384e-09 9.4002e-08 1.2213e-07 2.2354e-07

37 2.2531e-10 1.8415e-10 2.307e-09 2.4263e-08 2.6427e-08 1.5319e-07

38 1.3032e-10 2.1521e-10 3.4423e-10 2.3561e-08 4.6183e-09 3.8451e-08

39 5.74e-09 1.5185e-09 6.9447e-09

40 8.4909e-10 1.1898e-09 2.1135e-09

41 2.2375e-10 1.8279e-10 1.3227e-09

42 1.6263e-10 1.3847e-10 2.3933e-10

Table 2.1: Performance comparison of ATC and NR for the first test problem.
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Figure 2.2: Computed u(x, t) for the first test problem.
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Figure 2.3: Computed v(x, t) for the first test problem.
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Figure 2.4: Computed w(x, t) for the first test problem.

2.5.2 Complex generalized Zakharov equation

The second test problem we consider is the GZS in complex form, which is [78]:

i∂tψ + ∂xxψ + 2ψw − 2|ψ|2 = 0

∂ttw − ∂xxw + ∂xx|ψ|2 = 0,
(2.24)
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with the domains Λ = [−1, 1]× [0, 1.2] and Λ = [−1, 1]× [0, 1.3]. That problem

has the analytical solution

ψ(x, t) = u(x, t) + iv(x, t) =

√
3

2
e−i(x+3t)tanh (x+ 2t)

w(x, t) = −1

4
tanh2 (x+ 2t) .

(2.25)

We will consider several numbers of grid points in the space dimension, nx, and

in the time dimension, nt. We will also consider several values for θ. Table 2.2

compares the performance of ATC and NR for Λ = [−1, 1] × [0, 1.2], nx = 32,

nt = 28, and θ = 1.3, as a function of the number of steps. We can note that,

for the same number of steps ATC yields smaller errors than NR. With similar

errors, the execution time of ATC for m = 21 is smaller than the execution time

of NR for m = 14. When we integrate the complex generalized Zakharov equation

for Λ = [−1, 1] × [0, 1.3], the NR method shows divergence. This is illustrated in

Table ?? which compares the behavior of ATC and NR for Λ = [−1, 1] × [0, 1.3],

nx = 21, nt = 34, and θ = 2. Therefore, an appropriate selection for the parameter

θ increases the convergence radius of ATC in comparison with NR. Figure 2.5 plots

the errors in u(x, t), v(x, t) and w(x, t) as a function of the number of stepsm under

ATC and NR for Λ = [−1, 1]× [0, 1.2], nx = 32, nt = 28, and θ = 1.3. We can note

that, for the same number of steps the errors under ATC are smaller than under

NR. Figure 2.6 gives the absolute errors in u, v, w at the different grid points for

m = 24 under ATC for Λ = [−1, 1]× [0, 1.3], nx = 21, nt = 34, and θ = 2. Figures

2.7, 2.8 and 2.9 plot, respectively, u(x, t), v(x, t), w(x, t) and the corresponding

absolute errors under ATC for m = 24, Λ = [−1, 1] × [0, 1.3], nx = 21, nt = 34,

and θ = 2.

The results obtained in [78] are presented in Table 2.4. We used more number of

grid points in spatial dimension than that of [78] and got better numerical accuracy

in numerical results.

2.6 Summary

Multi-step iterative methods for solving nonlinear systems tend to be compu-

tationally economical. The ATC method makes only one Jacobian evaluation.
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ATC method NR method

Execution time for m = 21 = 11.891 Execution time for m = 24 =12.953

m Eu Ev Ew Eu Ev Ew

1 0.45709 0.8603 0.21256 0.48046 1.1721 0.23063

2 1.1231 0.77984 0.64226 1.3562 1.2781 0.64226

3 0.96367 1.6933 0.40012 2.0621 2.5231 0.58512

4 1.5751 0.40543 0.32973 3.1627 1.6789 0.46649

5 0.20387 0.2434 0.095349 0.56035 0.64707 0.14493

6 0.062707 0.066969 0.039415 0.03373 0.14675 0.0401

7 0.045025 0.025539 0.011057 0.060376 0.020351 0.016544

8 0.0033644 0.0095145 0.0027489 0.0050918 0.016299 0.0047009

9 0.0036137 0.0015154 0.00086978 0.005709 0.0059042 0.0024091

10 0.00027201 0.00079506 0.00012986 0.0051656 0.0029367 0.0021463

11 0.00020245 7.6515e-05 5.1606e-05 0.0018987 0.0026428 0.00085315

12 3.5057e-05 4.5131e-05 1.0796e-05 0.0013403 0.00052468 0.0004666

13 7.0703e-06 8.5718e-06 2.8361e-06 0.00045672 0.00042808 0.00013906

14 2.6527e-06 1.962e-06 6.4814e-07 0.00011958 9.8066e-05 4.5534e-05

15 3.2703e-07 5.7061e-07 8.6105e-08 4.9319e-05 3.0739e-05 1.0606e-05

16 1.3652e-07 1.1004e-07 4.3605e-08 4.7169e-06 8.9355e-06 2.271e-06

17 1.4762e-08 2.3321e-08 4.677e-09 2.7754e-06 1.2644e-06 5.2229e-07

18 4.0657e-09 4.2216e-09 1.513e-09 1.3475e-07 5.0502e-07 7.0055e-08

19 5.6959e-10 6.0451e-10 3.4595e-10 1.0105e-07 4.7431e-08 2.7238e-08

20 2.8374e-10 2.833e-10 9.2313e-11 1.3424e-08 1.8865e-08 4.1215e-09

21 8.5017e-11 7.0587e-11 7.6073e-11 2e-09 2.5181e-09 9.5584e-10

22 6.8728e-10 3.6522e-10 2.2399e-10

23 6.0788e-11 1.1403e-10 6.8574e-11

24 3.1735e-11 1.5148e-11 7.1093e-11

Table 2.2: Performance comparison of ATC and NR for the second test prob-
lem with domain Λ = [−1, 1]× [0, 1.2], nx = 32, nt = 28 and θ = 1.3.

ATC method NR method

Execution time for m = 24 = 16.259 Execution time for m = 24 =8.588

m Eu Ev Ew m Eu Ev Ew

1 2.3489 1.8274 1 0.49851 1 0.86782 1.1797 0.23024

2 1.1081 0.54759 0.96708 2 1.5424 1.9725 0.96708

7 0.10085 0.067689 0.029542 3 5.615 3.8987 0.95367

13 6.2449e-05 7.1607e-05 1.8598e-05 4 15.611 20.172 1.5002

17 2.4756e-07 3.291e-07 7.4927e-08 5 348.08 205.49 3.8896

19 1.9145e-08 2.1149e-08 5.7041e-09 6 2.355e+05 5.6693e+05 9506.1

22 5.151e-10 6.2691e-10 1.1519e-10 7 7.8999e+14 2.5429e+14 1.1504e+12

23 2.9278e-10 1.2219e-10 9.2533e-11 8 3.528e+42 5.2674e+42 1.3026e+31

24 5.3785e-11 6.9398e-11 7.4369e-11 9 1.8566e+127 1.1924e+127 2.1703e+86

Table 2.3: Performance comparison of ATC and NR for second test problem
with domain Λ = [−1, 1]× [0, 1.3], nx = 21, nt = 34 and θ = 2.
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Figure 2.5: Errors in u, v, w for ATC and NR as a function on the number
of steps for Λ = [−1, 1]× [0, 1.2], nt = 28, nx = 32, and θ = 1.3
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Figure 2.6: Absolute errors in u, v, w at the grid points for the second test
problem under ATC for m = 24, Λ = [−1, 1] × [0, 1.3], nx = 21, nt = 34, and

θ = 2.

nx Eu Ev Ew

4 4.43e-2 7.12e-2 4.53e-2
8 2.13e-4 1.624e-4 1.20e-4
12 8.34e-7 6.02e-7 2.54e-7
16 3.83e-7 3.4e-7 1.51e-8

Table 2.4: Performance of method presented in [78] for the first test problem,
Λ = [−1, 1]× [0, 1], nx = 4, 8, 12, 16.
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Figure 2.7: u(x, t) and corresponding absolute errors under ATC for m = 14,
Λ = [−1, 1]× [0, 1.3], nx = 21, nt = 34, and θ = 2
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Figure 2.8: v(x, t) and corresponding absolute errors under ATC for m = 14,
Λ = [−1, 1]× [0, 1.3], nx = 21, nt = 34, and θ = 2
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Figure 2.9: w(x, t) and corresponding absolute errors under ATC for m = 14,
Λ = [−1, 1]× [0, 1.3], nx = 21, nt = 34, and θ = 2

Once the LU-factors of the Jacobian are evaluated, they are used in the multi-

step part to make the method computationally efficient. Our numerical results

clearly show that ATC has better speed of convergence than NR and, with an

appropriate selection of θ, wider radius of convergence. Applied to the complex

generalized Zakharov equation with using the Chebyshev pseudo-spectral method

for discretization, the ATC gives more accurate numerical solutions than they have

been obtained in [78].



Chapter 3

Multi-step preconditioned

Newton methods for solving

systems of nonlinear equations

The study of different forms of preconditioners for solving a system of non-

linear equations, by using Newton’s method, is presented. The precondi-

tioners provide numerical stability and rapid convergence with reasonable

computation cost, whenever chosen accurately. Various families of iterative

methods can be constructed by using a different kind of preconditioners.

The multi-step iterative method consists of a base method and multi-step

part. The convergence order of the base method is quadratic and each

multi-step provides an additional factor of one in the previously achieved

convergence order. Hence the convergence of order of an m-step iterative

method is m + 1. Numerical simulations confirm the claimed convergence

order by calculating the computational order of convergence. Finally, the

numerical results clearly show the benefit of preconditioning for solving sys-

tems of nonlinear equations.

3.1 Introduction

When computing simple roots of a system of nonlinear equations, Newton’s method

[1, 3, 7, 8] is a classical, well studied procedure that offers quadratic convergence,

under suitably mild regularity assumptions. Many researchers have proposed

40
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higher order efficient iterative method [38, 57, 62, 102–106] for solving system

of nonlinear equations. Recently, some authors have constructed multi-step iter-

ative methods [70, 107, 108] for solving system of nonlinear equations. The main

benefit of multi-step iterative methods is hidden in the multi-step part. Because,

the Jacobian factorization information from the base method is utilized in the

multi-step part repeatedly to enhance the convergence order at the cost of the so-

lution of lower and upper triangular systems and a single evaluation of the system

of nonlinear equations. X. Wu [109] wrote a note on the improvement of Newton’s

method for systems of nonlinear equations. In his note, the author introduced the

idea of nonlinear preconditioners and showed that the improved Newton method

enjoyed the quadratic convergence. Jose et al. [110] used the idea of nonlinear

preconditioning to improve the Newton method, for solving the system of non-

linear equations with known multiplicities. Aslam et al. [111] proposed iterative

methods for solving nonlinear equations with unknown multiplicity with the help

of nonlinear preconditioners. In the another article Aslam and his co-researcher

[112] proposed a preconditioned double Newton method with quartic convergence

order for the solving system of nonlinear equations. What they have proposed is

the following. Let

F(x) = [f1(x), f2(x), · · · , fn(x)]T = 0 (3.1)

be the system of nonlinear equations and let us suppose that only simple roots are

present. Here x = [x1, x2, · · · , xn]T . Assume G(x) = [g1(x), g2(x), · · · , gn(x)]T is

a function which is non-zero everywhere in its definition domain. We define a new

function

Q(x) = G(x)⊙ F(x) = [[G(x)]]F(x) = [[F(x)]]G(x), (3.2)

where ⊙ is the element-wise multiplication and [[·]] represent the diagonal matrix,

having as main diagonal its argument. The first order Fréchet derivative of (3.2)

can be computed as

Q′(x) = [[F(x)]]G′(x) + [[G(x)]]F′(x)

= [[G(x)]]
(
F′(x) + [[F(x)]] [[G(x)]]−1

G′(x)
)
. (3.3)
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The application of Newton method to (3.2) gives

xk+1 = xk −Q′(xk)
−1 Q(xk)

= xk −
(
F′(x) + [[F(xk)]] [[G(xk)]]

−1
G′(xk)

)−1
F(xk).

(3.4)

The convergence order of (3.4) is quadratic, because the considered scheme is

the Newton method for solving the preconditioned system of nonlinear equations

Q(x) = 0. If we take G(x) = exp(βββ ⊙ x) then (3.4) can be written as

xk+1 = xk − (F′(x) + [[βββ ⊙ F(x)]])
−1

F(x), (3.5)

where βββ = [β1, β2, · · · , βn]T .

3.2 Our proposal

In this section, we develop some preconditioned iterative methods for solving sys-

tems of nonlinear equations. We generalize the idea of preconditioning in such a

way that the quadratic convergence will be guaranteed, under the usual regularity

requirements. If we replace G(x) by exp((G(x)) in (3.4), then we obtain

xk+1 = xk −
(

F′(xk) + [[F(xk)]]G
′(xk)

)−1

F(xk). (3.6)

Notice that G′(x) is a matrix that could be a diagonal matrix, but also a generic

dense matrix. We proposed the following generalization of (3.6)

xk+1 = xk −
(

F′(xk) +M1(xk) [[F(xk)]]M2(xk)
)−1

F(xk), (3.7)

where M1(x) and M2(x) are matrices of size n. In the next development, we see

that [[F(x)]] is not the only option. Let p(x) be a scalar function and let us define

the following preconditioned system of nonlinear equations

Q(x) = p(x)⊙ F(x) = [p(x) f1(x), p(x) f2(x), · · · , p(x) fn(x)]T . (3.8)
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The first order Fréchet derivative of (3.8) can be computed as

Q′(x) = p(x)⊙ F′(x) + F(x)∇p(x)T

Q′(x) = p(x)⊙
(

F′(x) + F(x)

(∇p(x)T
p(x)

)) (3.9)

where p(x)⊙ F′(x) means the element-wise product of p(x) with each element of

F′(x) and / in
(

∇p(x)T

p(x)

)

is element-wise division. The application of the Newton

method to (3.8) gives

xk+1 = xk −
(

F′(xk) + F(xk)

(∇p(xk)
T

p(xk)

))−1

F(xk). (3.10)

Again, if we replace p(xk) by exp (p(xk)) in (3.10), then we have

xk+1 = xk −
(
F′(xk) + F(xk)∇p(xk)

T
)−1

F(xk). (3.11)

The following generalization of (3.11) can be obtained

xk+1 = xk −
(
F′(xk) + F(xk)V(xk)

T
)−1

F(xk) and (3.12)

xk+1 = xk −
(
F′(xk) +V(xk)F(xk)

T
)−1

F(xk), (3.13)

where V(xk) = [v1(xk), v2(xk), · · · , vn(xk)]
T . Other possibilities could be

xk+1 = xk −
(
F′(xk) +M1(xk)F(xk)V(xk)

T M2(xk)
)−1

F(xk) and (3.14)

xk+1 = xk −
(
F′(xk) +M1(xk)V(xk)F(xk)

T M2(xk)
)−1

F(xk). (3.15)

Further, we write the multi-step version of the proposed generalizations

Base method −→







x0 = initial guess

Aφφφ1 = F (x0)

x1 = x0 − φφφ1

Multi-step part→







for j = 2,m

Aφφφj = F (xj−1)

xj = xj−1 − φφφj

end

x0 = xm ,

(3.16)
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where

A =







Iterative method

F′(x) +M1(x) [[F(x)]]M2(x) (3.7)

F′(x) + F(x)V(x)T (3.12)

F′(x) +V(x)F(x)T (3.13)

F′(x) +M1(x)F(x)V(x)T M2(x) (3.14)

F′(x) +M1(x)V(x)F(x)T M2(x) (3.15)

.

The famous Newton multi-step iterative method [67] can be written as

Base method −→







x0 = initial guess

F′(x0)φφφ1 = F (x0)

x1 = x0 − φφφ1

Multi-step part→







for j = 2,m

F′(x0)φφφj = F (xj−1)

xj = xj−1 − φφφj

end

x0 = xm .

(3.17)

3.3 Convergence Analysis

In this section we give in detail the proofs of convergence order of (3.16) only for

m = 2, while for the case m ≥ 3 we use mathematical induction.

Theorem 3.1. Let F : Γ ⊆ R
n → R

n be sufficiently Frechet differentiable on an

open convex neighborhood Γ of x∗ ∈ R
n with F (x∗) = 0, det (F′ (x∗)) 6= 0, and

with well defined quantities ||M1(xk)||, ||M2(xk)||, ||V(xk)||. Then the sequence

{xk} generated by (3.16) converges to x∗ with local order of convergence at least

three for m = 2. Furthermore, the following error inequality

||ek+1|| ≤ ||L|| ||ek||3 (3.18)
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is satisfied, where ek = xxxk−x∗, ek
p =

p times
︷ ︸︸ ︷

(ek, ek, · · · , ek), ek = [(ek)1, (ek)2, · · · , (ek)n]T

and

||L|| =







Iterative method
(

2||C2||2 + 3||C2|| ||M1(x0)|| ||M2(x0)|| + (||M1(x0)|| ||M2(x0)||)2
)

||e0||3 (3.7)
(

2||C2||2 + 3||C2|| ||V(x0)|| + ||V(x0)||2
)

||e0||3 (3.12)
(

2||C2||2 + 3||C2|| ||V(x0)|| + ||V(x0)||2
)

||e0||3 (3.13)
(

2||C2||2 + 3||C2|| ||M1(x0)|| ||M2(x0)|| ||V(x0)|| + (||M1(x0)|| ||M2(x0)|| ||V(x0)||)2
)

||e0||3 (3.14)
(

2||C2||2 + 3||C2|| ||M1(x0)|| ||M2(x0)|| ||V(x0)|| + (||M1(x0)|| ||M2(x0)|| ||V(x0)||)2
)

||e0||3 (3.15)

.

(3.19)

Proof. The qth Frechet derivative of F at v ∈ R
n, q ≥ 1, is the q− linear function

F(q) (v) :

q times
︷ ︸︸ ︷

R
n
R

n · · ·Rn such that F(q) (v) (u1, u2, · · · , uq) ∈ R
n. The Taylor’s series

expansion of F (x0) around x∗ can be written as

F (x0) = F (x∗ + x0 − x∗) = F (x∗ + e0) ,

= F (x∗) + F′ (x∗) e0 +
1

2!
F′′ (x∗) e0

2 +
1

3!
F(3) (x∗) e0

3 + · · · ,

= F′ (x∗)

(

e0 +
1

2!
F′ (x∗)

−1
F′′ (x∗) e0

2

+
1

3!
F′ (x∗)

−1
F(3) (x∗) e0

3 + · · ·
)

,

= C1

(
e0 +C2 e0

2 +C3 e0
3 +O

(
e0

4
))
, (3.20)

where C1 = F′ (x∗) and Cs =
1
s!
F′ (x∗)−1

F(s) (x∗) for s ≥ 2. From (3.20 ), we can

calculate the Fréchet derivative of F as

F′ (x0) = C1

(
I+ 2C2 e0 + 3C3 e0

2 + 4C3 e0
3 +O

(
e0

4
))
, (3.21)

where I is the identity matrix. Before to proceed further, first we compute the

norm bounds for

B(x) ∈
{

M1(x) [[F(x)]]M2(x),F(x)V(x)T ,V(x)F(x)T ,

M1(x)F(x)V(x)T M2(x),M1(x)V(x)F(x)T M2(x)
}

.

B(x0) =M1(x0) [[F(x0)]]M2(x0)

=M1(x0) [[C1

(
e0 +C2e

2
0 +O

(
e30
))
]]M2(x0)

||B(x0)|| ≤ ||C1|| ||M1(x0)|| ||M2(x0)|| ||e0||
(3.22)
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B(x0) = F(x0)V(x0)
T

= C1

(
e0 +C2e

2
0 +O

(
e30
))

V(x0)
T

||B(x0)|| ≤ ||C1|| ||V(x0)|| ||e0||
(3.23)

B(x0) = V(x0)F(x0)
T

= V(x0)
(
C1

(
e0 +C2e

2
0 +O

(
e30
)))T

||B(x0)|| ≤ ||C1|| ||V(x0)|| ||e0||
(3.24)

B(x0) =M1(x0)F(x0)V(x0)
T M2(x0)

=M1(x0)
(
C1

(
e0 +C2e

2
0 +O

(
e30
)))

V(x0)
T M2(x0)

||B(x0)|| ≤ ||C1|| ||M1(x0)|| ||M2(x0)|| ||V(x0)|| ||e0||
(3.25)

Notice that all the expressions for B(x) are of order e and this is essential in

proving the quadratic convergence.

B(x0) =M1(x0)V(x0)F(x0)
T M2(x0)

=M1(x0)V(x0)
(
C1

(
e0 +C2e

2
0 +O

(
e30
)))T

M2(x0)

||B(x0)|| ≤ ||C1|| ||M1(x0)|| ||M2(x0)|| ||V(x0)|| ||e0||
(3.26)

A = F′(x0) +B(x0)

= C1

(
I+ 2C2 e0 +C−1

1 B(x0) +O(e20)
)

A−1 =
(
I− 2C2 e0 −C−1

1 B(x0) +O((e0)i1 (e0)i2)
)
C−1

1

(3.27)

The explanation to use the notation O((e0)i1 (e0)i2) is that the quadratic terms

are not of the form e20 because of B(x0). By using (3.27), we deduce

A−1F(x0) =
(
I− 2C2 e0 −C−1

1 B(x0) +O((e0)i1 (e0)i2)
)
C−1

1 C1

(
e0 +C2e

2
0 +O

(
e30
))

= e0 +C2e
2
0 − 2C2e

2
0 −C−1

1 B(x0)e0

+O
(
(e0)i1 (e0)i2 (e0)i3

)
e1

= e0 − e0 +C2e
2
0 +C−1

1 B(x0)e0 +O
(
(e0)i1 (e0)i2 (e0)i3

)
e1

= C2e
2
0 +C−1

1 B(x0)e0 +O
(
(e0)i1 (e0)i2 (e0)i3

)

(3.28)



Chapter 3. Multi-step preconditioned Newton methods for solving systems of
nonlinear equations 47

The error equation e1 tells that the order of convergence of base method of (3.16)

is quadratic because C−1
1 B(x0)e0 is a second order term in e0. By using (3.28),

(3.22), (3.23), (3.24), (3.25) and (3.26) , we get

F(x1) = C1

(
e1 +O

(
e21
))

= C1

(
C2e

2
0 +C−1

1 B(x0)e0 +O
(
(e0)i1 (e0)i2 (e0)i3

))

e2 = e1 −A−1F(x1)

= C2e
2
0 +C−1

1 B(x0)e0 −
(
I− 2C2 e0 −C−1

1 B(x0)

+O((e0)i1 (e0)i2)
)(
C2e

2
0 +C−1

1 B(x0)e0
)

+O
(
(e0)i1 (e0)i2 (e0)i3 (e0)i4

)

= 2C2
2e

3
0 + 2C2e0C

−1
1 B(x0)e0 +C−1

1 B(x0)C2e
2
0 +C−1

1 B(x0)C
−1
1 B(x0)e0

+O
(
(e0)i1 (e0)i2 (e0)i3 (e0)i4

)
,

||e2|| ≤ 2||C2||2||e0||3 + 3||C2|| ||C1||−1||B(x0)|| ||e0||2 + ||C1||−2||B(x0)||2||e0||,

||e2|| ≤







Iterative method

(

2||C2||2 + 3||C2|| ||M1(x0)|| ||M2(x0)|| + (||M1(x0)|| ||M2(x0)||)2
)

||e0||3 (3.7)

(

2||C2||2 + 3||C2|| ||V(x0)|| + ||V(x0)||2
)

||e0||3 (3.12)

(

2||C2||2 + 3||C2|| ||V(x0)|| + ||V(x0)||2
)

||e0||3 (3.13)

(

2||C2||2 + 3||C2|| ||M1(x0)|| ||M2(x0)|| ||V(x0)|| + (||M1(x0)|| ||M2(x0)|| ||V(x0)||)2
)

||e0||3 (3.14)

(

2||C2||2 + 3||C2|| ||M1(x0)|| ||M2(x0)|| ||V(x0)|| + (||M1(x0)|| ||M2(x0)|| ||V(x0)||)2
)

||e0||3 (3.15)

(3.29)

The error inequality (3.29) completes the proof.

The proof of convergence when m ≥ 3 can be carried via mathematical induction.

Suppose the propose the iterative method (3.16) has convergence order s when

m = s − 1. The error inequality for (s − 1)-step iterative method (3.16) can be

written as

||es−1|| ≤ ||N1|| ||e0||s, (3.30)

where ||N1|| is finite. The error equation for m = s is

es = es−1 −A−1 F(xs−1)

= es−1 −
(
I− 2C2e0 −C−1

1 B(x0) +O
(
(e0)i1 (e0)i2

))
es−1

||es|| ≤ 2||C2|| ||N1|| ||e0||s+1 + ||C1||−1||B(x0)|| ||N1|| ||e0||s

||es|| ≤ ||N2|| ||e0||s+1,

(3.31)
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where ||N2|| is finite and its value can be determine by using the fact that ||B(x0)||
is bounded above. The upper bounds for ||B(x0)|| are given in (3.22), (3.23),

(3.24), (3.25) and (3.26).

3.4 Numerical simulations

Let ααα be a simple root of system of nonlinear equations F(x) = 0. We adopt the

following definition of computational order of convergence [68]

CCO =
log

(
||F(xk+1)||∞/||F(xk)||∞

)

log
(
||F(xk)||∞/||F(xk−1)||∞

) . (3.32)

To check the performance of our proposed iterative methods, we solve three prob-

lems.

Problem 1 =







x2i xi+1 − 1 = 0, i = 1, 2 · · · , n− 1

xn x1 − 1 = 0, i = n

Problem 2 =







F1(x) = (3− 0.5 x1) x1 − 2 x2 + 1

F2(x) = (3− 0.5 xn) xn − 2 xn−1 + 1

Fi(x) = (3− 0.5 xi) xi − xi−1 + 2 xi+1 + 1, i = 2, 3 · · · , n− 1

Problem 3 =







F1(x) = 10 x1 + sin (x1 + x2)− 1 = 0

F2(x) = 8 x2 − cos2 (x3 − x2)− 1 = 0

F3(x) = 12 x3 + sin (x3)− 1 = 0

Tables 9.1, 9.2, and 9.3 clearly show that the claimed orders of convergence are in

agreement with computational orders of convergence for a given number of steps.

The simulation times in each Table for all the conducted tests are almost equal.

In Table 9.3, we have used full matrices as preconditioners because the system of

nonlinear equations is small. But for a large system of nonlinear equations, it is

not recommendable to use full matrices as a preconditioners and reason is clear,

since we get a penalty in terms of computational cost. One of the main targets
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of the present article is to explore different possibilities of preconditioning, by

keeping the convergence order. In our analysis, we found that for solving system

of nonlinear equations, the iterative method (3.7) is the most efficient when we

use the preconditioning matricesM1(x) andM2(x) as diagonal matrices. It is also

observed that the leading constant coefficients of preconditioners should be less

one in magnitude to get better accuracy. The proposed iterative methods show

better accuracy compared with multi-step Newton method for almost all tests,

when considering the previous three model problems.

