1,452 research outputs found

    SPAD: a distributed middleware architecture for QoS enhanced alternate path discovery

    Get PDF
    In the next generation Internet, the network will evolve from a plain communication medium into one that provides endless services to the users. These services will be composed of multiple cooperative distributed application elements. We name these services overlay applications. The cooperative application elements within an overlay application will build a dynamic communication mesh, namely an overlay association. The Quality of Service (QoS) perceived by the users of an overlay application greatly depends on the QoS experienced on the communication paths of the corresponding overlay association. In this paper, we present SPAD (Super-Peer Alternate path Discovery), a distributed middleware architecture that aims at providing enhanced QoS between end-points within an overlay association. To achieve this goal, SPAD provides a complete scheme to discover and utilize composite alternate end-to end paths with better QoS than the path given by the default IP routing mechanisms

    Distributed coordination in unstructured intelligent agent societies

    Get PDF
    Current research on multi-agent coordination and distributed problem solving is still not robust or scalable enough to build large real-world collaborative agent societies because it relies on either centralised components with full knowledge of the domain or pre-defined social structures. Our approach allows overcoming these limitations by using a generic coordination framework for distributed problem solving on totally unstructured environments that enables each agent to decompose problems into sub-problems, identify those which it can solve and search for other agents to delegate the sub-problems for which it does not have the necessary knowledge or resources. Regarding the problem decomposition process, we have developed two distributed versions of the Graphplan planning algorithm. To allow an agent to discover other agents with the necessary skills for dealing with unsolved sub-problems, we have created two peer-to-peer search algorithms that build and maintain a semantic overlay network that connects agents relying on dependency relationships, which improves future searches. Our approach was evaluated using two different scenarios, which allowed us to conclude that it is efficient, scalable and robust, allowing the coordinated distributed solving of complex problems in unstructured environments without the unacceptable assumptions of alternative approaches developed thus far.As abordagens actuais de coordenação multi-agente e resolução distribuĂ­da de problemas nĂŁo sĂŁo suficientemente robustas ou escalĂĄveis para criar sociedades de agentes colaborativos uma vez que assentam ou em componentes centralizados com total conhecimento do domĂ­nio ou em estruturas sociais prĂ©-definidas. A nossa abordagem permite superar estas limitaçÔes atravĂ©s da utilização de um algoritmo genĂ©rico de coordenação de resolução distribuĂ­da de problemas em ambientes totalmente nĂŁo estruturados, o qual permite a cada agente decompor problemas em sub-problemas, identificar aqueles que consegue resolver e procurar outros agentes a quem delegar os subproblemas para os quais nĂŁo tem conhecimento suficiente. Para a decomposição de problemas, criĂĄmos duas versĂ”es distribuĂ­das do algoritmo de planeamento Graphplan. Para procurar os agentes com as capacidades necessĂĄrias Ă  resolução das partes nĂŁo resolvidas do problema, criĂĄmos dois algoritmos de procura que constroem e mantĂȘm uma camada de rede semĂąntica que relaciona agentes dependentes com o fim de facilitar as procuras. A nossa abordagem foi avaliada em dois cenĂĄrios diferentes, o que nos permitiu concluir que ÂŽe uma abordagem eficiente, escalĂĄvel e robusta, possibilitando a resolução distribuĂ­da e coordenada de problemas complexos em ambientes nĂŁo estruturados sem os pressupostos inaceitĂĄveis em que assentava o trabalho feito atĂ© agora

    Let Your CyberAlter Ego Share Information and Manage Spam

    Full text link
    Almost all of us have multiple cyberspace identities, and these {\em cyber}alter egos are networked together to form a vast cyberspace social network. This network is distinct from the world-wide-web (WWW), which is being queried and mined to the tune of billions of dollars everyday, and until recently, has gone largely unexplored. Empirically, the cyberspace social networks have been found to possess many of the same complex features that characterize its real counterparts, including scale-free degree distributions, low diameter, and extensive connectivity. We show that these topological features make the latent networks particularly suitable for explorations and management via local-only messaging protocols. {\em Cyber}alter egos can communicate via their direct links (i.e., using only their own address books) and set up a highly decentralized and scalable message passing network that can allow large-scale sharing of information and data. As one particular example of such collaborative systems, we provide a design of a spam filtering system, and our large-scale simulations show that the system achieves a spam detection rate close to 100%, while the false positive rate is kept around zero. This system has several advantages over other recent proposals (i) It uses an already existing network, created by the same social dynamics that govern our daily lives, and no dedicated peer-to-peer (P2P) systems or centralized server-based systems need be constructed; (ii) It utilizes a percolation search algorithm that makes the query-generated traffic scalable; (iii) The network has a built in trust system (just as in social networks) that can be used to thwart malicious attacks; iv) It can be implemented right now as a plugin to popular email programs, such as MS Outlook, Eudora, and Sendmail.Comment: 13 pages, 10 figure

