

tre :

Université Toulouse 3 Paul Sabatier (UT3 Paul Sabatier)

Cotutelle Internationale avec Université Ege, Turquie

ED MITT : Domaine STIC : Réseaux, Télécoms, Systèmes et Architecture

Deniz ÇOKUSLU
 02 Novembre 2012

Découverte et allocation des ressources pour le traitement de requêtes dans
les systèmes grilles

Institut de Recherche en Informatique de Toulouse

Abdelkader HAMEURLAIN, Professeur à l'Université Paul Sabatier Toulouse III, France
Kayhan ERC YE , Professeur à l'Université Izmir, Turquie

Djamal BENSLIMANE, Professeur à l'Université Claude Bernard Lyon, France
Nihan Kesim Ç ÇEKL , Professeur à L’Université Technique du Moyen-Orient, Turquie

Farouk TOUMANI, Professeur à l'Université Clermont Ferrand II, France
Mehmet Emin DALKILIÇ, Professeur à l'Université Ege, Turquie

Franck MORVAN, Professeur à l'Université Paul Sabatier Toulouse III, France
Aysegul ALAYBEYO LU, Professeur Adjoint à l'Université Celal Bayar, Turquie

 2

 3

ACKNOWLEDGEMENTS

I owe my deepest gratitude to my supervisors Prof. Kayhan Erciyes and Prof. Abdelkader

Hameurlain for their valuable guidance during this cooperation. Their priceless efforts

make this joint thesis possible between Ege University and Paul Sabatier University. I

would never converge to the end of this thesis without their precise foresight. I also wish to

express my sincere gratitude to Prof Sıtkı Aytaç, Director of Department of Computer

Engineering, İYTE, Prof M. Emin Dalkılıç, Director of International Computer Institute,

Ege University and Prof Michel Daydé, Director of IRIT, Paul Sabatier University for their

valuable cooperation during this thesis. I sincerely thank to Prof Nihan Kesim Çiçekli and

Prof Djamal Benslimane for accepting to be the reviewers of this thesis and for their

valuable remarks, which make this thesis more accurate. Likewise, I wish my sincere

gratitude to the members of the jury of the thesis dissertation, Prof Kayhan Erciyes, Prof

Abdelkader Hameurlain, Prof M. Emin Dalkılıç, Prof. Franck Morvan, Prof Djamal

Benslimane, Prof Nihan Kesim Çiçekli, Prof Farouk Toumani and Assist. Prof. Ayşegül

Alaybeyoğlu. I would like to thank to Assoc. Prof. Aylin Kantarcı and Prof Mehmet Emin

Dalkılıç for accepting to be in my thesis advisory committee. I also would like to gratefully

acknowledge The Scientific and Technological Research Council of Turkey TÜBİTAK

and French Government for their financial support, which make this joint thesis possible. I

would like to show my greatest appreciation to all my friends. I especially thank to Mr

Selçuk Sözen, who believed in me by heart throughout my thesis. Last but not least I wish

to avail myself of this opportunity, express a sense of gratitude and love to my beloved

parents for their manual support, strength and help. Lastly, I take immense pleasure in

thanking to my precious wife Evşen for her support and encouragements during

preparation of this thesis.

 4

 5

Découverte et allocation des ressources pour le

traitement de requêtes dans les systèmes grilles

Résumé

De nos jours, les systèmes Grille, grâce à leur importante capacité de calcul et de

stockage ainsi que leur disponibilité, constituent l’un des plus intéressants environnements

informatiques. Dans beaucoup de différents domaines, on constate l’utilisation fréquente

des facilités que les environnements Grille procurent.

Le traitement des requêtes distribuées est l'un de ces domaines où il existe de grandes

activités de recherche en cours, pour transférer l'environnement sous-jacent des systèmes

distribués et parallèles à l'environnement Grille.

 Dans le cadre de cette thèse, nous nous concentrons sur la découverte des ressources

et des algorithmes d'allocation de ressources pour le traitement des requêtes dans les

environnements Grille. Pour ce faire, nous proposons un algorithme de découverte des

ressources pour le traitement des requêtes dans les systèmes Grille en introduisant le

contrôle de topologie auto-stabilisant et l’algorithme de découverte des ressources dirigé

par l’élection convergente. Ensuite, nous présentons un algorithme d'allocation des

ressources, qui réalise l'allocation des ressources pour les requêtes d’opérateur de jointure

simple par la génération d’un espace de recherche réduit pour les nœuds candidats et en

tenant compte des proximités des candidats aux sources de données. Nous présentons

également un autre algorithme d'allocation des ressources pour les requêtes d’opérateurs de

jointure multiple. Enfin, on propose un algorithme d'allocation de ressources, qui apporte

une tolérance aux pannes lors de l'exécution de la requête par l'utilisation de la réplication

passive d'opérateurs à état.

La contribution générale de cette thèse est double. Premièrement, nous proposons un

 6

nouvel algorithme de découverte de ressource en tenant compte des caractéristiques des

environnements Grille. Nous nous adressons également aux problèmes d'extensibilité et de

dynamicité en construisant une topologie efficace sur l'environnement Grille et en utilisant

le concept d'auto-stabilisation, et par la suite nous adressons le problème de l'hétérogénéité

en proposant l’algorithme de découverte de ressources dirigé par l’élection convergente. La

deuxième contribution de cette thèse est la proposition d'un nouvel algorithme d'allocation

des ressources en tenant compte des caractéristiques de l'environnement Grille.

Nous abordons les problèmes causés par la grande échelle caractéristique en réduisant

l'espace de recherche pour les ressources candidats. De ce fait nous réduisons les coûts de

communication au cours de l'exécution de la requête en allouant des nœuds au plus près

des sources de données. Et enfin nous traitons la dynamicité des nœuds, du point de vue de

leur existence dans le système, en proposant un algorithme d'affectation des ressources

avec une tolérance aux pannes.

Mots-clés: Traitement des requêtes, découverte de ressources, contrôle de topologie auto-
stabilisant, arbres couvrants, allocation des ressources, tolérance aux pannes.

 7

Resource Discovery and Allocation for Query

Processing in Grid Systems

Abstract

Grid systems are today’s one of the most interesting computing environments because

of their large computing and storage capabilities and their availability. Many different

domains profit the facilities of grid environments. Distributed query processing is one of

these domains in which there exists large amounts of ongoing research to port the

underlying environment from distributed and parallel systems to the grid environment.

In this thesis, we focus on resource discovery and resource allocation algorithms for

query processing in grid environments. For this, we propose resource discovery algorithm

for query processing in grid systems by introducing self-stabilizing topology control and

converge-cast based resource discovery algorithms. Then, we propose a resource allocation

algorithm, which realizes allocation of resources for single join operator queries by

generating a reduced search space for the candidate nodes and by considering proximities

of candidates to the data sources. We also propose another resource allocation algorithm

for queries with multiple join operators. Lastly, we propose a fault-tolerant resource

allocation algorithm, which provides fault-tolerance during the execution of the query by

the use of passive replication of stateful operators.

The general contribution of this thesis is twofold. First, we propose a new resource

discovery algorithm by considering the characteristics of the grid environments. We

address scalability and dynamicity problems by constructing an efficient topology over the

grid environment using the self-stabilization concept; and we deal with the heterogeneity

problem by proposing the converge-cast based resource discovery algorithm. The second

main contribution of this thesis is the proposition of a new resource allocation algorithm

considering the characteristics of the grid environment. We tackle the scalability problem

 8

by reducing the search space for candidate resources. We decrease the communication

costs during the query execution by allocating nodes closer to the data sources. And finally

we deal with the dynamicity of nodes, in terms of their existence in the system, by

proposing the fault-tolerant resource allocation algorithm.

Keywords: Query processing, resource discovery, self-stabilization, topology control,

spanning tree, resource allocation, fault-tolerance.