Method (3.7) Method (3.17)

M1(x) M2(x) m ||F(x)||∞ CCO ||F(x)||∞ CCO

I [[− sin (x)/(1.1 + cos (x))]] 1 2.97e− 23 2.0 3.20e− 7 1.99

I −I 2 1.95e− 127 4.0 4.15e− 28 3.0

I [[−2 exp (−2x)]] 3 7.20e− 89 4.0 5.56e− 80 4.0

I [[− exp (−x)]] 4 3.21e− 221 5.0 3.20e− 185 5.0

Table 3.1: Problem 1: Initial guess: xi = 15/10, n = 200, Iter= 5

Method (3.7) Method (3.17)

M1(x) M2(x) m ||F(x)||∞ CCO ||F(x)||∞ CCO

I [[1/10]] 3 2.33e− 219 4.0 5.92e− 163 4.0

I [[1/10]] 4 4.09e− 511 5.0 1.18e− 388 5.0

I [[1/10 exp (x/10)]] 3 4.92e− 214 4.0 5.92e− 163 4.0

I [[1/10 exp (x/10)]] 4 3.79e− 499 5.0 1.18e− 388 5.0

I [[cosh(x)/(10 + sinh(x))]] 3 3.52e− 264 4.0 5.92e− 163 4.0

I [[cosh(x)/(10 + sinh(x))]] 4 2.77e− 614 5.0 1.18e− 388 5.0

I [[cosh(x)/10]] 3 1.97e− 292 4.0 5.92e− 163 4.0

I [[cosh(x)/10]] 4 7.68e− 677 5.0 1.18e− 388 5.0

I [[sech(x)/10]] 3 1.33e− 200 4.0 5.92e− 163 4.0

I [[sech(x)/10]] 4 4.26e− 469 5.0 1.18e− 388 5.0

I [[cos(x)/3]] 3 3.09e− 267 4.0 5.92e− 163 4.0

I [[cos(x)/3]] 4 2.55e− 623 5.0 1.18e− 388 5.0

I [[
(
1 + x3

)
/3]] 3 5.71e− 187 4.0 5.92e− 163 4.0

I [[
(
1 + x3

)
/3]] 4 4.09e− 443 5.0 1.18e− 388 5.0

I [[sinh(
(
x2

)
/10]] 3 7.21e− 217 4.0 5.92e− 163 4.0

I [[sinh(
(
x2

)
/10]] 4 4.16e− 462 5.0 1.18e− 388 5.0

I [[x2/10]] 3 8.41e− 204 4.0 5.92e− 163 4.0

I [[x2/10]] 4 1.13e− 482 5.0 1.18e− 388 5.0

Table 3.2: Problem 2: Initial guess: xi = −1, n = 100, Iter= 4
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Methods (3.16) Method (3.17)

Methods M1(x) M2(x) V(x) m ||F(x)||∞ CCO ||F(x)||∞ CCO

(3.7) R1 I - 1 1.63e− 241 2.0 6.69e− 268 2.0

(3.7) I R1 - 1 1.34e− 281 2.0 6.69e− 268 2.0

(3.7) R1 I - 2 1.19e− 6427 3.0 1.74e− 6229 3.0

(3.7) I R1 - 2 4.27e− 8197 3.0 1.74e− 6229 3.0

(3.13) I I R2 1 1.49e− 272 2.0 6.69e− 268 2.0

(3.14) [[F(x)]] I 0.001R2 1 4.43e− 290 2.0 6.69e− 268 2.0

(3.14) [[F(x)]] I 0.001R3 1 2.22e− 283 2.0 6.69e− 268 2.0

(3.14) [[F(x)]] I 0.001R4 1 1.25e− 286 2.0 6.69e− 268 2.0

(3.14) I [[F(x)]] 0.001R2 1 2.84e− 270 2.0 6.69e− 268 2.0

(3.14) I [[F(x)]] 0.001R3 1 3.11e− 270 2.0 6.69e− 268 2.0

(3.14) I [[F(x)]] 0.001R4 1 5.34e− 273 2.0 6.69e− 268 2.0

(3.15) [[−F(x)]] I R5 1 1.36e− 278 2.0 6.69e− 268 2.0

(3.15) I I R6 1 3.74e− 296 2.0 6.69e− 268 2.0

(3.15) I I R7 1 4.75e− 300 2.0 6.69e− 268 2.0

(3.15) I I R8 1 3.73e− 334 2.0 6.69e− 268 2.0

(3.15) I I R9 1 7.06e− 325 2.0 6.69e− 268 2.0

(3.15) I I R10 1 5.79e− 303 2.0 6.69e− 268 2.0

R1 = (0.1 exp (0.1x)) (0.1 exp (0.1x))T , R2 = [1, 0, 0]T , R3 = [0, 1, 0]T , R4 = [0, 0, 1]T

R5 = 0.001 [−1,−1,−1]T , R6 = 0.001 [1,−1, 1]T , R7 = 0.001 [−1,−1, 1]T , R8 = 0.001 [−1,−1, 2]T

R9 = 0.001 [−1,−2, 1]T , R10 = 0.001 [−2,−1, 1]T ,

Table 3.3: Problem 3: Initial guess: xi = 15/10, n = 3, Iter= 8

3.5 Summary

The computational cost of the classical multi-step Newton method and that of

the proposed iterative methods are essentially the same, if we do not use dense

preconditioners. Indeed, the iterative method (3.7) is more effective, when coupled

with diagonal preconditioners. The proposed family of iterative methods has the

same convergence order as that of Newton multi-step iterative method, with almost

the same computational cost. The only assumption on the preconditioners is that

they should have finite norms, in their definition domain.
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Multi-step derivative-free

preconditioned Newton method

for solving systems of nonlinear

equations

Preconditioning of systems of nonlinear equations modifies the associated

Jacobian and provides faster convergence. The preconditioners are intro-

duced in a way that they do not affect the convergence order of underlying

iterative method. The multi-step derivative-free iterative method consists

of a base method and multi-step part. In the base method, the Jacobian of

the system of nonlinear equation is approximated by a finite difference op-

erator and preconditioners add an extra term to modify it. The inversion of

the modified finite difference operator is avoided by computing LU factors.

Once we have the LU factors, we repeatedly use them to solve lower and

upper triangular systems in the multi-step part to enhance the convergence

order. The convergence order of m-step Newton iterative method is m+ 1.

The claimed convergence orders are verified by computing numerically the

convergence order. Furthermore, numerical simulations clearly show that

a good selection of a preconditioning strategy provides numerical stability,

accuracy, and rapid convergence.

51
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4.1 Introduction

Let F : D ⊆ R
n −→ R

n be a nonlinear function and the system of nonlinear

equations can be written as

F(x) = [f1(x), f2(x), · · · , fn(x)]T = 0, (4.1)

where x = [x1, x2, · · · , xn]T . If x∗ is a simple root of (4.1) then F(x∗) = 0 and

det(F′(x∗)) 6= 0 i.e. Jacobian should not be singular at the root. Newton method

[1, 3, 7, 8] is the classical iterative method for computing the simple root of system

of nonlinear equation. The multi-step Newton method[113] can be written as

Base method −→







x0 = initial guess

F′(x0)φφφ1 = F (x0)

x1 = x0 − φφφ1

Multi-step part→







for j = 2,m

F′(x0)φφφj = F (xj−1)

xj = xj−1 − φφφj

end

x0 = xm

(4.2)

and its order of convergence is m + 1. Many researchers [57, 70, 107, 108] have

proposed higher order multi-step an iterative method for solving system of nonlin-

ear equations. In most of real world problems, the closed form expression for the

system of nonlinear equations is not always possible. when we get the information

about the system of nonlinear equations from a black box then the computation

of Jacobian analytically is no way possible. So it means, we need to compute it

numerically. Recently people have proposed derivative-free iterative method [114–

118] for the solution of the system of nonlinear equations. Grau et al. [116] have

constructed the following multi-step derivative-free iterative method for solving

the system of nonlinear equations.
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Base method −→







x0 = initial guess

uuu = x0 + β F(x0)

[uuu,x0;F]φφφ1 = F (x0)

x1 = x0 − φφφ1

Multi-step part→







for j = 2,m

[uuu,x0;F]φφφj = F (xj−1)

xj = xj−1 − φφφj

end

x0 = xm

, (4.3)

where β is a scalar parameter and the [., .;F] : D × D ⊂ R
n × R

n −→ L(Rn) is

divided difference operator of F. The divided difference operator is defined as

[x+ h,x;F] =

1∫

0

F′(x+ th) dt, ∀x,h ∈ R
n

= F′(x) +
1

2
F′′(x)h+

1

6
F′′′(x)h2 +O

(
h3

)
,

(4.4)

where hi =

i times
︷ ︸︸ ︷

(h, h, · · · , h). The idea of preconditioning of system of nonlinear equa-

tions are reported by many authors [109–112]. LetG(x) = [g1(x), g2(x), · · · , gn(x)]T

be a non-zero sufficiently differentiable function. We define a new function

Q(x) = G(x)⊙ F(x) = [[G(x)]]F(x) = [[F(x)]]G(x), (4.5)

where ⊙ is the element-wise multiplication and [[·]] represent the diagonal matrix.

The first order Fréchet derivative of (4.5) can be computed as

Q′(x) = [[F(x)]]G′(x) + [[G(x)]]F′(x)

= [[G(x)]]
(
F′(x) + [[F(x)]] [[G(x)]]−1

G′(x)
)
. (4.6)
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The application of Newton method to (4.5) gives

xk+1 = xk −Q′(xk)
−1 Q(xk)

= xk −
(
F′(xk) + [[F(xk)]] [[G(xk)]]

−1
G′(xk)

)−1
F(xk).

(4.7)

The convergence order of (4.7) is quadratic because, it is the Newton method for

solving preconditioned system of nonlinear equations Q(x) = 0. If we replace

G(x) by exp(G(x)) then (4.7) can be written as

xk+1 = xk − (F′(xk) + [[F(xk)]]G
′(xk))

−1
F(xk). (4.8)

4.2 Proposed iterative methods

We are interested to proposed derivative-free version of (4.8) with some generaliza-

tion of preconditioner. Our proposal of multi-step derivative-free preconditioned

iterative method is the following

Base method −→







x0 = initial guess

uuu = x0 + β F(x0)

A = [uuu,x0;F] + [[q1(x)⊙ q2(F(x))]]

Aφφφ1 = F (x0)

x1 = x0 − φφφ1

Multi-step part→







for j = 2,m

Aφφφj = F (xj−1)

xj = xj−1 − φφφj

end

x0 = xm

, (4.9)

where q1,q2 : Rn −→ R
n are sufficiently differentiable, q2(0) = 0 and qi(x) =

[qi(x1), qi(x2) · · · , qi(xn)]T for i = 1, 2. We claim that the convergence order of

proposed preconditioned m-step derivative-free iterative method is m+ 1.
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4.3 Convergence Analysis

We demonstrate the proof of convergence order of (4.9) only for m = 2 and the

case m ≥ 3, we use mathematical induction.

Theorem 4.1. Let F : Γ ⊆ R
n → R

n be sufficiently Frechet differentiable on an

open convex neighborhood Γ of x∗ ∈ R
n with F (x∗) = 0 and det (F′ (x∗)) 6= 0. By

taking x0 in the vicinity of x∗, the sequence {xk} generated by (4.9) converges to

x∗ with local order of convergence at least three for m = 2 and the following error

equation

e2 = B1e0
(
−C2e

2
0 +B1e

2
0 +C−1

1 [[q1(x)⊙ (γγγ1C1 e0)]]e0
)

+C−1
1 [[q1(x)⊙ (γγγ1C1 e0)]]

(
−C2e

2
0 +B1e

2
0+

C−1
1 [[q1(x)⊙ (γγγ1C1 e0)]]e0

)
+O

(
(e0)i1 (e0)i2 (e0)i3 (e0)i4

)

(4.10)

where ek = xxxk − x∗, ek
p =

p times
︷ ︸︸ ︷

(e2, ek, · · · , ek), ek = [(ek)1, (ek)2, · · · , (ek)n]T , γγγ1 =

q2(0), B1 = βC2 C1 + 2C2 and B2 = β2 C3 C
2
1 + βC2 C1 C2 + 3 βC3 C1 + 3C3.

Proof. The rth Frechet derivative of F at v ∈ R
n, r ≥ 1, is the q− linear function

F(r) (v) :

r times
︷ ︸︸ ︷

R
n
R

n · · ·Rn such that F(r) (v) (u1, u2, · · · , ur) ∈ R
n. The Taylor’s series

expansion of F (x0) around x∗ can be written as

F (x0) = F (x∗ + x0 − x∗) = F (x∗ + e0) ,

= F (x∗) + F′ (x∗) e0 +
1

2!
F′′ (x∗) e0

2 +
1

3!
F(3) (x∗) e0

3 + · · · ,

= F′ (x∗)

(

e0 +
1

2!
F′ (x∗)

−1
F′′ (x∗) e0

2

+
1

3!
F′ (x∗)

−1
F(3) (x∗) e0

3 + · · ·
)

,

= C1

(
e0 +C2 e0

2 +C3 e0
3 +O

(
e0

4
))
,

(4.11)

where C1 = F′ (x∗) and Cs =
1
s!
F′ (x∗)−1

F(s) (x∗) for s ≥ 2. From (4.11 ), we can

calculate the Fréchet derivatives of F as
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F′ (x0) = C1

(
I+ 2C2 e0 + 3C3 e0

2 + 4C3 e0
3 +O

(
e0

4
))

F′′ (x0) = C1

(
2C2 + 6C3 e0 +O

(
e0

2
))

F′′′ (x0) = C1 (6C3 +O (e0)) ,

(4.12)

where I is the identity matrix. By using (4.4), the following expansion

[uuu,x0;F] = C1

(
I+B1e0 +B2 e

2
0 +O

(
e30
))
, (4.13)

where B1 = βC2 C1 + 2C2 and B2 = β2 C3 C
2
1 + βC2 C1 C2 + 3 βC3 C1 + 3C3.

Next, we expand q2(F(x)) as

q2(F(x)) = q′
2(0)F(x) + q′′

2(0)F(x)⊙ F(x) + · · ·
q1(x)⊙ q2(F(x)) = q1(x)⊙ q′

2(0)F(x)

+ q1(x)⊙ q′′
2(0)F(x)⊙ F(x) + · · ·

= q1(x)⊙ (γγγ1C1 e0) + q1(x)⊙
(
γγγ1C1 C2e

2
0

)

+ q1(x)⊙ (γγγ2 [[C1 e0]]C1 e0)

+O
(
(e0)i1(e0)i2(e0)i3

)
,

(4.14)

where γγγ1 = q′
2(0), γγγ2 = q′′

2(0) and O
(
(e0)i1(e0)i2(e0)i3

)
represents the third order

term. The expansion of A by using (4.13) and (4.14) is

A = C1

(
I+B1e0 +B2 e

2
0

)
+ [[q1(x)⊙ (γγγ1C1 e0)]]

+ [[q1(x)⊙
(
γγγ1C1 C2e

2
0

)
]] + [[q1(x)⊙ (γγγ2 [[C1 e0]]C1 e0)]]+

+O
(
(e0)i1(e0)i3(e0)i3

)

A = C1

(

I+B1e0 +B2 e
2
0 +C−1

1 [[q1(x)⊙ (γγγ1C1 e0)]]

+C−1
1 [[q1(x)⊙

(
γγγ1C1 C2e

2
0

)
]]

+C−1
1 [[q1(x)⊙ (γγγ2 [[C1 e0]]C1 e0)]] +O

(
(e0)i1(e0)i2(e0)i3

))

A−1 =
(

I−B1e0 −C−1
1 [[q1(x)⊙ (γγγ1C1 e0)]]−B2 e

2
0

−C−1
1 [[q1(x)⊙

(
γγγ1C1 C2e

2
0

)
]]−C−1

1 [[q1(x)⊙ (γγγ2 [[C1 e0]]C1 e0)]]

+O
(
(e0)i1(e0)i2(e0)i3

))

C−1
1

A−1 =
(

I−B1e0 −C−1
1 [[q1(x)⊙ (γγγ1C1 e0)]] +O

(
(e0)i1(e0)i2

))

C−1
1

(4.15)
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By using (4.15), we get

A−1F(x0) =
(

I−B1e0 −C−1
1 [[q1(x)⊙ (γγγ1C1 e0)]] +O

(
(e0)i1(e0)i2

))

C−1
1 C1

(
e0 +C2e

2
0 +O

(
e30
))

= e0 +C2e
2
0 −B1e

2
0 −C−1

1 [[q1(x)⊙ (γγγ1C1 e0)]]e0

+O
(
(e0)i1 (e0)i2 (e0)i3

)

e1 = e0 − e0 −C2e
2
0 +B1e

2
0 +C−1

1 [[q1(x)⊙ (γγγ1C1 e0)]]e0

+O
(
(e0)i1 (e0)i2 (e0)i3

)

e1 = −C2e
2
0 +B1e

2
0 +C−1

1 [[q1(x)⊙ (γγγ1C1 e0)]]e0

+O
(
(e0)i1 (e0)i2 (e0)i3

)
.

(4.16)

The error equation e1 tells that the order of convergence of base method of (4.9)

is quadratic.

F(x1) = C1

(
e1 +O

(
e21
))

e2 = e1 −A−1C1

(
e1 +O

(
e21
))

= e1 −
(

I−B1e0 −C−1
1 [[q1(x)⊙ (γγγ1C1 e0)]] +O

(
(e0)i1(e0)i2

))

C−1
1 C1

(
e1 +O

(
e21
))

= B1e0e1 +C−1
1 [[q1(x)⊙ (γγγ1C1 e0)]]e1

+O
(
(e0)i1 (e0)i2 (e0)i3 (e0)i4

)

= B1e0
(
−C2e

2
0 +B1e

2
0 +C−1

1 [[q1(x)⊙ (γγγ1C1 e0)]]e0
)

+C−1
1 [[q1(x)⊙ (γγγ1C1 e0)]]

(
−C2e

2
0

+B1e
2
0 +C−1

1 [[q1(x)⊙ (γγγ1C1 e0)]]e0
)
+O

(
(e0)i1 (e0)i2 (e0)i3 (e0)i4

)

(4.17)

It can be seen from (4.17) that it involves third order terms in e0.

The proof of convergence when m ≥ 3 can be carried via mathematical induction.

Suppose the proposed iterative method (4.9) has convergence order s when m =
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s− 1. The error equation for s-step iterative method (4.9) can be written as

es = es−1 −A−1 F(xs−1)

F(xs−1) = C1

(
es−1 +O

(
e2s−1

))

es = es−1 −
(
I−B1e0 −C−1

1 [[q1(x)⊙ (γγγ1C1 e0)]] +O
(
(e0)i1(e0)i2

))

C−1
1 C1

(
es−1 +O

(
e2s−1

))

= es−1 −
(
I−B1e0 −C−1

1 [[q1(x)⊙ (γγγ1C1 e0)]]

+O
(
(e0)i1(e0)i2

))(
es−1 +O

(
e2s−1

))

=
(
B1e0 +C−1

1 [[q1(x)⊙ (γγγ1C1 e0)]] +O
(
(e0)i1(e0)i2

))
es−1

−
(
I−B1e0 −C−1

1 [[q1(x)⊙ (γγγ1C1 e0)]] +O
(
(e0)i1(e0)i2

))

O
(
e2s−1

)
.

(4.18)

According to our assumption the order of convergence of (s−1)−step method is s.

It means es−1 = O
(
(e0)i1(e0)i2 · · · (e0)is

)
. It is clearly evident from (4.18) that es =

O
(

(e0)i1(e0)i2 · · · (e0)is+1

)

. So m−step iterative method (4.9) has convergence

order m+ 1.

4.4 Numerical simulations

It is important to verify the claimed order of convergence of the proposed iterative

method. We adopt the following definition of computational order of convergence

CCO =
log

(
||F(xk+1)||∞/||F(xk)||∞

)

log
(
||F(xk)||∞/||F(xk−1)||∞

) . (4.19)

To check the performance of our proposed iterative method, we solve three prob-

lems.

Problem 1 =







x2i xi+1 − 1 = 0, i = 1, 2 · · · , n− 1

xn x1 − 1 = 0, i = n
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Problem 2 =







F1(x) = (3− 0.5 x1) x1 − 2 x2 + 1

F2(x) = (3− 0.5 xn) xn − 2 xn−1 + 1

Fi(x) = (3− 0.5 xi) xi − xi−1 + 2 xi+1 + 1, i = 2, 3, · · · , n− 1

Problem 3 =







Fi(x) = 2

(

n+ i (1− cos (xi))− sin (xi)−
n∑

j=1

cos (xj)

)

(2 sin (xi)− cos (xi)), i = 1, 2, · · · , n

The performance comparison is demonstrated between iterative methods (4.3) and

(4.9). The first order divided difference operator (4.4) can be computed as

[x,y;F]ij =

(

Fi(y1, y2, · · · , yj−1, yj, yj+1, · · · , xn)

− Fi(y1, y2, · · · , yj−1, xj, xj+1, · · · , xn)
)

/(yj − xj),

(4.20)

x = [x1, x2, · · · , xn]T and y = [y1, y2, · · · , yn]T and i, j = 1, 2, · · · , n. If F(x) and

F(y) are provided separately then number of scalar function evaluation in (4.20)

are n(n − 1). The following Mathematica code can be used to compute the first

order divided difference operator (4.20).

dF[x_, y_, F1_ , F2_ , n_] := (

M = Table[0, {i, 1, n}, {j, 1, n}];

Do[

z1 = y;

z1[[1]] = x[[1]];

dum = Fi[z1, i, n];

M[[i, 1]] = (dum - F2[[i]])/(x[[1]] - y[[1]]);

Do[

z1[[j]] = x[[j]];

dum1 = Fi[z1, i, n];

M[[i, j]] = (dum1 - dum)/(x[[j]] - y[[j]]);

dum = dum1;

, {j, 2, n - 1}];

M[[i, n]] = (F1[[i]] - dum )/(x[[n]] - y[[n]]);

, {i, 1, n}];

Return[M];

);

Tables 4.1, 4.2 and 4.3 clearly shows that the computational convergence orders

confirm our claim that m−step iterative methods (4.9) and (4.3) have convergence

order m + 1. In all test problems, the selection of preconditioners show that the

performance of proposed iterative method (4.9) is better than competitor iterative



Chapter 4. Multi-step derivative-free preconditioned Newton method for solving
systems of nonlinear equations 60

Method (4.9) Method (4.3)

q1(x) q2(F(x)) m ||F(x)||∞ CCO ||F(x)||∞ CCO

1 −F(x) 1 1.41e− 46 2.0 9.12e− 14 2.0

1 −F(x) + F(x)3/100 1 4.77e− 52 2.0 9.12e− 14 2.0

1 −F(x) 2 9.23e− 220 3.0 4.24e− 81 3.0

1 −F(x) + F(x)3/100 2 5.61e− 245 3.0 4.24e− 81 3.0

1 −F(x) 3 4.99e− 754 4.0 3.63e− 310 4.0

1 −F(x) + F(x)3/100 3 3.63e− 827 4.0 3.63e− 310 4.0

1 −F(x) 4 7.95e− 2062 5.0 1.19e− 900 5.0

1 −F(x) + F(x)3/100 4 6.44e− 2225 5.0 1.19e− 900 5.0

1 −F(x) 5 2.21e− 4799 6.0 6.53e− 2175 6.0

1 −F(x) + F(x)3/100 5 6.48e− 5105 6.0 6.53e− 2175 6.0

sin (x) −F(x) 5 2.21e− 4536 6.0 6.53e− 2175 6.0

cos (x) −F(x) 5 3.66e− 2464 6.0 6.53e− 2175 6.0

exp (−x/10) −F(x) 5 6.90e− 5217 6.0 6.53e− 2175 6.0

1 − sin (F(x)) 6 4.56e− 6550 7.0 4.79e− 4608 7.0

1 − tan (F(x)) 6 7.98e− 5136 7.0 4.79e− 4608 7.0

1 −F(x)/(1+ F(x)) 6 4.34e− 6513 7.0 4.79e− 4608 7.0

1 −F(x)/(1+ |F(x)/100|) 6 2.20e− 10069 7.0 4.79e− 4608 7.0

Table 4.1: Problem 1: Initial guess: xi = 15/10, n = 10, Iter= 5, β = 1/100

method (4.3). The computational cost of preconditioners is reasonable because

we use diagonal preconditioners. We observed that the leading coefficients in

all preconditioners are of order one or less than one in magnitude. By choosing

properly preconditioners we obtain high accuracy in numerical results.

Method (4.9) Method (4.3)

q1(x) q2(F(x)) m ||F(x)||∞ CCO ||F(x)||∞ CCO

1 F(x)/10 1 6.29e− 36 2.0 2.25e− 24 2.0

1 F(x)/10− (F(x)/10)2 + (F(x)/10)3 1 2.47e− 41 2.0 2.25e− 24 2.0

1 F(x)/10 2 5.04e− 224 3.0 3.60e− 161 3.0

exp (−x/10) F(x)/10 2 5.31e− 231 3.0 3.60e− 161 3.0

1 F(x)/10− (F(x)/10)2 + (F(x)/10)3 2 4.72e− 233 3.0 3.60e− 161 3.0

exp (−x/10) F(x)/10− (F(x)/10)2 + (F(x)/10)3 2 2.52e− 243 3.0 3.60e− 161 3.0

Table 4.2: Problem 2: Initial guess: xi = −1, n = 100, Iter= 5, β = 1/100
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Method (4.9) Method (4.3)

q1(x) q2(F(x)) m ||F(x)||∞ CCO ||F(x)||∞ CCO

1 −F(x) 1 1.49e− 130 2.0 5.06e− 73 2.0

exp (x/10) −F(x) 1 1.33e− 137 2.0 5.06e− 73 2.0

1 −F(x)− F(x)2/100 1 1.76e− 146 2.0 5.06e− 73 2.0

1 −F(x)− F(x)2/100− F(x)3/10000 1 1.87e− 152 2.0 5.06e− 73 2.0

cos (x) −F(x)− F(x)2/100− F(x)3/10000 1 2.01e− 116 2.0 5.06e− 73 2.0

sin (x) −F(x)− F(x)2/100− F(x)3/10000 1 7.53e− 122 2.0 5.06e− 73 2.0

sinh (x) −F(x)− F(x)2/100− F(x)3/10000 1 3.72e− 153 2.0 5.06e− 73 2.0

exp (x/10) −F(x)− F(x)2/100− F(x)3/10000 1 1.62e− 165 2.0 5.06e− 73 2.0

Table 4.3: Problem 3: Initial guess: xi = 1, n = 20, Iter= 10, β = 1/100

4.5 Summary

The derivative-free iterative methods become important when the system of non-

linear equations is a black box and we compute Jacobian numerically. The multi-

step iterative methods are efficient and provide a high order of convergence. The

high efficiency of multi-step iterative methods is hidden in the fact that we repeat-

edly use LU factors of frozen Jacobian from the base method in the multi-step part.

The computational cost that we pay is the per step single evaluation of the system

of nonlinear equation and solution of lower and upper triangular systems. The

proposed preconditioners offer high numerical accuracy in the computed solutions

with very low computational cost. It can be seen that the embedding of our

proposed preconditioners modifies the Jacobian without altering the convergence

order with very low computational cost.



Chapter 5

A preconditioned iterative

method for solving systems of

nonlinear equations having

unknown multiplicity

We present a modification to an existing iterative method for computing

zeros with unknown multiplicities of nonlinear equations or systems of non-

linear equations. More precisely, we introduce preconditioners to nonlinear

equations or systems of nonlinear equations and their corresponding Jaco-

bians. The inclusion of preconditioners provides numerical stability and

accuracy. The different selection of preconditioner produces a family of it-

erative methods. We modified an existing method in a way that we do

not alter its inherited quadratic convergence. Numerical simulations con-

firm that the quadratic convergence order of the preconditioned iterative

method is maintained. The influence of the considered preconditioners is

clearly reflected numerically in the achieved accuracy of the computed so-

lutions.

62
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5.1 Introduction

The designing of an iterative method for solving nonlinear equations and system

of nonlinear equations is an active area of research. Many researchers have pro-

posed iterative methods for solving nonlinear and system of nonlinear equations

for finding simple zeros or zeros with multiplicity greater than one [57, 62, 70,

72, 102, 107, 108, 119–126]. The classical iterative method for solving nonlinear

and system of nonlinear equations to find simple zeros is the Newton method that

offers quadratic convergence [1, 3] under certain conditions. When we are talking

about the iterative method for solving nonlinear equations or system of nonlinear

equations to find zeros with multiplicities greater than one, the classical Newton

method requires a modification. The modified Newton method for finding zeros

with multiplicity greater than one for nonlinear equations can be written as







x0 = initial guess

xk+1 = xk −m φ(xk)
φ′(xk)

, k = 0, 1, · · · .
(5.1)

Jose et al. [110] proposed the multidimensional version of of (5.1) as







x0 = initial guess

xk+1 = xk − F′(xk)
−1 [[m]]F(xk), k = 0, 1, · · · ,

(5.2)

where m = [m1,m2, · · · ,mn]
T is a vector of multiplicities for system of nonlinear

equations F(x) = 0 and [[·]] represents a diagonal matrix that keep the vector at

its main diagonal. The proof of quadratic convergence of (5.2) is provided in [110].

W. Wu [109] proposed a variant of Newton method with the help of an auxiliary

or a preconditioner exponential function. Suppose, we have a system of nonlinear

equations F(x) = 0 and we define a new system of nonlinear equation with a

nonlinear preconditioner function that have the same root

U(x) = ev⊙x ⊙ F(x) = 0, (5.3)
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where ⊙ is the element-wise multiplication of two vectors. The application of

Newton method for (5.3) is

xk+1 = xk −U′(xk)
−1 U(xk)

xk+1 = xk −
(
[[ev⊙xk ]] (F′(xk) + [[v ⊙ F(xk)]])

)−1
ev⊙xk ⊙ F(xk)

xk+1 = xk − (F′(xk) + [[v ⊙ F(xk)]])
−1

[[ev⊙xk ]]
−1
ev⊙xk ⊙ F(xk)

xk+1 = xk − (F′(xk) + [[v ⊙ F(xk)]])
−1

F(xk).

(5.4)

The rate of convergence of (5.4) is quadratic. A modification [110] in (5.1) is

proposed by using a exponential preconditioner

U(x) = ev⊙x ⊙ F(x)1/m = 0, (5.5)

where 1/m = [1/m1, 1/m2, · · · , 1/mn]
T and power of F(x) is component-wise.

The application of Newton method to (5.5) gives

xk+1 = xk − (F′(xk) + [[v ⊙ F(xk)]])
−1

[[m]]F(xk). (5.6)

The original idea of nonlinear preconditioner function was proposed in [109]. Noor

et al. [112] have proposed Newton method with general preconditioner. They

defined a preconditioned system of nonlinear equations as follows

U(x) = G(x)⊙ F(x) = 0, (5.7)

where G(x) 6= 0. Notice that the roots of U(x) = 0 and F(x) = 0 are same

because G(x) 6= 0 for all x. The first order Fréchet derivative of (5.7) can be

computed as

Ψi(x) = Φi(x) Λi(x)

∇Ψi(x)
T = Φi(x)∇Λi(x)

T + Λi(x)∇Φi(x)
T , i = 1, 2, · · · , n

(5.8)
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
















∇Ψ1(x)
T

∇Ψ2(x)
T

∇Ψ3(x)
T

...

∇Ψn(x)
T


















=


















Φ1(x) 0 · · · 0

0 Φ2(x) · · · 0

0 0 · · · 0

...
...

...
...

0 0 · · · Φn(x)



































∇Λ1(x)
T

∇Λ2(x)
T

∇Λ3(x)
T

...