    DĂ©couverte et allocation des ressources pour le traitement de requĂȘtes dans les systĂšmes grilles

    Get PDF
    De nos jours, les systĂšmes Grille, grĂące Ă  leur importante capacitĂ© de calcul et de stockage ainsi que leur disponibilitĂ©, constituent l'un des plus intĂ©ressants environnements informatiques. Dans beaucoup de diffĂ©rents domaines, on constate l'utilisation frĂ©quente des facilitĂ©s que les environnements Grille procurent. Le traitement des requĂȘtes distribuĂ©es est l'un de ces domaines oĂč il existe de grandes activitĂ©s de recherche en cours, pour transfĂ©rer l'environnement sous-jacent des systĂšmes distribuĂ©s et parallĂšles Ă  l'environnement Grille. Dans le cadre de cette thĂšse, nous nous concentrons sur la dĂ©couverte des ressources et des algorithmes d'allocation de ressources pour le traitement des requĂȘtes dans les environnements Grille. Pour ce faire, nous proposons un algorithme de dĂ©couverte des ressources pour le traitement des requĂȘtes dans les systĂšmes Grille en introduisant le contrĂŽle de topologie auto-stabilisant et l'algorithme de dĂ©couverte des ressources dirigĂ© par l'Ă©lection convergente. Ensuite, nous prĂ©sentons un algorithme d'allocation des ressources, qui rĂ©alise l'allocation des ressources pour les requĂȘtes d'opĂ©rateur de jointure simple par la gĂ©nĂ©ration d'un espace de recherche rĂ©duit pour les nƓuds candidats et en tenant compte des proximitĂ©s des candidats aux sources de donnĂ©es. Nous prĂ©sentons Ă©galement un autre algorithme d'allocation des ressources pour les requĂȘtes d'opĂ©rateurs de jointure multiple. Enfin, on propose un algorithme d'allocation de ressources, qui apporte une tolĂ©rance aux pannes lors de l'exĂ©cution de la requĂȘte par l'utilisation de la rĂ©plication passive d'opĂ©rateurs Ă  Ă©tat. La contribution gĂ©nĂ©rale de cette thĂšse est double. PremiĂšrement, nous proposons un nouvel algorithme de dĂ©couverte de ressource en tenant compte des caractĂ©ristiques des environnements Grille. Nous nous adressons Ă©galement aux problĂšmes d'extensibilitĂ© et de dynamicitĂ© en construisant une topologie efficace sur l'environnement Grille et en utilisant le concept d'auto-stabilisation, et par la suite nous adressons le problĂšme de l'hĂ©tĂ©rogĂ©nĂ©itĂ© en proposant l'algorithme de dĂ©couverte de ressources dirigĂ© par l'Ă©lection convergente. La deuxiĂšme contribution de cette thĂšse est la proposition d'un nouvel algorithme d'allocation des ressources en tenant compte des caractĂ©ristiques de l'environnement Grille. Nous abordons les problĂšmes causĂ©s par la grande Ă©chelle caractĂ©ristique en rĂ©duisant l'espace de recherche pour les ressources candidats. De ce fait nous rĂ©duisons les coĂ»ts de communication au cours de l'exĂ©cution de la requĂȘte en allouant des nƓuds au plus prĂšs des sources de donnĂ©es. Et enfin nous traitons la dynamicitĂ© des nƓuds, du point de vue de leur existence dans le systĂšme, en proposant un algorithme d'affectation des ressources avec une tolĂ©rance aux pannes.Grid systems are today's one of the most interesting computing environments because of their large computing and storage capabilities and their availability. Many different domains profit the facilities of grid environments. Distributed query processing is one of these domains in which there exists large amounts of ongoing research to port the underlying environment from distributed and parallel systems to the grid environment. In this thesis, we focus on resource discovery and resource allocation algorithms for query processing in grid environments. For this, we propose resource discovery algorithm for query processing in grid systems by introducing self-stabilizing topology control and converge-cast based resource discovery algorithms. Then, we propose a resource allocation algorithm, which realizes allocation of resources for single join operator queries by generating a reduced search space for the candidate nodes and by considering proximities of candidates to the data sources. We also propose another resource allocation algorithm for queries with multiple join operators. Lastly, we propose a fault-tolerant resource allocation algorithm, which provides fault-tolerance during the execution of the query by the use of passive replication of stateful operators. The general contribution of this thesis is twofold. First, we propose a new resource discovery algorithm by considering the characteristics of the grid environments. We address scalability and dynamicity problems by constructing an efficient topology over the grid environment using the self-stabilization concept; and we deal with the heterogeneity problem by proposing the converge-cast based resource discovery algorithm. The second main contribution of this thesis is the proposition of a new resource allocation algorithm considering the characteristics of the grid environment. We tackle the scalability problem by reducing the search space for candidate resources. We decrease the communication costs during the query execution by allocating nodes closer to the data sources. And finally we deal with the dynamicity of nodes, in terms of their existence in the system, by proposing the fault-tolerant resource allocation algorithm