 9

TABLE OF CONTENTS
CHAPTER 1 INTRODUCTION ... 13

1.1 Context, Motivations and Problems .. 13
1.2 Resource Discovery (RD) for Query Processing in Grid Environments 15
1.3 Resource Allocation (RA) for Query Processing in Grid Environments 17
1.4 Experimental Validation .. 19
1.5 Contributions ... 21
1.6 Thesis Organization ... 22

CHAPTER 2: STATE OF THE ART .. 24

2.1 Introduction ... 24
2.2 Resource Discovery (RD) for Query Processing in Grid Environments 25
 2.2.1 Grid Resource Discovery Based on Centralized and Hierarchical
Architectures .. 28
 2.2.1.1 Grid Resource Discovery Using Centralized Systems 29
 2.2.1.2 Grid Resource Discovery Using Hierarchical Systems 30
 2.2.1.3 Comparison .. 31
 2.2.1.4 Conclusions ... 33
 2.2.2 Grid Resource Discovery Based on Peer to Peer (P2P) Systems 33
 2.2.2.1 Grid Resource Discovery Based on Unstructured P2P Systems 34
 2.2.2.2 Grid Resource Discovery Based on Super-Peer Systems 35
 2.2.2.3 Grid Resource Discovery Based on Structured P2P Systems 36
 2.2.2.4 Comparison .. 38
 2.2.2.5 Conclusions ... 39
 2.2.3 Grid Resource Discovery Based on Agent Technologies 40
 2.2.3.1 Agent Based Grid Resource Discovery on Unstructured Network
Topology .. 40
 2.2.3.2 Agent Based Grid Resource Discovery on Structured Network Topology 41
 2.2.3.3 Comparison .. 42

 10

 2.2.3.4 Conclusions ... 43
 2.2.4 Global Evaluation of Resource Discovery Methods .. 44
 2.2.5 Self-stabilizing Spanning Tree Construction Algorithms 46
 2.2.5.1 Recent studies .. 47
 2.2.5.2 Conclusions ... 48
 2.2.6 Conclusions for Resource Discovery Algorithms .. 49
2.3 Resource Allocation (RA) for Query Processing in Grid Environments 49
 2.3.1 Existing Survey Studies and Motivations ... 53
 2.3.2 Recent Resource Allocation Methods .. 55
 2.3.2.1 Task-Centered Resource Allocation Methods ... 55
 2.3.2.2 Resource-Centered Resource Allocation Methods 57
 2.3.2.3 Qualitative Comparison Between Classes ... 58
 2.3.2.4 Quantitative Evaluation and Comparison .. 60
 2.3.3 Fault-tolerance in Query Processing in Grid Environments 66
 2.3.3.1 Recent Studies ... 67
 2.3.3.2 Conclusions ... 68
 2.3.4 Conclusions for Resource Allocation Algorithms .. 69
2.4 Overall Conclusions .. 69

CHAPTER 3: RESOURCE DISCOVERY FOR QUERY PROCESSING IN
GRID ENVIRONMENTS ... 72

3.1 Introduction ... 72
3.2 Topology Control for Resource Discovery in Grid Environments 75
 3.2.1 Selected Algorithms for Comparison ... 77
 3.2.1.1 Memory-efficient self-stabilizing spanning tree algorithm (MEST) 77
 3.2.1.2 Asynchronous Concurrent Initiator Spanning Tree Algorithm (CIST) 78
 3.2.2 Proposed Algorithms .. 79
 3.2.2.1 Maximum Degree Self-Stabilizing Spanning Tree Algorithm 1 (MDST1) 80
 3.2.2.2 Maximum Degree Self-Stabilizing Spanning Tree Algorithm 2 (MDST2) 81
 3.2.2.3 Maximum Degree Center Based Self-Stabilizing Spanning Tree
Algorithm (MDCST) ... 83
 3.2.3 Analysis .. 84

 11

 3.2.4 Simulations ... 87
 3.2.5 Conclusion .. 90
3.3 Spanning Tree Based Resource Discovery for Query Processing in Grid
Environments ... 91
 3.3.1 The Spanning Tree Based Resource Discovery (STRD) Algorithm 92
 3.3.2 Analysis .. 93
 3.3.3 Simulations ... 95
 3.3.4 Conclusion .. 96
3.4 Overall Conclusions .. 97

CHAPTER 4: RESOURCE ALLOCATION FOR QUERY PROCESSING IN
GRID ENVIRONMENTS ... 99

4.1 Introduction ... 99
4.2 Single Join Operator Resource Allocation (SJORA) Algorithm 102
 4.2.1 Proximity Based Candidate List Generation (PBCG) Algorithm 102
 4.2.2 Join Task Resource Allocation (JTRA) Algorithm .. 104
 4.2.3 Analysis .. 108
 4.2.4 Simulations ... 109
 4.2.5 Conclusion .. 112
4.3 Resource Allocation for a Multi Join Query ... 112
 4.3.1 Multi Join Resource Allocation (MJORA) Algorithm 112
 4.3.2 Analysis .. 116
 4.3.3 Simulations ... 117
 4.3.4 Conclusion .. 121
4.4 Overall Conclusions .. 121

CHAPTER 5: FAULT TOLERANT RESOURCE ALLOCATION FOR
QUERY PROCESSING IN GRID ENVIRONMENTS ... 123

5.1 Introduction ... 123
5.2 Fault-Tolerant Resource Allocation (FTRA) Algorithm 125

 12

 5.2.1 The Algorithm .. 125
 5.2.2 Analysis .. 134
 5.2.3 Simulations ... 134
 5.3 Overall Conclusions .. 136

CHAPTER 6: CONCLUSIONS ... 137

6.1 Summary of Studies .. 138
6.2 Future Directions ... 140
6.3 Overall Conclusions .. 142

REFERENCES .. 156

 13

CHAPTER 1: INTRODUCTION

Résumé

Dans ce chapitre, nous présentons nos motivations de cette thèse. Nous présentons les

définitions des problèmes abordés. Nous décrivons brièvement un état de l'art et nous

discutons nos contributions potentielles. Enfin, nous présentons l'idée principale derrière

les algorithmes proposés ainsi que la structure de la thèse.

Abstract

In this chapter, we provide motivations for this thesis. We present the tackled problem

definitions. We describe a state of the art very briefly and discuss the open issues and our

potential contributions. Finally, we present the main idea behind the proposed algorithms

and also the structure of the thesis.

1.1 Context, Motivations and Problems

Research activities are driven by new applications, technology trends, and innovative

aspects. Since the 90s, the Internet becomes the most important driving force for scientific

application development. As the technological development progresses, complex systems

are developed in order to manage increasing large amounts of data, such as database

management systems (DBMS). Those systems provide fast and reliable management

methods to respond increasing demand for the data. The first database management

systems are designed to work on centralized servers which both manage and store the data

[DEWITT84]. However, with the increase in the scale of both data and users, the

centralized DBMSs become inadequate. To overcome this problem, the researchers

directed their attention to Distributed DBMS (DDBMS) design [OZSU11]. Distributing the

DBMS over the network gives many flexibilities and scaling properties to the information

technology. After distribution of the data, researchers directed their attention to increase

the flexibility of those systems by integrating different types of data sources such as

 14

DBMSs, XMLs, File Systems etc. This research makes out a new concept, mediation

systems, which can be defined as systems which are focused on the integration of

heterogeneous data sources in a large scale distributed environment [OZSU11].

The advances in the information technology bring forth together the increase in the need

for shared resources in the large-scale domain. This fact leads researchers to propose inter-

connected virtual organizations, called Grids. Grid system is a large scale distributed

environment which provides high number of powerful resources to its users

[FOSTER04b]. The main objective of Grids is to provide a powerful and robust platform

that serves those resources without being affected by the dynamicity of the nodes. The

resources offered by Grids have to be accessible to the users easily without any deep

technical knowledge. On the other hand, the management services such as job scheduling,

load balancing, resource discovery and allocation must be realized in the background

without user interaction. The grid systems are characterized by their dynamic, large scale

and heterogeneous nature. The grid environment is large scale in terms of number of users,

number of requests and number of resources. The resources are heterogeneous since they

are not forced to be identical in grid environment. Moreover, the network presents a low

bandwidth and a strong latency in most cases. A resource in the Grid may correspond to

several different concepts. It may be a computational resource such as CPU, memory,

storage unit, network; it may be a data source that provides metadata and its content such

as database; or it may be a service, which is programmed to accomplish a specific task. On

the other hand, a node corresponds to a computer in the grid, which contains some of those

resources with a set of characteristics. The nodes in grid systems are dynamic in terms of

dynamicity of their properties and dynamicity of their existence in the grid. At any time,

there may be new nodes joining to the grid, or there may be some nodes that leave the

system without any notice [FOSTER04b]. Under these characteristics, Grids aim to

provide their users a large number of resources. Grid systems are widely used in today’s

research and industry communities. For instance, computational scientists use to realize

their heavy computational studies such as complex simulations, artificial intelligence,

 15

image processing etc. Experimental researchers use grids to process experimental data that

can have enormous sizes such as Large Hadron Collider (LHC) experiment in CERN.

Corporations and industry also use grid resources to process and manage their high

volumes of corporate data [FOSTER04b].

