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Abstract. This paper presents a space-time spectral collocation technique for solv-
ing the variable-order Galilei invariant advection diffusion equation with a nonlinear
source term (VO-NGIADE). We develop a collocation scheme to approximate VO-
NGIADE by means of the shifted Jacobi-Gauss-Lobatto collocation (SJ-GL-C) and
shifted Jacobi-Gauss-Radau collocation (SJ-GR-C) methods. We successfully extend
the proposed technique to solve the two-dimensional space VO-NGIADE. The dis-
cussed numerical tests illustrate the capability and high accuracy of the proposed
methodologies.
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1 Introduction

In recent years, spectral methods (see [4,10,21] ) are often efficient and highly
accurate schemes when compared with the local methods. The speed of con-
vergence is one of the great advantages of spectral methods. Besides, spectral
methods have exponential rates of convergence; they also have high level of
accuracy. The main idea of all versions of spectral methods is to express the
approximate solution of the problem as a finite sum of certain basis functions
(orthogonal polynomials or combination of them) and then choose the coeffi-
cients in order to minimize the difference between the exact and approximate
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solutions as well as possible. The spectral collocation method is a specific type
of spectral methods, that is more applicable and widely used to solve almost
types of differential equations [2, 3].

Fractional calculus [1, 19, 28] is a branch of calculus theory, which makes
partial differential equations (PDEs) more convenient to describe many phe-
nomena in several fields such as fluid mechanics, chemistry [12,15], biology [19],
viscoelasticity [20], engineering, finance and physics [14] fields. The concept
of variable-order fractional allows the power of the fractional operator to be
a function of the independent variable. The early studies of variable-order
fractional was firstly introduced by Samko and Ross [22] and Lorenzo and
Hartley [17, 18]. Several phenomena can be more accurately described using
variable-order fractional operators. Mechanical [9], diffusion [5, 26, 34], FIR
filters [29] multifractional Gaussian noises [25] and physical [13] models can
be more accurately described by variable order derivatives mathematical mod-
els. Few numerical methods have been introduced and discussed to solve the
variable-order fractional problems. Stability and convergence of explicit finite-
difference method has been studied in [16] for solving the variable-order nonlin-
ear fractional diffusion equation. Using Fourier analysis, Chen [6] obtained the
numerical solutions for two-dimensional variable-order modified diffusion equa-
tions. Numerical methods based on finite difference techniques [8, 24, 31, 32]
have been proposed by Liu, Shen, Zhang et al. for the numerical treatment of
variable-order fractional partial differential equations. Zhao et al. [33], intro-
duced two second-order approximation algorithms for the variable-order frac-
tional time derivatives. Also, finite difference method has been applied by Xu
and Ertürk [30] to solve the fractional integro-differential equations with vari-
able order. Moreover, finite difference schemes [27] have been introduced to
solve variable-order time fractional diffusion equation.

The fractional advection-diffusion equation [11, 23] can be considered as a
generalized version of the classical advection-diffusion equation. The fractional
advection-diffusion equation is used to model many physical phenomena such
as amorphous, colloid, the transport dynamics in complex systems, fractals and
percolation clusters, biological systems, glassy and porous media, comb struc-
tures, dielectrics and semiconductors, polymers, random and disordered media,
geophysical and geological processes, the transport of passive tracers carried by
fluid flow in a porous medium. Here, we focus on the application of SJ-GL-C
and SJ-GR-C schemes to numerically solve the VO-NGIADE in one and two
dimensional space. The proposed collocation scheme is investigated for both
temporal and spatial discretizations. The SJ-GL-C and SJ-GR-C are proposed,
with a suitable modification for treating the boundary and initial conditions,
for spatial and temporal discretizations. This treatment, for the conditions, im-
proves the accuracy of the scheme greatly. Therefore, the VO-NGIADE with
its conditions is reduced to system of nonlinear algebraic equations which is
far easier to be solved. In addition, this algorithm is developed to numerically
solve the two-dimensional VO-NGIADE. Thus, we introduce a fully spectral
collocation approach to numerically treat the multi-dimensional VO-NGIADE.
Moreover, there are no numerical results on the spectral collocation method
for solving the VO-NGIADE. Finally, several numerical examples with com-
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parisons lighting the high accuracy and effectiveness of the proposed algorithm
are presented.

This paper is organized as follows. Few facts of shifted Jacobi polynomials
are listed in Section 2. In Section 3, we introduce a new collocation method
for the one-dimensional space VO-NGIADE. In Section 4, the proposed scheme
is successfully extended to solve the two-dimensional space VO-NGIADE. Sec-
tion 5 is customized to solve several problems. Conclusions are given in the
last section.

2 Properties of shifted Jacobi polynomials

Some few properties of shifted Jacobi polynomials are presented in this section.
In the following, few relations related to Jacobi polynomials are listed:

P
(α,β)
k+1 (x) = (a

(α,β)
k x− b(α,β)k )P

(α,β)
k (x)− c(α,β)k P

(α,β)
k−1 (x), k ≥ 1,

P
(α,β)
0 (x) = 1, P

(α,β)
1 (x) = 0.5(α+ β + 2)x+ 0.5(α− β),

P
(α,β)
k (−x) = (−1)kP

(α,β)
k (x), P

(α,β)
k (−1) =

(−1)kΓ (k + β + 1)

k!Γ (β + 1)
, (2.1)

where α, β > −1, x ∈ [−1, 1] and

a
(α,β)
k =

(2k + α+ β + 1)(2k + α+ β + 2)

2(k + 1)(k + α+ β + 1)
,

b
(α,β)
k =

(β2 − α2)(2k + α+ β + 1)

2(k + 1)(k + α+ β + 1)(2k + α+ β)
,

c
(α,β)
k =

(k + α)(k + β)(2k + α+ β + 2)

(k + 1)(k + α+ β + 1)(2k + α+ β)
.