∇Λn(x)
T


















+


















Λ1(x) 0 · · · 0

0 Λ2(x) · · · 0

0 0 · · · 0

...
...

...
...

0 0 · · · Λn(x)



































∇Φ1(x)
T

∇Φ2(x)
T

∇Φ3(x)
T

...

∇Φn(x)
T


















From (5.8), the Fréchet derivative of F(x)⊙G(x) is

(F(x)⊙G(x))′ = [[F(x)]]G′(x) + [[G(x)]]F′(xk)

U′(x) = [[G(x)]]F′(xk) + [[F(x)]]G′(x)

U′(x) = [[G(x)]]
(
F′(xk) + [[F(x)]] [[G(x)]]−1

G′(x)
)
.

(5.9)

If we apply Newton method to (5.7), we obtain

xk+1 = xk −
(
F′(xk) + [[F(xk)]] [[G(x)]]−1

G′(x)
)−1

[[G(x)]]−1
G(x)⊙ F(xk)

xk+1 = xk −
(
F′(xk) + [[F(x)]] [[G(x)]]−1

G′(x)
)−1

F(xk).

(5.10)

The convergence order of (5.10) is two. The iterative method (5.6) with general

preconditioner can be written as

xk+1 = xk −
(
F′(xk) + [[F(xk)]] [[G(x)]]−1

G′(x)
)−1

[[m]]F(xk). (5.11)

The convergence order of (5.11) is also two. The modified Newton method [1, 7, 8]

for solving nonlinear equations with unknown multiplicity can be developed in this
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way. We define a new function

s(x) =
φ(x)

φ′(x)
. (5.12)

The application of Newton method to (5.12) gives

xk+1 = xk −
s(xk)

s′(xk)

xk+1 = xk −
φ′(xk)φ(xk)

φ′(xk)2 − φ′′(xk)φ(xk)
.

(5.13)

The order of convergence of (5.13) is two. Noor and his co-researchers [111] have

constructed a family of the method for solving nonlinear equations with unknown

multiplicity by introducing a preconditioner. They defined a new function

q(x) =
φ(x)λ(x)

φ′(x)
(5.14)

and application of Newton method to (5.14) gives

xk+1 = xk −
q(xk)

q′(xk)

xk+1 = xk −
φ′(xk)φ(xk)λ(xk)

φ′(xk)(φ(xk)λ(xk))′ − φ′′(xk)φ(xk)λ(xk)
,

(5.15)

where λ(x) is a non-zero function. The order of convergence of (5.15) is two.

5.2 Proposed method

When we observe (5.14), we can notice that the preconditioner is only introduced

for φ(x) but not for φ′(x). We will also introduce a preconditioner for φ′(x) and

will show that the convergence order (5.14) is still quadratic. We define a new

function

q(x) =
λ(x)φ(x)

(ω(x)φ(x))′
, (5.16)

and after applying Newton method, we obtain
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xk+1 = xk −
q(xk)

q′(xk)

xk+1 = xk −
(ω(xk)φ(xk))

′ λ(xk)φ(xk)

(ω(xk)φ(xk))
′ (λ(xk)φ(xk))

′ − (ω(xk)φ(xk))
′′ λ(xk)φ(xk)

,

(5.17)

where ω(x) is a non-zero function. For the purpose of generalization of iterative

method (5.17) to system of nonlinear equations, we define a new function Q(x)

Q(x) =
(
(H(x)⊙ F(x))′

)−1
(G(x)⊙ F(x)) = 0. (5.18)

The first order Fréchet derivative of (5.18) can be written as

Q′(x) =
((

(H(x)⊙ F(x))′
)−1

)2 (

(H(x)⊙ F(x))′
(

G(x)⊙ F(x)
)′

− (H(x)⊙ F(x))′ (H(x)⊙ F(x))′′
(
(H(x)⊙ F(x))′

)−1

(G(x)⊙ F(x))
)

.

(5.19)

Further simplification of Q′(x)−1 Q(x) gives

Q′(x)−1 Q(x) =
(

(H(x)⊙ F(x))′ (G(x)⊙ F(x))′

− (H(x)⊙ F(x))′ (H(x)⊙ F(x))′′
(
(H(x)⊙ F(x))′

)−1

(G(x)⊙ F(x))
)

(H(x)⊙ F(x))′ (G(x)⊙ F(x)) .

(5.20)

If compare underline expressions in (5.17) and (5.20), They are different. Gen-

erally, It is not possible to commute (H(x)⊙ F(x))′ with (H(x)⊙ F(x))′′. But,

we artificially eliminate terms (H(x)⊙ F(x))′ and
(
(H(x)⊙ F(x))′

)−1
from ex-

pression (H(x)⊙ F(x))′ (H(x)⊙ F(x))′′
(
(H(x)⊙ F(x))′

)−1
and get the following

iterative method.

xk+1 =xk −
(

(H(xk)⊙ F(xk))
′ (G(xk)⊙ F(xk))

′

− (H(xk)⊙ F(xk))
′′ (G(xk)⊙ F(xk))

)−1

(H(xk)⊙ F(xk))
′ (G(xk)⊙ F(xk)) .

(5.21)
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It can be seen that the iterative method (5.21) is not the application of Newton

method to (5.18). The iterative method (5.17) for solving scalar nonlinear equa-

tions with unknown multiplicity and vector version (5.21) are exactly same. We

will only provide the proof of quadratic convergence for (5.21) and it is applica-

ble automatically to scalar version (5.17). An iterative method was proposed in

[127] to compute the zeros with multiplicity of system of nonlinear equations that

used preconditioners for system of nonlinear equations but not for Jacobian of the

system of nonlinear equations. Notice that we are introducing preconditioners for

the system of nonlinear equations as well as Jacobian of the system of nonlinear

equations.

5.3 Convergence

In the following theorem, we established the proof of quadratic convergence of

(5.21).

Theorem 5.1. Let F : D ⊆ R
n −→ R

n and κκκ = [κ1, κ2, κ3, · · · , κn]T ∈ D is

a root of F(x) = (x − κκκ)m ⊙ P(x) = 0 with corresponding multiplicities vector

m = [m1,m2, · · · ,mn]
T and non-zero function P = [p1(x), p2(x), · · · , pn(x)]T with

pi(x)( 6= 0) ∈ C2 (D). Then there exists a subset E ⊆ D such that, if we choose

x0 ∈ E , the iterative method (5.21) has quadratic convergence in E.

Proof. Let e = x − κκκ then F(x) = em ⊙ P(x). Whenever we take vector power

of a vector, it is always component-wise. So em = [ǫm1
1 , ǫm2

2 , · · · , ǫmn
n ]T . The first

order Fréchet derivative of F(x) is

F′(x) = [[m⊙ em−1 ⊙P(x)]] + [[em]]P′(x). (5.22)

The expressions for terms in (5.21) are computed as follows.

(H(x)⊙ F(x))′ = [[m⊙ em−1 ⊙P(x)⊙H(x)]] + [[em ⊙H(x)]]P′(x)

+ [[em ⊙P(x)]]H′(x) (5.23)

(G(x)⊙ F(x))′ = [[m⊙ em−1 ⊙P(x)⊙G(x)]] + [[em ⊙G(x)]]P′(x)

+ [[em ⊙P(x)]]G′(x) (5.24)
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By using (5.23) and (5.24), we can write the product of (H(x)⊙ F(x))′ and

(G(x)⊙ F(x))′ as

(H(x)⊙ F(x))′ (G(x)⊙ F(x))′ =
(
m2 ⊙ e2m−2 ⊙P(x)2 ⊙H(x)⊙G(x)

)

+O
(
[[e2m−1]]

)
. (5.25)

Next, we compute second order Fréceht derivative of (H(x)⊙ F(x))′. Let φφφ be a

scalar vector of length n

(H(x)⊙ F(x))′φφφ = m⊙ em−1 ⊙P(x)⊙H(x)⊙ φφφ+A(φφφ), (5.26)

where A(φφφ) = [[em ⊙H(x)]]P′(x)φφφ + [[em ⊙P(x)]]H′(x)φφφ. We again compute the

first order Fréchet derivative of (5.26)

(H(x)⊙ F(x))′′φφφ = [[m⊙ (m− 1)⊙ em−1 ⊙ φφφ⊙P(x)⊙H(x)]]

+ [[m⊙ em−1 ⊙ φφφ]](P(x)⊙H(x))′ +A′(φφφ)

(H(x)⊙ F(x))′′(G(x)⊙ F(x))

= [[m⊙ (m− 1)⊙ e2m−2 ⊙P(x)2 ⊙H(x)]]

+ [[m⊙ e2m−1 ⊙P(x)]](P(x)⊙H(x))′A′(G(x)⊙ F(x))

(H(x)⊙ F(x))′′(G(x)⊙ F(x)) =

[[m⊙ (m− 1)⊙ e2m−2 ⊙P(x)2 ⊙H(x)]] +O
(
[[e2m−1]]

)
.

(5.27)

By subtracting (5.27) from (5.25), we obtain

(H(x)⊙ F(x))′ (G(x)⊙ F(x))′ − (H(x)⊙ F(x))′′(G(x)⊙ F(x))

= [[m⊙ e2m−2 ⊙P(x)2 ⊙H(x)]](I+O([[e]])).
(
(H(x)⊙ F(x))′ (G(x)⊙ F(x))′ − (H(x)⊙ F(x))′′(G(x)⊙ F(x))

)−1

= (I−O([[e]]))

(

[[m⊙ e2m−2 ⊙P(x)2 ⊙H(x)]]

)−1

.

(5.28)

By using (5.26), the expression for (H(x)⊙ F(x))′(G(x)⊙ F(x)) is

(H(x)⊙ F(x))′(G(x)⊙ F(x))

= m⊙ e2m−1 ⊙P(x)2 ⊙H(x)⊙ (1+O(e)).
(5.29)
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From (5.28) and (5.29), we get

(
(H(x)⊙ F(x))′ (G(x)⊙ F(x))′ − (H(x)⊙ F(x))′′(G(x)⊙ F(x))

)−1

(H(x)⊙ F(x))′(G(x)⊙ F(x))

= (I−O([[e]]))

(

[[m⊙ e2m−2 ⊙P(x)2 ⊙H(x)]]

)−1

m⊙ e2m−1 ⊙P(x)2 ⊙H(x)⊙ (1+O(e))

= (I−O([[e]]))[[e]](1+O(e)) = e+O(e2).

(5.30)

The error equation for (5.21) can be written as

ek+1 = ek −
(
ek +O

(
e2k

))
= O

(
e2k

)
(5.31)

The error equation(5.31) for (5.21) tells that the order of convergence for the

proposed iterative method is quadratic.

5.4 Numerical testing

The two preconditioners ω(x) and λ(x) produce families of iterative methods. If we

define ω(x) = exp(̟ z) and λ(x) = exp(ϑ z), we get the following two parameter

family of iterative method for solving nonlinear equations have zeros with unknown

multiplicity.

S1: xk+1 = xk −
(̟φ(x) + φ′(x)) φ(x)

(ϑ−̟)φ′(x) (̟ + φ(x))φ′(x)2 − φ′′(x)φ(x)

Now we choose ω(x) = exp(̟φ(x)) and λ(x) = (ϑφ(x)) and obtain the following

method

S2: xk+1 = xk −
φ′(x) (1 +̟φ(x))φ(x)

φ′(x)2 (1 + (ϑ−̟) (1 +̟φ(x))φ(x))− φ′′(x)φ(x) (1 +̟φ(x))
.

We only conducted numerical testing for the system of nonlinear equation and

the cases for the nonlinear equations are similar. It is important to test the

computational convergence order (CCO) of proposed iterative methods. In all our
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simulations, we adopt the following definition of CCO [68, 69]

CCO =
log

(
||F(xk+1)||∞/||F(xk)||∞

)

log
(
||F(xk)||∞/||F(xk−1)||∞

) or
log

(
||xk+1 − κκκ||∞/||xk − κκκ||∞

)

log
(
||xk − κκκ||∞/||xk−1 − κκκ||∞

) . (5.32)

For numerical simulations, three problems are selected with different multiplic-

ities. The performance of iterative method (5.11) is not better comparatively.

The various choices for the preconditioners are made in Tables 5.1, 5.2, 5.3 for all

three problems. In Table 5.1, we have shown that the selection of preconditioners

has an influence on the numerical accuracy of computed zeros with multiplici-

ties. Moreover, the computational cost of performing the different operation is

reasonable because, in all cases, we selected preconditioners in a way that their

first and second order Fréchet derivatives are diagonal matrices. When we select

G(x) = 6 + cos (x)/10 and H(x) = 6 + cos (x)/10 for Problem 1, we achieved

the best accuracy in computed zeros with different multiplicities. For the second

problem, Table 5.2 shows that the selection of G(x) produces good accuracy. In

Table 5.3, again the selection of both preconditioners provides the best accuracy

comparatively.

Problem 1 =







Φ1(x) = (x1 − 1)4 exp(x2) = 0

Φ2(x) = (x2 − 2)5 (x1 x2 − 1) = 0

Φ3(x) = (x3 + 4)6 = 0.

(5.33)

Problem 2 =







Φ1(x) = x1 x2 = 0

Φ2(x) = x2 x3 = 0

Φ3(x) = x3 x4 = 0

Φ4(x) = x4 x1 = 0

(5.34)

Problem 3 =







Φ1(x) =
√
x1 − 1 x2 x3 = 0

Φ2(x) =
√
x2 − 1 x1 x3 = 0

Φ3(x) =
√
x3 − 1 x1 x2 = 0

(5.35)
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G(x) H(x) Iter ||x− κκκ||∞ CCO

Iterative method (5.21) 1 1 6 O
(
10−43

)
2.0

6 + cos(x)/10 1 6 O
(
10−51

)
2.05

1 + x3/1000 1 6 O
(
10−42

)
2.0

exp(−x/100) 1 6 O
(
10−46

)
2.0

1 6 + cos(x)/10 6 O
(
10−38

)
2.0

1 1 + x3/1000 6 O
(
10−46

)
2.0

1 exp(−x/100) 6 O
(
10−39

)
2.0

6 + cos(x)/10 6 + cos(x)/10 6 O
(
10−41

)
2.0

6 + cos(x)/10 1 + x3/1000 6 O
(
10−65

)
2.0

6 + cos(x)/10 exp(−x/100) 6 O
(
10−43

)
2.0

1 + x3/1000 1 + x3/1000 6 O
(
10−45

)
2.0

1 + x3/1000 6 + cos(x)/10 6 O
(
10−37

)
2.0

1 + x3/1000 exp(−x/100) 6 O
(
10−38

)
2.0

exp(−x/100) exp(−x/100) 6 O
(
10−41

)
2.0

exp(−x/100) exp(x/100) 6 O
(
10−53

)
2.0

exp(−x/100) 6 + cos(x)/10 6 O
(
10−40

)
2.0

exp(−x/100) 1 + x3/1000 6 O
(
10−53

)
2.0

Iterative method (5.11) 1 - 6 O
(
10−30

)
2.0

6 + cos(x)/10 - 6 O
(
10−30

)
2.0

1 + x3/1000 - 6 O
(
10−30

)
2.0

exp(x/100) - 6 O
(
10−30

)
2.0

Table 5.1: Problem 1: initial guess = [2, 1,−2], m = [4, 5, 6]

G(x) H(x) Iter ||F(x)||∞ CCO

Iterative method (5.21) 1 1 1 - -

6 + cos(x)/10 1 7 O
(
10−2042

)
3.0

1 + x3/1000 1 7 O
(
10−8482

)
3.98

exp(x/100) 1 7 O
(
10−376

)
2.00

Iterative method (5.11) 1 - 1 - -

6 + cos(x)/10 - 20 O
(
10−23

)
1.0

1 + x3/1000 - 20 Not converging -

exp(x/100) - 7 O
(
10−443

)
2.0

Table 5.2: Problem 2: initial guess = [1, 2, 4, 3], m = [2, 2, 2, 2]

5.5 Summary

The inclusion of preconditioners in the existing iterative methods for finding ze-

ros with multiplicities for solving system of nonlinear equations gives benefit in

numerical stability and numerical accuracy. The proposed methodology is equally

effective for nonlinear and system of nonlinear equations. It is assumed in all
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G(x) H(x) Iter ||F(x)||∞ CCO

Iterative method (5.21) 1 1 12 O
(
10−2011

)
2.00

6 + cos(x)/10 1 12 O
(
10−1914

)
2.00

1 + x3/1000 1 12 O
(
10−1248

)
2.00

exp(−x/10) 1 12 O
(
10−2767

)
2.00

exp(−x/10) exp(x/10000) 12 O
(
10−2110

)
2.00

exp(−x/10) exp(−x/10000) 12 O
(
10−2771

)
2.00

Iterative method (5.11) 1 - 1 - -

6 + cos(x)/10 - 12 O
(
10−56

)
2.00

1 + x3/1000 - 20 Not converging -

exp(−x/10) - 7 O
(
10−35

)
2.00

Table 5.3: Problem 3: initial guess = [2, 4, 3], m = [1/2, 1/2, 1/2]

cases that the preconditioners should be non-zero because in this way, it does

not affect the zeros of nonlinear or system of nonlinear equations. The different

selections of preconditioners provide different families of iterative methods. The

claimed order of convergence is also verified by computing the computational order

of convergence in all numerical simulations. To study the dynamics of nonlinear

preconditioners for finding zeros with multiplicities of nonlinear equations and

system of nonlinear equations could be an interesting topic for research.



Chapter 6

Higher order multi-step

Jarratt-like method for solving

systems of nonlinear equations:

Application to PDEs and ODEs

A multi-step iterative method for solving systems of nonlinear equations

with a local convergence order of 3m–4, where m (≥ 2) is the number of

steps, is proposed. The multi-step iterative method includes two compo-

nents: the base method and the multi-step part. The base method involves

two function evaluations, two Jacobian evaluations, one LU decomposition

of a Jacobian, and two matrix-vector multiplications. Every stage of the

multi-step part involves the solution of two triangular linear systems and

one matrix vector multiplication. The computational efficiency of the new

method is better than that of previously proposed methods. The method is

applied to several nonlinear problems stemming from the numerical approx-

imation of nonlinear ordinary differential equations and of nonlinear partial

differential equations.

74
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6.1 Introduction

A multi-step iterative method includes the base method and the multi-step part.

The base method is designed to be computationally efficient. Since matrix inver-

sion is an expensive operation, most base methods involve only one inversion of

the Jacobian matrix. In the multi-step part, systems of linear equations should be

solved by using the inverse of the Jacobian matrix computed in the base method.

For instance, one can use the LU-factors of the Jacobian matrix. Other expen-

sive operations which should be minimized in multi-step iterative methods include

functions and Jacobian evaluations, matrix vector multiplications, vector vector

multiplications, and solutions of systems of linear equations. A multi-step method

that offers an increment of two in the convergence order of base method can be

found in [67]. Recently, Malik et al. [56] have constructed a general class of multi-

step iterative methods with two matrix inversions in the base method, making

those methods expensive. The method proposed in [65] also involves two matrix

inversions in the base method. Independent recent efforts by two different research

groups have resulted [63, 102] in the same multi-step iterative method. We will

improve the higher order multi-step Jarratt-like (HJ) method method described

in [63, 102]. That method can be described, taking note of the convergence order

and the computational cost, as

HJ =







Number of steps = m ≥ 2

Convergence order = 2m

Function evaluations = m − 1

Jacobian evaluations = 2

LU decomposition = 1

Matrix vector multiplications = m

Vector vector multiplications = 2m

Number of solutions of systems

of lower and upper triangular

systems of equations = 2m − 1







Base method −→















































F′ (xk)φφφ1 = F (xk)

y1 = xk − 2
3 φφφ1

F′ (xk)φφφ2 = F′ (y1)φφφ1

F′ (xk)φφφ3 = F′ (y1)φφφ2

y2 = xk − 23
8 φφφ1 + 3φφφ2 − 9

8 φφφ3

Multi-step part →















































for s = 1,m − 2

F′ (xk)φφφ2s+2 = F (ys+1)

F′ (xk)φφφ2s+3 = F′ (y1)φφφ2s+2

ys+2 = ys+1 − 5
2 φφφ2s+2 + 3

2 φφφ2s+3

end

where F′ (·) denotes the Frechet derivative [62] or the Jacobian of F (·). The base

method in HJ has a convergence order of four and involves one LU decomposition,

one function evaluation, and two Jacobian evaluations. Each step of the multi-step

part increases the convergence order by two. In 2015, Malik et al. [70] developed
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another efficient multi-step iterative method (MSF) for solving nonlinear systems

arising from particular ODEs which can be described as

MSF =







Number of steps = m

Convergence-order = 3m

Function evaluations = m

Jacobian evaluations = 2

Second-order Fréchet derivative = 1

LU decomposition = 1

Matrix vector multiplications = 2m − 2

Vector vector multiplications = m + 2

Number of solutions of systems

of lower and upper triangular

systems of equations = 3m − 1







Base method −→























F′ (xk)φφφ1 = F (xk)

F′ (xk)φφφ2 = F′′ (xk)φφφ
2
1

y1 = xk − φφφ1 − 1
2 φφφ2

Multi-step part →











































































for s = 1,m − 1

F′ (xk)φφφ3s = F (ys)

F′ (xk)φφφ3s+1 = F′ (y1)φφφ3s

F′ (xk)φφφ3s+2 = F′ (y1)φφφ3s+1

ys+1 = ys − 3φφφ3s + 3φφφ3s+1

−φφφ3s+2

end

The limitation of MSF is that it was only constructed for a particular class of

ordinary differential equations (ODEs) of the form L (x (t)) + f (x (t)) = g (t).

The MSF method uses a second-order Fréchet derivative that is a diagonal matrix.

The computational cost of that second-order Fréchet derivative is prohibitive for

general systems of nonlinear equations. Interested readers can find information

about other multi-step iterative methods for scalar as well as systems of nonlinear

equations in [1, 2, 6, 39, 64, 72, 92–97].

6.2 New multi-step iterative method

The new multi-step iterative method (FTUC) can be described as

FTUC =







Number of steps = m ≥ 3

Convergence-order = 3m − 4

Function evaluations = m − 1

Jacobian evaluations = 2

LU decomposition = 1

Matrix-vector multiplications = m − 1

Vector-vector multiplications = m + 1

Number of solutions of systems

of lower and upper triangular

systems of equations = 2m − 2







Base method −→











































































F′ (xk)φφφ1 = F (xk)

y1 = xk − φφφ1

F′ (xk)φφφ2 = F (y1)

y2 = y1 − 3φφφ2

F′ (xk)φφφ3 = F′ (y2)φφφ2

F′ (xk)φφφ4 = F′ (y2)φφφ3

y3 = y1 − 7
4 φφφ2 + 1

2 φφφ3 + 1
4 φφφ4

Multi-step part →















































for s = 1,m − 3

F′ (xk)φφφ2s+3 = F (ys+2)

F′ (xk)φφφ2s+4 = F′ (y2)φφφ2s+3

ys+3 = ys+2 − 2φφφ2s+3 + φφφ2s+4

end

,
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The convergence-order of the base method of FTUC is five, and each step of

the multi-step part increases the convergence order by three. We will prove the

convergence order for m = 4 and, then, will use mathematical induction to obtain

the convergence order for any m.

6.3 Convergence analysis

In this section, we will prove that the local convergence-order of FTUC is eight for

m = 4 and later we will establish the proof for the convergence order for arbitrary

m via mathematical induction.

Theorem 6.1. Let F : Γ ⊆ R
n → R

n be sufficiently Frechet differentiable on an

open convex neighborhood Γ of x∗ ∈ R
n with F (x∗) = 0 and det (F′ (x∗)) 6= 0.

Then the sequence {xk} generated by FTUC converges to x∗ with local order of

convergence at least eight and the following error equation

ek+1 = Lek
8 +O

(
ek

9
)
, (6.1)

where ek = xxxk−x∗, ek
p =

p times
︷ ︸︸ ︷

(ek, ek, · · · , ek) and L = −15A3A
2
2A3A2+45A3A2A3A

2
2+

120A3A
5
2+5A2A3A2A3A2−15A2A

2
3A

2
2+150A3

2A3A
2
2−40A2A3A

4
2−50A4

2A3A2+

400A7
2 is a p-linear function i.e. L ∈ L

p times
︷ ︸︸ ︷

(Rn,Rn, · · · ,Rn) and Lek
p ∈ R

n.

Proof. Let F : Γ ⊆ R
n → R

n be sufficiently Frechet differentiable function in

Γ. The qth Frechet derivative of F at v ∈ R
n, q ≥ 1, is the q − linear function

F(q) (v) :

q times
︷ ︸︸ ︷

R
n
R

n · · ·Rn such that F(q) (v) (u1, u2, · · · , uq) ∈ R
n. The Taylor’s series

expansion of F (xk) around x∗ can be written as

F (xk) = F (x∗ + xk − x∗) = F (x∗ + ek) ,

= F (x∗) + F′ (x∗) ek +
1

2!
F′′ (x∗) ek

2 +
1

3!
F(3) (x∗) ek

3 + · · · ,

= F′ (x∗)

(

ek +
1

2!
F′ (x∗)

−1
F′′ (x∗) ek

2 +
1

3!
F′ (x∗)

−1
F(3) (x∗) ek

3 + · · ·
)

,

= A1

(
ek +A2 ek

2 +A3 ek
3 +O

(
ek

4
))
, (6.2)

where A1 = F′ (x∗) and As =
1
s!
F′ (x∗)−1

F(s) (x∗) for s ≥ 2. From (6.2 ), we can

calculate the Fréchet derivative of F as
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F′ (xk) = A1

(
I+ 2A2 ek + 3A3 ek

2 + 4A3 ek
3 +O

(
ek

4
))
, (6.3)

where I is the identity matrix. Furthermore, using the Maple software package,

we obtained the following expression for the inverse of the Fréchet derivative:

F′
(
xk

)−1
=

(

I− 2A2 ek +

(

4A2
2 − 3A3

)

e2k +

(

6A3A2 + 6A2A3−

8A3
2 − 4A4

)

e3k +
(

8A4A2 + 9A2
3 + 8A2A4 − 5A5 − 12A3A

2
2−

12A2A3A2 − 12A2
2A3 + 16A4

2

)

e4k +
(

24A3A
3
2 + 24A3

2A3+

24A2
2A3A2 + 24A2A3A

2
2 + 10A5A2 + 12A4A3 + 12A3A4+

10A2A5 − 6A6 − 16A4A
2
2 − 18A2

3A2 − 18A3A2A3−

16A2A4A2 − 18A2A
2
3 − 16A2

2A4 − 32A5
2

)

e5k +
(

32A4A
3
2+

64A6
2 − 48A3A

4
2 + 12A2A6 + 16A2

4 + 15A3A5 + 15A5A3+

12A6A2 − 24A4A2A3 − 24A4A3A2 − 20A2
2A5 − 24A2A3A4−

24A2A4A3 + 32A3
2A4 − 20A2A5A2 + 36A2

2A
2
3 − 20A5A

2
2+

32A2
2A4A2 + 32A2A4A

2
2 + 36A2A

2
3A2 + 36A2A3A2A3+

36A2
3A

2
2 − 7A7 − 24A3A2A4 − 27A3

3 − 24A3A4A2+

36A3A2A3A2 + 36A3A
2
2A3 − 48A2

2A3A
2
2 − 48A3

2A3A2−

48A4
2A3 − 48A2A3A

3
2

)

e6k +O

(

e7k

))

A−1
1 .

(6.4)

Substituting (6.2) and (6.4) in φφφ1 = F
′
(xk)

−1F(xk), we get

φφφ1 = ek −A2 e
2
k +

(

2A2
2 − 2A3

)

e3k +
(

− 3A4 − 4A3
2 + 3A3A2+

4A2A3

)

e4k +
(

− 4A5 − 6A3A
2
2 − 6A2A3A2 − 8A2

2A3 + 8A4
2 + 4A4A2

+ 6A2
3 + 6A2A4

)

e5k +
(

− 5A6 + 12A3A
3
2 + 16A3

2A3 + 12A2
2A3A2+

12A2A3A
2
2 − 8A4A

2
2 − 9A2

3A2 − 12A3A2A3 − 8A2A4A2 − 12A2A
2
3−

12A2
2A4 − 16A5

2 + 5A5A2 + 8A4A3 + 9A3A4 + 8A2A5

)

e6k +O
(

e7k

)

.

(6.5)

Using y1 = x− φφφ1, we obtain

y1 − x∗ = x− x∗ − φφφ1 = ek − φφφ1 ,
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and substituting (6.5), we get

y1 − x∗ = A2 e
2
k +

(

− 2A2
2 + 2A3

)

e3k +
(

− 3A3A2 − 4A2A3+

4A3
2 + 3A4

)

e4k +
(

− 4A4A2 − 6A2
3 − 6A2A4 + 6A3A

2
2+

8A2
2A3 + 6A2A3A2 − 8A4

2 + 4A5

)

e5k +
(

16A5
2 − 5A5A2−

8A4A3 − 9A3A4 − 8A2A5 + 8A4A
2
2 + 12A3A2A3 + 9A2

3A2+

12A2A
2
3 + 12A2

2A4 + 8A2A4A2 − 12A3A
3
2 − 12A2

2A3A2−

16A3
2A3 − 12A2A3A

2
2 + 5A6

)

e6k +O
(
e7k

)
.