Due to the fact that the usage area of grid systems increases every day, the need for the

adaptation of some existing concepts such as mediation systems to the grid environments is

inevitable. The main difficulties in the adaptation period are caused by the different

characteristics of the underlying environment. The main assumptions that exist in the

distributed and parallel mediation systems do not hold in grid environments. Those

assumptions can be listed as: i) nodes are homogenous, ii) system is stable and iii) there is

a limited number of resources. The invalidity of those assumptions and characteristics of

grid systems generate new critical problems and challenges in the extension of distributed

and parallel systems to grids from the mediation systems’ point of view, especially in the

distributed query-processing domain. Some of these problems, particularly in the domain

of distributed query processing, can be listed as: i) resource discovery, ii) resource

selection and task scheduling, iii) autonomous computing and monitoring services, iv)

replication and caching, v) security issues and others. From those, resource discovery and

resource allocation are two of the most attractive topics for today’s research community.

For that reason, in this thesis, we focus on resource discovery and resource allocation

problems in the domain of distributed query processing in grid environments.

1.2 Resource Discovery (RD) for Query Processing in Grid Environments

Resource discovery in grids can be defined as searching and locating resource

candidates that are suitable for a job in which processing environments’ constraints are

clearly specified. Resource discovery should be realized in a reasonable time by sticking

the reliability restrictions considering heterogeneity, dynamicity and scale of the grid

system. In this perspective, several methods have been proposed for RD problem in grid

environments. Although there can be found many different classifications, existing studies

 16

are generally classified into three main categories [HAMEURLAIN08,

HAMEURLAIN10]: methods based on centralized/hierarchical systems [YU03,

FOSTER04b, ANTONIOLETTI05, ELMROTH05, RAMOS06, KAUR07, MOLTO07],

methods based on the peer to peer (P2P) systems [CAI03, CHEEMA05, MARZOLLA07,

TRUNFIO07], and methods based on agent systems [CAO02, DING05,

KAKARONTZAS06, YAN07, YU06]. Although these studies provide fruitful solutions to

the RD problem, each class of studies has its own advantages and drawbacks. More

precisely, the centralized and hierarchical methods provide fully functional resource

discovery algorithms but they are badly adapted to the large scale and dynamic nature of

the grid environments since the indexing mechanisms for the resource discovery process

are centralized. On the other hand, in P2P based systems, the algorithms benefit all the

advantages of the underlying environment. However, the methods suffer from the

scalability issues, single point of failures or limitations that came with the type of the

chosen P2P structure. Lastly, in agent-based studies, the algorithms exhibit the advantages

of agent technologies such as flexibility and autonomy. However, the topological

structures, which are used by the agents, cause single point of failure and bottleneck

problems in large scale and highly dynamic environments such as grids. Resource

discovery for query processing in grid environments requires a resource discovery method,

which: i) is scalable, ii) allows discovery of resources by querying more than one resource

attribute, iii) is prone to node failures and changes in the network topology, iv) allows

searching resources with attributes within range values and v) returns up-to-date results

taking dynamic resource attributes into consideration. Considering these requirements, to

the best of our knowledge, we cannot find a complete resource discovery method for query

processing in grid environments, which suits all listed requirements. For that reason, in this

thesis, we first aim at proposing a resource discovery algorithm, which supports all the

requirements listed above. In this manner, we first propose self-stabilizing spanning tree

construction algorithms, to be used as topology control mechanisms over the grid

environment by generating tree structures, which allow scalable and efficient broadcasting

 17

and converge-casting of RD messages in the network. The proposed topology control

mechanism is designed to be self-stabilizing to cope up with the dynamicity of the

environment. Then, using the constructed tree structure, we propose a resource discovery

algorithm, which broadcasts resource requirements and converge-casts up-to-date

information of resources to the queried node. For this, we provide a detailed literature

survey related to both resource discovery algorithms and self-stabilizing spanning tree

construction algorithms. Then we propose three self-stabilizing spanning tree algorithms

aiming at construction of spanning trees rooted round the center of the graph. We provide

complexity analyses of proposed algorithms. We have implemented the proposed

algorithms and two similar existing algorithms in the ns2 simulation environment. We

compared our algorithms to each other and to the similar existing algorithms in terms of

the spanning tree construction performances and discussed their suitability to the examined

problem. Then, we propose spanning tree based resource discovery algorithm exploiting

the advantages of the constructed spanning tree. We provide complexity analyses of the

algorithm and we consolidate our analyses by implementing the algorithm in ns2

simulation environment. We compared our algorithm with similar existing studies which

use flooding based resource discovery methods and showed weaknesses and strengths of

our algorithm.

1.3 Resource Allocation (RA) for Query Processing in Grid
Environments

After completion of RD phase, a set of resource nodes, which are capable of executing

the query, is returned to the system. From this point, in order to run the tasks effectively, a

resource allocation mechanism must be executed in order to: (i) choose how many of those

resources will be used, (ii) which nodes should be involved in the execution of the query

and (iii) how should the system react in case of node failures during execution of the

query. These issues may drastically affect the performance of the query execution in grid

environments. Resource allocation for query processing can be defined as selecting and

 18

allocating suitable nodes for executing query operators aiming at optimizing the runtime of

the query execution. The optimum allocation of resources for query processing in large

scale environments is proved to be NP-Complete [WANG90]. For that reason, existing

studies search near optimal solutions for the RA problem using heuristic approaches.

However, finding near optimal resource allocation alone may not be sufficient for

efficiently processing queries in grid environments; defining the policies in case of node

failures is also very important and should be included in the resource allocation method.

Since grid environments are dynamic, eventual node failures are likely during the

execution of queries. These failures might be very costly if the queries are long running

and if the system is not designed fault-tolerant. Therefore fault-tolerance can be considered

as a must in processing queries in grid environments. There can be found many studies in

the current literature which address the problem of resource allocation for query processing

in grid systems [GOUNARIS04, GOUNARIS05, SOE05, GOUNARIS06b, SILVA06,

BOSE07, KOTOWSKI08, LIU08, GOUNARIS09]. Several survey studies examine and

evaluate these studies with classification [COSTA08, EPIMAKHOV11, COKUSLU12].

Although the existing resource allocation studies provide interesting solutions to this

problem, to the best of our knowledge none of these studies consider decreasing the scale

of the search space for the candidate resources, which is very important for the scalability

of the resource allocation phase. Moreover, we have found few studies which focus on the

communication costs of the query execution [BOSE07, LIU08]. Another issue is that

although many of these studies examine dynamicity of nodes, we find a very limited

number of studies [SMITH05, SMITH07, TAYLOR08, BESTEHORN10] that consider

dynamicity of nodes in terms of their existence in the grid environment. However, none of

them is specialized on processing stateful query operators especially in grid environments.

Considering our analysis on the current literature, we believe that there are still open issues

that are not mentioned completely in the resource allocation domain for query processing,

regarding the grid systems’ characteristics. For these reasons, in this thesis, we also

propose new algorithms for resource allocation for query processing in grid systems. We

 19

first provide a detailed literature survey about resource allocation algorithms and fault-

tolerant query processing algorithms. Then we propose a new resource allocation algorithm

for one operator in a query taking proximities of candidates to the data sources into

consideration by scaling down the search space for the candidate resources. Then we

propose a resource allocation algorithm for processing the entire query consisting of

multiple join operators exploiting the proposed algorithm for one join operator. Lastly we

propose a resource allocation protocol for fault-tolerant query processing in grid

environments. We provide analyses of the proposed algorithms. Then we consolidate the

theoretical analyses with the simulation results and comparisons with the similar existing

algorithms.

1.4 Experimental Validation
Grid is a respectively new concept in the information society. Although many discrete

event simulators for networking can be found in the literature, most of them do not

efficiently model grid environments since they do not include computing capabilities of

resources in their model. In our case, in order to test and verify our studies, we need either

a real grid environment or a suitable simulator. We have examined existing simulators

which are suitable for grid applications namely GridSim, OptorSim, OPNET and ns2, we

have evaluated them by considering their suitability to our objectives and we have

concluded to use two of them in our simulations, GridSim and ns2. A detailed analysis

about the aforementioned simulators can be found in [COKUSLU11_b].

GridSim [SULISTIO08] is a discrete event simulator which is aimed at simulating task

scheduling policies in grid environments. It models the resources by considering their

MIPS rating, number of processing units, loads and their baud rates. The tasks are

simulated by considering input data size, length of task in number of instructions and

output data size. The resources, tasks and users are connected via simulated network links

 20

which consider baud rate, propagation delay and maximum transmission unit in bytes.

OptorSim [BELL03] is another grid simulation environment which simulates architecture

of the EU Data Grid [GAGLIARDI02]. The simulation was constructed assuming that the

Grid consists of several sites, each of which may provide computational and data-storage

resources for submitted jobs. Computing Elements (CEs) run jobs, which use the data in

files stored on Storage Elements (SEs) and a single Resource Broker controls the

scheduling of jobs to CEs. In OptorSim, the resources are specified by their number of

worker elements in the computing element in each site, number of storage elements in each

site, the size of storage elements and bandwidth between each site. The jobs are specified

by their file requirements, required file sizes, computing elements' preferences to execute

the job and job selection probabilities. OPNET is a commercial high level event based

network simulator. It is a very large and powerful network simulator with variety of

possibilities such as simulating entire heterogeneous networks with various protocols.