Moreover, the rth derivative (r is an intger) of P
(α,β)
j (x), may be obtained from

DrP
(α,β)
j (x) =

Γ (j + α+ β + q + 1)

2rΓ (j + α+ β + 1)
P

(α+r,β+r)
j−r (x).

For the shifted Jacobi polynomial P
(α,β)
L,k (x) = P

(α,β)
k ( 2x

L − 1), L > 0, the
explicit analytic form is written as

P
(α,β)
L,k (x) =

k∑
j=0

(−1)
k−j Γ (k + β + 1)Γ (j + k + α+ β + 1)

Γ (j + β + 1)Γ (k + α+ β + 1)(k − j)!j!Lj
xj

=

k∑
j=0

Γ (k + α+ 1)Γ (k + j + α+ β + 1)

j!(k − j)!Γ (j + α+ 1)Γ (k + α+ β + 1)Lj
(x− L)j .

Thus, we can derive the following properties

P
(α,β)
L,k (0) = (−1)

k Γ (k + β + 1)

Γ (β + 1)k!
, P

(α,β)
L,k (L) =

Γ (k + α+ 1)

Γ (α+ 1)k!
,

DrP
(α,β)
L,k (0) =

(−1)k−rΓ (k + β + 1)(k + α+ β + 1)r
LrΓ (k − r + 1)Γ (r + β + 1)

,
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DrP
(α,β)
L,k (L) =

Γ (k + α+ 1)(k + α+ β + 1)r
LrΓ (k − r + 1)Γ (r + α+ 1)

,

DrP
(α,β)
L,k (x) =

Γ (r + k + α+ β + 1)

LrΓ (k + α+ β + 1)
P

(α+r,β+r)
L,k−r (x). (2.2)

We used x
(α,β)
N,j , and$

(α,β)
N,j , 0 6 j 6 N, as the nodes and Christoffel numbers

of the standard Jacobi-Gauss interpolation on the interval [−1, 1].
The corresponding nodes and Christoffel numbers of the shifted Jacobi-

Gauss interpolation on the interval [0, L] can be given by

x
(α,β)
L,N,j = 0.5L

(
x
(α,β)
N,j + 1

)
, $

(α,β)
L,N,j =

(
0.5L

)α+β+1
$

(α,β)
N,j , 0 6 j 6 N.

3 One-dimensional space of VO-NGIADE

In this section, we introduce a numerical algorithm based on the SJ-GR-C and
SJ-GL-C methods for solving numerically one-dimensional VO-NGIADE. The
collocation points are selected at the SJ-GR and SJ-GL interpolation nodes for
temporal and spatial variables, respectively. The core of the proposed method
consists of discretizing the one-dimensional VO-NGIADE to create a system of
nonlinear algebraic equations of the unknown coefficients. This system can be
then easily solved with a standard numerical scheme. In particular, we consider
the following VO-NGIADE

∂u(x, t)

∂t
+
∂u(x, t)

∂x
= D

1−γ(x,t)
t

(∂2u(x, t)

∂x2

)
+H(u(x, t), x, t), (3.1)

given in (x, t) ∈ [0, L]× [0, T ] with the initial-boundary conditions

u(x, 0) = g1(x), u(0, t) = g2(t), u(L, t) = g3(t), (x, t) ∈ [0, L]× [0, T ],

where H(u(x, t), x, t), g1(x), g2(t) and g3(t) are given functions, 0 < γ(x, t) <

1 and D
1−γ(x,t)
t u(x, t) is the temporal fractional derivative of variable order

1− γ(x, t) in the Riemann-Liouville sense [7, 16,34]:

D
1−γ(x,t)
t u(x, t) =

1

Γ (γ(x, t))

(
∂

∂ζ

(∫ ζ

0

u(x, τ)

(ζ − τ)1−γ(x,t)
dτ
))

ζ=t

.

We are interested in using the SJ-GL-C and SJ-GR-C methods to transform the
previous VO-NGIADE into a system of nonlinear algebraic equations. In order
to do this, we approximate the independent space variable x using the SJ-GL-C

method at the x
(α1,β1)
L,N,i nodes, while the independent temporal variable t was

approximated by the SJ-GR-C methods. The nodes are the set of points in a
specified domain where the dependent variable values are to be approximated.
In general, the choice of the location of the nodes is optional. However, taking
the roots of the shifted Jacobi orthogonal polynomials, referred to as shifted
Jacobi collocation points, gives particularly accurate solutions for the spectral
methods.
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Now, we outline the main steps of the mixed SJ-GL-C and SJ-GR-C meth-
ods for solving the one-dimensional space VO-NGIADE. We choose the approx-
imate solution to be of the form

uN,M (x, t) =

N∑
i=0

M∑
j=0

ai,jP
(α1,β1)
L,i (x)P

(α2,β2)
T,j (t) =

N∑
i=0

M∑
j=0

ai,jf
i,j
0 (x, t), (3.2)

where f i,j0 (x, t) = P
(α1,β1)
L,i (x)P

(α2,β2)
T,j (t). Then the spatial partial derivatives

∂u(x,t)
∂x and ∂2u(x,t)

∂x2 were computed as

∂u(x, t)

∂x
=

N∑
i=0

M∑
j=0

ai,j
∂P

(α1,β1)
L,i (x)

∂x
P

(α2,β2)
T,j (t) =

N∑
i=0

M∑
j=0

ai,jf
i,j
1 (x, t),

∂2u(x, t)

∂x2
=

N∑
i=0

M∑
j=0

ai,j
∂2P

(α1,β1)
L,i (x)

∂x2
P

(α2,β2)
T,j (t) =

N∑
i=0

M∑
j=0

ai,jf
i,j
2 (x, t),

dependence on Eq. (2.2), we obtain

f i,j1 (x, t) =
α1 + β1 + i+ 1

L
P

(α1+1,β1+1)
L,i−1 (x)P

(α2,β2)
T,j (t),

f i,j2 (x, t) =
(α1 + β1 + i+ 1) (α1 + β1 + i+ 2)

L2
P

(α1+2,β1+2)
L,i−2 (x)P

(α2,β2)
T,j (t).

