57 research outputs found

    Error concealment techniques for H.264/MVC encoded sequences

    Get PDF
    This work is partially funded by the Strategic Educational Pathways Scholarship Scheme (STEPS-Malta). This scholarship is partly financed by the European Union–European Social Fund (ESF 1.25).The H.264/MVC standard offers good compression ratios for multi-view sequences by exploiting spatial, temporal and interview image dependencies. This works well in error-free channels, however in the event of transmission errors, it leads to the propagation of the distorted macro-blocks, degrading the quality of experience of the user. This paper reviews the state-of-the-art error concealment solutions and proposes a low complexity concealment method that can be used with multi-view video coding. The error resilience techniques used to aid error concealment are also identified. Results obtained demonstrate that good multi-view video reconstruction can be obtained with this approach.peer-reviewe

    Video Streaming over Vehicular Ad Hoc Networks: A Comparative Study and Future Perspectives

    Get PDF
    Vehicular  Ad Hoc Network  (VANET) is emerged as an important research area that provides ubiquitous short-range connectivity among moving vehicles.  This network enables efficient traffic safety and infotainment applications. One of the promising applications is video transmission in vehicle-to-vehicle or vehicle-to-infrastructure environments.  But, video streaming over vehicular environment is a daunting task due to high movement of vehicles. This paper presents a survey on state-of-arts of video streaming over VANET. Furthermore, taxonomy of vehicular video transmission is highlighted in this paper with special focus on significant applications and their requirements with challenges, video content sharing, multi-source video streaming and video broadcast services. The comparative study of the paper compares the video streaming schemes based on type of error resilient technique, objective of study, summary of their study, the utilized simulator and the type of video sharing.  Lastly, we discussed the open issues and research directions related to video communication over VANET

    Recent Advances in Region-of-interest Video Coding

    Get PDF

    Geographical forwarding algorithm based video content delivery scheme for internet of vehicles (IoV)

    Get PDF
    This is an accepted manuscript of an article published by IEEE Multimedia Communications Technical Committee in MMTC Communications – Frontiers on 31/07/2020, available online: https://mmc.committees.comsoc.org/files/2020/07/MMTC_Communication_Frontier_July_2020.pdf The accepted version of the publication may differ from the final published version.An evolved form of Vehicular Ad hoc Networks (VANET) has recently emerged as the Internet of Vehicles (IoV). Though, there are still some challenges that need to be addressed in support IoV applications. The objective of this research is to achieve an efficient video content transmission over vehicular networks. We propose a balanced video-forwarding algorithm for delivering video-based content delivery scheme. The available neighboring vehicles will be ranked to the vehicle in forwarding progress before transmitting the video frames using proposed multi-score function. Considering the current beacon reception rate, forwarding progress and direction to destination, in addition to residual buffer length; the proposed algorithm can elect the best candidate to forward the video frames to the next highest ranked vehicles in a balanced way taking in account their residual buffer lengths. To facilitate the proposed video content delivery scheme, an approach of H.264/SVC was improvised to divide video packets into various segments, to be delivered into three defined groups. These created segments can be encoded and decoded independently and integrated back to produce the original packet sent by source vehicle. Simulation results demonstrate the efficiency of our proposed algorithm in improving the perceived video quality compared with other approache