OPNET provides various tools for simulation including network model editor, node model

editor and process model editor. OPNET supports grid computing for distributed

simulations. It provides various computing and networking resource types from various

vendors. Therefore it gives the user the ability to generate heterogeneous realistic

environments with detailed characteristics of resources. In the application level, it allows

users to implement their own jobs to be executed on the simulated environment. Ns2

(Network Simulator 2, version 2.34) [FALL10] is a discrete event simulator which is

developed at ISI, California. Ns2 provides substantial support for simulation of TCP,

routing, and multicast protocols over wired and wireless (local and satellite) networks. Ns2

began its development in 1989 as a variant of the REAL network simulator. In years it has

evolved substantially and has included contributions from other researchers, including

wireless code from the UCB Daedelus and CMU Monarch projects and Sun Microsystems.

The ns2 has become the de facto standard simulator in experimenting wired and wireless

network applications since it is an open source and powerful tool in simulating networks.

Although all these simulators provide powerful tools for simulating grid applications,

 21

each of them has some drawbacks that can be used as a decisive factor. For instance,

OPNET is a complete simulator, however it is not an open-source software. This property

limits the reachability of the environment. On the other hand, OptorSim simulates the grid

environment without having support for real implementation of testing protocols.

Regarding the characteristics of those simulation environments, we decided that GridSim

and ns2 are two suitable simulation environments for validating our algorithms.

1.5 Contributions
In this thesis, we propose algorithms for resource discovery and allocation for query

processing in grid environments. We have listed the distinguishing characteristics of grid

systems and we aim at contributing the research community by tackling with each one of

these characteristics in both problems, RD and RA. In RD part, the proposed algorithms

and their contributions are listed as follows:

i. Self-stabilizing spanning tree construction algorithms: We propose three self-stabilizing

spanning tree algorithms. With these algorithms, we contribute the scalability problem

by finding spanning trees with smaller diameters. We also deal with the dynamicity

problem by designing our algorithms in a self-stabilizing manner. We compared our

algorithms with the similar studies and showed that the proposed algorithms outperform

the compared studies in terms of both spanning tree construction costs and spanning tree

diameters.

ii. Spanning Tree Based Resource Discovery (STRD) algorithm: We propose a spanning

tree based resource discovery algorithm, which extracts up-to-date resource information

by exploiting the spanning tree. With this algorithm, we tackle the heterogeneity

problem by contacting each node in the grid distinctly. We also contribute to the

scalability problem during the resource discovery by exploiting multi-cast and

converge-cast operations over the spanning tree structure.
In RA problem, the proposed algorithms and their contributions are as follows:

 22

i. Single Join Operator Resource Allocation (SJORA) algorithm: In SJORA algorithm,

we allocate resources for queries consisting of a single join operator. The SJORA

algorithm is composed of the following two consecutive algorithms:

Proximity Based Candidate List Generation (PBCG) algorithm: In this algorithm, we

decrease the search space for the candidate list of join tasks. The limited number of

candidate resources contributes the scalability of the resource allocation algorithm. We

also generate a list of candidate nodes that are close to the data sources. This idea

contributes to the performance of the query execution by decreasing the

communication costs.

Join Task Resource Allocation (JTRA) algorithm: This algorithm finds optimum

allocation of resources for one join task in a query. In this algorithm we deal with the

heterogeneity problem by considering different communication costs between

candidate and data sources.

ii. Multi-join Resource Allocation (MJORA) algorithm: We propose the query resource

allocation algorithm to materialize initial resource allocation for a multi-join operator

queries. We contribute to the scalability and heterogeneity problems by exploiting the

JTRA algorithm.

iii. Fault-Tolerant Resource Allocation (FTRA) Algorithm: We propose the FTRA

algorithm to ensure fault-tolerance during the execution of the query. In this manner,

we contribute to the dynamicity problem by passive replication of stateful operators in

the query.

1.6 Thesis Organization
The rest of this document is organized as follows: Chapter 2 gives a detailed synthesis

of recent studies related to resource discovery and resource allocation methods for query

processing in grid systems by introducing classifications and evaluation criteria. We

analyze existing studies and discuss their advantages and drawbacks. We identify open

issues and potential contributions for RD and RA problems. In Chapter 3, we concentrate

 23

on the resource discovery problem. We first propose self-stabilizing spanning tree

algorithms to ensure efficient topology control for resource discovery. Then, we propose a

spanning tree based resource discovery algorithm. In Chapter 4, we propose initial resource

allocation algorithms for query processing in grid environments. We examine single join

operator resource allocation algorithm, and multi-join resource allocation algorithm in

detail. The fault-tolerant resource allocation algorithm in grid systems is proposed in

Chapter 5. Finally conclusions and perspectives are presented in Chapter 6.

 24

CHAPTER 2: STATE OF THE ART
Résumé

Dans ce chapitre, nous présentons une étude détaillée de la littérature à propos de la

découverte de ressources et des algorithmes d'allocation de ressources pour le traitement

des requêtes dans les systèmes Grille. En premier lieu, nous examinons les algorithmes de

découverte de ressources par classification. En ce qui concerne nos analyses sur les

algorithmes de découverte de ressources, nous étudions également les algorithmes auto-

stabilisants de construction des arbres couvrants déjà existants et habituellement utilisés

comme des mécanismes de contrôle de topologie pour la découverte de ressources.

Ensuite, nous passons en revue les algorithmes existants d'allocation des ressources pour

le traitement des requêtes dans les systèmes Grille par classification. Enfin, nous

examinons les algorithmes à tolérance de panne d'allocation de ressources.

Abstract

In this chapter, we provide a detailed literature survey about resource discovery and

resource allocation algorithms for query processing in grid systems. We first examine

resource discovery algorithms by classification. Regarding our analyses about the existing

resource discovery algorithms, we also survey existing self-stabilizing spanning tree

construction algorithms to be used as topology control mechanisms for the resource

discovery. Then we survey the existing resource allocation algorithms for query processing

in grid systems by classification. Lastly we examine existing fault-tolerant resource

allocation algorithms.

2.1 Introduction
Grid systems are very useful platforms for distributed computing, especially for

situations in which the scale of data and user requests is very high. They have gained

remarkable importance in the last decade since resource requirements of recent

 25

applications increased drastically. Their powerful computing capabilities attract many

researchers’ attention and lead them to port their research to the grid environments.

Distributed query processing is one of these domains in which many studies exist to deal

with fundamental characteristics of grid environments such as large scale, heterogeneity

and dynamicity. However, these characteristics bring new problems to the query

processing domain such as resource discovery, resource selection, resource allocation,

autonomous computing, monitoring, replication and caching, security issues and many

others [GOUNARIS05]. In this thesis, we are focused on the resource discovery and

resource allocation problems for query processing in grid environments. In order to

understand the state of the art in these problems, in this chapter, we provide a detailed

literature survey related to the resource discovery and resource allocation methods for

query processing in grid environments. Firstly, in Section 2.2, we provide analyses for

existing resource discovery studies with classification. Then, according to our conclusions

on the current resource discovery methods, we directed our attention to topology control

algorithms for resource discovery in grid systems. For that, we examined self-stabilizing

spanning tree algorithms, which address scalability and dynamicity issues in grid

environments. In Section 2.3, we provide a detailed literature survey on resource allocation

algorithms for query processing in grid systems. Then, considering the dynamicity

characteristic of grid environments, we provide a survey study related to fault-tolerance for

query processing in grid. Finally in Section 2.4, we present our conclusions and

perspectives about open issues and potential contributions on the RD and RA problems.

2.2 Resource Discovery (RD) for Query Processing in Grid Environments

Resource discovery problem in grid systems can be defined as searching and locating

resource candidates, which are suitable for executing jobs in a reasonable time in spite of

the dynamicity and large scale of the environment. Success of Grid systems mainly relies

on efficient usage of the right resources. Therefore, resource discovery is an important step

in finding these resources. But the characteristics of the grid systems make the resource

 26

discovery a time consuming process, which can decrease the performance of the whole

system. Several methods have been proposed to solve the resource discovery problem in

Grid systems. The existing studies are classified into three main classes in the current

literature [COKUSLU09, COKUSLU10_iji, HAMEURLAIN08, HAMEURLAIN10]:

methods based on (i) centralized and hierarchical systems, (ii) P2P systems and (iii) agent

systems.