Furthermore, the temporal derivative ∂u(x,t)
∂t is evaluated as

∂u(x, t)

∂t
=

N∑
i=0

M∑
j=0

ai,jP
(α1,β1)
L,i (x)

∂P
(α2,β2)
T,j (t)

∂t
=

N∑
i=0

M∑
j=0

ai,jf
i,j
3 (x, t),

dependence on Eq. (2.2), we obtain

f i,j3 (x, t) =
α2 + β2 + i+ 1

T
P

(α1,β1)
L,i (x)P

(α2+1,β2+1)
T,j−1 (t).

Moreover, the Riemann-Liouville fractional partial derivative of variable order

D
1−γ(x,t)
t

∂2u(x,t)
∂x2 is given by

D
1−γ(x,t)
t

∂2u(x, t)

∂x2
=

N∑
i=0

M∑
j=0

ai,j
∂2P

(α1,β1)
L,i (x)

∂x2
D

1−γ(x,t)
t (P

(α2,β2)
T,j (t))

=

N∑
i=0

M∑
j=0

ai,jf
i,j
4 (x, t),

(3.3)

dependence on Eq. (2.2), we obtain

f i,j4 (x, t)=
(α1+β1+i+1) (α1+β1+i+2)

L2
P

(α1+2,β1+2)
L,i−2 (x)D

1−γ(x,t)
t (P

(α2,β2)
T,j (t)).
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Now, adopting (3.2)-(3.3), enable one to write (3.1) in the form:

N∑
i=0

M∑
j=0

ai,jf
i,j
3 (x, t) =

N∑
i=0

M∑
j=0

ai,jf
i,j
4 (x, t)−

N∑
i=0

M∑
j=0

ai,jf
i,j
1 (x, t)

+H

( N∑
i=0

M∑
j=0

ai,jf
i,j
0 (x, t), x, t

)
, (x, t) ∈ [0, L]× [0, T ]. (3.4)

The initial condition immediately gives

u(x, 0) =

N∑
i=0

M∑
j=0

ai,jf
i,j
0 (x, 0) = g1(x), (3.5)

while the numerical treatments of the boundary conditions are

u(0, t)=

N∑
i=0

M∑
j=0

ai,jf
i,j
0 (0, t)=g2(t), u(L, t)=

N∑
i=0

M∑
j=0

ai,jf
i,j
0 (L, t)=g3(t). (3.6)

In the proposed mixed SJ-GL-C and SJ-GR-C methods, the residual of (3.4)
is set to zero at M (N − 1) of SJ-GL and SJ-GR points. Consequently, we find

N∑
i=0

M∑
j=0

F i,jr,s ai,j=H

( N∑
i=0

M∑
j=0

ai,jf
i,j
0 (x

(α1,β1)
L,N,r , t

(α2,β2)
T,M,s ), x

(α1,β1)
L,N,r , t

(α2,β2)
T,M,s

)
, (3.7)

for r = 1, . . . , N − 1, s = 1, . . . ,M , where,

F i,jr,s = f i,j3 (x
(α1,β1)
L,N,r , t

(α2,β2)
T,M,s ) + f i,j2 (x

(α1,β1)
L,N,r , t

(α2,β2)
T,M,s )− f i,j4 (x

(α1,β1)
L,N,r , t

(α2,β2)
T,M,s ).

Dependence on Eqs. (3.5) and (3.6), we obtain

N∑
i=0

M∑
j=0

ai,jf
i,j
0 (x

(α1,β1)
L,N,r , 0) = g1(x

(α1,β1)
L,N,r ), r = 1, . . . , N − 1, (3.8)

N∑
i=0

M∑
j=0

ai,jf
i,j
0 (L, t

(α2,β2)
T,M,s ) = g2(t

(α2,β2)
T,M,s ), s = 0, . . . ,M (3.9)

N∑
i=0

M∑
j=0

ai,jf
i,j
0 (L, t

(α2,β2)
T,M,s ) = g3(t

(α2,β2)
T,M,s ), s = 0, . . . ,M. (3.10)

Combining Eqs. (3.7), (3.8), (3.9) and (3.10), we obtain for r = 1, . . . , N − 1,
s = 1, . . . ,M ,

N∑
i=0

M∑
j=0

F i,jr,s ai,j = H

( N∑
i=0

M∑
j=0

ai,jf
i,j
0 (x

(α1,β1)
L,N,r , t

(α2,β2)
T,M,s ), x

(α1,β1)
L,N,r , t

(α2,β2)
T,M,s

)
,

N∑
i=0

M∑
j=0

ai,jf
i,j
0 (x

(α1,β1)
L,N,r , 0) = g1(x

(α1,β1)
L,N,r ), r = 1, · · · , N − 1,
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N∑
i=0

M∑
j=0

ai,jf
i,j
0 (L, t

(α2,β2)
T,M,s ) = g2(t

(α2,β2)
T,M,s ), s = 0, · · · ,M,

N∑
i=0

M∑
j=0

ai,jf
i,j
0 (L, t

(α2,β2)
T,M,s ) = g3(t

(α2,β2)
T,M,s ), s = 0, · · · ,M,

the previous system of nonlinear algebraic equations can be easily solved. After
the coefficients ai,j are determined, it is straightforward to compute the approx-
imate solution uN,M (x, t) at any value of (x, t) in the given domain from the
following equation

uN,M (x, t) =

N∑
i=0

M∑
j=0

ai,jP
(α1,β1)
L,i (x)P

(α2,β2)
T,j (t).