(6.6)

Substituting (6.4) and

F(y1) = A1

(
y1 +A2 y1

2 +A3 y1
3 + · · ·

)

in φφφ2 = F
′
(xk)

−1F(y1), we get

φφφ2 = A2e
2
k +

(

− 4A2
2 + 2A3

)

e3k +

(

3A4 − 8A2A3 − 6A3A2 + 13A3
2

)

e4k

+
(

4A5 − 38A4
2 + 20A2A3A2 + 26A2

2A3 + 18A3A
2
2 − 12A2A4 − 12A2

3

(6.7)

− 8A4A2

)

e5k +
(

5A6 + 104A5
2 + 27A2A4A2 + 40A2A

2
3 + 39A2

2A4

+ 27A2
3A2 + 36A3A2A3 − 50A3A

3
2 − 16A2A5 − 18A3A4 − 16A4A3

− 10A5A2 + 24A4A
2
2 − 55A2A3A

2
2 − 76A3

2A3 − 59A2
2A3A2

)

e6k

+O

(

e7k

)

.

Using y2 = y1 − 3φφφ2 and substituting (6.6) and (6.7), we get

y2 − x∗ = −2A2 e
2
k +

(

10A2
2 − 4A3

)

e3k +
(

− 6A4 + 15A3A2 + 20A2A3

− 35A3
2

)

e4k +
(

− 8A5 + 106A4
2 + 20A4A2 + 30A2

3 + 30A2A4

− 48A3A
2
2 − 70A2

2A3 − 54A2A3A2

)

e5k +
(

− 296A5
2

− 73A2A4A2 − 108A2A
2
3 − 105A2

2A4 − 72A2
3A2 − 96A3A2A3

+ 138A3A
3
2 + 40A2A5 + 45A3A4 + 40A4A3 + 25A5A2 − 64A4A

2
2

+ 153A2A3A
2
2 + 212A3

2A3 + 165A2
2A3A2 − 10A6

)

e6k +O
(

e7k

)

.

(6.8)
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Substituting (6.4), (6.7) and (6.8) in φφφ3 = F
′
(xk)

−1F(y2)φφφ2, we get

φφφ3 = A2 e
2
k +

(

− 6A2
2 + 2A3

)

e3k +
(

3A4 − 9A3A2 − 12A2A3

+ 21A3
2

)

e4k +
(

4A5 − 44A4
2 + 36A3A

2
2 + 42A2

2A3 + 30A2A3A2

− 12A4A2 − 18A2
3 − 18A2A4

)

e5k +
(

5A6 − 10A5
2 − 101A3A

3
2

− 55A2
2A3A2 − 88A3

2A3 − 65A2A3A
2
2 + 48A4A

2
2 + 72A3A2A3

+ 54A2
3A2 + 63A2

2A4 + 60A2A
2
3 + 39A2A4A2 − 15A5A2 − 24A4A3

− 27A3A4 − 24A2A5

)

e6k +O
(

e7k

)

.

(6.9)

Using φφφ4 = F
′
(xk)

−1F(y2)φφφ3 and substituting (6.4), (6.8) and (6.9) , we get

φφφ4 = A2e
2
k +

(

− 8A2
2 + 2A3

)

e3k +
(

− 12A3A2 − 16A2A3 + 33A3
2

+ 3A4

)

e4k +
(

60A3A
2
2 + 66A2

2A3 + 46A2A3A2 − 16A4A2 − 24A2
3

− 24A2A4 − 66A4
2 + 4A5

)

e5k +
(

80A4A
2
2 + 120A3A2A3 + 90A2

3A2

+ 99A2
2A4 + 92A2A

2
3 + 59A2A4A2 − 20A5A2 − 32A4A3 − 36A3A4

− 32A2A5 − 152A5
2 − 188A3A

3
2 − 71A2

2A3A2 − 132A3
2A3

− 107A2A3A
2
2 + 5A6

)

e6k +O
(

e7k

)

.

(6.10)

Using y3 = y1 − (7/4)φφφ2 + (1/2)φφφ3 + (1/4)φφφ4 and substituting (6.6), (6.7), (6.9),

and (6.10), we get

y3 − x∗ =
(

20A4
2 − (5/2)A2A3A2 + (15/2)A3A

2
2

)

e5k +
(

− 209A5
2

− 5A2A4A2 − 5A2A
2
3 + (45/4)A2

3A2 + 15A3A2A3 − 22A3A
3
2

+ 10A4A
2
2 + 25A2A3A

2
2 + 40A3

2A3 + 46A2
2A3A2

)

e6k

+
(

− (267/2)A3A
4
2 − (15/2)A2A3A4 − 10A2A4A3

− (15/2)A2A5A2 + 15A3A4A2 + (45/2)A3
3 + (45/2)A3A2A4

+ 15A4A3A2 + 20A4A2A3 − 44A4A
3
2 + 72A2

2A4A2 + 92A2
2A

2
3

+ 60A3
2A4 + 54A2A

2
3A2 + 50A2A3A2A3 + 40A2A4A

2
2

− 50A2
3A

2
2 − 44A3A

2
2A3 − 20A3A2A3A2 − (451/2)A2A3A

3
2

− 357A2
2A3A

2
2 − 418A4

2A3 − 385A3
2A3A2 + 25/2A5A

2
2

+ 1316A6
2

)

e7k +O
(

ek
8
)

.

(6.11)
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Substituting (6.4) and

F(y3) = A1

(
y3 +A2 y3

2 +A3 y3
3 + · · ·

)
,

in φφφ5 = F
′
(xk)

−1F(y3), we get

φφφ5 =
(

20A4
2 − (5/2)A2A3A2 + (15/2)A3A

2
2

)

e5k +
(

− 22A3A
3
2

+ 51A2
2A3A2 + 40A3

2A3 + 10A2A3A
2
2 − 249A5

2 + 10A4A
2
2

+ 15A3A2A3 + (45/4)A2
3A2 − 5A2A

2
3 − 5A2A4A2

)

e6k

+
(

− (387/2)A3A
4
2 − (15/2)A2A3A4 − 10A2A4A3

− (15/2)A2A5A2 + 15A3A4A2 + (45/2)A3
3 + (45/2)A3A2A4

+ 15A4A3A2 + 20A4A2A3 − 44A4A
3
2 + 82A2

2A4A2 + 102A2
2A

2
3

+ 60A3
2A4 + (63/2)A2A

2
3A2 + 20A2A3A2A3 + 20A2A4A

2
2

− (145/2)A2
3A

2
2 − 44A3A

2
2A3 − (25/2)A3A2A3A2 − (363/2)A2A3A

3
2

− 377A2
2A3A

2
2 − 498A4

2A3 − 487A3
2A3A2 + 25/2A5A

2
2

+ 1814A6
2

)

e7k +O
(

ek
8
)

.

(6.12)

Substituting (6.4), (6.8) and (6.12) in φφφ6 = F
′
(xk)

−1F
′
(y2)φφφ5, we get

φφφ6 =
(

20A4
2 − (5/2)A2A3A2 + (15/2)A3A

2
2

)

e5k +
(

− 289A5
2

+ 10A4A
2
2 + 15A3A2A3 + (45/4)A2

3A2 − 5A2A
2
3 − 5A2A4A2

− 22A3A
3
2 + 56A2

2A3A2 + 40A3
2A3 − 5A2A3A

2
2

)

e6k

+
(

2312A6
2 − (507/2)A3A

4
2 − (275/2)A2A3A

3
2 − 397A2

2A3A
2
2

− 578A4
2A3 − 589A3

2A3A2 + (25/2)A5A
2
2 + 20A4A2A3

+ 15A4A3A2 + (45/2)A3A2A4 + (45/2)A3
3 + 15A3A4A2

− (15/2)A2A5A2 − 10A2A4A3 − (15/2)A2A3A4 − 44A4A
3
2

− 44A3A
2
2A3 − 95A2

3A
2
2 + 92A2

2A4A2 + 112A2
2A

2
3 + 60A3

2A4

+ 9A2A
2
3A2 − 5A3A2A3A2 − 10A2A3A2A3

)

e7k +O
(

ek
8
)

.

(6.13)
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Finally, using y4 − x∗ = y3 − x∗ − 2φφφ5 + 2φφφ6 and substituting (6.11), (6.12) and

(6.13), we get

y4 − x∗ =
(

− 15A3A
2
2A3A2 + 45A3A2A3A

2
2 + 120A3A

5
2

+ 5A2A3A2A3A2 − 15A2A
2
3A

2
2 + 150A3

2A3A
2
2 − 40A2A3A

4
2

− 50A4
2A3A2 + 400A7

2

)

e8k +O
(

ek
9
)

.

(6.14)

Theorem 6.2. The multi-step iterative method FTUC has local convergence order

at least 3m− 4 for m ≥ 3.

Proof. The proof is established by mathematical induction. For m = 3, 4 the

convergence orders are according to (6.11) and (6.14) five and eight, respectively.

Consequently, our claim concerning the convergence-order 3m− 4 is true for m =

3, 4.

Assume our claim true for m = q ≥ 4, i.e., that the convergence order of FTUC

for m = q is 3q − 4. The qth and (q − 1) th steps FTUC can be written as

F′ (xk)T = F′ (y2)

Frozen factor = (2I−T)F′ (xk)
−1
,

yq−1 = yq−2 − (Frozen factor)F (yq−2) ,

yq = yq−1 − (Frozen factor)F (yq−1) .

The enhancement in the convergence order of FTUC from the (q − 1) th step to

the qth step is (3q − 4)− (3 (q − 1)− 4) = 3. Now, we write the (q + 1) th step of

FTUC as

yq+1 = yq − (Frozen factor)F (yq) .

The increment in the convergence-order of FTUC, due to (q + 1) th-step, is pre-

cisely three because the use of the Frozen factor adds an additive constant to the

convergence order [65]. Therefore, the convergence order after the addition of the

(q + 1) th step is 3q − 4 + 3 = 3q − 1 = 3 (q + 1) − 4, completing the induction

step.
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6.4 Efficiency index

In the literature, the computational efficiency of an iterative method is evaluated

by the efficiency index[99] defined as

E = p1/C , (6.15)

where p is the order of convergence of the method and C is the computational cost

of the method defined as

C (µ0, µ1, n) = P0 (n)µ0 + P1 (n)µ1 + P (n) , (6.16)

where P0 (n) is the number of scalar function fi evaluations in F (·), P1 (n) is the

number of scalar function ∂fi
∂xj

evaluations in the Jacobian, P (n) is the number

of products/divisions, and µi are coefficients which are required to express the

computational cost in terms of products/divisions. Table 6.1 gives the number

of products, divisions and computational cost of some operations in terms on the

number of variables n. In the table and in the sequel, l denotes the cost of a

division relative to the cost of a multiplication.

Multiplications Divisions Computational cost

LU decomposition n(n−1)(2n−1)
6

n(n−1)
2

n(n−1)(2n−1)
6 + l n(n−1)

2

Solution of two triangular systems n (n− 1) n n (n− 1) + ln

Matrix vector multiplication n2 n2

Vector vector multiplication n n

Table 6.1: Computational cost of different operations.

The computational costs of HJ and FTUC, CHJ and CFTUC , are

CHJ = (m− 1)µ0n+ 2n2µ1 +mn2 + 2mn+ (2m− 1) (n (n− 1) + ln)

+
n (n− 1) (2n− 1)

6
+ l

n (n− 1)

2
, (6.17)

CFTUC = (m− 1)µ0n+ 2n2µ1 + (m− 1)n2 + (m+ 1)n

+ (2m− 2) (n (n− 1) + ln) +
n (n− 1) (2n− 1)

6
+ l

n (n− 1)

2
. (6.18)
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To compare the efficiencies of HJ and FTUC we define the quotient

R =
log

(

(3m1 − 4)1/CFTUC

)

log
(

(2m2)
1/CHJ

) =
CHJ

CFTUC

log (3m1 − 4)

2m2

, (6.19)

where m1 is the number of steps of FTUC and m2 is the number of steps of HJ.

Clearly, if R > 1 the efficiency of FTUC is higher than that of HJ.

6.4.1 Comparison of the efficiencies of FTUC and HJ for

convergence orders five and four, respectively

When FTUC and HJ have convergence orders five and four, respectively, the value

of R is

R =
ln (5) (3ln+ 12µ1n+ 2n2 + 15l + 6µ0 + 27n+ 7)

2 (3ln+ 12µ1n+ 2n2 + 21l + 12µ0 + 33n+ 1) ln (2)
. (6.20)

R is > 1 if

µ0 <0.06394801344n
2 + (0.09592202004l + 0.3836880802µ1

− 0.3285458591)n− 0.7122339393l + 1.415662087 .
(6.21)

In that case the base method of FTUC will be more efficient than the base method

of HJ.

6.4.2 Comparison of the efficiencies of FTUC and HJ for

the same convergence order

FTUC and HJ have convergence order 6s − 4 for numbers of steps m1 = 2s and
m2 = 3s− 2, s ≥ 2, respectively. In that case,

R = 1 +
6(2ls+ µ0s+ 3ns− 3l − 2µ0 − 4n+ 2s− 2)

3ln+ 24ls+ 12µ0s+ 12µ1n+ 2n2 + 36ns− 15l − 6µ0 − 21n− 12s+ 19
. (6.22)

The value of l depends on the computer system where the methods are run.
Reasonable values for l fall between 2.5 and 3. Replacing s and l by s + 2 and
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l + 1 in (6.22) gives

R = 1 +
6 (2ls+ µ0s+ 3ns+ l + 2n+ 4s+ 3)

3ln+ 24ls+ 12µ0s+ 12µ1n+ 2n2 + 36ns+ 33l + 18µ0 + 54n+ 12s+ 28
, (6.23)

which is > 1 for s ≥ 0. Since l > 1, this shows that R > 1 and FTUC is more

efficient than HJ when s ≥ 2, i.e. with a convergence order ≥ 8.

6.4.3 Comparison of FTUC and HJ for the same number

of function evaluations

The values of R when both methods make the same number of function evaluations

(≥ 3) are given for several cases in Table 6.2. In the expressions for R, l is

replaced by l + 1. We can see that, for the same number of function evaluations,

the convergence order of FTUC is higher than that of HJ for a number of steps

larger than 4. Also, since l > 1, the values of R − 1 reveal that FTUC has,

for the same number of function evaluations, higher efficiency than HJ. Table 6.3

compares the charectristics of FTUC and HJ. For two function evaluations the

convergence orders of FTUC and HJ are five and six, respectively. In that case,

the performance of HJ is better than that of.However, for a number of function

evaluations greater then two, the performance of FTUC is better than that of HJ.

Number Function Convergence order of R

of steps Evaluations (FTUC, HJ)

4 3 (8, 8) 1 +
6(l+2n+3)

12nµ1+3 ln+2n2+18µ0+33 l+54n+28

5 4 (11, 10) 1 + 0.16µ0+0.08nµ1+2.57n+4.40+1.35 l+0.01n2+0.02 ln
4.0µ0+2.0nµ1+12.0n+5.66+7.50 l+0.33n2+0.50 ln

6 5 (14, 12) 1 + 0.31µ0+0.12nµ1+3.05n+5.72+1.65 l+0.02n2+0.03 ln
5.0µ0+2.0nµ1+15.0n+6.66+9.50 l+0.33n2+0.50 ln

100 99 ( 296, 200) 1 + 7.32µ0+0.14nµ1+24.12n+113.77+15.68 l+0.02n2+0.03 ln
99.0µ0+2.0nµ1+297.0n+100.66+197.50 l+0.33n2+0.50 ln

Table 6.2: Comparison between computational efficiencies when FTUC and
HJ make the same number of function evaluations.
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FTUC HJ
(m ≥ 3) (m ≥ 2)

Number of steps m m
Convergence order 3m− 4 2m
Function evaluations m− 1 m− 1
Jacobian evaluations 2 2
LU decompositions 1 1
Matrix vector multiplications m− 1 m
Vector vector multiplications m+ 1 2m
Number of solutions of systems of linear equations 2m− 2 2m− 1

Table 6.3: Comparison between FTUC and HJ when both methods make the
same number of function evaluations.

6.4.4 Comparison of FTUC and MSF for the same number

of function evaluations

The MSF method uses m1 function evaluations and one second-order Fréchet

derivative. For the purpose of comparison, we assume that the evaluation of a

second-order Fréchet derivative has same computational cost as that of a function.

The above assumption only makes sense if the second-order Fréchet derivative is

a diagonal matrix. Under that assumption, MSF makes m1 + 1 function evalua-

tions to achieve a convergence order of 3m1 in m1 steps and FTUC makes m2− 1

function evaluations to achieve a convergence order of 3m2 − 4 in m2 steps. If we

equate the number of function evaluations of FTUC and MSF we get

m2 − 1 = m1 + 1,

m2 = m1 + 2.

Supposem1 = m andm2 = m+2. Table 6.4 compares the characteristics of FTUC

and MSF for those numbers of steps. MSF achieves a convergence order of 3m in

m steps by making m+1 function evaluation while FTUC achieves a convergence

order of 3m+2 in m+2 steps by making m+1 function evaluations. MSF makes

m− 3, m+ 3 and m− 3 more matrix vector multiplications, vector vector multi-

plications and solutions of upper and lower triangular systems of linear equations

than FTUC. Obviously, for the same number of function evaluations, FTUC is

computationally more efficient than MSF and achieves a better convergence or-

der. The high computational cost of second-order Fréchet derivatives makes that

method impractical for general systems of nonlinear equations. Since, even if the
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second-order Fréchet derivative is a diagonal matrix, MSF has worse performance

than FTUC, we will not test numerically MSF against FTUC.

FTUC MSF
Number of steps m+ 2 m
Convergence order 3m+ 2 3m
Function evaluations m+ 1 m+ 1
Jacobian evaluations 2 2
LU decompositions 1 1
Matrix vector multiplications m+ 1 2m− 2
Vector vector multiplications m+ 3 m+ 2
Number of solutions of lowers and
upper triangular systems 2m+ 2 3m− 1

Table 6.4: Comparison FTUC and MSF for, respectively, m+2 and m steps.

6.5 Numerical Results

We will use the definition for the computational convergence order (CCO)

ρq =
log (||yq+2 − y∗||1/||yq+1 − y∗||1)
log (||yq+1 − y∗||1/||yq − y∗||1)

, (6.24)

where y∗ is the zero of function F (·) and y1,y2,y3, . . . is the sequence of approx-

imations given by the muti-step iterative method. In all tests, we will use the

Chebyshev pseudospectral collocation method to approximate derivatives.

6.5.1 General systems of nonlinear equations

As a first example, we will first solve a small system of nonlinear equations. The

results will confirm the claimed convergence order and accuracy of our method.

The system of nonlinear equations is

x2x3 + x4 (x2 + x3) = 0

x1x3 + x4 (x1 + x3) = 0

x1x2 + x4 (x1 + x2) = 0

x1x2 + x1x3 + x2x3 − 1 = 0 .

(6.25)
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Its solution up to an accuracy of 32 digits is

x1 = 0.577350269189625764509148780502

x2 = 0.577350269189625764509148780502

x3 = 0.577350269189625764509148780502

x4 = −0.288675134594812882254574390251 .

(6.26)

Table 6.5 gives the results obtained under FTUC and HJ. The accuracy obtained

by HJ method is superior to that of FTUC, but the execution time of HJ is

longer than that of FTUC. In Table 6.6, we give results obtained by approximately

equating the execution times of both methods. Now, the accuracy obtained by

FTUC is better, showing the superiority of FTUC over HJ.

Iterative methods FTUC HJ
Number of iterations 3 1
Size of problem 4 4
Number of steps 6 7
Theoretical convergence order 14 14
Computational convergence order 14.1 14.1
Number of function evaluations per iteration 5 6
Solutions of system of linear equations per iteration 10 13
Number of matrix vector multiplication per iteration 5 7

Iteration
||yq − y∗||1 1 8.21e− 10 1.66e− 10

2 4.76e− 136 2.51e− 146
3 5.26e− 1918 1.84e− 2062

Execution time (s) 3.37 3.82

Table 6.5: Results under FTUC and HJ for the first example.

Iterative methods FTUC HJ
Number of iterations 3 1
Number of steps 7 7
Theoretical convergence order 17 14
Computational convergence order 17.1 14.1
Number of function evaluations per iteration 6 6
Solutions of system of linear equations per iteration 12 13
Number of matrix vector multiplication per iteration 6 7

Iteration
||yq − y∗||1 1 1.03e− 11 1.66e− 10

2 6.58e− 199 2.51e− 146
3 1.27e− 3400 1.84e− 2062

Execution time (s) 3.71 3.82

Table 6.6: Comparison of performance between FTUC and HJ when both
have approximately same execution time.
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6.5.2 Classical Blasius flat-plate problem

The Classical Blasius flat-plate flow problem [100] is the boundary value problem

u′′′ (x) + 1
2
u′′ (x) u (x) = 0

u (0) = u′ (0) = 0, (u′, u′′) −→ (1, 0) as x −→∞
F (uuu) = D3

xuuu+
1
2
uuuD2

xuuu

F′ (uuu) = D3
x +

1
2
(diag (D2

xuuu) + diag (uuu)D2
x) .

(6.27)

We considered that problem for a domain for x [0, 200] with a mesh giving a

problem size of 250. From a practical point of view, many researchers have been

interested in computing u′′ (0), and Howarth [100] reported u′′ (0) = 0.332057. We

have computed u′′(0) with an accuracy of twenty five digits with the result

0.33205733628286351714556307. The FTUC iterative method produced numerical

values of u′ and u′′ at x = 200 with accuracies of 3.87e − 26 and 5.65e − 25,

respectively. The initial guess was

u0 (x) =







x2 if x ≤ 1

x othersise
. (6.28)

Figure 6.1 shows u (x), u′ (x) and u′′ (x). Figure 6.2 plots of log (||F(u)||1) versus
the number of steps for the first three iterations. FTUC showed clear dominance

over HJ. Table 6.7 gives the results obtained under FTUC and HJ with 30 steps.
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Figure 6.2: Plot of log (||F(u)||1) versus the number steps, for the first three
iterations.

Iterative methods FTUC HJ
Number of iterations 3 3
Number of steps 30 30
Theoretical convergence order 86 60
Number of function evaluations per iteration 29 29
Solutions of of linear systems per iteration 58 59
Number of matrix vector multiplication per iteration 29 30

Iteration
log (||F(uq)||1) 1 4.63e− 3 2.47e− 3

2 4.78e− 8 8.605e− 4
3 4.98e− 26 1.83e− 7

Execution time (s) 125.42 158.82

Table 6.7: Performance of FTUC and HJ for the classical Blasius flat-plate
problem for 30 steps.

6.5.3 Klein-Gordon equation

The Klein-Gordon equation[75] is the relativistic case of the Schrödinger equation

utt − c2uxx + f (u) = p−∞ < x <∞, t > 0

F (uuu) = (D2
t − c2D2

x)uuu+ f (uuu)− ppp
F′ = D2

t − c2D2
x + diag (f ′ (uuu)) ,

(6.29)

where f (u) is an odd function of u and initial conditions are given by

u (x, 0) = g1 (x)

ut (x, 0) = g2 (x) .
(6.30)

We chose f (u) = ku − γu3 and a domain [−10, 10] × [0, 1]. We used Chebyshev

pseudospectral collocation method for the discretization of space and time with
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Figure 6.3: Kein-Gordon eqaution, domain= [−10, 10]× [0, 1], grid points in
spatial dimension= 120, grid points in temporal dimension= 30.

120 grid points for space and 30 grid points for time. The resulting problem size

was 3600. Table 6.8 shows the results. The FTUC method clearly outperforms

the HJ method. The exact solution can be written as

δ =
√

2k
γ

κ =
√

k
c2−v2

u (x, t) = δ sech (κ (x− vt)) ,

(6.31)

where c = 1, γ = 1, v = 0.5 and k = 0.5 .

Iterative methods FTUC HJ
Number of iterations 1 1
Number of steps 9 10
Theoretical convergence order 23 20
Number of function evaluations per iteration 8 9
Solutions of linear systems per iteration 16 19
Number of matrix vector multiplication per iteration 8 10

Iteration
||uuuq − uuu∗||1 1 4.08e− 1 5.99e− 1

2 5.67e− 1 4.15e− 2
3 6.45e− 2 2.34e− 3
4 3.62e− 3 6.72e− 5
5 1.06e− 4 1.15e− 6
6 1.84e− 6 1.31e− 8
9 9.63e− 11 1.24e− 10
10 9.12e− 11

Execution time (s) 4.91 5.34

Table 6.8: Performance of comparison between FTUC and HJ for Klein-
Gordon problem.



Chapter 6. Higher order multi-step Jarratt-like method for solving systems of
nonlinear equations: application to PDEs and ODEs 92

6.5.4 Two-dimensional sinh-Poisson equation

The stationary two-dimensional Euler flow free of body forces satisfy [76]

▽
2φ+ σsinh (φ) = 0, σ > 0. (6.32)

The analytical solution of (6.32) for σ = 1 is given in [101].

φ (x, y) = 4tanh−1




β cos

(√

1 + β2x
)

√

1 + β2 cosh (βy)



 . (6.33)

That solution is called the Mallier-Maslowe vortices for σ = 1. We choose a domain

[−1.3, 1.3]× [−1.3, 1.3] with 30 grid points for each dimension. That resulted in a

problem size 500. The computed solution corresponds to β = 0.5. Table 6.9 shows

the obtained results. The FTUC method achieves almost the same accuracy as

the HJ method with a smaller number of iterations and, consequently, a smaller

execution time. Figure 6.4 depicts the numerically calculated solution and the

absolute error over the spatial grid.

Iterative methods FTUC HJ
Number of iterations 1 1
Number of steps 111 183
Theoretical convergence order 329 366
Number of function evaluations per iteration 110 182
Solutions of linear systems per iteration 220 365
Number of matrix vector multiplication per iteration 110 183
||φφφq − φφφ∗||1 9.22e− 13 8.81e− 13
Execution time (s) 42.87 68.225

Table 6.9: Performance of FTUC and HJ for the sinh-Poisson equation.

6.5.5 Three-dimensional nonlinear Poisson equation

The numerical solution of nonlinear 3-D nonlinear Poisson equation is treated in

[77]. The governing equation is

▽ · (K (u)▽u)− g = 0 , (6.34)
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Figure 6.4: Solution of sinh-Poisson equation andf absolute error in the com-
puted solution.

where K (u) can be any function of u and g is a force term. We will adopt the

expression for K (u) from [77]

K (u) =
100 + 27u

300 + 27u
. (6.35)

We took a domain [−1, 1]3 and constructed g in a way that makes u = x2+y2+z2

the solution of (6.34). The grid points were taken so that the problem size is 1331.

Table 6.10 gives the obtained results. FTUC achieves a similar accuracy as HJ

with smaller number of steps and a smaller execution time. Figure 6.5 plots the

maximum absolute error in the solution vector u(x) against the number of steps.

Iterative methods FTUC HJ
Number of iterations 1 1
Number of steps 13 16
Theoretical convergence order 35 32
Number of function evaluations per iteration 12 15
Solutions of linear systems per iteration 24 31
Number of matrix vector multiplication per iteration 12 16
||uuuq − uuu∗||1 5.77e− 15 5.32e− 15
Execution time (s) 10.608 11.646

Table 6.10: Performance of FTUC and HJ for nonlinear Poisson equation.

6.6 Summary

Multi-step iterative methods with a large number of steps are computationally

efficient because the computational cost required to perform the additional steps
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Figure 6.5: log (||u (x)− u∗||1) as a function of the number of steps.

is small. The increase of convergence order in the multi-step part depends on

the base method. So, the design of the base method is crucial. All numerically

conducted tests conclude that the proposed FTUC multi-step iterative method

requires relatively less execution time to achieve same numerical accuracy than

HJ.



Chapter 7

Higher order derivative-free

iterative methods with memory

for systems of nonlinear equations

A derivative-free family of iterations without memory consisting of three

steps for solving nonlinear systems of equations is brought forward. The

main aim of the chapter consists in proposing several novel schemes with

memory, possessing higher R-orders of convergence. Analytical discussions

are reported and the theoretical efficiency of the methods is studied in detail.

The use of the proposed schemes for solving partial differential equations

are finally considered, in order to support the theoretical discussions from

a practical viewpoint.

7.1 Introduction

The solution ααα of a nonlinear equation F(x) = 0, where F : D ⊂ R
n → R

n is a

sufficiently smooth function, cannot be expressed in a closed form and therefore it

is mostly pursued by applying iterative methods of various natures depending on

the nonlinear functions, size of the systems and the accuracy of the sought-after

results.

By assuming that F has at least third-order Fréchet derivatives with continuity

on a convex set D and by starting from one or several initial solutions of ααα ∈ D,

a sequence of approximations {xk} is constructed so that it converges to ααα.

95
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The best-known iterative scheme for this purpose is Newton’s method defined by

[1]:

xk+1 = xk − F′(xk)
−1F(xk), k = 0, 1, 2, · · · . (7.1)

It is observable that the operator F must be differentiable Fréchet in order to

apply Newton’s method. In some practical physical problems, for instance, the

simulation of laminar premixed flames [4], it is hard to know the analytical expres-

sions for Jacobian matrix and then only methods come to play are derivative-free

iterative methods.

Perhaps, the first try to get rid of the computation of Fréchet derivative was done

by Schmidt [50] in 1961 at which he extended the Secant method for nonlinear

systems by defining the divided difference operator (DDO). It is now reminded

that the definition given by Ortega and Rheinboldt [3] for a first-order divided

difference of F on R
n is a mapping as follows:

[·, ·;F] : D ⊂ R
n × R

n → L(Rn), (7.2)

which satisfies [y,x;F](y − x) = F(y)− F(x), ∀x,y ∈ D.