In this section, we provide a literature survey related to the resource discovery methods for

query processing in grid systems. We examined the existing studies in three classes

namely: grid resource discovery methods based on (i) centralized and hierarchical

architectures, (ii) P2P systems and (iii) agent systems. A summary of the classification for

resource discovery is shown in Figure 2.1. For each class of methods, we describe

synthetically the main approach, followed by a deep analysis and comparison with respect

to the most important criteria, namely: complexity, scalability, dynamicity, reliability and

support for multi-attribute, dynamic-attribute and range queries. The importance and

impact of these criteria are explained below:

• Complexity is a basic measure which helps determining the runtime of the

algorithm. In our thesis, complexity measure is considered in two aspects, message

and time complexities. The message complexity deals with the number of

transferred messages. Relatively higher message complexities may result in

congestion in the network which may negatively affect the performance of the

algorithms. On the other hand, time complexity determines how many steps are

required for the termination of the algorithm.

• Scalability is a very important measure, because grids are large scale environments

in their nature. The performance of a system which is not scalable, degrades very

rapidly as the size of the environment grows. This fact may cause the algorithm to

perform poorly in such environments.

• Dynamicity is another important factor in analyzing Grid algorithms since nodes in

 27

Grid systems might be highly dynamic in terms of joining and leaving the system,

mostly without any notice. The algorithms that tolerate the dynamicity of the

environment are more suitable for grid systems.

• Reliability is also an important measure because in some cases, erroneous query

results may cause irrecoverable faults. For instance, RD algorithms, which may

result false-positive errors might not be suitable in Grid systems.

• Support for multi-attribute, dynamic-attribute and range queries is a decisive

criterion on selecting the methodology in most cases since the running applications

may require those types of queries.

We also present a brief literature survey related to self-stabilizing spanning tree

construction algorithms, which can be used as topology control mechanisms for resource

discovery.

 28

!"#$%&'"(
)*#'$+"&,((

-"./&01*2"34
5*"&0&'6*'01(
7,#/"8#(

9:9(7,#/"8#(

;<"./(7,#/"8#(

-"./&01*2"3(
7,#/"8#(

5*"&0&'6*'01(
7,#/"8#(

=.#/&%'/%&"3(9:9(
7,#/"8#(

7%>"&(>""&(
7,#/"8#(

7/&%'/%&"3(9:9(
7,#/"8#(

=.#/&%'/%&"3(
?"/@$&A(B$>1<,(

7/&%'/%&"3(
?"/@$&A(B$>1<,(

Figure 2.1 Classification for Resource Discovery Algorithms for Query Processing in Grid

Environments

2.2.1 Grid Resource Discovery Based on Centralized and Hierarchical Architectures

Centralized and hierarchical systems emerged as suitable approaches, which provide

easy to access tools for grid services [ANTONIOLETTI05, ELMROTH05, KAUR07,

MOLTO07, RAMOS06, YU03]. In such systems, resource information is stored and

updated in central or hierarchically located servers, and resource discovery is realized by

querying these servers. Centralized and hierarchical resource discovery mechanisms are

mostly used by the web service based grid resource management tools

[ANTONIOLETTI05]. There are only few web services based tools that use other classes

of approaches such as peer-to-peer resource discovery [TALIA04, TALIA05]. In this

 29

subsection, we focus on centralized and hierarchical systems and present a survey of recent

studies, which provide grid resource discovery services using centralized and hierarchical

approaches [BEHESHTI07, CZAJKOWSKI01, ELMROTH05, FITZGERALD97,

FOSTER97, KAUR07, LI02, MOLTO07, RAMOS06, RIEDEL07, YU03]. We classify

them according to the topology of resource information. In centralized methods, resource

information is stored in a central server, whereas in hierarchical methods resource

information is divided and partially distributed to several locations. We give detailed

analysis for each study and evaluate them according to important qualitative criteria

namely, scalability, dynamicity, reliability and support for multi-attribute, dynamic-

attribute and range queries.

2.2.1.1 Grid Resource Discovery Using Centralized Systems

Grid resource discovery using centralized systems is excessively studied and

implemented in grid environments. The main idea behind this class of methods relies on

the central management of metadata related to the resource information in the grid

environment. Most of the studies in this class profit from existing information provider

systems such as LDAP (Lightweight Directory Access Protocol) or UDDI (Universal

Description Discovery and Integration). There can be found many studies in this class,

which became very popular in the first decades of grid systems [FITZGERALD97,

KAUR07, MOLTO07, RIEDEL07, YU03, MOLTO07]. For instance, in [YU03], Yu et al.

developed a web services based grid service publication directory system (GMD) in which

service for resources and clients are provided via web by using XML formatted messages.

Kaur and Sengupta [KAUR07] presented a centralized resource discovery mechanism for

grids which relies on web services. In [MOLTO07], Molto et al. proposed a metascheduler

grid service that can be accessed through the network by users who are interested in task

allocation and scheduling in computational grids. In [RIEDEL07], authors present a web

services based grid middleware (UNICORE 6) in which resources are represented by web

 30

services. In [FITZGERALD97], authors proposed a Meta-computing Directory Service

(MDS) for resource management in grid systems which is based on LDAP central servers.

 The grid resource discovery using centralized systems provide grid middleware

developers an easy to use interface to manage grid resources. They keep grid resource

information by using centralized databases. In a large-scale grid environment, the

centralization of the service may easily create bottlenecks on the central servers. The

bottleneck problem may be raised both because of frequent resource updates or large

number of query requests waiting to be processed. The centralization causes another

important problem in dynamic grids as being a single point of failure. Failure of one of the

central servers in the system may cause the whole system to become unavailable. In some

approaches, the idea of replication of central servers is depicted in order to eliminate single

point of failures. But replication of servers in a large-scale dynamic grid may be very

expensive in terms of communication costs. The proposed systems support the multi-

attribute and range queries since the resource information is stored in databases, which are

capable of processing complex queries. But since the update of dynamic resource attributes

are held in discrete intervals, most of these systems do not support dynamic-attribute

queries.

2.2.1.2 Grid Resource Discovery Using Hierarchical Systems

In recent years, as the size of the grid environments grows, researchers directed their

attention to hierarchical systems to overcome the problems caused by centralized systems

in resource discovery. Many algorithms are proposed in this class to address drawbacks of

the centralized systems [BEHESHTI07, ELMROTH05, LI02, RAMOS06, YIN07]. From

those, Elmroth and Tordsson proposed a grid resource broker and job submission system in

[ELMROTH05] in which index servers, which are responsible for resource information,

are organized in a hierarchical topology. In [RAMOS06], Ramos et al. proposed a web

service for resource discovery in grids, based on Globus Toolkit (GT3), a hierarchical

topology in which the grid environment is divided into virtual organizations (VO).

 31

Beheshti and Moshkenani proposed a resource discovery method by joining agents,

ontologies and web services [BEHESHTI07]. They used SOA concept in which the

metadata related to resources is distributed to a portion of nodes. In [LI02] Li et al.

presented a grid resource discovery model which is inspired by network routing

mechanisms. In [YIN07], Yin et al. proposed a 3-layer hierarchical grid resource discovery

method.

The hierarchical systems based grid resource discovery algorithms provide more

scalable platforms than the centralized ones and still provide simple user interfaces to

manage grid resources. In a large-scale grid environment, the hierarchical topology of the

service decreases the probability of bottleneck problem. However single point of failure

problem still exists since failure of one of the master servers in the system may cause a

large part of the nodes become invisible to the queries. All proposed algorithms in this

class support the multi-attribute and range queries since the resource information is stored

in databases that are capable of processing complex queries. And since, in many studies,

the information is verified in the resource nodes after querying databases, the proposed

algorithms also support dynamic-attribute queries.

2.2.1.3 Comparison

The summary of comparison between resource discovery using centralized and

hierarchical systems can be seen in Table 2.1.