4 Two-dimensional space of VO-NGIADE

In the present section, we extend the previous algorithm to numerically solve
the two-dimensional space VO-NGIADE in the following form

∂u(x, y, t)

∂t
= D

1−γ(x,y,t)
t

(∂2u(x, y, t)

∂x2
+
∂2u(x, y, t)

∂y2
)
− ∂u(x, y, t)

∂x

+H(u(x, y, t), x, y, t), (x, y, t) ∈ [0, L1]× [0, L2]× [0, T ], (4.1)

subject to the initial-boundary conditions

u(x, y, 0) = g0(x, y), (x, y) ∈ [0, L1]× [0, L2],

u(0, y, t) = g1(y, t), u(L1, y, t) = g2(y, t), (y, t) ∈ [0, L2]× [0, T ],

u(x, 0, t) = g3(x, t), u(x, L2, t) = g4(x, t), (x, t) ∈ [0, L1]× [0, T ],

where H(u(x, y, t), x, y, t), g0(x, y), g1(y, t), g2(y, t), g3(x, t) and g4(x, t) are
given real valued functions and u(x, y, t) is an unknown function. Therefore,
the SJ-GL-C and SJ-GR-C methods will be applied to transform the previous
two-dimensional VO-NGIADE into system of nonlinear algebraic equations.
The SJ-GL-C and SJ-GR-C have been used for the space (x, y) and time t
approximations, respectively.

Now, we outline the main steps of the collocation method for solving the
two-dimensional VO-NGIADE. Let

uN,M,K(x, y, t) =

N∑
i=0

M∑
j=0

K∑
k=0

ai,j,kP
(α1,β1)
L1,i

(x)P
(α2,β2)
L2,j

(y)P
(α3,β3)
T,k (t)

=

N∑
i=0

M∑
j=0

K∑
j=0

ai,j,kf
i,j,k
0 (x, y, t), (4.2)

where f i,j,k0 (x, y, t) = P
(α1,β1)
L1,i

(x)P
(α2,β2)
L2,j

(y)P
(α3,β3)
T,k (t).

Math. Model. Anal., 22(1):1–20, 2017.
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Then the first spatial and temporal partial derivatives ∂u(x,y,t)
∂x , ∂u(x,y,t)

∂y

and ∂u(x,y,t)
∂t can be computed as

∂u(x, y, t)

∂x
=

N∑
i=0

M∑
j=0

K∑
k=0

ai,j,k
∂P

(α1,β1)
L1,i

(x)

∂x
P

(α2,β2)
L2,j

(y)P
(α3,β3)
T,k (t)

=

N∑
i=0

M∑
j=0

K∑
j=0

ai,j,kf
i,j,k
1 (x, y, t),

∂u(x, y, t)

∂y
=

N∑
i=0

M∑
j=0

K∑
k=0

ai,j,kP
(α1,β1)
L1,i

(x)
∂P

(α2,β2)
L2,j

(y)

∂y
P

(α3,β3)
T,k (t)

=

N∑
i=0

M∑
j=0

K∑
j=0

ai,j,kf
i,j,k
2 (x, y, t),

∂u(x, y, t)

∂t
=

N∑
i=0

M∑
j=0

K∑
k=0

ai,j,kP
(α1,β1)
L1,i

(x)P
(α2,β2)
L2,j

(y)
∂P

(α3,β3)
T,k (t)

∂t

=

N∑
i=0

M∑
j=0

K∑
j=0

ai,j,kf
i,j,k
3 (x, y, t), (4.3)

where

f i,j,k1 (x, y, t) =
α1 + β1 + i+ 1

L1
P

(α1+1,β1+1)
L1,i−1 (x)P

(α2,β2)
L2,j

(y)P
(α3,β3)
T,k (t),

f i,j,k2 (x, y, t) =
α2 + β2 + j + 1

L2
P

(α1,β1)
L1,i

(x)P
(α2+1,β2+1)
L2,j−1 (y)P

(α3,β3)
T,k (t),

f i,j,k3 (x, y, t) =
α3 + β3 + k + 1

T
P

(α1,β1)
L1,i

(x))P
(α2,β2)
L2,j

(y)P
(α3+1,β3+1)
T,k−1 (t).

While, the second spatial partial derivatives ∂2u(x,y,t)
∂x2 and ∂2u(x,y,t)

∂y2 are given
by

∂2u(x, y, t)

∂x2
=

N∑
i=0

M∑
j=0

K∑
j=0

ai,j,kf
i,j,k
4 (x, y, t),

∂2u(x, y, t)

∂y2
=

N∑
i=0

M∑
j=0

K∑
j=0

ai,j,kf
i,j,k
5 (x, y, t),

where

f i,j,k4 (x, y, t) =
(α1 + β1 + i+ 1) (α1 + β1 + i+ 2)

L2
1

× P (α1+2,β1+2)
L1,i−2 (x)P

(α2,β2)
L2,j

(y)P
(α3,β3)
T,k (t),

f i,j,k5 (x, y, t) =
(α2 + β2 + j + 1) (α1 + β1 + j + 2)