    A framework for the dynamic management of Peer-to-Peer overlays

    Get PDF
    Peer-to-Peer (P2P) applications have been associated with inefficient operation, interference with other network services and large operational costs for network providers. This thesis presents a framework which can help ISPs address these issues by means of intelligent management of peer behaviour. The proposed approach involves limited control of P2P overlays without interfering with the fundamental characteristics of peer autonomy and decentralised operation. At the core of the management framework lays the Active Virtual Peer (AVP). Essentially intelligent peers operated by the network providers, the AVPs interact with the overlay from within, minimising redundant or inefficient traffic, enhancing overlay stability and facilitating the efficient and balanced use of available peer and network resources. They offer an “insider‟s” view of the overlay and permit the management of P2P functions in a compatible and non-intrusive manner. AVPs can support multiple P2P protocols and coordinate to perform functions collectively. To account for the multi-faceted nature of P2P applications and allow the incorporation of modern techniques and protocols as they appear, the framework is based on a modular architecture. Core modules for overlay control and transit traffic minimisation are presented. Towards the latter, a number of suitable P2P content caching strategies are proposed. Using a purpose-built P2P network simulator and small-scale experiments, it is demonstrated that the introduction of AVPs inside the network can significantly reduce inter-AS traffic, minimise costly multi-hop flows, increase overlay stability and load-balancing and offer improved peer transfer performance

    Talking to the Empowered Consumer Dealing with the Shift of Power

    Get PDF
    The concept of the empowered consumer cannot be considered as a field of exact scientific research yet. Nevertheless, it has become part of scholars’ interest and gains more and more importance in the research of organisational relationships with customers. It is suggested that two influencing criteria are especially at the forefront: The emergence of the Internet, which effected that barriers to collect and to disseminate information across boundaries were decisively reduced. As a consequence consumers could organise globally and collect and exchange information and experiences about organisations and their products. Furthermore, flexible interactivity between companies and consumers, but particularly from consumers to consumers enable direct interaction changing many previously established rules of doing business. Due to these new opportunities new business models developed and the proposition is that intangible values such as reputation gained even more importance and influence tangible outcomes. Suggestions are that 1.), this concept links communication, corporate behaviour and legitimacy of activities influencing reputation as a driver of value. 2.), reputation as a corporate asset can be managed but it is beyond the pure control of an organisation. 3.), reputation is part of public perception, which an organisation has to build, maintain and expand depending on communicative abilities and willingness to accept consumers as a centre of power. The following discussion will present Grunig et al.’s communication model explaining changed organisational challenges. It is put forward as a framework for marketing for times in which online opportunities added to the earlier b2b and b2c models c2c and P2P considerations and architectures. The annual studies of the market research institute puls undertaking regular representative research among German consumers since November 2005 will present evidence for the relationship of improved prices, which may be achieved, and the perception a firm possesses. This paper deals mostly with German examples and data, but the hypothesis is that a) the general situation in other Western countries is alike, but needs b) specific additional research, since cultural differences are expected to have a considerable influence, especially when criteria such as individualist and collectivist organisation of society and high and low context communication styles are involved. Hence, the results of the same study in different countries are therefore expected to present some variation. Additionally, the Cluetrain Manifesto challenges corporate behaviour of those companies still believing to have the ability to control information disseminated by and written about it. Examples provided will support the hypothesis that powerful consumers may have significant impact on organisational behaviour, decision-making and outcomes. Keywords: Empowered Consumer Concept, Symmetric Two-way communication, Reputation, c2c, P2