    Resource-Constrained Low-Complexity Video Coding for Wireless Transmission

    Get PDF

    Cross-layer Optimized Wireless Video Surveillance

    Get PDF
    A wireless video surveillance system contains three major components, the video capture and preprocessing, the video compression and transmission over wireless sensor networks (WSNs), and the video analysis at the receiving end. The coordination of different components is important for improving the end-to-end video quality, especially under the communication resource constraint. Cross-layer control proves to be an efficient measure for optimal system configuration. In this dissertation, we address the problem of implementing cross-layer optimization in the wireless video surveillance system. The thesis work is based on three research projects. In the first project, a single PTU (pan-tilt-unit) camera is used for video object tracking. The problem studied is how to improve the quality of the received video by jointly considering the coding and transmission process. The cross-layer controller determines the optimal coding and transmission parameters, according to the dynamic channel condition and the transmission delay. Multiple error concealment strategies are developed utilizing the special property of the PTU camera motion. In the second project, the binocular PTU camera is adopted for video object tracking. The presented work studied the fast disparity estimation algorithm and the 3D video transcoding over the WSN for real-time applications. The disparity/depth information is estimated in a coarse-to-fine manner using both local and global methods. The transcoding is coordinated by the cross-layer controller based on the channel condition and the data rate constraint, in order to achieve the best view synthesis quality. The third project is applied for multi-camera motion capture in remote healthcare monitoring. The challenge is the resource allocation for multiple video sequences. The presented cross-layer design incorporates the delay sensitive, content-aware video coding and transmission, and the adaptive video coding and transmission to ensure the optimal and balanced quality for the multi-view videos. In these projects, interdisciplinary study is conducted to synergize the surveillance system under the cross-layer optimization framework. Experimental results demonstrate the efficiency of the proposed schemes. The challenges of cross-layer design in existing wireless video surveillance systems are also analyzed to enlighten the future work. Adviser: Song C

    Cross-layer Optimized Wireless Video Surveillance

    Get PDF
    A wireless video surveillance system contains three major components, the video capture and preprocessing, the video compression and transmission over wireless sensor networks (WSNs), and the video analysis at the receiving end. The coordination of different components is important for improving the end-to-end video quality, especially under the communication resource constraint. Cross-layer control proves to be an efficient measure for optimal system configuration. In this dissertation, we address the problem of implementing cross-layer optimization in the wireless video surveillance system. The thesis work is based on three research projects. In the first project, a single PTU (pan-tilt-unit) camera is used for video object tracking. The problem studied is how to improve the quality of the received video by jointly considering the coding and transmission process. The cross-layer controller determines the optimal coding and transmission parameters, according to the dynamic channel condition and the transmission delay. Multiple error concealment strategies are developed utilizing the special property of the PTU camera motion. In the second project, the binocular PTU camera is adopted for video object tracking. The presented work studied the fast disparity estimation algorithm and the 3D video transcoding over the WSN for real-time applications. The disparity/depth information is estimated in a coarse-to-fine manner using both local and global methods. The transcoding is coordinated by the cross-layer controller based on the channel condition and the data rate constraint, in order to achieve the best view synthesis quality. The third project is applied for multi-camera motion capture in remote healthcare monitoring. The challenge is the resource allocation for multiple video sequences. The presented cross-layer design incorporates the delay sensitive, content-aware video coding and transmission, and the adaptive video coding and transmission to ensure the optimal and balanced quality for the multi-view videos. In these projects, interdisciplinary study is conducted to synergize the surveillance system under the cross-layer optimization framework. Experimental results demonstrate the efficiency of the proposed schemes. The challenges of cross-layer design in existing wireless video surveillance systems are also analyzed to enlighten the future work. Adviser: Song C

    Efficient Region-of-Interest Scalable Video Coding with Adaptive Bit-Rate Control

    Get PDF
    This work relates to the regions-of-interest (ROI) coding that is a desirable feature in future applications based on the scalable video coding, which is an extension of the H.264/MPEG-4 AVC standard. Due to the dramatic technological progress, there is a plurality of heterogeneous devices, which can be used for viewing a variety of video content. Devices such as smartphones and tablets are mostly resource-limited devices, which make it difficult to display high-quality content. Usually, the displayed video content contains one or more ROI(s), which should be adaptively selected from the preencoded scalable video bitstream. Thus, an efficient scalable ROI video coding scheme is proposed in this work, thereby enabling the extraction of the desired regions-of-interest and the adaptive setting of the desirable ROI location, size, and resolution. In addition, an adaptive bit-rate control is provided for the region-of-interest scalable video coding. The performance of the presented techniques is demonstrated and compared with the joint scalable video model reference software (JSVM 9.19), thereby showing significant bit-rate savings as a tradeoff for the relatively low PSNR degradation

    ROBUST ADAPTIVE INTRA REFRESH FOR MULTIVIEW VIDEO

    Get PDF
    ABSTRAC
    • …
    corecore