 RD Using Centralized Systems RD Using Hierarchical Systems

Scalability
Not scalable due to bottleneck

problem

Better scalable because of the

hierarchical distribution of load

Dynamicity

Tolerant to node dynamicity, but not

tolerant to indexing mechanism's

dynamicity

Tolerant to node dynamicity, better

tolerant to indexing mechanism's

dynamicity

Reliability
Reliable in terms of query

correctness, but not reliable in terms

Reliable in terms of query correctness,

better reliable in terms of single point of

 32

of single point of failure failure

Range Queries

Supported since queries are resolved

in centralized servers without any

hashing

Supported since queries are resolved

within hierarchically distributed servers

without any hashing

Multi-attribute Queries

Supported since queries are resolved

in centralized servers without any

hashing

Supported since queries are resolved

within the super-peers without any

hashing

Dynamic-attribute

Queries

Not supported because of the

periodic updates

Not supported because of the periodic

updates

Table 2.1 Comparison summary between two resource discovery methods

Both centralized and hierarchical methods behave closely against nearly all the evaluation

criteria. The main difference is in scalability and reliability. The centralized systems suffer

from the bottleneck problems in large scale. There also exists the single point of failure

problem. Even though some studies propose to replicate the centralized index server, this

procedure might be very expensive in terms of messaging complexity in large scale. On the

other hand, hierarchical systems distribute the load into many locations instead of one

central server. This property increases the scalability of the system by distributing load on

index servers. They also decrease the effect of single point of failures. In case of a failure

of an index server, a part of the system becomes unreachable instead of the whole. Support

for dynamic attribute queries requires that the query be processed within the resource

nodes. Since the idea in the examined solutions is indexing the resource information in

central locations, they do not support dynamic attribute queries. Some of the examined

algorithms propose solutions for this problem, but the solutions are independent from the

classification that we propose. By taking the evaluations into consideration, we can say

that the centralized methods are not suitable for the large-scale environments. But they

might be well suited to the systems in which the scale is small and indexing server is

reliable. In such cases centralized systems can be used effectively. On the other hand,

hierarchical methods are more suitable for environments in which scale is bigger since the

load is distributed to many locations. But even the load is hierarchically distributed; those

 33

methods may still suffer from bottleneck problem in large scale.

2.2.1.4 Conclusions

In this section, we have synthesized and analyzed recent grid resource discovery

methods, which are based on centralized and hierarchical systems. We evaluated them

according to the aforementioned qualitative criteria, and compared different classes of

methods with each other. These types of resource discovery algorithms seem to have many

disadvantages in large-scale dynamic grid environments. But their simple design brings

them to the foreground and makes them suitable techniques to be used in many grid

management tools. Most web service based grid management tools use centralized and

hierarchical grid resource discovery techniques. With regards to the examined methods, it

can be said that centralized and hierarchical systems based approaches are suitable for

small-scale grid environments in which the dynamicity of nodes is low. In such

environments, they provide a very simple and standard resource management platform.

There is vast amount of ongoing research in this topic, which is aimed at solving problems

mostly caused by scalability issues.

2.2.2 Grid Resource Discovery Based on Peer to Peer (P2P) Systems

In the first decade of Grid systems, centralized and hierarchical systems emerged as

suitable approaches that provide an easy to use platform independent tool for Grid services

[ANTONIOLETTI05]. However, most of these methods could not be adapted to today’s

large scale environments since scalability and dynamicity in grids restrict their usage area.

For these reasons, other approaches were investigated to be used in grid systems to

overcome these problems. Thus, researchers directed their attention to the P2P systems to

evaluate their capabilities on grid platforms. Synergy and convergence between grid and

P2P systems were clearly pointed out in [IAMNITCHI03, IAMNITCHI05, TALIA05].

P2P systems were proven to work efficiently under large-scale environments. A rich

 34

survey on P2P systems can be found in [ANDROUTSELLIS04]. The P2P based

algorithms can be classified into three classes depending on how peers are organized: i)

structured P2P systems, ii) unstructured P2P systems and iii) super-peer systems

[HAMEURLAIN10]. In unstructured P2P systems, the peers are not organized to construct

any topology and resource discovery is realized by diffusion of messages to the network.

In super-peer systems, some nodes are selected to act as directory services (super-peers).

Resource information is held by those super-peers in order to find resources in the grid

system. In structured P2P systems, peers are organized into virtual organizations.

Discovery of resources in such systems is realized by using distributed hash tables (DHT).

Different methods were proposed by using all these different P2P systems [CAI03,

CHEEMA05, MARZOLLA07, TRUNFIO07]. Very comprehensive and detailed survey

studies on the grid resource discovery based on P2P systems can be found in

[TRUNFIO07, RANJAN08, SEDAGHAT08, HAMEURLAIN10].

In this section, we first describe recent resource discovery algorithms based on three

different classes of P2P systems: Unstructured P2P Systems, Super-peer Systems and

Structured P2P Systems. Next, we give a detailed analysis of these algorithms. Then we

provide a qualitative evaluation for each class of algorithms with respect to the introduced

criteria.

2.2.2.1 Grid Resource Discovery Based on Unstructured P2P Systems

The unstructured P2P systems are the first milestones of the P2P systems. The

participants do not construct a special network topology. Instead, they are connected to

each other through their neighboring nodes. In unstructured P2P systems based grid

resource discovery studies [FILALI08, IAMNITCHI03], each node in the grid is treated as

a participant of the P2P system and is responsible for providing its resource information.

For instance, Iamnitchi and Foster [IAMNITCHI03] proposed a P2P approach in which

nodes construct an unstructured P2P system by publishing their resource information to the

network. Filali, Huet, and Vergoni [FILALI08] proposed an unstructured P2P based

 35

resource discovery method for Grids in which the resource nodes send their resource

information periodically to their neighbors and the neighbors store this information in their

cache.

Considering the nature of the unstructured P2P resource discovery techniques, in most

cases, because of the common routing mechanisms; the complexity of the algorithms are

around O(N2) which makes the approach unscalable. The message and in some cases time

complexities have higher order of growth than the scale of the network.

On the other hand, this approach can easily handle dynamicity of the Grid since both

resources and indexing nodes are distributed to the entire network. In any case, even if the

network is very dynamic, queries are not lost in the network and propagation of the queries

continues until a TTL value is reached. Nearly all unstructured systems suffer from false-

positive errors caused by the usage of TTL limitations. Even if the searched resources exist

and are available on the Grid, the system may return unsuccessful results to the queries

because the TTL limit is reached. Otherwise, when TTL is set to a higher value, asymptotic

increase of the messages negatively affects the bandwidth and runtime of the algorithms.

Nevertheless, the unstructured P2P systems support range, multi-attribute and dynamic-

attribute queries easily.

2.2.2.2 Grid Resource Discovery Based on Super-Peer Systems

The super-peer systems emerged as an alternative to the unstructured P2P systems in

order to address scalability issues. In super-peer systems, some nodes (super-peers) in the

environment are considered to be privileged and act differently from the remaining nodes

[YANG03]. Most commonly, in super-peer based resource discovery algorithms, the

super-peers are responsible for keeping the information of a group of nodes. There can be

found many studies in the current literature which use super-peer systems based resource

discovery [MARZOLLA05, MASTROIANNI05, PUPPIN05]. Mastroianni, Talia, and

Verta [MASTROIANNI05] proposed a resource discovery mechanism in which some

nodes are selected as super-peers acting as directory services. Puppin et al. [PUPPIN05]

 36

proposed a grid information service based on super-peer approach. They defined some

nodes as super-peers, and then created clusters by using the super-peer neighborhoods.

Marzolla, Mordacchini, and Orlando [MARZOLLA05] defined the concept of Workload

Management Systems (WMS) which act as an indexing service for a subset of virtual

organizations in the Grid.

Most super-peer based P2P algorithms use flooding between the super-peers. Decreasing

the size of the flooding domain reduces time and message complexities of algorithms.

Nearly all of this type of algorithms have message complexities O(S2) and time

complexities O(S) where S is the number of super-peers in the network. Even these types

of algorithms can be considered as more scalable than unstructured systems; super-peers

may suffer from being bottlenecks in the system when the number of requests is large.

Moreover, the super-peers are responsible for a set of resources and failure of a super-peer

will break the imaginary connection of the resources which exist and are available.

Therefore, dynamicity of a super-peer badly affects the domain of the queries. This fact

also negatively affects the reliability of this approach by turning super-peers into single

point of failures. However, since the queries are resolved by super-peers by checking the

index tables, this approach supports range queries and multi-attribute queries easily. But

because of the resource information is collected by the super-peers at periodic intervals,

this method does not support dynamic-attribute queries in its nature.

2.2.2.3 Grid Resource Discovery Based on Structured P2P Systems

The structured P2P systems become popular in the last decades of the P2P systems by

the use of distributed hash tables (DHT). In structured P2P systems, the identifier values of

information is hashed and mapped to a set of nodes in the system in a deterministic or

distributed fashion [ELANSARY03]. The structured P2P systems based resource discovery

methods [ANDRZEJAK02, CAI03, OPPENHEIMER04, SPENCE03, TALIA07] use

DHT’s to store resources’ information. Therefore the resource discovery is realized by

DHT lookups in most of these studies. For instance, Cai et al. [CAI03] proposed a grid

 37

resource discovery system (MAAN), based on P2P, which supports multi attribute and

range queries. Each MAAN node is an instance of a Chord system and the resource

information is mapped to Chord key-space. Andrzejak [ANDRZEJAK02] proposed a P2P

grid resource discovery mechanism based on CAN P2P system. Oppenheimer et al.