Defining h = y− x, one may define the DDO of the first-order as follows [41, 45]:

[x+ h,x;F] =

∫ 1

0

F′(x+ th)dt, (7.3)

which is known as Genocchi-Hermite formula. Now by writing the Taylor expan-

sion of F′(x+ th) at the point x and integrating, we have that

∫ 1

0

F′(x+ th)dt = F′(x) +
1

2
F′′(x)h+

1

6
F′′′(x)h2 +O(h3). (7.4)

Clearly, if we assume e = x − ααα and the fact that F′(ααα) is nonsingular, then it

would be straightforward to write

F(x) = F(ααα + e) = A1

(

e+

q=8
∑

q=2

Aq eq +O( e9)

)

, (7.5)
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whereas A1 = F′(ααα), Ap =
1
p!
A−1

1 F(p)(ααα) ∈ Lp(R
n,Rn). From (7.5) the derivatives

of F(x) can be written as

F′(x) = A1

(

I+

q=7
∑

q=2

qAq eq−1 +O( e8)

)

, (7.6)

F′′(x) = A1

(
q=6
∑

q=2

q!Aq eq−2 +O( e7)

)

. (7.7)

It is necessary to recall that when studying the theoretical local order of conver-

gence of iterative methods for nonlinear systems, ek = xk − ααα is the error in the

kth iterate and

ek+1 = Le(k)p +O( e(k)p+1), (7.8)

is the error equation, where L is a p-linear function. That is to say, L ∈ L(Rn,Rn,

. . . ,Rn), p is the local convergence rate and L shows the set of bounded linear

functions. Furthermore, we have e
p
k=(

p
︷ ︸︸ ︷
ek, ek, . . . , ek). The generalized Steffensen’s

method for nonlinear system of equations can be expressed as [1]:

xk+1 = xk − [xk,wk,F]
−1F(xk), k = 0, 1, 2, · · · , (7.9)

wherein wk = xk + F(xk). Note that the first order DDO of F on the points x

and y can be defined component-to-component as follows:

[x,y;F]i,j =
Fi(x1, . . . , xj, yj+1, . . . , yn)− Fi(x1, . . . , xj−1, yj, . . . , yn)

xj − yj
,

1 ≤ i, j ≤ n .

(7.10)

This formula is a bounded linear operator which satisfies [y,x;F](y−x) = F(y)−
F(x). Due to Potra [49], there is a necessary and sufficient condition to characterize

the divided difference operator by means of a Riemann integral. That is, if F

satisfies the following Lipschitz condition ‖[x,y;F]− [uuu,v;F]‖ ≤ H(‖x−uuu‖+‖y−
v‖), then equality (7.4) holds for every pair of distinct points (x+ h,x) ∈ D×D
if and only if for all (uuu,v) ∈ D×D with uuu 6= v and 2v−uuu ∈ D, it is satisfied the

relation

[uuu,v;F] = 2[uuu, 2v − uuu;F]− [v, 2v − uuu;F]. (7.11)
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Note that authors in [42] developed a symmetric operator for the DDO of the

second-order, but of course with more computational cost than the first-order

DDO.

In the last years, different procedures have been used in the development of iter-

ative methods for nonlinear systems, see for example the paper of Budzkoa et al.

[38], the schemes published in [52] for solving the systems of nonlinear equations

obtained during the process of solving stochastic differential equations, findings of

the authors in [40] of how to study the dynamical behavior of different methods

in multi-dimensional case, the recent paper [57] and the work [37, 65] were the

authors applied the designed methods on solving ordinary and partial differential

equations.

In 2014, Sharma et al. in [51] proposed a derivative-free iterative method with

fourth order of convergence in what follows:







yk = xk − [xk,wk,F]
−1F(xk),

xk+1 = yk − (aI+G(k)((3− 2a)I+ (a− 2)G(k)))[xk,wk,F]
−1F(yk),

(7.12)

wherein wk = xk + bF(xk), zk = yk + cF(yk), a ∈ R, b, c ∈ R\{0}, G(k) =

[xk,wk,F]
−1[zk,yk,F] and I is the identity matrix of the appropriate size.

Recently, authors in [48] improved the convergence speed of (7.12) to 2+
√
5 when

a 6= 3 and 2 +
√
6 when a = 3 by considering:







B(k) = −[wk−1,xk−1;F]
−1, k ≥ 1,

yk = xk − [xk,wk,F]
−1F(xk), k ≥ 0,

xk+1 = yk−
(aI+G(k)((3− 2a)I+ (a− 2)G(k)))[xk,wk,F]

−1F(yk),

(7.13)

where wk = xk +B(k)F(xk).

There are a few works related to iterative methods with memory of high orders for

nonlinear systems. Accordingly, in this work we design a new iterative family of

methods without memory which is also economic in terms of computational cost.

Then, accelerations of this scheme are derived using the idea of with memoriza-

tion without any additional computational cost per cycle. We manifest that the
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proposed methods are more efficient than several existing derivative-free methods

with and without memory in the literature.

7.2 A new family of iteration schemes

The iterative methods (7.1), (7.9) and (7.12) belong to the class of methods with-

out memory since they use only data from the current iteration. On the other

hand, (7.12) requires evaluations of four functions, two divided differences and

one inverse operator per one cycle and thus it is not that efficient in terms of

computational costs.

The proposed iterative family of methods can be constructed as a generalization

of the scheme (7.12) but with three sub-steps and a much more care to use the

data as follows:







yk = xk − φφφ1,

zk = yk − a0φφφ2 − (3− 2a0)φφφ3 − (a0 − 2)φφφ4,

xk+1 = zk − a1φφφ5 − a2φφφ6 − a3φφφ7 − a4φφφ8 − a5φφφ9,

(7.14)

wherein wk = xk + b0F(xk), M
(k) = [xk,wk,F], hk = yk + b1F(yk), N

(k) =

[hk,yk,F], lk = zk + b2F(zk), and Q(k) = [lk, zk,F], while the following linear

systems must also be solved per cycle







M(k)φφφ1 = F(xk),

M(k)φφφ2 = F(yk),

M(k)φφφ3 = N(k)φφφ2,

M(k)φφφ4 = N(k)φφφ3,

(7.15)

and 





M(k)φφφ5 = F(zk),

M(k)φφφ6 = Q(k)φφφ5,

M(k)φφφ7 = Q(k)φφφ6,

M(k)φφφ8 = Q(k)φφφ7,

M(k)φφφ9 = Q(k)φφφ8,

(7.16)
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where a1 = 4 + a5, a2 = −6− 4a5, a3 = 4 + 6a5 and a4 = −1− 4a5. The eminent

point is that due to the same coefficient matrix M(k), only one LU decomposition

could be performed for solving linear systems with multiple right hand sides.

Hence, the iteration scheme (7.14) without memory includes three steps, and five

free (non-zero matrix) parameters which make it quite general and useful for solv-

ing nonlinear systems and of course for with memorization, as will be seen in the

next section.

Theorem 1. Let F have at least three times Fréchet differentiable in the nonempty

open convex domain D. Also suppose that [uuu,v;F] ∈ L(D,D), for all uuu,v ∈
D(uuu 6= v) and (x(0) is close enough to ααα. Then, the sequence {xk}k≥0 obtained

using the iterative expression (7.14) converges to ααα with at least eight order of

convergence.

Proof. The proof of this theorem can be followed by writing the Taylor expansions

of F around the appropriate points. Now, it is straightforward to write

F(ααα + h) = F′(ααα)

(

h+

p−1
∑

q=2

Aqh
q

)

+O (hp) . (7.17)

We observe that Aqh
q ∈ R

n since F(q)(ααα) ∈ L(Rn × · · · × R
n,Rn) and F′(ααα)−1 ∈

L(Rn). Note that matrix-matrix products are not commutative. Subsequently, we

acquire F(xk)= F(xk − ααα + ααα) = F( ek + ααα) = F(ααα) + F′(ααα) ek + F′′(ααα)/2! e2k +

· · · + O( e9k) =F′(ααα)( ek +A2 e2k +A3 e3k +A4 e4k) + · · · + O( e9k), by taking into

consideration wk = xk + b0 F(xk), we write

F(wk) = F′(ααα)
(

d1 ek +
(

−A2 + d1A2 +A2d
2
1

)

e2k+
(

−A3 −A2
2 d1 −A2 d1A2 +A2d1A2d1

+ d1A3 +A2d
2
1A2 +A3d

3
1

)

e3k + · · ·
)

+O
(
e9k

)
,

(7.18)

where d1 = I + b0F
′(ααα). We define also d2 = I + b1F

′(ααα) and d3 = I + b2F
′(ααα).

The detail of further computations is given below in sequence. We can obtain

M(k) = F′(ααα)
(

I+
(

A2d1 +A2

)

ek +
(

A3d1 +A2d1A2 +A3d
2
1 −A2

2

+A3

)

e2k +
(

A4d1 +A2d1A3 +A4d
2
1 +A3d1A2d1 +A3d

2
1A2+

A4d
3
1 −A3A2 −A2A3 −A3A2d1 +A4

)

e3k + · · ·
)

+O
(
e9k

)
,

(7.19)
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and obviously

M(k)−1
=
(

I+
(

−A2d1 −A2

)

ek +
(

−A3d1 + 2A2
2 −A3d

2
1+

(A2d1)
2 +A2

2d1 −A3

)

e2k +
(

−A2d1A
2
2 −A2

2d1A2d1−

3A3
2 − 2A3

2d1 − (A2d1)
3 −A4d1 + 2A3A2 + 2A2A3−

A4d
2
1 + 2A3A2d1 −A4d

3
1 +A3d1A2 +A3d

2
1A2d1+

A2A3d1 +A2A3d
2
1 +A2d1A3d1 +A2d1A3d

2
1 −A4

)

e3k+

· · ·
)

F′(ααα)−1 +O
(
e9k

)
.

(7.20)

It is remarked that we used the notation · · · in order to avoid huge cumbersome

terms obtained for high degree terms in Taylor expansion, since they will finally

be vanished as could be observed below. Now, the error equation at the end of

the first sub-step can be written in what follows:

yk −ααα = A2d1 e
2
k −

(

A2
2d1 + (A2d1)

2 −A3d
2
1 +A2

2 −A3d1

−A2d1A2

)

e3k −
(

−A3d
2
1A2 + 2A3A2d1 −A4d

2
1 +A3A2+

A2A3 −A2d1A3 −A4d1 −A4d
3
1 + (A2d1)

2A2 −A2d1A
2
2−

A2
2d1A2d1 +A2

2d1A2 +A3d
2
1A2d1 −A3

2 − 2A3
2d1 +A2A3d1

− (A2d1)
3 +A2A3d

2
1 +A2d1A3d1 +A2d1A3d

2
1

)

e4k+

· · ·+O
(
e9k

)
.

(7.21)

Using (7.21), one may attain

F(yk) = F′(ααα)
(

A2d1 e
2
k +

(

−A2
2d1 − (A2d1)

2 +A3d
2
1 −A2

2+

A3d1 +A2d1A2

)

e3k +
(

A3d
2
1A2 − 2A3A2d1 +A4d

2
1

−A3A2 −A2A3 +A2d1A3 +A4d1 +A4d
3
1 − (A2d1)

2A2+

A2d1A
2
2 + 2A2

2d1A2d1 −A2
2d1A2 −A3d

2
1A2d1 +A3

2 + 2A3
2d1

−A2A3d1 + (A2d1)
3 −A2A3d

2
1 −A2d1A3d1−

A2d1A3d
2
1

)

e4k + · · ·
)

+O
(
e9k

)
,

(7.22)
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and subsequently

hk = d2A2d1 e
2
k +

(

− d2A
2
2d1 − d2(A2d1)

2 − d2A
2
2 + d2A2d1A2

+ d2A3d1 + d2A3d
2
1

)

e3k +
(

− d2A3A2 − d2A2A3

− d2A3d
2
1A2d1 + 2d2A

2
2d1A2d1 − d2A2A3d

2
1 − d2A2d1A3d

2
1+

2d2A
3
2d1 − d2(A2d1)

2A2 − d2A2d1A3d1 − d2A2A3d1 − d2A
2
2d1A2

−A2
2d1A2d1 − 2d2A3A2d1 + d2A4d

2
1 + d2A2d1A3 + d2A4d

3
1+

d2A4d1 + d2A3d
2
1A2 + d2A

3
2 + d2(A2d1)

3 + d2A2d1A
2
2

)

e4k

+ · · ·+O
(
e9k

)
.

(7.23)

It is now necessary to obtain the error equation ofN(k) by applying (7.23) as comes

next

N(k) = F′(ααα)
(

I+
(

A2d2A2d1 +A2
2d1

)

e2k +
(

−A3
2 −A3

2d1

−A2
2d1A2d1 −A2d2(A2d1)

2 +A2d2A2d1A2 +A2d2A3d
2
1+

A2d2A3d1 +A2
2d1A2 +A2A3d

2
1 +A2A3d1 −A2d2A

2
2d1

−A2d2A
2
2

)

e3k + · · ·
)

+O
(
e9k

)
.

(7.24)

Using the above expansions, we have

φφφ3 =A2d1 e
2
k +

(

− 3A2
2d1 − 3(A2d1)

2 −A2
2 +A3d

2
1 +A3d1+

A2d1A2

)

e3k + · · ·+O
(
e9k

)
,

(7.25)

and

φφφ4 = A2d1 e
2
k +

(

− 4(A2d1)
2 − 4A2

2d1 +A3d
2
1 +A2d1A2

−A2
2 +A3d1

)

e3k + · · ·+O
(
e9k

)
.

(7.26)
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Thus, the error terms for the second sub-step can be attained as follows:

zk −ααα = d4 e
4
k +

(

−A2d2A
3
2d1 + (A2d1)

3A2d1 + (A2d1)
2A2

2d1

+A2
2d1(A2d1)

2 +A4
2d1 +A2d2A3d

2
1A2d1+

A2d2A2d1A3d
2
1 +A2d1A

3
2d1 +A2d2A3d1A2d1 +A3

2d1A2d1

+A2
2d1A

2
2d1 +A2d2(A2d1)

2A2 +A2d2A2d1A3d1

− 2A2d2(A2d1)
3 −A2d2A

2
2d1A2d1 +A2d1A

2
2d1A2d1

−A2d2A2d1A
2
2

)

e5k + · · ·+O
(
e9k

)
,

(7.27)

where d4 = (3− a) (A2
2d1A2d1 + (A2d1)

3 +A2d1A
2
2d1 +A3

2d1) +A2d2 (A2d1)
2.

Now, we have

lk = d3d4 e
4
k +

(

d3A
2
2d1(A2d1)

2 + d3(A2d1)
2A2

2d1+

d3(A2d1)
3A2d1 − d3A2d2A

3
2d1 + d3A2d1A

3
2d1+

d3A2d1A
2
2d1A2d1 + d3A2d2A3d

2
1A2d1 + d3A

4
2d1 + d3A

2
2d1A

2
2d1

+ d3A2d2A3d1A2d1 − 2d3A2d2(A2d1)
3 − d3A2d2A2d1A

2
2+

d3A2d2(A2d1)
2A2 + d3A2d2A2d1A3d1 + d3A2d2A2d1A3d

2
1+

d3A
3
2d1A2d1 − d3A2d2A

2
2d1A2d1

)

e5k

+ · · ·+O
(
e9k

)
,

(7.28)

and

φφφ5 = d4 e
4
k +

(

−A2d1d4 −A2d4 −A2d2A
3
2d1 + (A2d1)

3A2d1+

(A2d1)
2A2

2d1 +A2
2d1(A2d1)

2 +A4
2d1 +A2d2A3d

2
1A2d1+

A2d2A2d1A3d
2
1 +A2d1A

3
2d1 +A2d2A3d1A2d1 +A3

2d1A2d1+

A2
2d1A

2
2d1 +A2d2(A2d1)

2A2 +A2d2A2d1A3d1−
2A2d2(A2d1)

3 −A2d2A
2
2d1A2d1 +A2d1A

2
2d1A2d1−

A2d2A2d1A
2
2

)

e5k + · · ·+O
(
e9k

)
.

(7.29)

Using the above formulas, we attain that

Q(k) = F′(ααα)
(

I+
(

A2d4 +A2d3d4

)

e4k + · · ·
)

+O
(
e9k

)
, (7.30)
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and subsequently

φφφ6 = d4 e
4
k +

(

− 2A2d1d4 − 2A2d4 −A2d2A
3
2d1 + (A2d1)

2A2
2d1+

A2d2A3d
2
1A2d1 +A2d2A2d1A3d

2
1 +A2d2A3d1A2d1 +A2

2d1A
2
2d1+

A2d2(A2d1)
2A2 +A2d2A2d1A3d1 − 2A2d2(A2d1)

3−
A2d2A

2
2d1A2d1 +A2d1A

2
2d1A2d1 −A2d2A2d1A

2
2 + (A2d1)

3A2d1+

A2
2d1(A2d1)

2 +A4
2d1 +A2d1A

3
2d1 +A3

2d1A2d1

)

e5k+

· · ·+O
(
e9k

)
,

(7.31)

φφφ7 = d4 e
4
k +

(

− 3A2d1d4 − 3A2d4 +A2d2A3d1A2d1 +A2
2d1A

2
2d1+

A2d2(A2d1)
2A2 +A2d2A2d1A3d1 − 2A2d2(A2d1)

3 −A2d2A
2
2d1A2

d1 +A2d1A
2
2d1A2d1 −A2d2A2d1A

2
2 −A2d2A

3
2d1 + (A2d1)

2A2
2d1+

A2d2A3d
2
1A2d1 +A2d2A2d1A3d

2
1 +A4

2d1 +A2d1A
3
2d1

+A3
2d1A2d1 + (A2d1)

3A2d1 +A2
2d1(A2d1)

2
)

e5k+

· · ·+O
(
e9k

)
,

(7.32)

φφφ8 = d4 e
4
k +

(

− 4A2d1d4 − 4A2d4 +A2d2A3d1A2d1 +A2
2d1A

2
2d1+

A2d2(A2d1)
2A2 +A2d2A2d1A3d1 − 2A2d2(A2d1)

3 −A2d2A
2
2d1

A2d1 +A2d1A
2
2d1A2d1 −A2d2A2d1A

2
2 −A2d2A

3
2d1 + (A2d1)

2

A2
2d1 +A2d2A3d

2
1A2d1 +A2d2A2d1A3d

2
1 + (A2d1)

3A2d1+

A2
2d1(A2d1)

2 +A4
2d1 +A2d1A

3
2d1 +A3

2d1A2d1

)

e5k+

· · ·+O
(
e9k

)
,

(7.33)

φφφ9 = d4 e
4
k +

(

− 5A2d1d4 − 5A2d4 +A2d2A3d1A2d1+

A2
2d1A

2
2d1 +A2d2(A2d1)

2A2 +A2d2A2d1A3d1 − 2A2d2(A2d1)
3−

Ab2d2A
2
2d1A2d1 +A2d1A

2
2d1A2d1 −A2d2A2d1A

2
2 −A2d2A

3
2d1+

(A2d1)
2A2

2d1 +A2d2A3d
2
1A2d1 +A2d2A2d1A3d

2
1 + (A2d1)

3A2d1+

A2
2d1(A2d1)

2 +A4
2d1 +A2d1A

3
2d1 +A3

2d1A2d1

)

e5k+

· · ·+O
(
e9k

)
.

(7.34)
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Therefore, it is now easy to combine the expressions (7.31)-(7.34) and obtain the

final error equation

ek+1 =
(

(1− a5)(A
4
2 +A4

2d1 +A3
2d1A2 +A3

2d1A2d1 +A2
2d1A

2
2+

A2
2d1A

2
2d1 +A2

2d1A2d1A2 +A2
2d1(A2d1)

2 +A2d1A
3
2+

A2d1A
3
2d1 +A2d1A

2
2d1A2 +A2d1A

2
2d1A2d1 + (A2d1)

2A2
2

+ (A2d1)
2A2

2d1 + (A2d1)
3A2 + (A2d1)

3A2d1)d4+

A2d3d
2
4

)

e8k +O
(
e9k

)
,

(7.35)

which shows eighth order of convergence. The proof is now complete. �

It is remarked that by choosing a0 = 3 and a5 = 0, we reduce to the following

iterative expression







yk = xk − φφφ1,

zk = yk − 3φφφ2 + 3φφφ3 − φφφ4,

xk+1 = zk − 4φφφ5 + 6φφφ6 − 4φφφ7 + φφφ8,

(7.36)

and by choosing a0 = 3 and a5 = 1, we obtain the following iterative method

which is quite fruitful for with memorization due to its fined error equation







yk = xk − φφφ1,

zk = yk − 3φφφ2 + 3φφφ3 − φφφ4,

xk+1 = zk − 5φφφ5 + 10φφφ6 − 10φφφ7 + 5φφφ8 − φφφ9,

(7.37)

where

ek+1 = A2d3

(
A2d2 (A2d1)

2)2
ek

8 +O
(
ek

9
)
. (7.38)

7.3 Methods with memory

Now a question may arise that is it possible to accelerate the convergence rate of the

family of methods (7.14) without incorporating the evaluation of new functions or

divided difference operators of various orders? To respond such a thing, a notion
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which is first discussed formally in [1] can be pursued which is known as with

memorization.

During the process of with memorization of an iteration scheme, one may find

appropriate approximations for the parameters using the current and previous

saved data of the iterative steps so as to speed up the convergence rate without

any special new evaluations. This could increase the computational efficiency of

the methods in most cases. For getting a background and a recent theory in this

category, one may consult [46] and the references cited therein.

In this section, we present several new derivative-free methods with memory with

increased r-orders of convergence based on the iterative family (7.14) without

memory. According to the obtained error equations of the previous section, one

way is to approximate the parameters b0, b1 and b2 using the available data. That

is to say to accelerate the whole process, e.g., one may solve the matrix problem

I+ bF′(ααα) = 0. (7.39)

Due to that fact that the value of ααα is not known, we can use an approximation

of F′(ααα), calculated by available information to accelerate the convergence rate

to a certain extent. Therefore, we may write b ≃ −F′(ᾱαα)−1, wherein ᾱαα is an

approximation of the solution (per cycle).

Remark 1. When developing iteration schemes with memory for nonlinear systems

of equations, the main notion consists in calculating the parameter matrix b :=

Bk(k ≥ 1) as the iterative method proceeds by using some approximations to

−F′(ααα) evaluated by available data.

Now, if we approximate

b0 = b1 = b2 := Bk = −[wk−1,xk−1;F]
−1 ≈ −F′(ααα)−1, (7.40)

we can achieve a convergence r-order higher than eight. Therefore, our first iter-

ative method with memory is defined by







B0k = B1k = B2k = −[wk−1,xk−1;F]
−1 = −(Mk−1)

−1, k ≥ 1,

yk = xk − φφφ1, k ≥ 0,

zk = yk − 3φφφ2 + 3φφφ3 − φφφ4,

xk+1 = zk − 4φφφ5 + 6φφφ6 − 4φφφ7 + φφφ8,

(7.41)
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wherein wk = xk + B0kF(xk), hk = yk + B1kF(yk), and lk = zk + B2k F(zk).

Before going to the main theorem, it is requisite to provide the following lemma

so as to ease up the recognition of the numerical analysis of with memorization

for the new methods.

Lemma 1. Let us define the same conditions as in Theorem 1. Moreover, if we

define Bk = −[wk−1, xk−1; F]
−1 and d(k) := I + Bk F

′(ααα), then we obtain the

following asymptotic error relation

d(k) ∼ ek−1. (7.42)

Proof. To prove this, we need to apply the Taylor expansion again. The expansion

of [wk−1,xk−1;F]
−1 around the simple zero can be written as

Bk = −[wk−1,xk−1;F]
−1 = −

(
I−A2

(
I+ d(k−1)

)
ek−1 +O

(
e2k−1

))
F′(ααα)−1,

= −
(
I−A2(2I+Bk−1F

′(ααα)) ek−1 +O
(
e2k−1

))
F′(ααα)−1.

(7.43)

Now by simplifying, one may get that

d(k) =I+Bk F
′(ααα) = A2

(
2I+B(k−1)F′(ααα)

)
ek−1 +O

(
e2k−1

)
,

∼ ek−1 .
(7.44)

We also use the symbol ∼ so as to show the errors asymptotically without any

unnecessary coefficients. The proof is complete. �

At this moment, we address the convergence r-order of (7.41) in what follows.

Theorem 2. Consider the same conditions as in Theorem 1 as well as the initial

matrix B
(0)
0 , which is close enough to F′(ααα). Then, the sequence {xk}k≥0 obtained

using the iterative expression (7.41) converges to ααα with at least 4+
√
19 ≃ 8.3589

r-order of convergence.

Proof. Let {xk} be a sequence generated by iterative method (7.41). It converges

to simple root ααα of F(x) = 0 with r−order r. Now, we can write the error relation

as

ek+1 ∼ Dk,r erk, (7.45)
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where limk→∞Dk,r = Dr and Dr is asymptotic error constant of (7.41). By using

(7.45), we can write

ek+1 ∼ Dk,r

(

Dk−1,r

(

e(k−1)r
))r

= Dk,rD
r
k−1,r e

r2

k−1 ∼ er
2

k−1. (7.46)

By using Lemma 1, (7.46) for (7.41) can be written as

ek+1 ∼ e3k−1 e
8r
k−1. (7.47)

By comparing (7.47) and (7.46), we get the equation

{

r2 − 8 r − 3 = 0,

r = 4 +
√
19 = 8.358898944 .

(7.48)

Therefore, we conclude that the r-order for (7.41) is at least 4 +
√
19. �

Remark 2. It is requisite to remind that there is no need for any attempt in order

to compute [wk−1,xk−1;F] per cycle, since it has already be calculated at the

end of the first sub-step and can directly be used as the acceleration matrix for

approximating B0, B1, B2 in the subsequent cycle.

Similarly, we can now present a much more efficient method with memory in

contrast to (7.41) by using (7.37) as follows:







B0k = B1k = B2k = −[wk−1,xk−1;F]
−1 = −(Mk−1)

−1, k ≥ 1,

yk = xk − φφφ1, k ≥ 0,

zk = yk − 3φφφ2 + 3φφφ3 − φφφ4,

xk+1 = zk − 5φφφ5 + 10φφφ6 − 10φφφ7 + 5φφφ8 − φφφ9.

(7.49)

Theorem 3. Consider the same conditions as in Theorem 2. Then, the sequence

{xk}k≥0 obtained using the iterative expression (7.49) converges to ααα with at least

4 +
√
23 ≃ 8.79583 r-order.

Proof. We assume that {xk} be a sequence generated by iterative method (7.49).

We can write the error relation as

ek+1 ∼ Dk,r erk, (7.50)
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where limk→∞Dk,r = Dr and Dr is asymptotic error constant of (7.49). By using

(7.51), we can write

ek+1 ∼ Dk,r (Dk−1,r (ek−1
r))r = Dk,rD

r
k−1,r e

r2

k−1 ∼ er
2

k−1. (7.51)

By using Lemma 1, (7.52) for (7.49) can be written as

ek+1 ∼ e7k−1 e
8r
k−1, (7.52)

By comparing (7.52) and (7.51), we get the equation

{

r2 − 8 r − 7 = 0,

r = 4 +
√
23 = 8.795831523 .

(7.53)

Thus, we conclude that the r-order for (7.49) is 4 +
√
23. This ends the proof. �

Now, it is eminent to study that how we accelerate the convergence rate more? It

is of crystal clear nature that a better approximation for the parameter matrices

may accelerate the schemes with memory more. However, we have an obstacle in

front, which is the definition of the divided difference operator for three points in

the multidimensional case. Such a definition would be too much costly and could

not be of practical interest.

Hence, a better approach is to use the already computed data more carefully so

as to obtain better approximation matrices. Accordingly, we could write

B0k = −(Mk−1)
−1,B2k = −(Nk−1)

−1,B3k = −(Qk−1)
−1, (7.54)

whereas Mk−1,Nk−1,Qk−1 have already been computed.

However, in this way, we are still using an old approximation such as −(Mk−1)
−1

for B0k! This means that, −(Qk−1)
−1 can be a better approximation for all param-

eter matrices. As a result, we may present a method with memory for nonlinear
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systems with the following structure







B0k = B1k = B2k = −(Qk−1)
−1, k ≥ 1,

yk = xk − φφφ1, k ≥ 0,

zk = yk − 3φφφ2 + 3φφφ3 − φφφ4,

xk+1 = zk − 5φφφ5 + 10φφφ6 − 10φφφ7 + 5φφφ8 − φφφ9.

(7.55)

Although the scheme (7.55) has better r-order than (7.41) and (7.49), it suffers

of computing a new matrix inversion which could restrict the application (7.55)

in large dimensions. To obtain higher r-order with low computational cost, i.e.,

only one LU decomposition in each cycle, we apply a new trick and propose the

following






x(0) and B
(0)
0 are given,

yk = xk − φφφ1, k ≥ 0,

B
(k+1)
0 = B1k = B2k = −(M(k))

−1
, k ≥ 0,

zk = yk − 3φφφ2 + 3φφφ3 − φφφ4,

xk+1 = zk − 5φφφ5 + 10φφφ6 − 10φφφ7 + 5φφφ8 − φφφ9.

(7.56)

Theorem 4. Consider the same conditions as in Theorem 3. Then, the sequence

{xk}k≥0 obtained using the iterative expression (7.56) converges to ααα with at least
1
2
(9 + 5

√
5) ≃ 10.0902 r-order.