    A HOLISTIC REDUNDANCY- AND INCENTIVE-BASED FRAMEWORK TO IMPROVE CONTENT AVAILABILITY IN PEER-TO-PEER NETWORKS

    Get PDF
    Peer-to-Peer (P2P) technology has emerged as an important alternative to the traditional client-server communication paradigm to build large-scale distributed systems. P2P enables the creation, dissemination and access to information at low cost and without the need of dedicated coordinating entities. However, existing P2P systems fail to provide high-levels of content availability, which limit their applicability and adoption. This dissertation takes a holistic approach to device mechanisms to improve content availability in large-scale P2P systems. Content availability in P2P can be impacted by hardware failures and churn. Hardware failures, in the form of disk or node failures, render information inaccessible. Churn, an inherent property of P2P, is the collective effect of the users’ uncoordinated behavior, which occurs when a large percentage of nodes join and leave frequently. Such a behavior reduces content availability significantly. Mitigating the combined effect of hardware failures and churn on content availability in P2P requires new and innovative solutions that go beyond those applied in existing distributed systems. To addresses this challenge, the thesis proposes two complementary, low cost mechanisms, whereby nodes self-organize to overcome failures and improve content availability. The first mechanism is a low complexity and highly flexible hybrid redundancy scheme, referred to as Proactive Repair (PR). The second mechanism is an incentive-based scheme that promotes cooperation and enforces fair exchange of resources among peers. These mechanisms provide the basis for the development of distributed self-organizing algorithms to automate PR and, through incentives, maximize their effectiveness in realistic P2P environments. Our proposed solution is evaluated using a combination of analytical and experimental methods. The analytical models are developed to determine the availability and repair cost properties of PR. The results indicate that PR’s repair cost outperforms other redundancy schemes. The experimental analysis was carried out using simulation and the development of a testbed. The simulation results confirm that PR improves content availability in P2P. The proposed mechanisms are implemented and tested using a DHT-based P2P application environment. The experimental results indicate that the incentive-based mechanism can promote fair exchange of resources and limits the impact of uncooperative behaviors such as “free-riding”

    Peer-to-Peer Networks and Computation: Current Trends and Future Perspectives

    Get PDF
    This research papers examines the state-of-the-art in the area of P2P networks/computation. It attempts to identify the challenges that confront the community of P2P researchers and developers, which need to be addressed before the potential of P2P-based systems, can be effectively realized beyond content distribution and file-sharing applications to build real-world, intelligent and commercial software systems. Future perspectives and some thoughts on the evolution of P2P-based systems are also provided

    Effective bootstrapping of Peer-to Peer networks over Mobile Ad-hoc networks

    Get PDF
    Mobile Ad-hoc Networks (MANETs) and Peer-to-Peer (P2P) networks are vigorous, revolutionary communication technologies in the 21st century. They lead the trend of decentralization. Decentralization will ultimately win clients over client/server model, because it gives ordinary network users more control, and stimulates their active participation. It is a determinant factor in shaping the future of networking. MANETs and P2P networks are very similar in nature. Both are dynamic, distributed. Both use multi-hop broadcast or multicast as major pattern of traffic. Both set up connection by self-organizing and maintain connection by self-healing. Embodying the slogan networking without networks, both abandoned traditional client/server model and disclaimed pre-existing infrastructure. However, their status quo levels of real world application are widely divergent. P2P networks are now accountable for about 50 ~ 70% internet traffic, while MANETs are still primarily in the laboratory. The interesting and confusing phenomenon has sparked considerable research effort to transplant successful approaches from P2P networks into MANETs. While most research in the synergy of P2P networks and MANETs focuses on routing, the network bootstrapping problem remains indispensable for any such transplantation to be realized. The most pivotal problems in bootstrapping are: (1) automatic configuration of nodes addresses and IDs, (2) topology discovery and transformation in different layers and name spaces. In this dissertation research, we have found novel solutions for these problems. The contributions of this dissertation are: (1) a non-IP, flat address automatic configuration scheme, which integrates lower layer addresses and P2P IDs in application layer and makes simple cryptographical assignment possible. A related paper entitled Pastry over Ad-Hoc Networks with Automatic Flat Address Configuration was submitted to Elsevier Journal of Ad Hoc Networks in May. (2) an effective ring topology construction algorithm which builds perfect ring in P2P ID space using only simplest multi-hop unicast or multicast. Upon this ring, popular structured P2P networks like Chord, Pastry could be built with great ease. A related paper entitled Chord Bootstrapping on MANETs - All Roads lead to Rome will be ready for submission after defense of the dissertation
    • 

    corecore