L2
2

× P (α1,β1)
L1,i

(x)P
(α2+2,β2+2)
L2,j−2 (y)P

(α3,β3)
T,k (t).
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Moreover, the variable order Riemann-Liouville fractional derivatives

D
1−γ(x,y,t)
t

∂2u(x,y,t)
∂x2 and D

1−γ(x,y,t)
t

∂2u(x,y,t)
∂y2 are given by

D
1−γ(x,y,t)
t

∂2u(x, y, t)

∂x2
=

N∑
i=0

M∑
j=0

K∑
j=0

ai,j,kf
i,j,k
6 (x, y, t),

D
1−γ(x,y,t)
t

∂2u(x, y, t)

∂y2
=

N∑
i=0

M∑
j=0

K∑
j=0

ai,j,kf
i,j,k
7 (x, y, t),

where

f i,j,k6 (x, y, t) =
(α1 + β1 + i+ 1) (α1 + β1 + i+ 2)

L2
1

P
(α1+2,β1+2)
L1,i−2 (x)

× P (α2,β2)
L2,j

(y)D
1−γ(x,y,t)
t P

(α3,β3)
T,k (t),

f i,j,k7 (x, y, t) =
(α2 + β2 + j + 1) (α1 + β1 + j + 2)

L2
2

P
(α1,β1)
L1,i

(x)

× P (α2+2,β2+2)
L2,j−2 (y)D

1−γ(x,y,t)
t P

(α3,β3)
T,k (t).

Therefore, adopting (4.2)-(4.3), enable one to write (4.1) in the form:

N∑
i=0

M∑
j=0

K∑
k=0

ai,j,kf
i,j,k
8 (x, y, t) =H

( N∑
i=0

M∑
j=0

K∑
k=0

ai,j,kf
i,j,k
0 (x, y, t), x, y, t

)
,

(x, y, t) ∈ [0, L1]× [0, L2]× [0, T ],

where

f i,j,k8 (x, y, t) = f i,j,k3 (x, y, t)− f i,j,k6 (x, y, t)− f i,j,k7 (x, y, t) + f i,j,k1 (x, y, t).

Moreover, the collocation treatments of the initial-boundary conditions imme-
diately give

u(x, y, 0) =

N∑
i=0

M∑
j=0

K∑
k=0

ai,j,kf
i,j,k
0 (x, y, 0) = g0(x, y),

u(0, y, t) =

N∑
i=0

M∑
j=0

K∑
k=0

ai,j,kf
i,j,k
0 (0, y, t) = g1(y, t),

u(L1, y, t) =

N∑
i=0

M∑
j=0

K∑
k=0

ai,j,kf
i,j,k
0 (L1, y, t) = g2(y, t),

u(x, 0, t) =

N∑
i=0

M∑
j=0

K∑
k=0

ai,j,kf
i,j,k
0 (x, 0, t) = g3(x, t),

u(x, L2, t) =

N∑
i=0

M∑
j=0

K∑
k=0

ai,j,kf
i,j,k
0 (x, L2, t) = g4(x, t).

Math. Model. Anal., 22(1):1–20, 2017.
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In the proposed method, the residual of (4.1) is set to be zero at (N − 1) ×
(M − 1)×K of collocation points

N∑
i=0

M∑
j=0

K∑
k=0

F i,j,kr,s,ς ai,j,k = H

( N∑
i=0

M∑
j=0

K∑
k=0

ai,j,kχr,s,ς , x
(α1,β1)
L1,N,r

, y
(α2,β2)
L2,M,s , t

(α3,β3)
T,M,ς

)
,

r = 1, . . . , N − 1, s = 1, . . . ,M − 1, ς = 1, . . . ,K, where,

F i,j,kr,s,ς =f i,j,k8 (x
(α1,β1)
L1,N,r

, y
(α2,β2)
L2,M,s , t

(α3,β3)
T,M,ς ), χr,s,ς=f

i,j,k
0 (x

(α1,β1)
L1,N,r

, y
(α2,β2)
L2,M,s , t

(α3,β3)
T,M,ς ),

and from the initial conditions, we have, namely (1+N+2KN+M(1+2K+N))
algebraic equations