Proof. Let us first re-write (7.38) in the asymptotical form as follows:

ek+1 ∼ d
(k)
3 d

(k)
1

4
d
(k)
2

2
e8k. (7.57)

Following a same terminology as in the proof of Theorems 2 and 3, we have

d
(k)
1 ∼ ek−1, d

(k)
2 ∼ ek−1, d

(k)
3 ∼ ek−1, ∀k ≥ 1. (7.58)

But here in (7.56), B1k and B2k are updated for all k ≥ 0. Therefore, we obtain

d
(k)
1

4 ∼ e4k−1I, d
(k)
2

2 ∼ e2k−1e
4
k−1, d

(k)
3 ∼ ek−1e

8
k−1, ∀k ≥ 0. (7.59)

Combining (7.58) and (7.59) into (7.57), we attain

ek+1 ∼ e19k−1 ek
8 ∼ e11k−1e

9
k. (7.60)
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Iterative methods ρ FE C E

NM 2 n + n2 (n + n2) + u((2/3)n3 + 2n2) 2

1
2n3u

3
+n2(2u+1)+n

ST 2 2n + n2 − n (2n + n2 − n) + u((2/3)n3 + 2n2) 2

1
2n3u

3
+n2(2u+1)+n

SH 4 4n + 2(n2 − n) (4n + 2(n2 − n)) + u((2/3)n3 + 4(2n2)) 2

3

n

(

n2u+3n(4u+1)+3
)

SHM 2 +
√
6 4n + 2(n2 − n) (4n + 2(n2 − n)) + u((2/3)n3 + 4(2n2))

(

2 +
√

6
)

3

2n
(

n2u+3n(4u+1)+3
)

PM1 8 4n + 3(n2 − n) (6n + 3(n2 − n)) + u((2/3)n3 + 8(2n2)) 8

3

n

(

2n2u+n(48u+9)+9
)

PM2 8 6n + 3(n2 − n) (6n + 3(n2 − n)) + u((2/3)n3 + 9(2n2)) 8

3

n

(

2n2u+9n(6u+1)+9
)

PM3 8.3589 4n + 3(n2 − n) (6n + 3(n2 − n)) + u((2/3)n3 + 8(2n2)) 8.3589

3

n

(

2n2u+n(48u+9)+9
)

PM4 8.79583 6n + 3(n2 − n) (6n + 3(n2 − n)) + u((2/3)n3 + 9(2n2)) 8.79583

3

n

(

2n2u+9n(6u+1)+9
)

PM5 10.0902 6n + 3(n2 − n) (6n + 3(n2 − n)) + u((2/3)n3 + 9(2n2)) 10.0902

3

n

(

2n2u+9n(6u+1)+9
)

Table 7.1: Comparison of efficiency indices for different methods.

This implies that 11
p
+ 9 = p, where the r-order of convergence would then be

p = 1
2
(9 + 5

√
5) ≃ 10.0902. This completes the proof. �

Finally, we point out that the easy structure and high r-order of (7.56) by using

only one LU decomposition, makes it not only interesting from a theoretical point

of view but is also in practice.

7.4 Numerical analysis

Efficiency is generally a crucial aspect to pay heed of when choosing an iterative

process to calculate a solution of nonlinear algebraic systems.

The classic efficiency index E = ρ
1
θ [1], provides a balance between the order of

convergence ρ and the number of functional evaluations θ. However, it is inter-

esting to note that when we deal with a system of n nonlinear equations, the

computational cost of evaluating the operators F, F′ or DDO are not similar, as

it happens in the case of scalar equations.

Typically, the costs are as follows:

• For one evaluation of F, n functional evaluations are required.

• The evaluation of the associated Jacobian matrix F′ requires n2 functional

evaluations.

• One evaluation of the first-order DDO requires n2−n functional evaluations.
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• Moreover, we consider that the cost of LU decomposition is u(2n3

3
) plus

u(2n2) for solving two triangular systems,

where u is a weight which relates the cost of one functional evaluation and one

flops.

Note that another way is to estimate the efficiency of the methods by using the

index [43, 51]:

E =
1

log τ

log ρ

θ
, (7.61)

where ρ is the order of convergence, θ is the computational cost per iteration and

τ is the number of significant decimal digits of the approximation xk.

Let us denote the methods (7.1), (7.9), (7.12), (7.13), (7.36), (7.37), (7.41), (7.49)

and (7.56) by NM, ST, SH, SHM, PM1, PM2, PM3, PM4 and PM5, respectively.

Here, the computational flops-like efficiency index is computed [102]

E = ρ
1
C , (7.62)

where ρ is the r-order of convergence and C stands for the total computational cost

per iteration in terms of the number of functional evaluations and the costs needed

for LU decompositions, matrix multiplications, number of triangular systems, etc.

See for more [56].

We tried to compare different methods in a similar environment in this work.

In fact, we considered that the cost of scalar function evaluation is nearly five

times more than the cost of doing typical flops (u = 1/5). Note that it is only

an assumption and in general the relation between the cost of scalar function

evaluation and the cost of doing operations are related to the specifications of the

computer. Furthermore, the cost of matrix to vector products has been ignored

for simplicity.

In general, studying the computational complexity of a nonlinear system might be

a challenging problem, if one uses some other strategies in the process of doing a

cycle such as applying GMRES, BiCGSTAB, etc.

In the iterative method PM1, one LU decomposition is needed. In fact, we solve

eight linear systems, but due to the fact that the coefficient matrices are same,

only one LU decomposition could be done in the programs. There is a similar

procedure for PM2-PM5.
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The numbers of functional evaluations to obtain the theoretical efficiency index for

different methods are illustrated in Table 7.1. Thus, the results of comparison for

different values of n are given in Figures 7.1-7.2, which show the efficient behavior

for the proposed methods with memory, particularly PM5.

Figure 7.1: The plot of the efficiency indices for different methods in the case

n = 30, . . . , 40.

Figure 7.2: The plot of the efficiency indices for different methods in the case

n = 100, . . . , 110.

7.5 Simulations to illustrate the analytical re-

sults

In this section, we test the contributed methods using Mathematica 10.0 [58]. For

the first following experiment which has some academical nature, high precision

computing using 600 fixed point arithmetics is considered to check the high rates
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of convergence and to calculate the computational r-order of convergence, which

is defined by [39, 48]

CCO ≈ ln(||F(xk+1)||2/||F(xk)||2)
ln(||F(xk)||2/||F(xk−1)||2)

. (7.63)

In other application problems, double precision arithmetic has been used which

is quite enough for large systems resulting from the discretization of differential

equations. The computer specifications are: Intel(R) Core(TM) i5-2430M CPU

2.40 GHz with 8.00 GB of RAM on Windows 7 Ultimate. We have chosen the

tolerance ‖F(xk+1)‖2 < ǫ for implementing the methods, where ǫ is the tolerance.

Example 1. We begin with the system F(x1, x2, x3, x4, x5, x6, x7, x8, x9, x10) = 0

defined by:

F(x) =







5 exp (x1 − 2)x2 + 2x7
x10 + 8x3

x4 − 5x6
3 − x9,

5 tan (x1 + 2) + cos (x9
x10) + x2

3 + 7x3
4 − 2 sin3 (x6),

x1
2 − x10x5x6x7x8x9 + tan (x2) + 2x3

x4 − 5x6
3,

2 tan (x1
2) + 2x2 + x3

2 − 5x5
3 − x6 + x8

cos (x9),

10x1
2 − x10 + cos (x2) + x3

2 − 5x6
3 − 2x8 − 4x9 ,

cos−1(x1
2) sin (x2)− 2x10x5

4x6x9 + x3
2,

x1x2
x7 − x8

x10 + x3
5 − 5x5

3 + x7,

cos−1 (−10x10 + x8 + x9) + x4 sin (x2) + x3 − 15x5
2 + x7,

10x1 + x3
2 − 5x5

2 + 10x6
x8 − sin (x7) + 2x9,

x1 sin (x2)− 2x10
x8 + x10 − 5x6 − 10x9,

(7.64)

whereααα ≃ (1.3273490437+0.3502924960i, 1.058599346-1.748724664i,1.0276186794−
0.0141308051i,3.27395 0008+0.127828308i, 0.8318243937+0.0017551949i,−0.4853245912+
0.6848776400i,0.1693667630+0.184091 7580i,1. 5344 19958-0.321214766i, 2.086379651+

0.426342755i,−1.989592331 + 1.478395393i)∗, and (x(0) = (1.4 + 0.5I, 1.1− 2.0I,

1.0−0.2I, 2.5+0.5I, 0.8−0.1I,−0.4+1.I, 0.1+0.1I, 1.4−0.6I, 2.0+0.5I,−2.0+
1.45I)∗.

The results of comparisons for this example are brought forward in Table 7.2.

Here, IT, R(k+1), CCO and Time stand for the number of iterations, the residual

norm ‖R(k+1)‖2 = ‖F(xk+1)‖2, (7.63), and the elapsed computational time in



Chapter 7. Higher order derivative-free iterative methods with memory for
systems of nonlinear equations 115

Iterative methods IT R(k+1) CCO Time

ST 12 1.241× 10−471 2.000 1.542088
SH 6 1.477× 10−349 4.001 1.610092
SHM 6 4.300× 10−498 4.448 1.667095
PM1 4 7.251× 10−209 8.007 1.601092
PM2 4 6.581× 10−260 8.028 1.615092
PM3 4 6.695× 10−298 8.372 1.603092
PM4 4 2.249× 10−431 8.844 1.646094
PM5 4 1.561× 10−502 10.11 1.642094

Table 7.2: Results of comparisons for different methods in Example 1.

seconds to run the iterative method, respectively. Note that the criterion (7.63) is

independent of the knowledge of the root.

Throughout this chapter, the following diagonal matrix of the appropriate size

B(0)−1
=











− 1
100

0 . . . 0

0
. . .

. . .
...

...
. . .

. . . 0

0 . . . 0 − 1
100











, (7.65)

has been used for starting the parameter matrices whenever required.

The results for another initial approximation (x(0) = (1.3 + 0.6I, 1.1− 2.0I, 1.1−
0.1I, 2.5+ 0.5I, 0.85− 0.25I,−0.5+ 1.1I, 0.1+ 0.1I, 1.4− 0.6I, 2.0+ 0.4I,−2.0+
1.45I)∗ have also been provided in Table 7.3.

From the results presented in Tables 7.2-7.3, we observe that the accuracy of

approximations to the solution increases as the iteration process proceeds, showing

stable character of the methods. The new methods with memory show robust

character in terms of the accuracy when compared with the other methods.

Note that a line search could be done in solving nonlinear systems of equations to

let the initial guesses arrive at trust region. Robust strategies for providing enough

accurate initial guesses have been discussed in [44] and [55]. We also remind that

in case of facing with singular matrices if a badly chosen initial approximation be

chosen, then one might use the generalized outer inverses (see e.g. [54]) instead of

the regular inverse.

Basically, the process of solving a nonlinear partial differential equation (PDE)

would be reduced to solving a set of nonlinear algebraic equations. Another point
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Iterative methods IT R(k+1) CCO Time

ST 12 1.760× 10−370 2.005 1.530088
SH 6 1.014× 10−251 4.002 1.627093
SHM 6 2.463× 10−440 4.461 1.666095
PM1 4 9.232× 10−161 7.993 1.593091
PM2 4 7.496× 10−209 7.991 1.604092
PM3 4 8.155× 10−217 8.368 1.633093
PM4 4 9.863× 10−317 8.794 1.625093
PM5 4 2.744× 10−464 10.01 1.615092

Table 7.3: Results of comparisons for different methods in Example 1 with
the second initial approximation.

is that for such cases, basically numerical results of lower accuracy in terms of the

precision are needed.

Example 2. The Nonlinear Coupled Burgers Equations [5]. In this experiment, we

consider the two-dimensional nonlinear coupled Burgers equations as follows:

∂u

∂t
− ∂2u

∂(x2
− 2u

∂u

∂x
+
∂u

∂x
v = 0,

∂v

∂t
− ∂2v

∂(x2
− 2v

∂v

∂x
+
∂u

∂x
v = 0,

(7.66)

on the interval x ∈ [0, 5], where 0 ≤ t ≤ T = 1/4 and the initial conditions are

u(x, 0) = sin x, v(x, 0) = sin x. (7.67)

Note that the boundary conditions are set to the exact solution u(x, t) = exp(−t) sin(x)
and v(x, t) = exp(−t) sin(x).

These nonlinear coupled equations with parameters derivative contain many im-

portant mathematical physics equations and reaction diffusion equations. To solve

this system of two PDEs by using finite difference (FD) discretization with the

stopping criterion ||F(x)||2 < 10−8 and the interval x ∈ [0, 5], we use the backward

finite difference for the first derivative along the time (the independent variable

t):

ut(xi, tj) ≃
wi,j − wi,j−1

k
, (7.68)

where k is the step size, and the central finite difference for the other involved

pieces of the equations, i.e.,

ux(xi, tj) ≃
wi+1,j − wi−1,j

2h
, (7.69)
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Figure 7.3: The matrix plot of the divided difference operator [xk,wk;F] in Example

2.

Figure 7.4: The curve of the numerical solution v(x, t) using FD and PM5 (left),

and comparison of the exact u(x, t) (solid blue) and approximate (dotted red) solutions

obtained via FD and PM5 (right).

and

uxx(xi, tj) ≃
wi+1,j − 2wi,j + wi−1,j

h2
, (7.70)

wherein h is the step size along the space. In solving (7.66), the procedure will

end in a nonlinear system of algebraic equations having a large sparse form for

the DDO matrix (illustrated in Figure 7.3). The solution has been plotted in

Figure 7.4 using PM5 with one full iteration since its high order is enough to

demonstrate the final accuracy. For this test we have chosen M = N = 9,

to obtain a nonlinear system of the size 128 × 128, with the starting vector

left = 0.8; right = −0.8; pts = Range[aa, bb, (bb− aa)/((M− 1) ∗ (N− 1))];

x0 = Drop[Drop[Join[pts, pts], 1],−1]; in the Mathematica environment with the

machine precision.
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7.6 Summary

Iteration is a repeated application of a function, and can be viewed as a discrete

dynamical system, in which the continuous time variable has been quantized to

assume integer values. In fact, iterative methods are the only practical ways to

solve nonlinear systems of equations.

Here, a method without the need of computing Fréchet derivative per cycle had

been introduced which is without memory and of high order. The main goal of

the chapter had also been provided by introducing new methods with memory of

higher r-orders for nonlinear systems.

The term method with memory points to the use of data from the current and pre-

vious iterations. Iteration schemes with memory for solving systems of nonlinear

equations have been considered very seldom in the literature and so the presented

methods may be regarded as an advancement in the topic.

The numerical analysis of the schemes, i.e., their complexity and rates of conver-

gence have been studied and showed a fast, efficient and stable behavior for the

new methods with memory, particularly PM5.

The theoretical orders were verified by calculating the computational order of

convergence. Numerical experiments in solving some applicable problems, such as

partial differential equations have also been furnished and confirmed the theoretical

discussions. Note that in real scenarios, derivative-free iterative methods are the

only option even they are computationally expensive due to the filling process of

the DDO matrix.

The attention for future works might be focused on providing better approxima-

tions of the parameter matrices using first-order DDO so as to increase the r-order

of convergence without imposing further computational burden. Extension of such

schemes with frozen DDOs have also not yet been discussed in deep. Such devel-

opments are now under investigation in our research group and they can be done

as future works in this field of study.



Chapter 8

Are the eigenvalues of

preconditioned banded symmetric

Toeplitz matrices known in

almost closed form?

Bogoya, Böttcher, Grudsky, and Maximenko have recently obtained the

precise asymptotic expansion for the eigenvalues of a sequence of Toeplitz

matrices {Tn(f)}, under suitable assumptions on the associated generating

function f . We provide numerical evidence that some of these assumptions

can be relaxed and extended to the case of a sequence of preconditioned

Toeplitz matrices {T−1
n (g)Tn(f)}, for f trigonometric polynomial, g non-

negative, not identically zero trigonometric polynomial, r = f/g, and where

the ratio r(·) plays the same role as f(·) in the nonpreconditioned case.

Moreover, based on the eigenvalue asymptotics, we devise an extrapolation

algorithm for computing the eigenvalues of preconditioned banded symmet-

ric Toeplitz matrices with a high level of accuracy, with a relatively low

computational cost, and with potential application to the computation of

the spectrum of differential operators.
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8.1 Introduction

A matrix of size n, having a fixed entry along each diagonal, is called Toeplitz and

enjoys the expression

[ai−j]
n
i,j=1 =

















a0 a−1 a−2 · · · · · · a−(n−1)

a1
. . .

. . .
. . .

...

a2
. . .

. . .
. . .

. . .
...

...
. . .

. . .
. . .

. . . a−2

...
. . .

. . .
. . . a−1

an−1 · · · · · · a2 a1 a0

















.

Given a complex-valued Lebesgue integrable function φ : [−π, π] → C, the n-th

Toeplitz matrix generated by φ is defined as

Tn(φ) =
[
φ̂i−j

]n

i,j=1
,

where the quantities φ̂k are the Fourier coefficients of φ, which means

φ̂k =
1

2π

∫ π

−π

φ(θ) e−ikθdθ, k ∈ Z.

We refer to {Tn(φ)}n as the Toeplitz sequence generated by φ, which in turn is

called the generating function of {Tn(φ)}n. In the case where φ is real-valued,

all the matrices Tn(φ) are Hermitian and much is known about their spectral

properties, from the localization of the eigenvalues to the asymptotic spectral

distribution in the Weyl sense: in particular φ is the spectral symbol of {Tn(φ)}n,
see [9, 11] and the references therein.

More in detail, if φ is real-valued and not identically constant, then any eigenvalue

of Tn(φ) belongs to the open set (mφ,Mφ), with mφ, Mφ being the essential infi-

mum, the essential supremum of φ, respectively. The case of a constant φ is trivial:

in that case if φ = m almost everywhere then Tn(φ) = mIn with In denoting the

identity of size n. Hence if Mφ > 0 and φ is nonnegative almost everywhere, then

Tn(φ) is Hermitian positive definite.

We focus our attention on the following setting.
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• We consider two real-valued cosine trigonometric polynomials (RCTPs) f, g,

that is

f(θ) = f̂0 + 2

m1∑

k=1

f̂k cos(kθ), f̂0, f̂1, . . . , f̂m1 ∈ R, m1 ∈ N,

g(θ) = ĝ0 + 2

m2∑

k=1

ĝk cos(kθ), ĝ0, ĝ1, . . . , ĝm2 ∈ R, m2 ∈ N,

so that Tn(f), Tn(g) are both real symmetric.

• We assume that Mg = max g > 0 and mg = min g ≥ 0, so that Tn(g) is

positive definite.

• We consider Pn(f, g) = T−1
n (g)Tn(f) the “preconditioned” matrix and we

define the new symbol r = f/g.

The n-th Toeplitz matrix generated by φ ∈ {f, g} is the real symmetric banded

matrix of bandwidth 2m + 1, m ∈ {m1,m2} (m = m1 if φ = f and m = m2 if

φ = g), given by

Tn(φ) =

































φ̂0 φ̂1 · · · φ̂m

φ̂1

. . .
. . .

. . .

...
. . .

. . .
. . .

. . .

φ̂m

. . .
. . .

. . .
. . .

. . .
. . .

. . .
. . .

. . .

φ̂m · · · φ̂1 φ̂0 φ̂1 · · · φ̂m

. . .
. . .

. . .
. . .

. . .

. . .
. . .

. . .
. . . φ̂m

. . .
. . .

. . .
. . .

...

. . .
. . .

. . . φ̂1

φ̂m · · · φ̂1 φ̂0

































.

Matrices of the form Pn(f, g) are important for the fast solution of large Toeplitz

linear systems (in connection with the preconditioned conjugate gradient method

[134–136, 142] or of more general preconditioned Krylov methods [139, 140]). Fur-

thermore, up to low rank corrections, they appear in the context of the spectral
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approximation of differential operators in which a low rank correction of Tn(g) is

the mass matrix and a low rank correction of Tn(f) is the stiffness matrix.

Their spectral features have been studied in detail. More precisely, under the

assumption that r = m identically Pn(f, g) = rIn, while if mr < Mr, then any

eigenvalue of Pn(f, g) belongs to the open set (mr,Mr), see [136], and the whole

sequence {Pn(f, g)}n is spectrally distributed in the Weyl sense as r = f/g (see

[143]).

In our context, we say that a function is monotone if it is either increasing or

decreasing over the interval [0, π].

Under the assumption that r = f/g is monotone, We show experimentally that

for every integer α ≥ 0, every n and every j = 1, . . . , n, the following asymptotic

expansion holds:

λj(Pn(f, g)) = r(θj,n) +
α∑

k=1

ck(θj,n)h
k + Ej,n,α, (8.1)

where:

• the eigenvalues of Pn(f, g) are arranged in nondecreasing or nonincreasing

order, depending on whether r is increasing or decreasing;

• {ck}k=1,2,... is a sequence of functions from [0, π] to R which depends only on

r;

• h = 1
n+1

and θj,n = jπ
n+1

= jπh;

• Ej,n,α = O(hα+1) is the remainder (the error), which satisfies the inequality

|Ej,n,α| ≤ Cαh
α+1 for some constant Cα depending only on α and r.

In the pure Toeplitz case, that is for g = 1 identically, so that Pn(f, g) = Tn(f) and

r = f , the result is proven in [131–133], if the RCTP f is monotone and satisfies

certain additional assumptions, which include the requirements that f ′(θ) 6= 0 for

θ ∈ (0, π) and f ′′(θ) 6= 0 for θ ∈ {0, π}. The symbols

fq(θ) = (2− 2 cos θ)q, q = 1, 2, . . . , (8.2)

arise in the discretization of differential equations and are therefore of particular

interest. Unfortunately, for these symbols the requirement that f ′′(0) 6= 0 is not
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satisfied if q ≥ 2. In [138] several numerical evidences are reported, showing that

the higher order approximation (8.1) holds even in this “degenerate case”.

Here, as first purpose, we show numerically the same for the preconditioned ma-

trices Pn(f, g) and, from a theoretical point of view, the numerical testing is com-

plemented by the proof of the above conjecture in the basic case of α = 0.

Furthermore, in [138], the authors employed the asymptotic expansion (8.1) for

computing an accurate approximation of λj(Tn(f)) for very large n, provided that

the values λj1(Tn1(f)), . . . , λjs(Tns(f)) are available for moderate sizes n1, . . . , ns

with θj1,n1 = · · · = θjs,ns = θj,n, s ≥ 2. The second and main purpose of present

research is to carry out this idea and to support it by numerical experiments,

accompanied by an appropriate error analysis in the more general case of the pre-

conditioned matrices Pn(f, g). In particular, we devise an algorithm to compute

λj(Pn(f, g)) with a high level of accuracy and a relatively low computational cost.

The algorithm is completely analogous to the extrapolation procedure, which is

employed in the context of Romberg integration (to obtain high precision ap-

proximations of an integral from a few coarse trapezoidal approximations [144,

Section 3.4], see also [10] for more advanced algorithms). In this regard, the

asymptotic expansion (8.1) plays here the same role as the Euler–Maclaurin sum-

mation formula [144, Section 3.3].

The third and last purpose of this research work is to formulate, on the basis of

numerical experiments, a conjecture on the higher-order asymptotic of the eigen-

values if the monotonicity assumption on r = f/g is not in force. We also illustrate

how this conjecture can be used along with our extrapolation algorithm in order to

compute some of the eigenvalues of Pn(f, g) in the case where r is nonmonotone.

8.2 Error Bounds for the Coefficients ck in the

Asymptotic Expansion

We start this section by manipulating the error expression implicitly given in (8.1),

the goal being that of using extrapolation methods [10]. In fact, if we assume that
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the relations in (8.1) hold, then we can write

Ej,n,0 =
α∑

k=1

ck(θj,n)h
k + Ej,n,α , (8.3)

where Ej,n,0 = λj(Pn(f, g))− r(θj,n).

We now suppose to know the eigenvalues for different (small) ni namely

{(n1, λj1(Pn1(f, g))), (n2, λj2(Pn2(f, g))), · · · , (nα, λjα(Pnα(f, g)))},
where n1, n2, · · · , nα and j1, j2, · · · , jα are chosen in such a way that j1/(n1+1) =

j2/(n2 + 1) = · · · = jα/(nα + 1).

By defining h1 = 1/(n1 + 1), h2 = 1/(n2 + 1), . . . , hα = 1/(nα + 1), for a given set

of eigenvalues, equation (8.3) can be written as

Ej1,n1,0 =
α∑

k=1

ck(θj1,n1)h
k
1 + Ej1,n1,α,

Ej2,n2,0 =
α∑

k=1

ck(θj2,n2)h
k
2 + Ej2,n2,α,

Ej3,n3,0 =
α∑

k=1

ck(θj3,n3)h
k
3 + Ej3,n3,α,

...

Ejα,nα,0 =
α∑

k=1

ck(θjα,nα)h
k
α + Ejα,nα,α.

(8.4)

Let c, c̃ be the vectors

c = [c1, c2, . . . , cα]
T ; c̃ = [c̃1, c̃2, . . . , c̃α]

T ,

and let A be the coefficient matrix of size α × α with (A)i,j = hji . Hence the set

of equations (8.4) can be written in matrix form as

Ac = b0 − bα , (8.5)

where b0 = [Ej1,n1,0, Ej2,n2,0, . . . , Ejα,nα,0]
T and bα = [Ej1,n1,α, Ej2,n2,α, . . . , Ejα,nα,α]

T .

Furthermore, by neglecting the higher order errors, we may define an approxima-

tion c̃ of c according to the expression below

Ac̃ = b0 . (8.6)
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By solving the linear system of equations above, the approximation of c is easily

obtained since the matrix size is very small. In a subsequent step we derive upper-

bounds for |c̃− c|: in reality, equations (8.5) and (8.6) leads to

A(c̃− c) = bα. (8.7)

If we define ∆c = c̃− c and ηi = Eji,ni,α

hα+1
i

for i = 1, . . . , α, then the system (8.7) can

be written as

A∆c =










η1h
α+1
1

η2h
α+1
2

...

ηαh
α+1
α










, (8.8)

with |ηi| ≤ Cα for i = 1, . . . , α, where Cα is a constant. The coefficient matrix can

be expressed as

A =










h1 h21 . . . hα1

h2 h22 . . . hα2
...

...
...

hα h2α . . . hαα










=










h1

h2
. . .

hα










V (h1, . . . , hα),

where V (h1, . . . , hα) is the Vandermonde matrix of order α corresponding to

h1, . . . , hα.

By assuming W = V −1(h1, . . . , hα), we deduce

(W )i,j =







(−1)α−i










∑

1≤ k1 <...< kα−i ≤α
k1,...,kα−i 6=j

hk1 · · ·hkα−i

∏

1≤ k≤α
k 6=j

(hj − hk)










1 ≤ i < α,

1
∏

1≤ k≤α
k 6=j

(hj − hk)
i = α.

(8.9)
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Therefore for the inversion of the matrix A we have

(A−1)i,j =







(−1)α−i










∑

1≤ k1 <...< kα−i ≤α
k1,...,kα−i 6=j

hk1 · · ·hkα−i

hj
∏

1≤ k≤α
k 6=j

(hj − hk)










1 ≤ i < α,

1

hj
∏

1≤ k≤α
k 6=j

(hj − hk)
i = α,

(8.10)

and we can obtain an explicit expression for (∆c)i, i = 1, . . . , α, that is

(∆c)i =
α∑

j=1

(A−1)i,jηjh
α+1
j . (8.11)

Case 1. If i = α, then

(∆c)α =
α∑

j=1

ηjh
α+1
j

hj
∏

1≤ k≤α
k 6=j

(hj − hk)
.

Whence, from the fact that |ηi| ≤ Cα for i = 1, . . . , α,

|(∆c)α| ≤
α∑

j=1

|ηj|hα+1
j

hj
∏

1≤ k≤α
k 6=j

|hj − hk|
≤

α∑

j=1

Cαh
α
j

∏

1≤ k≤α
k 6=j

|hj − hk|
.

With the choice hj =
1

mj−1h1 for j = 1, . . . , α, m positive integer, we have

|(∆c)α| ≤ Cα

α∑

j=1

( h1

mj−1 )
α

∏

1≤ k≤α
k 6=j

h1

∣
∣
∣
∣

1

mj−1
− 1

mk−1

∣
∣
∣
∣

= Cαh
α
1

α∑

j=1

( 1
mj−1 )

α

hα−1
1

∏

1≤ k≤α
k 6=j

∣
∣
∣
∣

1

mj−1
− 1

mk−1

∣
∣
∣
∣

=

= h1Cα

α∑

j=1

( 1
mj−1 )

α

∏

1≤ k≤α
k 6=j

∣
∣
∣
∣

1

mj−1
− 1

mk−1

∣
∣
∣
∣

= O(h1).
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Case 2. If i = 1, . . . , α− 1, then

(∆c)i =
α∑

j=1

(−1)α−iηjh
α+1
j

∑

1≤ k1 <...< kα−i ≤α
k1,...,kα−i 6=j

hk1 · · ·hkα−i

hj
∏

1≤ k≤α
k 6=j

(hj − hk)
,

that is different from the case i = α just for the numerator

∑

1≤ k1 <...< kα−i ≤α
k1,...,kα−i 6=j

hk1 · · ·hkα−i
.

As a consequence

|(∆c)i| ≤ Cα

α∑

j=1

hαj

∑

1≤ k1 <...< kα−i ≤α
k1,...,kα−i 6=j

hk1 · · ·hkα−i

∏

1≤ k≤α
k 6=j

|hj − hk|
.