[OPPENHEIMER04] proposed a structured P2P based resource discovery mechanism

(SWORD) which supports both range queries and multi-attribute queries. In SWORD, the

server nodes are connected to each other by using Bamboo P2P system and use DHT

system to index the resources. In XenoSearch, Spence and Harris [SPENCE03] proposed a

P2P based resource allocation method for distributed environments. The proposed

algorithm is an extension of the Pastry P2P system [ROWSTRON01]. Talia, Trunfio, and

Zeng [TALIA07] proposed a DHT based resource discovery mechanism for large scale

Grids which is based on Chord Structured DHT system.

Since these algorithms use topological structures, time and message complexities of

the algorithms are around O(logN). In many algorithms all resource nodes get involved in

the query processing, which means that, theoretically, all nodes will have the same load.

This eliminates the bottlenecks in the system and ensures the scalability of the structured

P2P approach. On the other hand, in most algorithms, the queries are distributed to the

network by following a defined path in the topological structure. Therefore, failure of a

node which will forward the query may result in loss of queries in the network. This brings

the single point of failure problem in a dynamic Grid environment. But, the use of

structured query routing mechanisms eliminates false-positive errors since the query is

relayed to the end of its search domain. Even if the nature of structured P2P based resource

discovery algorithms do not support range, multi-attribute and dynamic-attribute queries,

nearly all algorithms that are developed in this scope find reasonable solutions to support

all different types of queries.

 38

2.2.2.4 Comparison

We described and analyzed several grid resource discovery algorithms that are

developed by using different P2P techniques. Although each algorithm has its own

advantages and disadvantages, commonalities can be clearly distinguished when they are

examined in their own classes. Regarding those commonalities, a comparison can be easily

performed between three different classes of P2P techniques. A summary of comparison

can be seen in Table 2.2 which is described below.

 Unstructured P2P Super-peer P2P Structured P2P

Scalability Not scalable due to time

and message complexities

Not scalable due to

bottlenecks

Scalable since complexities are

low and load is distributed

Dynamicity Tolerant to node

dynamicity since queries

are resolved within the

nodes

Performs poorly when the

Grid is dynamic

Performs poorly when the Grid

is dynamic

Reliability Not reliable because of the

false-positive errors

Not reliable because of the

false-positive errors and

single point of failures

Reliable since no single point

of failures and no false-positive

errors exist

Range Queries Supported since queries

are resolved within the

nodes without any hashing

Supported since queries are

resolved within the super-

peers without any hashing

Supported using complicated

techniques

Multi-

attribute

Queries

Supported since queries

are resolved within the

nodes without any hashing

Supported since queries are

resolved within the super-

peers without any hashing

Supported using complicated

techniques

Dynamic-

attribute

Queries

Supported since queries

return always up-to-date

results

not supported since resource

information in the super-peers

is updated in discrete

Supported using complicated

techniques

 39

intervals

Table 2.2 Summary of comparison between P2P based resource discovery methods

Regarding our analyses, we can say that the unstructured P2P based grid resource

discovery systems are suitable for small scale, highly dynamic Grid environments in which

different types of queries are required. If the scale is large, and false-positive errors are

fatal, then other methods should be examined. Super-peer based grid resource discovery

mechanisms are suitable for middle-scale Grid networks in which reliability of super-peers

is strictly provided. They are not suitable for dynamic-attribute queries and if the false

positive-errors cause serious problems. Structured P2P based methods, on the other hand,

are suitable for large-scale Grid systems in which reliability is important and dynamicity is

low.

2.2.2.5 Conclusions

In this section, we provided a literature survey related to resource discovery methods

based on P2P systems with classification. For each class of methods, we described

synthetically the main idea, with a detailed analysis. A qualitative evaluation of described

methods was provided. With respect to our analyses and evaluations, it can be concluded

that P2P systems provide a wide range of solutions to the resource discovery problem

meeting different requirements in each class. The unstructured P2P systems based

approaches are considered to be the most suitable solutions regarding the reliability,

dynamicity and support for different types of queries properties. However they are poorly

adapted to the large scale of the environment since the underlying multicasting methods

are flooding based in general. On the other hand, super-peer based systems answers the

scalability issues with trading off the dynamicity and reliability problems. The most recent

solutions, structured P2P systems based resource discovery, conforms many of the required

specifications by trading of simplicity of the RD method. We believe that P2P systems

provide very suitable platforms to be used in the RD problem. Advantages of each class

should be examined carefully and a combination of them should be studied as an

 40

alternative RD method.

2.2.3 Grid Resource Discovery Based on Agent Technologies

In this section, we propose a synthetic review of the state of the art and analysis of

some recent resource discovery algorithms that are based on agent systems. Many of these

algorithms profit from using agents as monitoring services. On the other hand studies,

which are based on mobile agents (MA), profit mainly from their autonomy property,

which allows the query to determine migration site by itself. Although the type of the

utilized agent differs from each other, we decided to classify them according to their

underlying network topologies since we believe that underlying topology has more impact

on the evaluation of these algorithms. In this perspective, we defined two classes:

algorithms that do not rely on a structured network topology and those that generate a

network topology to accomplish resource discovery tasks. We also provide an evaluation

for each class of grid resource discovery algorithms. Then, we show the comparison

between RD methods based on different classes of agent systems.

2.2.3.1 Agent Based Grid Resource Discovery on Unstructured Network Topology

In agent based grid resource discovery approaches in which the underlying network

topology is unstructured [DING05, JUN00, TANG06, YU06], the agents and the agent

requests are diffused to the environment freely without any pattern to search resources.

More precisely, Ding et al. [DING05] proposed a heuristic agent-based resource discovery

algorithm in their study in which agents cooperate to find available resources. Jun et al.

[JUN00] introduced an agent-based resource discovery model in which the agents running

at different nodes learn about the existence of each other using a mechanism called

distributed awareness. In [YU06], a mobile agent based grid resource management system

is presented in which an information server creates mobile agents according to the required

resources’ properties. Tang and Huang [TANG06] proposed a grid resource management

 41

algorithm based on mobile agents. They also described an architectural model for

acquisition of Grid information.

In agent based grid resource discovery approaches in which the underlying network

topology is unstructured, the system does not suffer from bottleneck problem. The main

factor which affects the scalability of the system is diffusion technique of the requests.

When agents are used, the diffusion is handled by using flooding approach which is

unscalable because of its message complexity. On the other hand, if mobile agents are

used, because of their autonomy and self-decision properties, more clever routing

techniques are applied to increase scalability. On the other hand, when the Grid is

dynamic, since in agent based approaches flooding is used to distribute the queries,

dynamicity of the nodes does not perturb the dissemination of queries. But when the

mobile agents are used, the queries are routed on a single path, and the failure on any node

on this path may cause loss of queries in the network. The algorithms do not have single

point of failures in general since central managers do not exist. Moreover, the distribution

of queries is not limited by a TTL value which eliminates false-positive errors. But we

believe that in large scale environments in which an unstructured network topology exists,

TTL values are essential to avoid extremely long query response durations. Nevertheless,

nearly all analyzed algorithms which belong to this classification support range, multi-

attribute and dynamic-attribute queries easily since they process queries within the nodes

without any discrete mapping function such as hashing.

2.2.3.2 Agent Based Grid Resource Discovery on Structured Network Topology

In this class of studies [KAKARONTZAS06, MANVI05, PUH07, YAN07], the agents

generate structures such as clustered virtual organizations to hierarchically distribute

resource information management. The resource discovery queries are processed by agents

that are responsible from a group of resources’ information. For instance, Yan et al.

[YAN07] proposed a system in which the resources are divided into some Virtual

Organizations (VO) each having an index server and several nodes. Kakarontzas and

 42

Savvas [KAKARONTZAS06] presented an agent-based approach to grid resource

discovery. The approach is based on client agents which act on behalf of Grid users. In

[MANVI05], an agent based resource allocation model (ARAM) is presented in which the

resource information is updated by interacting with the grid information servers. In their

design, mobile agents, which are called Job Agents (JA), search for the available resources.

Puh, Jezic, and Kusek [PUH07] proposed a multi-agent resource discovery algorithm for

Grids.

In structured networks, the bottleneck problem is eliminated since the load on nodes is

distributed. Moreover, because of the structured nature, migration of mobile agents or

distribution of queries is held with more efficient routing techniques which increase the

scalability of the system. But this advantage brings some problems such as single point of

failures. When the Grid is dynamic, since some nodes act as relay nodes or manager of a

subset of resource nodes, the dynamicity of the network may perturb the dissemination of

queries. The failure of a node in the structure will cause loss of queries in the network.