N∑
i=0

M∑
j=0

K∑
k=0

ai,j,kf
i,j,k
0 (x

(α1,β1)
L1,N,r

, y
(α2,β2)
L2,M,s , 0) = g0(x

(α1,β1)
L1,N,r

, y
(α2,β2)
L2,M,s),

r = 1, . . . , N − 1, s = 1, . . . ,M − 1,

N∑
i=0

M∑
j=0

K∑
k=0

ai,ji,j,kf
i,j,k
0 (0, y

(α2,β2)
L2,M,s , t

(α3,β3)
T,M,ς ) = g1(y

(α2,β2)
L2,M,s , t

(α3,β3)
T,M,ς ),

s = 0, . . . ,M, ς = 0, . . . ,K,

N∑
i=0

M∑
j=0

K∑
k=0

ai,ji,j,kf
i,j,k
0 (L1, y

(α2,β2)
L2,M,s , t

(α3,β3)
T,M,ς ) = g2(y

(α2,β2)
L2,M,s , t

(α3,β3)
T,M,ς ),

s = 0, . . . ,M, ς = 0, . . . ,K,

N∑
i=0

M∑
j=0

K∑
k=0

ai,ji,j,kf
i,j,k
0 (x

(α1,β1)
L1,N,r

, 0, t
(α3,β3)
T,M,ς ) = g3(x

(α1,β1)
L1,N,r

, t
(α3,β3)
T,M,ς ),

r = 1, . . . , N − 1, ς = 0, . . . ,K,

N∑
i=0

M∑
j=0

K∑
k=0

ai,ji,j,kf
i,j,k
0 (x

(α1,β1)
L1,N,r

, L2, t
(α3,β3)
T,M,ς ) = g4(x

(α1,β1)
L1,N,r

, t
(α3,β3)
T,M,ς ),

r = 1, . . . , N − 1, ς = 0, . . . ,K,

and this in turn, yields (M+1)×(N+1)×(K+1) nonlinear algebraic equations

N∑
i=0

M∑
j=0

K∑
k=0

F i,j,kr,s,ς ai,j,k = H

( N∑
i=0

M∑
j=0

K∑
k=0

ai,j,kχr,s,ς , x
(α1,β1)
L1,N,r

, y
(α2,β2)
L2,M,s , t

(α3,β3)
T,M,ς

)
,

r = 1, . . . , N − 1, s = 1, . . . ,M − 1, ς = 1, . . . ,K,

N∑
i=0

M∑
j=0

K∑
k=0

ai,j,kf
i,j,k
0 (x

(α1,β1)
L1,N,r

, y
(α2,β2)
L2,M,s , 0) = g0(x

(α1,β1)
L1,N,r

, y
(α2,β2)
L2,M,s),

r = 1, . . . , N − 1, s = 1, . . . ,M − 1,
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N∑
i=0

M∑
j=0

K∑
k=0

ai,ji,j,kf
i,j,k
0 (0, y

(α2,β2)
L2,M,s , t

(α3,β3)
T,M,ς ) = g1(y

(α2,β2)
L2,M,s , t

(α3,β3)
T,M,ς ),

s = 0, . . . ,M, ς = 0, . . . ,K,

N∑
i=0

M∑
j=0

K∑
k=0

ai,ji,j,kf
i,j,k
0 (L1, y

(α2,β2)
L2,M,s , t

(α3,β3)
T,M,ς ) = g2(y

(α2,β2)
L2,M,s , t

(α3,β3)
T,M,ς ),

s = 0, . . . ,M, ς = 0, . . . ,K,

N∑
i=0

M∑
j=0

K∑
k=0

ai,ji,j,kf
i,j,k
0 (x

(α1,β1)
L1,N,r

, 0, t
(α3,β3)
T,M,ς ) = g3(x

(α1,β1)
L1,N,r

, t
(α3,β3)
T,M,ς ),

r = 1, . . . , N − 1, ς = 0, . . . ,K,

N∑
i=0

M∑
j=0

K∑
k=0

ai,ji,j,kf
i,j,k
0 (x

(α1,β1)
L1,N,r

, L2, t
(α3,β3)
T,M,ς ) = g4(x

(α1,β1)
L1,N,r

, t
(α3,β3)
T,M,ς ),

r = 1, . . . , N − 1, ς = 0, . . . ,K.

The previous system of nonlinear algebraic equations can be easily solved. After
the coefficients ai,j,k are determined, we compute the approximate solution
uN,M,K(x, y, t) at any value of (x, y, t) in the given domain.

5 Numerical results and comparisons

This section listed several numerical examples to demonstrate the accuracy
of the proposed method. Also, we compare our numerical results with the
existing numerical results [7]. The obtained results of these examples show
that the proposed method, by selecting a few number nodes, has high level of
accuracy.

The difference between the measured value of approximate solution and
exact solution is defined absolute error (AE), given by

E(x, t) =| u(x, t)− uN,M (x, t) |,

where u(x, t) and uN,M (x, t) are the exact and the approximate solutions at
the point (x, t), respectively.

Moreover, the maximum absolute error (MAE) is given by

ME = max{E(x, t) : ∀(x, t) ∈ [0, L]× [0, T ]}.

Math. Model. Anal., 22(1):1–20, 2017.
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5.1 One-dimensional space of VO-NGIADE

Example 1. We start with the VO-NGIADE in the following form [7]:

∂u(x, t)

∂t
+
∂u(x, t)

∂x
= D

1−γ(x,t)
t

(∂2u(x, t)

∂x2

)
+ u(x, t)− (u(x, t))2

+ tex
(

2 + t3ex − 2tγ(x,t)

Γ (γ(x, t) + 2)

)
,

u(0, t) = t2, u(1, t) = et2, t ∈ [0, 1],

u(x, 0) = 0, x ∈ [0, 1],

where (x, t) ∈ [0, 1]× [0, 1], and γ(x, t) = 1
300 (10− tx), knowing that the exact

solution is given by u(x, t) = t2ex.
In Table 1, we display a comparison based on the MAEs between our results

(with various choices of N, M, α1, β1, α2, and β2) and the finite difference
method (FDM) [7].

Table 1. The MAEs of Example 1.

Our method with several choices of N, M
(α1, β1, α2, β2) 2 6 10 14

(0,0,0,0) 1.36284 × 10−3 5.42912 × 10−8 2.66454 × 10−14 6.66134 × 10−16

( 1
2
, 1
2
, 0, 0) 1.36284 × 10−3 4.08291 × 10−8 2.62013 × 10−14 4.44089 × 10−16

(− 1
2
, 0, 1

2
, 1
2

) 1.26147 × 10−2 7.07546 × 10−8 3.59712 × 10−14 6.66134 × 10−16

FDM [7] with several choices of ht, hx

ht = h2x = 1
16

ht = h2x = 1
64

ht = h2x = 1
256

— 5.5308 × 10−4 1.4567 × 10−4 6.1896 × 10−5

Figure 1 display the space-time graph of the AEs with N = M = 14, and
α1 = β1 = α2,= β2 = 0. While, Figure 2 compare graphically the curves
of numerical and exact solutions of Example 1 for the different values of x at
N = M = 14, α1 = β1 = 1

2 and α2,= β2 = 0.
The t-direction curve of AEs of Example 1 for N = M = 14, and α1 =

β1 = α2 = β2 = 0, is displayed in Figure 3. Moreover, we plot in Figure 4 the
logarithmic graphs of MAEs (i.e., log10ME) obtained by the present method
with different values of (N = M = 2, 4, 6, · · · , 14) at three choices of α1, β1, α2,
and β2. This demonstrates that the proposed method leads to an accurate
approximation and yields exponential convergence rates.