With the choice hj =
1

mj−1h1 for j = 1, . . . , α, we infer

|(∆c)i| ≤ Cα

α∑

j=1

(
h1
mj−1

)α

∑

1≤ k1 <...< kα−i ≤α
k1,...,kα−i 6=j

hα−i
1

(
1

mk1−1

1

mk2−1
. . .

1

mkα−i−1

)

∏

1≤ k≤α
k 6=j

h1

∣
∣
∣
∣

1

mj−1
− 1

mk−1

∣
∣
∣
∣

= Cα

α∑

j=1

(
1

mj−1

)α (
hα1h

α−i
1

hα−1
1

)

∑

1≤ k1 <...< kα−i ≤α
k1,...,kα−i 6=j

(
1

mk1−1

1

mk2−1
. . .

1

mkα−i−1

)

∏

1≤ k≤α
k 6=j

∣
∣
∣
∣

1

mj−1
− 1

mk−1

∣
∣
∣
∣
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= hα−i+1
1 Cα

α∑

j=1

(
1

mj−1

)α

∑

1≤ k1 <...< kα−i ≤α
k1,...,kα−i 6=j

(
1

mk1−1

1

mk2−1
. . .

1

mkα−i−1

)

∏

1≤ k≤α
k 6=j

∣
∣
∣
∣

1

mj−1
− 1

mk−1

∣
∣
∣
∣

= O(hα−i+1
1 ).

As a conclusion, with the choice hj = 1
mj−1h1 for j = 1, . . . , α and under the

assumption that the asymptotic expansion reported in (8.1) is true, we deduce

|(∆c)i| = O(hα−i+1
1 ), (8.12)

for i = 1, . . . , α.

8.3 Error Bounds for Numerically Approximated

Eigenvalues

The goal of this short section is to provide error bounds based on the linear

system in (8.6) for the computation of the eigenvalues of Pn(f, g): of course these

error bounds are based on the conjecture that the relations reported in (8.1) are

true. However, as we can see in Section 8.4, the numerical tests fully support the

existence of the considered asymptotic expansion.

Indeed, as already observed, by solving (8.6), we can approximate ck. Once we

have the values of ck, we can approximate the eigenvalues λjβ of a large dimension

matrix of size nβ, here nβ + 1 = mβ−1(n1 + 1). The asymptotic expansion (8.3)

can be written as

Ejβ ,nβ ,0 =h̄
T
β c+ Ejβ ,nβ ,α . (8.13)
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By subtraction h̄Tβ c̃ from both sides of the equation above, we find

Ejβ ,nβ ,0 − h̄Tβ c̃ = h̄Tβ (c− c̃) + Ejβ ,nβ ,α,

λj(Pnβ
(f, g))− r(θj,nβ

)− h̄Tβ c̃ = h̄Tβ∆c+ Ejβ ,nβ ,α,

∣
∣λj(Pnβ

(f, g))− r(θj,nβ
)− h̄Tβ c̃

∣
∣ ≤

α∑

i=1

hiβ|(∆c)i|+ |Ejβ ,nβ ,α|,

∣
∣λj(Pnβ

(f, g))− r(θj,nβ
)− h̄Tβ c̃

∣
∣ ≤

α∑

i=1

hiβ|(∆c)i|+ Cαh
α+1
β ,

(8.14)

where h̄β = [hβ, h
2
β, · · · , hαβ ]T , |Ejβ ,nβ ,α| ≤ Cαh

α+1
β for some constant Cα and |(∆c)i|

is given in (8.12).

8.4 Numerical Tests

In this section we want to present a few numerical experiments to support the

asymptotic expansion (8.1) in the case where one or more properties of the follow-

ing list are satisfied:

1. f ′′(0) 6= 0 (see Example 1, Example 3, and Example 5),

2. f ′′(0) = 0 (see Example 2 and Example 4),

3. min g > 0 (see Example 1, Example 2, and Example 5),

4. min g = 0 (see Example 3 and Example 4),

5. r = f/g is non monotone (see Example 5).

The approximation of eigenvalues of large matrices in each case is also computed.

The expansion (8.1) for α = 4 is

λj(Pn(f, g)) = r(θj,n) + c1(θj,n)h+ c2(θj,n)h
2 + c3(θj,n)h

3

+ c4(θj,n)h
4 + Ej,n,4,

Ej,n,0 = λj(Pn(f, g))− r(θj,n) = c1(θj,n)h+ c2(θj,n)h
2

+ c3(θj,n)h
3 + c4(θj,n)h

4 + Ej,n,4 .

(8.15)

In all numerical examples we choose four matrix-size values, that is ni for i ∈
{1, 2, 3, 4}, in a way that they satisfy ni = mi−1(n1 + 1) − 1, with m being a
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positive integer. The expansion (8.15) for the set of the four dimensions ni can be

written as

Ej1,n1,0 = c1(θj1,n1)h1 + c2(θj1,n1)h
2
1 + c3(θj1,n1)h

3
1 + c4(θj1,n1)h

4
1

+ Ej1,n1,4,

Ej2,n2,0 = c1(θj2,n2)h2 + c2(θj2,n2)h
2
2 + c3(θj2,n2)h

3
2 + c4(θj2,n2)h

4
2

+ Ej2,n2,4,

Ej3,n3,0 = c1(θj3,n3)h3 + c2(θj3,n3)h
2
3 + c3(θj3,n3)h

3
3 + c4(θj3,n3)h

4
3

+ Ej3,n3,4,

Ej4,n4,0 = c1(θj4,n4)h4 + c2(θj4,n4)h
2
4 + c3(θj4,n4)h

3
4 + c4(θj4,n4)h

4
4

+ Ej4,n4,4,

(8.16)

where hi =
1

ni+1
and ji = mi−1 j1 for i ∈ {1, 2, 3, 4}. Notice that θji,ni

= θj1,n1 = θ̄

for a fixed j1 ∈ {1, 2, · · · , n1}. We are interested in the numerical approximation

of ci(θ̄) for i ∈ {1, 2, 3, 4} and then in the precise numerical approximation of the

eigenvalue of Pn(f, g) for large n. The set of equations (8.16) can be written as

Ej1,n1,0 = c̃1(θ̄)h1 + c̃2(θ̄)h
2
1 + c̃3(θ̄)h

3
1 + c̃4(θ̄)h

4
1,

Ej2,n2,0 = c̃1(θ̄)h2 + c̃2(θ̄)h
2
2 + c̃3(θ̄)h

3
2 + c̃4(θ̄)h

4
2,

Ej3,n3,0 = c̃1(θ̄)h3 + c̃2(θ̄)h
2
3 + c̃3(θ̄)h

3
3 + c̃4(θ̄)h

4
3,

Ej4,n4,0 = c̃1(θ̄)h4 + c̃2(θ̄)h
2
4 + c̃3(θ̄)h

3
4 + c̃4(θ̄)h

4
4.

(8.17)

We solve the system of linear equations above for j1 ∈ {1, 2, · · · , n1} to compute

c̃i(θ̄). The computed c̃i are used to approximate the eigenvalues of large size nβ

by exploiting the following relation

λ̃jβ(Pnβ
(f, g)) = r(θjβ ,nβ

) + h̄Tβ c̃ . (8.18)

Example 8.1. Let g, f , and r be the functions defined as

f(θ) = 4− 2 cos(θ)− 2 cos(2θ)

= (2− 2 cos(θ))(3 + 2 cos(θ)) ,

g(θ) = 3 + 2 cos(θ) ,

r(θ) =
f(θ)

g(θ)
= 2− 2 cos(θ) ,

where θ ∈ [0, π]. The graphs of generating functions are shown in left panel of
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Figure 8.1, and the approximations c̃k, for k = 1, 2, 3, 4 are shown in the right

panel. Note that g(θ) > 0, ∀ θ ∈ [0, π], f ′′(0) 6= 0, and furthermore r(θ) is

monotone. We set n = n1 ∈ {40, 60, 80, 100} and m = 2.

Figure 8.1: Example 1: Generating functions (f, g, and r) and c̃k for k =
1, 2, 3, 4.

Example 8.2. Let g, f , and r be the functions defined as

f(θ) = 20− 30 cos(θ) + 12 cos(2θ)− 2 cos(3θ) = (2− 2 cos(θ))3 ,

g(θ) = 3 + 2 cos(θ) ,

r(θ) =
f(θ)

g(θ)
=

(2− 2 cos(θ))3

3 + 2 cos(θ)
,

where θ ∈ [0, π]. The graphs of generating functions are shown in left panel of

Figure 8.2, and the approximations c̃k, for k = 1, 2, 3, 4 are shown in the right

panel. Remark that g(θ) > 0, ∀ θ ∈ [0, π], f ′′(0) = 0, and furthermore r(θ) is

monotone. We set n = n1 ∈ {40, 60, 80, 100} and m = 2.

Figure 8.2: Example 2: Generating functions (f, g, and r) and c̃k for k =
1, 2, 3, 4.
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There is an important issue to discuss here. Both the functions f and r attain

the minimum at θ = 0 with a very high order. Indeed we have f(θ), r(θ) ≈ θ6,

with φ1 ≈ φ2 being the symmetric, transitive relation telling that there exist positive

constants c, C > 0 such that cφ1 ≤ φ2 ≤ Cφ1 on the whole definition domain [0, π].

Therefore for fixed j (independent of n) the j-th smallest eigenvalue of Pn(f, g) is

asymptotic to kjh
6, kj positive constant depending on j but not on n: the reader

is refereed to [141] for the preconditioned case with the limitation j = 1 and to

[128] and references therein for very elegant and precise estimates regarding the

pure Toeplitz case.

Now if we fix j and we put together λj (Pn(f, g)) ≈ h6 with relations (8.3)–

(8.4) then the only possibility for avoiding a contradiction is that the functions

c1(θ), c2(θ), c3(θ), c4(θ), c5(θ) all vanish at θ = 0.

The approximations c̃k, for k = 1, 2, 3, 4 shown in the right panel of Figure 8.2 are

coherent with the above mathematical conclusion and in fact all these approxima-

tions vanish simultaneously at θ = 0 (the fifth is not displayed, but we computed

it and it also equals to zero at θ = 0, while, as expected from an extension of the

results by [128] to the preconditioned Toeplitz case, the sixth is nonzero at θ = 0).

Since the argument and the conclusions are the very same, we anticipate that the

discussion can be repeated verbatim for Example 4, where the functions f and r

attain the minimum at θ = 0 with order 10. As a consequence, we expect that the

functions c1(θ), . . . , c9(θ) all simultaneously vanish at θ = 0, while c10(0) 6= 0: this

is confirmed for the first four of them as reported in the right panel of Figure 8.4.

Example 8.3. Let g, f , and r be the functions defined as

f(θ) = 1 + cos(θ) +
1

4
cos(2θ) +

1

5
cos(3θ) +

1

10
cos(4θ) +

1

10
cos(5θ) ,

g(θ) = 2− 2 cos(θ) ,

r(θ) =
f(θ)

g(θ)
=

1 + cos(θ) + 1
4
cos(2θ) + 1

5
cos(3θ) + 1

10
cos(4θ) + 1

10
cos(5θ)

2− 2 cos(θ)
,

where θ ∈ [0, π]. The graphs of generating functions are shown in left panel of

Figure 8.3, and the approximations c̃k, for k = 1, 2, 3, 4 are shown in the right

panel. Note that min g(θ) = 0, ∀ θ ∈ [0, π], f ′′(0) 6= 0, and furthermore r(θ) is

monotone. We set n = n1 ∈ {40, 60, 80, 100} and m = 2.
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Figure 8.3: Example 3: Generating functions (f, g, and r) and c̃k for k =
1, 2, 3, 4.

Example 8.4. Let g, f , and r be the functions defined as

f(θ) = 252− 420 cos(θ) + 240 cos(2θ)− 90 cos(3θ) + 20 cos(4θ)− 2 cos(5θ)

= (2− 2 cos(θ))5 ,

g(θ) = 2 + 2 cos(θ) ,

r(θ) =
f(θ)

g(θ)
=

(2− 2 cos(θ))5

2 + 2 cos(θ)
,

where θ ∈ [0, π]. The graphs of generating functions are shown in left panel of

Figure 8.4, and the approximations c̃k, for k = 1, 2, 3, 4 are shown in the right

panel. Remark that min g(θ) = 0, ∀ θ ∈ [0, π], f ′′(0) = 0, and furthermore r(θ) is

monotone. We set n = n1 ∈ {40, 60, 80, 100} and m = 2.

Figure 8.4: Example 4: Generating functions (f, g, and r) and c̃k for k =
1, 2, 3, 4.
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Example 8.5. Let g, f , and r be the functions defined as

f(θ) =
136

17
+

56

17
cos(θ)− 2

17
cos(2θ)

+
5

17
cos(3θ) = (3− cos(θ) +

5

17
cos(2θ))(3 + 2 cos(θ)) ,

g(θ) = 3 + 2 cos(θ) ,

r(θ) =
f(θ)

g(θ)
= 3− cos(θ) +

5

17
cos(2θ) ,

where θ ∈ [0, π]. The graphs of generating functions are shown in left panel of

Figure 8.5, and the approximations c̃k, for k = 1, 2, 3, 4 are shown in the right

panel. Notice that min g(θ) > 0, ∀ θ ∈ [0, π], f ′′(0) 6= 0, and furthermore r(·) is

non monotone. We set n = n1 ∈ {40, 60, 80, 100} and m = 2.

Figure 8.5: Example 5: Generating functions (f, g, and r) and c̃k for k =
1, 2, 3, 4.

The numerical tests related to Examples 1 and 2, as in Figures 8.6 and 8.7, show

that the error expansion (8.1) behaves as expected. In Figure 8.11 we also see that

the approximated c̃k can be used for a large n to approximate the error term to

(or almost to) machine precision.

In the numerical tests associated with Examples 3 and 4, as in Figures 8.8 and

8.9, we observe again that the error expansion is in accordance with (8.1). We also

note a slight deviation for the largest eigenvalue and this has to be expected since

we have r(θ1,n)→∞ as n→∞ for Example 3 (on the other hand for Example 4

we notice r(θn,n)→∞ as n→∞). However, the approximation of the eigenvalues

of Pn(f, g) is excellent and almost to machine precision as reported in Figure 8.12.

In the numerical test related to Example 5 we have a non monotone region for

θ ∈ [0, 2 tan−1(
√

3/17)] where the proposed expansion does not work. Indeed
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Figure 8.6: Example 1: Ej,n,0, Ẽj,n,k (k = 1, 2, 3), and c̃k (k = 1, 2, 3, 4), for
n = n1 = {40, 60, 80, 100}.
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Figure 8.7: Example 2: Ej,n,0, Ẽj,n,k (k = 1, 2, 3), and c̃k (k = 1, 2, 3, 4), for
n = n1 = {40, 60, 80, 100}.
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Figure 8.8: Example 3: Ej,n,0, Ẽj,n,k (k = 1, 2, 3), and c̃k (k = 1, 2, 3, 4), for
n = n1 = {40, 60, 80, 100}.
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Figure 8.9: Example 4: Ej,n,0, Ẽj,n,k (k = 1, 2, 3), and c̃k (k = 1, 2, 3, 4), for
n = n1 = {40, 60, 80, 100}.
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Figure 8.10: Example 5: Ej,n,0, Ẽj,n,k (k = 1, 2, 3), and c̃k (k = 1, 2, 3, 4), for
n = n1 = {40, 60, 80, 100}.
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Figure 8.11: Example 1 and 2: The errors log10 |Ej7,n7,0| and log10 |Ẽj7,n7,4|
for the 100 indices j7 of n7 = 6463 in (8.18), corresponding to n1 = 100, and

using c̃k, k = 1, 2, 3, 4, computed with m = 2.

Figure 8.12: Example 3 and 4: The errors log10 |Ej7,n7,0| and log10 |Ẽj7,n7,4|
for the 100 indices j7 of n7 = 6463 in (8.18), corresponding to n1 = 100, and

using c̃k, k = 1, 2, 3, 4, computed with m = 2.

Figure 8.13: Example 5: The errors log10 |Ej7,n7,0| and log10 |Ẽj7,n7,4| for
the 100 indices j7 of n7 = 6463 in (8.18), corresponding to n1 = 100, and
using c̃k, k = 1, 2, 3, 4, computed with m = 2. Note the non monotone part,

θ ∈ [0, 2 tan−1(
√

3/17)], where the error is not improved.
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additional errors are introduced when compared to Ej,n,0, since the sampling of

r(θj1,n1) leads to a poorer approximation after ordering than the procedure given

by sampling r(θj,n7) first and then picking samples after ordering. However, the

expansion is confirmed for the rest of the domain, as seen in Figure 8.10. Fur-

thermore, in Figure 8.13 the expansion works well again for the monotone part,

by allowing an approximation almost to machine precision of the eigenvalues of

Pn(f, g).

However, even if the eigenvalues lying in the non monotone region give raise to an

irregular error pattern, it seems that there exists a kind of ’deformed’ periodicity

in the error, like it is formally proven, without deformations, for the eigenvalues

of Tn(f), f(θ) = 2− 2 cos(ωθ), ω ≥ 2 integer, and g(θ) = 1 (see [137]). The latter

observation indicates that a more complete study of this ’deformed’ periodicity

has to be considered in the future.

We finally observe that remarkable numerical results for the eigenvalues of Pn(f, g),

as reported in Figures 8.11, 8.12, 8.13, really answer in the positive to the question

posed in the title of this research work. In fact, we obtain almost machine precision

for the computation of the spectrum of Pn(f, g), for large n and only working with

few really small matrices.

8.5 Summary

Bogoya et al. [131–133] have recently obtained the precise asymptotic expansion

for the eigenvalues of a sequence of Toeplitz matrices {Tn(f)}, under suitable

assumptions on the associated generating function f . In this research work we

have shown numerical evidence that some of these assumptions can be relaxed and

extended to the case of a sequence of preconditioned Toeplitz matrices {Pn(f, g) =

T−1
n (g)Tn(f)}, for f trigonometric polynomial, g nonnegative, not identically zero

trigonometric polynomial, r = f/g, and where the ratio r(·) plays the same role

as f(·) in the nonpreconditioned case. The first order asymptotic term of the

expansion has been also proven using purely linear algebra tools.

Moreover, based on the eigenvalue asymptotics, we devised an extrapolation algo-

rithm for computing the eigenvalues of preconditioned banded symmetric Toeplitz

matrices with a high level of accuracy, with a relatively low computational cost,

and with potential application to the computation of the spectrum of differential
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operators. In fact, up to low rank corrections, matrices of the form Pn(f, g) appear

in the context of the spectral approximation of differential operators in which a

low rank correction of Tn(g) is the mass matrix and a low rank correction of Tn(f)

is the stiffness matrix. We carried out also preliminary numerical tests confirming

that the same kind of asymptotic expansion holds, at least in the context of the

Isogeometric approximation of second order differential operators.

Therefore a plan for the future has to include:

• the theoretical proof of the asymptotic expansion in (8.1) for α > 1;

• the analysis of the non monotone case and its relations with the study in

[137] for the special case where f(θ) = 2 − 2 cos(ωθ), ω ≥ 2 integer, and

g(θ) = 1;

• the extension of the results by [128] to the preconditioned Toeplitz case and

the study of its connection with the general expansion in (8.1);

• the extension of the numerical and theoretical study to a multidimensional,

block setting, with special attention to the matrices coming from the ap-

proximation of elliptic differential operators.

Appendix

Theorem 8.1. Let f , g be real-valued cosine trigonometric polynomials (RCTP)

on [0, π] with Mg = max g > 0 and mg = min g ≥ 0. If r = f
g
is monotone on

[0, π] then ∃C > 0 such that

∣
∣
∣
∣
λj(Pn(f, g))− r

(
jπ

n+ 1

)∣
∣
∣
∣
≤ Ch ∀ j, ∀n, (8.19)

where

• Pn(f, g) is the “preconditioned” matrix Pn(f, g) = T−1
n (g)Tn(f),

• λ1(Pn(f, g)), λ2(Pn(f, g)), . . . , λn(Pn(f, g)) are the eigenvalues of Pn(f, g),

arranged in nondecreasing or nonincreasing order, depending on whether r

is increasing or decreasing,
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• h = 1
n+1

and θj,n = jπ
n+1

= jπh.

Proof. For the sake of simplicity, we assume that r is nondecreasing (the other

case has a similar proof).

Notice that the conditions on f and g imply that Tn(g) is positive definite and, by

setting ∼ the symbol representing similarity between matrices, we find Pn(f, g) ∼
T

−1/2
n (g)Tn(f)T

−1/2
n (g) so we can order the eigenvalues of Pn(f, g) as follows

λ1(Pn(f, g)) ≤ λ2(Pn(f, g)) ≤ · · · ≤ λn(Pn(f, g)).

We remark that

Tn(f) = τn(f) +Hn(f),

Tn(g) = τn(g) +Hn(g),
(8.20)

where, for ψ RCTP of degree m and Q =
(√

2
n+1

sin
(

ijπ
n+1

))n

i,j=1
, τn(ψ) is the

following τ matrix [130] of size n generated by ψ

τn(ψ) = Q diag
1≤j≤n

(

ψ

(
jπ

n+ 1

))

Q, Q = QT = Q−1,

and Hn(ψ) is the Hankel matrix

Hn(φ) =



























ψ̂2 ψ̂3 · · · ψ̂m

ψ̂3 . .
.

... . .
.

ψ̂m

ψ̂m

. .
. ...

. .
.

ψ̂3

ψ̂m · · · ψ̂3 ψ̂2



























.
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with rank(Hn(ψ)) ≤ 2(m− 1).

Hence,

Rf := rank(Hn(f)) ≤ 2(deg(f)− 1),

Rg := rank(Hn(g)) ≤ 2(deg(g)− 1),

Rf,g := max{Rf , Rg} ≤ 2 (max{deg(f), deg(g)} − 1) .

(8.21)

Let P τ
n be the matrix τ−1

n (g)τn(f),

P τ
n = Q

(

diag
1≤j≤n

(

g

(
jπ

n+ 1

)))−1

QQ diag
1≤j≤n

(

f

(
jπ

n+ 1

))

Q

= Q diag
1≤j≤n

(
f

g

(
jπ

n+ 1

))

Q

= Q diag
1≤j≤n

(

r

(
jπ

n+ 1

))

Q.

Hence, for j = 1, . . . , n

λj(P
τ
n ) = r

(
jπ

n+ 1

)

. (8.22)

By observing that T−1
n (g)Tn(f) is similar to T

−1/2
n (g)Tn(f)T

−1/2
n (g), using the Min-

Max spectral characterization for Hermitian matrices [129], fixed j ∈ {Rf,g +

1, . . . , n−Rf,g} and T ⊂ C
n, dim(T ) = n+ 1− j, we obtain

λj(Pn(f, g)) = λj
(
T−1
n (g)Tn(f)

)

= λj
(
T−1/2
n (g)Tn(f)T

−1/2
n (g)

)

= max
dim(T )=n+1−j



min
x∈T,
x 6=0

(

x∗T
−1/2
n (g)Tn(f)T

−1/2
n (g)x

x∗x

)



= max
dim(T )=n+1−j








min
x∈T,
x 6=0

y=T
−1/2
n (g)x

(
y∗Tn(f)y

y∗Tn(g)y

)








= max
dim(T̂ )=n+1−j



min
y∈T̂ ,
y 6=0

(
y∗Tn(f)y

y∗Tn(g)y

)


 ,

(8.23)

because T
−1/2
n (g) is a full rank matrix and, if dim(T ) = n+ 1− j, then T̂ := {y :

y = T
−1/2
n (g)x, x 6= 0, x ∈ T} is a new vector space having the same dimension

n+ 1− j as T .

Let F be the subspace of Cn generated by the union of the columns of matrices
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Hn(f) and Hn(g). Because of the particular structure of the columns of Hankel

matrices Hn(f) and Hn(g), we deduce

dim(F ) = max {rank(Hn(g)), rank(Hn(f))} = Rf,g,

so that

dim(F⊥) = n−Rf,g.

Let us define Wf,g = T̂ ∩ F⊥,

n+ 1− j ≥ dim(Wf,g) ≥ max{0, dim(T̂ ) + dim(F⊥)− n}
= n+ 1− j + n−Rf,g − n = n+ 1− (j +Rf,g),

because n + 1 − (j + Rf,g) ≥ 1 for j ≤ n − Rf,g.The latter implies in particular

that Wf,g 6= ∅. Thus, due the orthogonality, ∀ y 6= 0 ∈ Wf,g, we find

Hn(f)y = 0, Hn(g)y = 0,

so that

y∗Hn(f)y = 0, y∗Hn(g)y = 0.

Hence, from (8.23)

λj(Pn(f, g)) = max
dim(T̂ )=n+1−j



min
y∈T̂ ,
y 6=0

(
y∗(τn(f) +Hn(f))y

y∗(τn(g) +Hn(g))y

)




≤ max
dim(T̂ )=n+1−j



 min
y∈Wf,g

y 6=0

(
y∗(τn(f) +Hn(f))y

y∗(τn(g) +Hn(g))y

)




= max
dim(T̂ )=n+1−j



 min
y∈Wf,g

y 6=0

(
y∗τn(f)y

y∗τn(g)y

)




= max
Wf,g=T̂∩F⊥

dim(T̂ )=n+1−j



 min
y∈Wf,g ,

y 6=0

(
y∗τn(f)y

y∗τn(g)y

)




≤ max
n+1−j≥dim(Ŵf,g)≥n+1−(j+Rf,g)




 min

y∈Ŵf,g ,
y 6=0

(
y∗τn(f)y

y∗τn(g)y

)






(8.24)
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= max
n+1−j≥dim(Ŵ )≥n+1−(j+Rf,g)









min
y∈Ŵf,g ,

y 6=0

x=τ
1/2
n (g)y

(

x∗τ
−1/2
n (g)τn(f)τ

−1/2
n (g)x

x∗x

)









= max{λj(P τ
n ), λj+1(P

τ
n ), . . . , λj+Rf,g

(P τ
n )}

= λj+Rf,g
(P τ

n ).

By fixing j ∈ {Rf,g + 1, . . . , n − Rf,g} and T ⊂ C
n, dim(T ) = j, analogously we

obtain

λj(Pn(f, g)) = min
dim(T )=j



max
x∈T,
x 6=0

(

x∗T
−1/2
n (g)Tn(f)T

−1/2
n (g)x

x∗x

)



= min
dim(T )=j








max
x∈T,
x 6=0

y=T
−1/2
n (g)x

(
y∗Tn(f)y

y∗Tn(g)y

)








= min
dim(T̂ )=j



max
y∈T̂ ,
y 6=0

(
y∗Tn(f)y

y∗Tn(g)y

)




= min
dim(T̂ )=j



max
y∈T̂ ,
y 6=0

(
y∗(τn(f) +Hn(f))y

y∗(τn(g) +Hn(g))y

)


 .

(8.25)

Let us define Wf,g = T̂ ∩ F⊥,

j ≥ dim(Wf,g) ≥ max{0, dim(T̂ ) + dim(F⊥)− n} = j + n−Rf,g − n = j −Rf,g,

because j−Rf,g ≥ 1 for j ≥ Rf,g+1. The latter implies in particular thatWf,g 6= ∅,
and hence, due the orthogonality, ∀ y 6= 0 ∈ Wf,g, we have

Hn(f)y = 0, Hn(g)y = 0,

and therefore

y∗Hn(f)y = 0, y∗Hn(g)y = 0.
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Thus, from (8.25)

λj(Pn(f, g)) ≥ min
dim(T̂ )=j



 max
y∈Wf,g ,

y 6=0

(
y∗(τn(f) +Hn(f))y

y∗(τn(g) +Hn(g))y

)




= min
dim(T̂ )=j



 max
y∈Wf,g ,

y 6=0

(
y∗τn(f)y

y∗τn(g)y

)




= min
Wf,g=T̂∩F⊥

dim(T̂ )=j



 max
y∈Wf,g ,

x 6=0

(
y∗τn(f)y

y∗τn(g)y

)




≥ min
j≥dim(Ŵf,g)≥j−Rf,g



 max
y∈Wf,g ,

y 6=0

(
y∗τn(f)y

y∗τn(g)y

)




= min{λj(P τ
n ), λj−1(P

τ
n ), . . . , λj−Rf,g

(P τ
n )}

= λj−Rf,g
(P τ

n ).

(8.26)

By exploiting the previous inequality, relations (8.22) and (8.24), we obtain for

j = Rf,g + 1, . . . , n−Rf,g

r

(
(j − s)π

n+ 1

)

= λj−s(P
τ
n ) ≤ λj(Pn(f, g)) ≤ λj+s(P

τ
n ) = r

(
(j + s)π

n+ 1

)

, (8.27)

where s = Rf,g.