Example 2. Consider the VO-NGIADE in the following form [7]:

∂u(x, t)

∂t
+
∂u(x, t)

∂x
= D

1−γ(x,t)
t

(
∂2u(x, t)

∂x2

)
+ u(x, t)− (u(x, t))2

+ tex
(

2 + t3ex − 2tγ(x,t)

Γ (γ(x, t) + 2)

)
,

u(0, t) = t2, u(1, t) = et2, t ∈ [0, 1],

u(x, 0) = 0, x ∈ [0, 1],
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Figure 1. Space-time graph of the AEs of Example 1.

Figure 2. t-direction curves of exact and numerical solutions of Example 1.

where (x, t) ∈ [0, 1]× [0, 1], and

γ(x, t) =
1

500

(
(tx)2 − sin3(tx) + cos4(tx) + 16

)
,

is the exact solution is given by u(x, t) = t2ex.
Table 2, displays the MAEs using the present method together with the

results obtained in [7] for different choices of N, M, α1, β1, α2, and β2. From
the results of this example, we observe that the approximate solution obtained
by our method is more better than those obtained in [7].

Example 3. Here, we test the VO-NGIADE in the following form:

∂u(x, t)

∂t
+
∂u(x, t)

∂x
= D

1−γ(x,t)
t

(∂2u(x, t)

∂x2

)
+ u(x, t)− (u(x, t))2 + f(x, t),

u(0, t) = t2.8, u(1, t) = et2.8, t ∈ [0, 1],

u(x, 0) = 0, x ∈ [0, 1],

where (x, t) ∈ [0, 1] × [0, 1], and f(x, t) is a given function such that γ(x, t) =
1

600 (20− etx), and the exact solution is u(x, t) = t2.8ex.
The MAEs for Example 3 are listed in Table 3 at different choice of N, M,

α1, β1, α2, and β2. This table confirm the high accuracy of the present scheme.

Math. Model. Anal., 22(1):1–20, 2017.
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Figure 3. t-direction curve of the AEs of Example 1.

Figure 4. ME convergence of Example 1.

Example 4. Here, we test the VO-NGIADE in the following form:

∂u(x, t)

∂t
+
∂u(x, t)

∂x
= D

1−γ(x,t)
t

(∂2u(x, t)

∂x2

)
+ u(x, t)− (u(x, t))2

+ te−2x

(
− 2extγ(x,t)

Γ (γ(x, t) + 2)
+ t3 − 2(t− 1)ex

)
,

u(0, t) = t2, u(1, t) = et2, t ∈ [0, 10],

u(x, 0) = 0, x ∈ [0, 1],

where (x, t) ∈ [0, 1] × [0, 10], γ(x, t) = 1
500

(
(tx)2 − sin3(tx) + cos4(tx) + 266

)
,

knowing that the exact solution is given by u(x, t) = t2e−x.

The MAEs for Example 4 are listed in Table 4 at different choice of N, M,
α1, β1, α2, and β2.

The space-time graph of AEs of Example 4, for N = 10, M = 20, and
α1 = β1 = α2,= β2 = 0, is sketched in Figure 5.
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Table 2. The MAEs of Example 2.

Our method with several choices of N, M
(α1, β1, α2, β2) 4 6 8 10

(0,0,0,0) 3.0160 × 10−5 5.4289 × 10−8 4.6928 × 10−11 2.5757 × 10−14

(0, 1
2
, 1, 1

2
) 3.5922 × 10−5 5.7451 × 10−8 7.9964 × 10−11 4.4631 × 10−14

(1, 1
2
,− 1

2
, 0) 4.8971 × 10−5 7.9121 × 10−8 1.1243 × 10−10 7.7716 × 10−14

FDM [7] with several choices of ht, hx

— — ht = h2x = 1
16

ht = h2x = 1
64

— — 5.6574 × 10−4 1.4910 × 10−4

Table 3. The MAEs of Example 3.

Our method with several choices of (N,M)
(α1, β1, α2, β2) (8,4) (8,8) (8,16) (8,20) (8, 24)

(0,0,0,0) 9.92325e−4 1.4186e−5 1.9261e−7 4.7128e−8 1.4803e−8
( 1
2
, 1
2
, 1
2
, 1
2

) 1.46369e−3 2.4485e−5 3.7493e−7 9.4460e−8 3.0290e−8

(− 1
2
,− 1

2
, 1
2
, 1
2

) 1.46369e−3 2.4485e−5 3.7493e−7 9.4460e−8 3.0290e−8

5.2 Two-dimensional space of VO-NGIADE

Example 5. We consider the following two-dimensional space VO-NGIADE

∂u(x, y, t)

∂t
+
∂u(x, y, t)

∂x
= D

1−γ(x,t)
t

(∂2u(x, y, t)

∂x2
+
∂2u(x, y, t)

∂y2

)
+ u(x, y, t)− (u(x, y, t))2 + f(x, t),

u(0, y, t) = t2 sin(y), u(1, y, t) = t2 sin(1 + y), (y, t) ∈ [0, 1]× [0, 1],

u(x, 0, t) = t2 sin(x), u(x, 1, t) = t2 sin(1 + x), (x, t) ∈ [0, 1]× [0, 1],

u(x, y, 0) = 0, (x, y) ∈ [0, 1]× [0, 1],

(x, y, t) ∈ [0, 1] × [0, 1] × [0, 1], γ(x, y, t) = 1
400 (t(−x)y + cos(txy) + 13) and

f(x, t) = t
(

4 sin(x+y)tγ(x,y,t)

Γ (γ(x,y,t)+2) + sin(x+y)
(
t3 sin(x+y)−t+2

)
+ 2t cos(x+ y)

)
,

knowing that the exact solution is given by u(x, y, t) = t2 sin(x+ y).

The MAEs obtained by our method are summarized in Table 5, for several
choices of N, M, K, α1, β1, α2, β2, α3, and β3. This results confirm the high
accuracy of the present scheme.

The three-dimensional graph of the AEs of Example 5 at t = 1
2 , N =

M = 8, K = 4, α1 = 1
2 , β1 = 0, α2 = 1

2 , β2 = 0, and α3 = β3 = 1
2 is

displayed in Figure 6. In addition, the curve of the AEs of Example 5, at
y = t = 1

2 , is displayed in Figure 7 with the choice N = M = 8, K = 4 and
α1 = 1

2 , β1 = 0, α2 = 1
2 , β2 = 0, α3 = β3 = 1

2 .

Math. Model. Anal., 22(1):1–20, 2017.
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Table 4. The MAEs of Example 4.

Our method with several choices of (α1, β1, α2, β2)
(N,M) ( 1

2
, 1
2
, 1
2
, 1
2

) (− 1
2
,− 1

2
, 1
2
, 1
2

) ( 1
2
, 1
2
, 0, 0) (− 1

2
,− 1

2
, 1, 0) (0, 0, 0, 0)

(5,5) 3.6056e−5 7.9412 × 10−5 3.6056e−5 7.9405 × 10−5 5.5766 × 10−5

(10,20) 7.3896e−13 1.4495 × 10−12 7.9581e−13 1.4353 × 10−12 1.0090 × 10−12

Figure 5. Space-time graph of the AEs of Example 4.

0.0

0.5

1.0

x

0.0

0.5

1.0

y

0

2.´ 10-12

4.´ 10-12

6.´ 10-12

8.´ 10-12

EHx,y,0.5L

Figure 6. Space graph of the AEs for Example 5.

Example 6. Finally, we introduce the following two-dimensional VO-NGIADE

∂u(x, y, t)

∂t
+
∂u(x, y, t)

∂x
= D

1−γ(x,t)
t

(∂2u(x, y, t)

∂x2
+
∂2u(x, y, t)

∂y2

)
+ u(x, y, t)− (u(x, y, t))2 + f(x, t),

u(0, y, t) = t2ey, u(1, y, t) = t2ey+1, (y, t) ∈ [0, 1]× [0, 1],

u(x, 0, t) = t2ex, u(x, 1, t) = t2ex+1, (x, t) ∈ [0, 1]× [0, 1],

u(x, y, 0) = 0, (x, y) ∈ [0, 1]× [0, 1],
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Table 5. The MAEs of Example 5.

Our method with several choices of (N, M, K)
(α1, β1, α2, β2, α3, β3) (2,2,2) (4,4,4) (6,6,6) (8,8,4)

(0,0,0,0,0,0) 2.8713e−3 2.50895 × 10−5 5.23130 × 10−8 4.2599e−11
( 1
2
, 0, 1

2
, 0, 1

2
, 1
2

) 2.3442e−3 2.49389 × 10−5 3.82665 × 10−8 3.4212e−11

( 1
2
,− 1

2
, 0, 0, 1

2
, 1
2

) 1.0031e−2 3.636267 × 10−5 4.15992 × 10−8 4.4601e−11

Figure 7. The AEs versus x of Example 5.

where (x, y, t) ∈ [0, 1] × [0, 1] × [0, 1], γ(x, y, t) = 1
300 (150 − txy) and f(x, t) =

tex+y
(
t+ 2− 4tγ(x,y,t)

Γ (γ(x,y,t)+2) + t3ex+y
)

, knowing that the exact solution is given

by u(x, y, t) = t2ex+y.
Table 6 lists the MAEs obtained by using the proposed method for vari-

ous choices of N, M, K, α1, β1, α2, β2, α3, andβ3. The numerical results pre-
sented in this table show that the results are vary accurate for small value of
N, M and K.

Table 6. The MAEs of Example 6.

Our method with several choices of (N, M, K)
(α1, β1, α2, β2, α3, β3) (2,2,2) (4,4,4) (6,6,6) (8,8,4)

(0,0,0,0,0,0) 1.0934 × 10−3 1.3013 × 10−4 2.4714 × 10−7 1.9615e−10
( 1
2
, 0, 1

2
, 0, 1

2
, 1
2

) 2.1502 × 10−2 7.1109 × 10−5 1.5411 × 10−7 2.6118e−10

( 1
2
,− 1

2
, 0, 0, 1

2
, 1
2

) 4.7764 × 10−2 9.9759 × 10−5 1.9505 × 10−7 3.3079e−10

6 Conclusions

By means of SJ-GL-C and SJ-GR-C schemes, we have introduced a space-
time spectral algorithm for solving VO-NGIADs . According to the numerical
results obtained above, we can concluded the high accuracy of our technique.

Math. Model. Anal., 22(1):1–20, 2017.
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Comparisons between our approximate solutions of the problems, with their
exact solutions or with the approximate solutions achieved by other methods,
were also included to confirm the validity and accuracy of the new scheme.
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