The function r is a RCTP on [0, π] and a monotone increasing function so we have,

∀n and ∀ j = s+ 1, . . . , n− s,

λj(Pn(f, g))−r
(

jπ

n+ 1

)

≤ r

(
(j + s)π

n+ 1

)

−r
(

jπ

n+ 1

)

= r′(θ̄)
sπ

n+ 1
≤ ||r′||∞sπh,

(8.28)

with θ̄ ∈ ( jπ
n+1

, (j+s)π
n+1

) and

λj(Pn(f, g))− r

(
jπ

n+ 1

)

≥ r

(
(j − s)π

n+ 1

)

− r

(
jπ

n+ 1

)

≥ −||r′||∞sπh. (8.29)

By setting C = ||r′||∞sπ, for s+ 1 ≤ j ≤ n− s, we obtain

∣
∣
∣
∣
λj(Pn(f, g))− r

(
jπ

n+ 1

)∣
∣
∣
∣
≤ Ch. (8.30)

Furthermore, from [136] ∀ j = 1, . . . , n, we know that

mr ≤ λj(Pn(f, g)) ≤Mr,
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where

mr = min
θ∈(0,π)

r(θ); MR = max
θ∈(0,π)

r(θ),

with strict inequalities that is mr < λj(Pn(f, g)) < Mr if mr < Mr, while the case

mr =Mr is in fact trivial. Hence for n− s < j ≤ n

∣
∣
∣
∣
r

(
jπ

n+ 1

)

− λj(Pn(f, g))

∣
∣
∣
∣
≤

∣
∣
∣
∣
r

(
jπ

n+ 1

)

− r

(
nπ

n+ 1

)∣
∣
∣
∣
≤

∣
∣r′

(
θ̄
)∣
∣

∣
∣
∣
∣

(n− j)π

n+ 1

∣
∣
∣
∣
,

where θ̄ ∈ ( jπ
n+1

, nπ
n+1

). If n− s < j ≤ n then |n− j| < s, so that

∣
∣
∣
∣
r

(
jπ

n+ 1

)

− λj(Pn(f, g))

∣
∣
∣
∣
≤ ||r′||∞sπh = Ch.

For 1 ≤ j < s+ 1

∣
∣
∣
∣
r

(
jπ

n+ 1

)

− λj(Pn(f, g))

∣
∣
∣
∣
≤

∣
∣
∣
∣
r

(
jπ

n+ 1

)

− r

(
π

n+ 1

)∣
∣
∣
∣
≤

∣
∣r′

(
θ̄
)∣
∣

∣
∣
∣
∣

(j − 1)π

n+ 1

∣
∣
∣
∣
,

where θ̄ ∈ ( π
n+1

, jπ
n+1

). If 1 ≤ j < s+ 1 then |j − 1| < s, so

∣
∣
∣
∣
r

(
jπ

n+ 1

)

− λj(Pn(f, g))

∣
∣
∣
∣
≤ ||r′||∞sπh = Ch.

Hence ∣
∣
∣
∣
λj(Pn(f, g))− r

(
jπ

n+ 1

)∣
∣
∣
∣
≤ Ch ∀ j ∀n.

Here we present a second proof of the previous theorem.

Proof. We adopt the very same notation used for the first proof. First we notice

that the low rank matrices Hn(f) and Hn(g) are also Hermitian matrices because

Tn(f), Tn(g), τn(f), and τn(g) are Hermitian matrices. Let xi and λi (Pn(f, g)) be

a pair eigenvector and eigenvalue of Pn(f, g). Then we can write

Pn(f, g)xi = λi (Pn(f, g))xi.

By multiplying the previous equation from the left by the matrix Tn(g) = τn(g) +

Hn(g), we obtain

(τn(f) +Hn(f))xi = λi (Pn(f, g)) (τn(g) +Hn(g))xi,
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which is equivalent to

(τn(f) +Hn(f)− λi (Pn(f, g))Hn(g))xi = λi (Pn(f, g)) τn(g)xi.

Finally, by setting yi = τ
1/2
n (g)xi and by multiplying from the left by the matrix

τ
−1/2
n (g), we have

τ−1/2(g) (τn(f) +Hn(f)− λi (Pn(f, g))Hn(g)) τ
−1/2(g)yi = λi (Pn(f, g))yi.

(8.31)

Equation (8.31) tells us that λi (Pn(f, g)) is also the eigenvalue of

τ−1/2
n (g) (τn(f) +Hn(f)− λi (Pn(f, g))Hn(g)) τ

−1/2
n (g).

We can write

τ−1/2
n (g) (τn(f) +Hn(f)− λi (Pn(f, g))Hn(g)) τ

−1/2
n (g)

as

τ−1/2
n (g)τn(f)τ

−1/2
n (g) + τ−1/2

n (g) (Hn(f)− λi (Pn(f, g))Hn(g)) τ
−1/2
n (g) =

= τn(f/g) + τ−1/2
n (g) (Hn(f)− λi (Pn(f, g))Hn(g)) τ

−1/2
n (g) . (8.32)

Notice that the rank of any linear combination of Hn(f) and Hn(g) is Rf,g =

max{rank(Hn(f)), rank(Hn(g))} and the argument is the special Hankel struc-

ture of Hn(f) and Hn(g). As a conclusion, from the expression above, using the

MinMax characterization and the interlacing theorem for Hermitian matrices, we

write

λi−Rf,g
(τn(f/g)) ≤ λi (Pn(f, g)) ≤ λi+Rf,g

(τn(f/g)), (8.33)
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where i ∈ {Rf,g + 1, · · · , n − Rf,g}, which leads again to the proof of Theorem

8.1.

Remark 8.2. With regard to Theorem 8.1, the case where r is bounded and non-

monotone is even easier. If we consider r̂, the monotone nondecreasing rearrange-

ment of r on [0, π], taking into account that the derivative of r has at most a

finite number S of sign changes, we deduce that r̂ is Lipschitz continuous and its

Lipschitz constant is bounded by ‖r′‖∞ (notice that r̂ is not necessarily continu-

ously differentiable, but the derivative of r̂ has at most S points of discontinuity).

Furthermore, the eigenvalues of τn(r) are exactly given

r

(
jπ

n+ 1

)

so that, by ordering these values nondecreasingly, we deduce that they coincide

with r̂(xj,h), with xj,h of the form
jπ
n+1

(1+o(1)). With these premises, the proof fol-

lows exactly the same steps as in Theorem 8.1, using the MinMax characterization

and the interlacing theorem for Hermitian matrices.



Chapter 9

A robust numerical method to

compute eigenvalues of banded

symmetric Toeplitz matrices

A robust numerical methods is constructed to extrapolate and interpolate

the eigenvalues of banded symmetric Toeplitz matrices when the matrix size

is large. The distribution of eigenvalues of a banded symmetric Toeplitz

matrix (Tn(f)) in [0, π] get closer to the distributed value of f(θ) for θ =
jπ
n+1 , f(·) being the symbol of banded symmetric Toeplitz matrix, as the

size n of banded symmetric Toeplitz increases. In general the the difference

λj(Tn(f)) − f(θj) is not zero. In the following we present an algorithm

to choose tj,n such that λj(Tn(f)) = f(tj,n θj). With the help of cubic-

spline fitting, we show how it is possible to extrapolate and interpolate the

eigenvalues for large matrix sizes. A strategy is also presented in order to

choose the best interpolated and extrapolated eigenvalues.

9.1 Introduction

In Chapter 8, The expansion [131–133] of λj(Tn(f)) is given (assume g(x) = 1 and

r(x) = f(x)) i.e.

151



Chapter 9. A robust numerical method to compute eigenvalues of banded
symmetric Toeplitz matrices 152

λj(Tn(f)) = f(θj,n) +
α∑

k=1

ck(θj,n)h
k + Ej,n,α, (9.1)

where:

• the eigenvalues of Tn(f) are arranged in nondecreasing or nonincreasing or-

der, depending on whether r is increasing or decreasing;

• {ck}k=1,2,... is a sequence of functions from [0, π] to R which depends only on

f ;

• h = 1
n+1

and θj,n = jπ
n+1

= jπh;

• Ej,n,α = O(hα+1) is the remainder (the error), which satisfies the inequality

|Ej,n,α| ≤ Cαh
α+1 for some constant Cα depending only on α and f .

Detailed discussion concerning the implementation of (9.1) can be found in Chap-

ter 8. We are looking for parameter tj,n such that

λj(Tn(f)) = f(tj,n θj,n) . (9.2)

The cases when the symbols of banded symmetric Toeplitz matrices are either

monotonically increasing or decreasing are considered.

Notice that when the symbol f(·) is either increasing or decreasing the inversion

of f(·) is possible. If the analytical expression of f−1(·) is available then the

computation of tj,n is trivial

tj,n = f−1

(
λj(Tn(f))

θj

)

. (9.3)

9.2 Algorithm

Suppose Tn(f) is a Toeplitz matrix with monotonically increasing or decreasing

symbol f(·). We define ni = 2i−1(n1 + 1)− 1, hi =
1

ni+1
and θji,ni

= ji π
ni+1

= j π hi.
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If we equate

θj1,n1 = θji,ni

j1 π

1 + n1

=
ji π

1 + ni

=
ji π

1 + 2i−1(n1 + 1)− 1
=

ji π

2i−1(n1 + 1)

ji = j1 2
i−1 .

In other words we can say

θj1 2i−1,ni
= θj1,n1 .

We can compute the eigenvalues of small size Toeplitz matrix Tn(f) and looking

for numerical approximation of the eigenvalues of much larger matrix. Suppose it

is given that

λji,ni
(Tni

(f)) , for ji = 1, 2, · · · , ni , and for i = 1, 2, · · · ,m1 .

For some m2 > m1, it is aimed to approximate

λjm2 ,nm2
(Tnm2

(f)) , for jm2 = 1, 2, · · · , nm2 .

But first we explain how to compute

λj1 2m2−1,nm2
(Tnm2

(f)) , for j1 = 1, 2, · · · , n1 .

θ1 θ2 · · · θn1

h1 λ1,n1 λ2,n1 · · · λn1,n1

h2 λ2(1),n2 λ2(2),n2 · · · λ2(n1),n2

h3 λ4(1),n3 λ4(2),n3 · · · λ4(n1),n3

...
...

... · · ·
...

hm1 λ2m1−1(1),nm1
λ2m1−1(2),nm1

· · · λ2m1−1(n1),nm1

Table 9.1: Seclection of eigenvalues according to θi.
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θ1 θ2 · · · θn1

h1 t1,n1 t2,n1 · · · tn1,n1

h2 t2(1),n2 t2(2),n2 · · · t2(n1),n2

h3 t4(1),n3 t4(2),n3 · · · t4(n1),n3

...
...

... · · ·
...

hm1 t2m1−1(1),nm1
t2m1−1(2),nm1

· · · t2m1−1(n1),nm1

Table 9.2: Parameters tji,ni according to θi.

Arrangements of λji,ni
’s and tji,ni

’s are shown in Tables 9.1 and 9.2 respectively.

Each column in Tables 9.1 and 9.2 corresponds to a fixed value of θ. The compu-

tation of tji,ni
can be performed according to (9.3). In case if there is no empirical

formula to compute the inverse of bijective symbol f(·) one may us inverse inter-

polation by tabulating the values of f(·).

To extrapolate the values of parameters tji,ni
from Table 9.2 we can fit Lagrange

polynomial in each column of Table 9.2 by taking hi as independent variables.

Idea is presented in Table 9.3.

h1 ti,n1

h2 t2 i,n2

h3 t4 i,n3

...
...

hm1 t2m1−1 i,nm1

❄

(Lagrange extrapolation)

❄

hm2 t2m2−1 i,nm2

❄

λ̃2m2−1 i,nm2
= f

(

t2m2−1 i,nm2
θi

)

Table 9.3: For fixed θi: t2m2−1 i,nm2
is an extrapolated value for hm2 by using

Lagrange polynomial.



Chapter 9. A robust numerical method to compute eigenvalues of banded
symmetric Toeplitz matrices 155

Once we have extrapolate the value of t2m2−1 i,nm2
for hm2 , it is an easy task to

approximate λ2m2−1 i,nm2
. The approximation is

λ̃2m2−1 i,nm2
= f

(

t2m2−1 i,nm2
θi

)

.

9.2.1 Best approximation of λ2m2−1 i,nm2

We proposed an algorithm to get best approximation value of λ2m2−1 i,nm2
. For each

fixed θi we have set of paired data of size m1 as it is shown in Table 9.3. According

to Table 9.5 first we use m1 paired values to approximate λ2m2−1 i,nm2
and call the

approximated value
(

λ̃2m2−1 i,nm2

)

1
. Next use m1 − 1 paired values to get second

approximation
(

λ̃2m2−1 i,nm2

)

2
and so on. Finally we use only two paired values to

get approximation
(

λ̃2m2−1 i,nm2

)

m1−1
. We can compute m1−2 forward differences

from m1 − 1 data values and that are shown in Table 9.5. We find the index of

minimum positive forward difference and declare the approximated eigenvalue best

that corresponds to said index. Algorithm to find best value is given in Algorithm

1 (Best value finder algorithm).

9.2.2 Extrapolation and interpolation of eigenvalues

As we have discussed for each θi for i = 1, 2, · · · , n1 we can choose best approxima-

tion to eigenvalue λ̃2m2−1 i,nm2
. From our algorithm we also have the information

about t2m2−1 i,nm2
that corresponds to best selected approximated eigenvalues. We

fit piecewise cubic spline in paired data ·(θi, t2m2−1 i,nm2
) which is also shown in

Table 9.6. Once we have constructed piecewise cubic spline we extrapolate and

interpolate the value of t2m2−1 i,nm2
for θjm2 ,nm2

for jm2 = 1, 2, · · · , nm2 . From above

information the computation of λ̃jm2 ,nm2
for jm2 = 1, 2, · · · , nm2 is straightforward.

Algorithm 2 (extrapolation and interpolation of eigenvalues) describes the detailed

implementation of extrapolation and interpolation of eigenvalues.
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9.2.3 Best extrapolation and interpolation of eigenvalues

We have m1 data set of eigenvalues of sizes n1, n2, · · · , nm1 respectively. If we

divide successively these data sets of eigenvalues in the way

(n1, n2, · · · , nm1) m1 data sets

(n2, n3, · · · , nm1) m1 − 1 data sets

(n3, n4, · · · , nm1) m1 − 2 data sets

...

(nm1−1, nm1) 2 data sets ,

we obtain m1 − 1 data sets of eigenvalues. By applying the procedure of Section

9.2.2 we can compute best approximation
(

λ̃jm2 ,nm2

)

q
for jm2 = 1, 2, · · · , nm2 and

q = 1, 2, 3, · · · ,m1 − 1. Here q-index varies over the m1 − 1 data set (see Table

9.7). To select globally best eigenvalues of these m1 − 1 data sets of eigenvalues

we again use the strategy of forward difference which is describe in Algorithm 1.

Algorithm 3 execute the all the procedures to get globally best eigenvalues.

Paired data Lagrange Approximated

sets extrapolation eigenvalues values

(h1, ti,n1), · · · , (hm1 , t2m1−1 i,nm1
) →

(

λ̃2m2−1 i,nm2

)

1

(h2, t2 i,n1), · · · , (hm1 , t2m1−1 i,nm1
) →

(

λ̃2m2−1 i,nm2

)

2

(h3, t4 i,n1), · · · , (hm1 , t2m1−1 i,nm1
) →

(

λ̃2m2−1 i,nm2

)

3
...

...
...

(hm1−1, t2m1−2 i,n1
), · · · , (hm1 , t2m1−1 i,nm1

) →
(

λ̃2m2−1 i,nm2

)

m1−1

Table 9.4: For fixed θi: m1 − 1 approximations of λ2m2−1 i,nm2
.
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Approximated eigenvalues Forward differences
(

λ̃2m2−1 i,nm2

)

1

(

λ̃2m2−1 i,nm2

)

2
-
(

λ̃2m2−1 i,nm2

)

1(

λ̃2m2−1 i,nm2

)

2

(

λ̃2m2−1 i,nm2

)

3
-
(

λ̃2m2−1 i,nm2

)

2(

λ̃2m2−1 i,nm2

)

3

(

λ̃2m2−1 i,nm2

)

4
-
(

λ̃2m2−1 i,nm2

)

3
...

...
(

λ̃2m2−1 i,nm2

)

m1−2

(

λ̃2m2−1 i,nm2

)

m1−1
-
(

λ̃2m2−1 i,nm2

)

m1−2

Table 9.5: Computations of forward differences.

θ t2m2−1 i,nm2

θ1 t2m2−1 1,nm2

θ2 t2m2−1 2,nm2

θ3 t2m2−1 3,nm2

...
...

θn1 t2m2−1 n1,nm2

Table 9.6: Best selected t2m2−1 i,nm2
for θi.

Data set Best approximated eigenvalues

(n1, n2, · · · , nm1)
(

λ̃jm2 ,nm2

)

1
for jm2 = 1, 2, · · · , nm2

(n2, n3, · · · , nm1)
(

λ̃jm2 ,nm2

)

2
for jm2 = 1, 2, · · · , nm2

(n3, n4, · · · , nm1)
(

λ̃jm2 ,nm2

)

3
for jm2 = 1, 2, · · · , nm2

...
...

(nm1−1, nm1)
(

λ̃jm2 ,nm2

)

m1−1
for jm2 = 1, 2, · · · , nm2

Table 9.7: Computation of λ̃jm2 ,nm2
for different data sets.

9.3 Numerical testing

The central finite difference approximation of d2m/dx2m can be expressed in terms

of symmetric banded Toeplitz matrix Tn(gm) and gm(θ) = (2−2cos(θ))m. We can

notice that gm is a monotonic function for θ ∈ [0, π] and its inverse is g−1
m (x) =

cos−1
(
1− x1/m/2

)
.
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Algorithm 1 Main program for extrapolation and interpolation of eigenvalues

1: procedure main program(n1,s,q)
2: for j from 1 to s do

3: ni ← 2(j−1)(n1 + 1)− 1
4: hj ← 1

1+nj

5: end for

6: for j from 1 to s do

7: for i from 1 to nj do

8: λi,j ← eigenvalue
(
Tnj(f)

)

9: end for

10: end for

11: for i from 1 to s− 1 do

12: λ̄ ← extrapolation interpolation of eigenvalues(λ, ni:s, s −
i+ 1, q − i+ 1)

13: end for

14: [λ̂,∼]← best value finder(λ̄)
15: return λ̂ ⊲ Return eigenvalues of Tnq(f)
16: end procedure

Algorithm 2 Best value finder algorithm

1: procedure best value finder(B) ⊲ Find best value in each row of matrix
B

2: [n,m]← size(B) ⊲ Find the dimension of matrix B
3: v ← zeros(n, 1) ⊲ Define vector v of dimension n× 1
4: A← diff(B′)′ ⊲ “diff” is a command in Matlab to compute the difference

and (·)′ means transpose
5: for i from 1 to n do

6: J ← find(A(i, :) < 0) ⊲ Find the indexes of elements of ith row of A
which are negative

7: A(i, J)←∞ ⊲ Replace negative values of A with very big value
8: [∼, I]← min(A(i, :)) ⊲ Find the index of element of ith row of A

which has minimum value
9: index(i)← I
10: v(i)← B(i, index(i)) ⊲ Save minimum value element of ith row of

matrix B in v(i)
11: end for

12: return v, index
13: end procedure
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Algorithm 3 Extrapolation and interpolation of eigenvalues

1: procedure extrapolation interpolation of eigenvalues(λ,n,s,q)
2: for j from 1 to s do ⊲ λ = {λi,nj

|i = 1, 2, · · · , nj&j = 1, 2, · · · , s}
3: hj ← 1

1+nj
⊲ n = [n1, n2, · · · , ns]

4: end for

5: h̄← [h1, h2, · · · , hs]
6: nq ← 2(q−1)(n1 + 1)− 1
7: hq ← 1

1+nq

8: for i from 1 to n1 do

9: θi ← i h1 π
10: end for

11: for i from 1 to nq do

12: θ̂i ← i hq π
13: end for

14: for j from 1 to s do

15: for i from 1 to n1 do

16: λ̄i,j ← λ2(j−1)i,nj

17: f(ti,jθi) = λ̄i,j ⊲ Solve f(ti,jθi) = λ̄i,j to find the value of ti,j
18: end for

19: end for

20: for j from 1 to s− 1 do

21: for i from 1 to n1 do ⊲ Cubic spline for extrapolation
22: t̄i,j ← spline(h̄(j : s), t(i, j : s), hq) ⊲ h̄(j : s) = [hj, hj+1, · · · , hs]
23: λ̄i,j ← f(t̄i,jθi)
24: end for

25: end for

26: if s− 1 > 1 then

27: B ← [λ̄i,j]n1×(s−1)

28: [∼, index]← best value finder(B) ⊲ Call algorithm 2
29: for i from 1 to n1 do

30: t̃(i)← t̄(i, index(i))
31: end for

32: else

33: t̃← t̄
34: end if

35: t̂← spline(θ, t̃, θ̂)
36: λ̂← f(t̂ θ̂) ⊲ Cubic spline for interpolation and extrapolation
37: return λ̂ ⊲ Return eigenvalues of Tnq(f)
38: end procedure
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The associated matrix with central difference approximation of d4

dx4 is

T (g2) =

























6 −4 1 0 0 0 0 0 0 0

−4 6 −4 1 0 0 0 0 0 0

1 −4 6− 4 1 0 0 0 0 0

0 1 −4 6 −4 1 0 0 0 0

0 0 1 −4 6 −4 1 0 0 0

0 0 0 1 −4 6 −4 1 0 0

0 0 0 0 1 −4 6 −4 1 0

0 0 0 0 0 1 −4 6 −4 1

0 0 0 0 0 0 1 −4 6 −4
0 0 0 0 0 0 0 1 −4 6

























10×10

We can compute

tjq ,nq =

cos−1

(

1−
√

λjq,nq

2

)

θjq ,nq

,

where q = 1, 2, · · · , s.

In Figures 9.1, 9.2, 9.3 and 9.4 we can see absolute error plots before (left) and after

(right) the implementation of Algorithm 1. Full extrapolation and interpolation

with best selection of approximated eigenvalues are shown in Figures 9.5 and

9.6 for different values of m1. Figures 9.1, 9.2, 9.3 and 9.4 clearly tell that the

performance of our proposed algorithm is comparability better.

0 0.5 1 1.5 2 2.5 3

  [0, ]

-15

-14

-13

-12

-11

-10

-9

-8

lo
g
1
0
|e

rr
o
r|

0 0.5 1 1.5 2 2.5 3

  [0, ]

-13.5

-13

-12.5

-12

-11.5

-11

-10.5

-10

-9.5

lo
g
1
0
|e

rr
o
r|

Figure 9.1: Absolute error in n1 eigenvalues out of n8 = 12927: error before
(left), error after (right), m1 = 4, n8 = 12927 and n1 = 100.
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Figure 9.2: Absolute error in n1 eigenvalues out of n8 = 12927: error before
(left), error after (right), m1 = 5, n8 = 12927 and n1 = 100.
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Figure 9.3: Absolute error in n1 eigenvalues out of n8 = 12927: error before
(left), error after (right), m1 = 6, n8 = 12927 and n1 = 100.
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Figure 9.4: Absolute error in n1 eigenvalues out of n8 = 12927: error before
(left), error after (right), m1 = 7, n8 = 12927 and n1 = 100.
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Figure 9.5: Extrapolation and interpolation of n8 = 12927 eigenvalues: n1 =
100, m1 = 4 (left) and m1 = 5 (right).
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Figure 9.6: Extrapolation and interpolation of n8 = 12927 eigenvalues: n1 =
100, m1 = 6 (left) and m1 = 7 (right).

9.4 Summary

A new algorithm is proposed to extrapolate the eigenvalue of symmetric banded

Toeplitz matrices. The bijective symbol helps us for inverse interpolation to com-

pute the value of our introduced parameter ti. By fitting Lagrange polynomial

in ti data we can extrapolate the values of ti to approximate the eigenvalues of

much larger symmetric banded symmetric matrix. To improve the performance of

our proposed algorithm we devise a strategy to select local best approximation of

eigenvalues. One we have local best approximations of eigenvalues we select global

best approximations to eigenvalues.



Chapter 10

Summary and Future work

When we talk about iterative methods without memory to solves system of non-

linear equations there is a number of ways to improve their performance. Newton

method is the classical method to solve equations and system of nonlinear equa-

tions with the quadratic rate of convergence. To widen the region of convergence

of Newton method, we introduced a parameter without altering its quadratic rate

of convergence. By changing the value of parameter we can alter the path of

convergence of Newton method that may give us a fast convergence. This is not

the only benefit that parameter provides us. In the case of divergence of Newton

method, we have the possibility to get convergence by changing the value of the

parameter in the parametrized Newton method without changing our initial guess.

The parametrized Newton method also accepts the vector values for the parame-

ter and perform well. The inclusion of multi-steps in the base method makes the

Newton method Newton multi-step method. Multi-steps with frozen Jacobian are

the cheaper way to increase the convergence order of iterative method with low

computational cost. Low computational cost is due to frozen Jacobian.

Preconditioners for solving system of nonlinear equations could be helpful. In

iterative methods preconditioners are introduced without changing the roots of

original systems of nonlinear equations. Preconditioners are vector-valued func-

tion whom each component does not have any real root. Preconditioners do not

increase the theoretical order of convergence of iterative method but can make

the method fast by changing the course of the sequence of approximations. Our

proposal for the preconditioners to improve the efficiency of Newton multi-step

iterative method does not affect its convergence order and computational cost is

163
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almost the same. May be preconditioned Newton multi-step method has higher

computational cost in the case of dense preconditioners and it opposite in the case

of sparse preconditioners.

In realistic numerical simulations most of the time we do not know the analyti-

cal expression for the system of nonlinear equations. In such a scenario system

of nonlinear equations are the black boxes. If there are no analytical expres-

sions for system of nonlinear equations we cannot compute its Jacobian analytical

and hence have to use its numerical approximation. When we use the numerical

approximation of a Jacobian in an iterative method we call that method deriva-

tive free method. Our proposal for derivative-free Newton multi-step method in

the case of preconditioners is also efficient. Preconditioners when are applied to

derivative-free Newton multi-step method they again do not change its original

order of convergence but can provide fast convergence by changing the dynamics

of the iterative method.

The construction of iterative methods for solving systems of nonlinear equations

to find simple roots is relative easy compared with that of roots with multiplicities.

The application of preconditioners is also considered when the system of nonlin-

ear equations has unknown multiplicities. In this case, preconditioners when used

in the Newton method, for solving the system of nonlinear equations with un-

known multiplicities, does not affect its quadratic convergence. The inclusion of

preconditioners provides us with numerical stability and efficiency.

In Newton multi-step method the convergence order of the base method was two

and there is an increment of order one per multi-step. To enhance the conver-

gence rate of Newton multi-step method we constructed a new method whose

base method has convergence order two and there is an increment of order three

per two multi-steps. The idea behind the construction of higher order frozen Jaco-

bian multi-step method is the prototype of the base method and multi-step part.

We develop the prototype of the method in a way that base method help us to get

maximum increment in the convergence order per multi-step. The condition of

frozen Jacobian makes the iterative method computationally more effective. But

in general almost all higher-order methods share a bad trait of the narrow region

of convergence or in other words, they are very sensitive in the selection of initial

guess in complicated simulations that provides us systems of nonlinear equations.
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Iterative methods for solving nonlinear equations with memory have got the at-

tention of a considerable number of researchers. Literature is rich with this kind

of methods but there are very few numbers of efficient iterative methods with

memory to solve systems of nonlinear equations. The major difference between

iterative solvers for nonlinear equations and systems of nonlinear equations is the

computational cost of the Jacobian and its indirect inversion. Iterative methods

with memory show big convergence rate compare to the iterative method without

memory for solving system of nonlinear equations but there is a trade-off between

big convergence rate and additional computational cost. We can say iterative

methods with memory to solve the system of nonlinear equation are marginally

efficient when we compare them to iterative methods without memory. Because

iterative methods with memory pay the additional computational cost of Jacobian

that is constructed by the reuse of iteration information. Iterative methods with

memory for the system of mildly nonlinear equations can beat their competitors

with a big difference in performance because the computational cost to construct

Jacobian is very low. In future, we are interested to construct iterative meth-

ods with memory for solve system of mildly nonlinear equations. Usually, the

discretization of nonlinear boundary value problems provides us system of mild

nonlinear equations in most of the cases.

Qualitatively and quantitatively the eigenvalues of banded symmetric Toeplitz

matrices can be approximated by their generating functions. The eigenvalues of

banded symmetric Toeplitz matrices can be have expansion under some conditions.

The role of generating symbol is important. The eigenvalue expansion is more

effective in the case of bijective generating symbols. The real benefit of such

eigenvalue expansions is two extrapolate the eigenvalues of much large size matrices

by collecting information from the eigenvalues of small matrices. It is interesting

to note that eigenvalues are the roots of characteristic polynomials that we are

approximating. So this method can be seen as a numerical method for finding

the roots of characteristic polynomials. Numerically eigenvalue expansion method

is very efficient because it provides a good approximation of almost all the roots

of characteristic polynomials altogether. On contrary other numerical iterative

solvers deal a single root at a time. The case of preconditioned banded symmetric

Toeplitz matrices is also discussed and eigenvalue expansion is also constructed.

Finally, a robust numerical method to extrapolate and interpolate all the eigen-

values of banded symmetric Toeplitz matrices is developed. In this method, we
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do not use the expansion of eigenvalues. Our proposal of this robust numerical

method is also applicable in the case of preconditioned banded symmetric Toeplitz

matrices. We do not include this case in our thesis. Numerical simulations show

that our numerical method is stable even when we dealt with the finite difference

approximations of higher order derivative operators.

The construction of iterative methods with and without memory for the system

of mildly nonlinear equations with a high order of convergence is an interesting

topic for the future research topic. Especially when the nonlinearity has a finite

number of linearly dependent number of derivatives.

We have observed that the numerical methods for the extrapolation and inter-

polation perform well in the case where the generating symbol is bijective. But

where the part of generating symbol is non-bijective the proposed methods do

not give reasonable accuracy. The development of numerical methods to extrapo-

late eigenvalues for the non-bijective generating symbol is an interesting topic for

future research.
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