Moreover, failure of a node which manages a large subset of resources will cause a large

number of resources to become invisible to the queries even if they exist. On the other

hand, nearly all analyzed algorithms which belong to this class support range and multi-

attribute queries easily since they are processed within the nodes without any discrete

mapping function such as hashing. The dynamic-attribute queries are also supported by the

use of agent technology which allows the resources to send updates about their dynamic

attributes continuously instead of at periodical intervals.

2.2.3.3 Comparison

A summary of the comparison can be seen in Table 2.3. The agent based resource

discovery systems that use unstructured network topology is less scalable than those which

use structured network topology because of the larger time and message complexities.

However they are more tolerant to dynamicity of environment caused by the use of

flooding of messages. Both classes of methods are considered to be unreliable because of

 43

either single point of failures or false-positive errors. Luckily both classes of methods

support all types of queries.

 Unstructured Network Topology Structured Network Topology

Scalability Not scalable due to time and message

complexities

Scalable because of the hierarchical

distribution of load

Dynamicity Tolerant to node dynamicity since

queries are distributed in parallel, but

not tolerant in some approaches in

which query migrates on a single path

Not tolerant since dynamicity of nodes in the

structure may result in disconnectivity of a

large portion of the resources

Reliability Not reliable because of either false-

positive errors or single point of failures

Not reliable because of the single point of

failures

Range Queries Supported since queries are resolved

within the resource nodes without any

hashing

Supported since queries are resolved within

the nodes without any hashing

Multi-attribute

Queries

Supported since queries are resolved

within the resource nodes without any

hashing

Supported since queries are resolved within

the nodes without any hashing

Dynamic-

attribute Queries

Supported since queries are resolved

within the resource nodes without any

hashing

Supported since agents update the resource

information dynamically

Table 2.3 Summary of comparison between agent based resource discovery methods

2.2.3.4 Conclusions

Several agent based grid resource discovery algorithms are described and analyzed in

this section. Comparison of each class of agent based resource discovery methods is

 44

explained with respect to the defined criteria. Both structured and unstructured network

topology based methods have their own advantages and disadvantages. Regarding the

analysis, we can say that on top of an unstructured network topology, scalability and

dynamicity properties depend on which type of agent is used: mobile agent or agent. In

large scale grids in which dynamicity of nodes is relatively low, mobile agent based

systems are preferable because of their autonomy properties that allow efficient migration.

If the scale is relatively small and dynamicity is high, agent based algorithms become

advantageous since they eliminate single point of failures. On the other hand in structured

network topologies, regardless of which kind of agent is used, the system is scalable since

hierarchical structuring of the network decreases the complexity without generating

bottlenecks. But those systems generally suffer from the single point of failures since

manager nodes’ dynamicity badly affects the reliability.

2.2.4 Global Evaluation of Resource Discovery Methods

We analyzed and evaluated recent studies related to different methodologies used in

grid resource discovery in the previous sections. We focused on centralized/hierarchical

systems, P2P systems and agent systems based grid resource discovery techniques for

query processing. In Table 2.4, a summary of comparison of the different methodologies

can be found.

 RD Based on Centralized /

Hierarchical Systems

RD Based on P2P Systems RD Based on Agent Systems

Scalability Suitable for small-scale grid

environments

Suitable for large-scale grid

environments

Suitable for small-medium

scale grid environments

Dynamicity Tolerant to resource

dynamicity but not tolerant

to indexing mechanism’s

Perform poorly when the

environment is dynamic

Tolerant because of the

autonomy property of agents

 45

dynamicity

Reliability Reliable in terms of query

correctness, but not reliable

in terms of single point of

failure

Reliable since false-positive

errors and single point of

failures do not exist

Not reliable because of either

false-positive errors or single

point of failures

Range

Queries

Supported Supported using complicated

techniques

Supported since queries are

resolved within the resource

nodes without any hashing

Multi-

attribute

Queries

Supported Supported using complicated

techniques

Supported since queries are

resolved within the resource

nodes without any hashing

Dynamic-

attribute

Queries

Not supported because of

periodic updates of resource

information

Supported using complicated

techniques

Supported since queries are

resolved within the resource

nodes without any hashing

Table 2.4 Summary of Comparison Between Different Classes of RD Methods

The Centralized/Hierarchical systems, P2P systems and Agent systems based techniques

are broadly being studied in today’s grid resource discovery systems. The resource

discovery methods based on the Centralized and Hierarchical systems were heavily used in

the first decade of grid environments. They became a de-facto standard in grid resource

management very rapidly [ANTONIOLETTI05]. Their simple design brings them to the

foreground and makes them suitable techniques to be used in many grid management tools.

However, these methods have many disadvantages in today’s large scale dynamic grid

environments. With regards to the examined studies, we can say that these methods are

suitable for small scale grid environments in which the dynamicity of nodes is low. In such

environments, they provide a very simple and standard resource management platform.

There is vast amount of ongoing research in this topic which is aimed at solving problems

mostly caused by the scalability issues. On the other side, most recent P2P techniques use

 46

structured DHT systems which increase the performance of the queries drastically.

Moreover, usage of the DHT mappings brings the scalability and reliability of the P2P

systems since all nodes in the system involves the resource discovery process. But, DHTs

are not miraculous and have some disadvantages for the resource discovery domain. The

usage of DHTs limits the RD algorithm in terms of support for dynamic-attribute queries.

Since dynamic-attributes of resources are changing in time, keeping these attributes in

DHTs is not feasible. To solve this problem, many algorithms use the topological structure

of the overlay to efficiently distribute the query directly between the resource nodes.

Inheriting all properties of overlay systems, P2P based grid resource discovery methods are

suitable for large scale dynamic environments in which reliability of queries is important.

Lastly, agent based systems are attractive, mainly because of their autonomy property.

They have capabilities to determine new migration sites according to their migration

policies. This property might easily be used to accomplish efficient route selection for

queries which converges to the result in each step. However, their non-deterministic nature

results in false positive errors in many recent studies in which inefficient flooding

techniques are avoided. Most of the agent based RD techniques process the queries inside

the resource nodes while the query is traversing the network. This brings the advantage of

having up-to-date resource information all the time which makes this class of algorithms

support dynamic-attribute queries. Regarding these attributes, agent based resource

discovery methods are suitable for dynamic middle-scale Grid environments in which

some false-positive errors are acceptable.

2.2.5 Self-stabilizing Spanning Tree Construction Algorithms

Spanning tree algorithms are widely used in many distributed applications as efficient

topology control mechanisms. A spanning tree is a subset S of a graph G which contains

every node in G and which does not contain any cycles. With the growth in the scale of

distributed systems such as grid systems, the need for such topological control mechanisms

has gained significant importance. These control mechanisms decrease the complexity of

 47

distributed algorithms caused by the connectivity of the underlying graph. By using

spanning trees, many distributed applications, especially those involving multicast or

broadcast operations, can be optimized by making use of their properties. Many algorithms

have been developed to build different types of spanning trees. Several studies focus on

constructing minimum spanning trees in which the sum of edge weights is minimized

[AHUJA89, AWERBUCH87, GALLAGHER83, LIEN88]. Studies such as [BLIN09]

construct a minimum degree spanning tree in which degrees of vertices are minimized.

Some other studies aim at constructing minimum diameter spanning trees in which

diameter of the resulting spanning tree is minimized [BUTELLE95]. Besides classical

distributed spanning tree construction algorithms, some of these studies also consider

dynamicity and fault tolerance in their design. Self-stabilizing spanning tree algorithms

have gained importance recently [GARTNER03] by the wide spread usage of unstable

systems. Self-stabilizing concept guarantees the validity of spanning tree structure without

having the need to regenerate the spanning tree every time the structure has changed

[DIJKSTRA74]. The idea of self-stabilizing algorithms is that independent of the global

state of the system, the system will reach to a correct global state after a finite amount of

time. Self-stabilization is a very useful approach for the systems in which dynamicity

occurs frequently, such as grid systems.

2.2.5.1 Recent studies

There can be found many studies in the current literature related to self-stabilizing

spanning tree construction [AFEK91, ANTONOIU95, ANTONOIU97, BAALA03,

DOLEV93, GUPTA03, HERAULT06, KOSOWSKI06, PAN99]. Afek et al. [AFEK91]

proposed a memory-efficient self-stabilizing spanning tree algorithm for general networks.

Dolev et al. [DOLEV93] proposed a uniform BFS spanning tree algorithm based on the

id’s of the nodes. Butelle et al. [BUTELLE95] presented a uniform self-stabilizing

algorithm which finds a minimum diameter spanning tree of an arbitrary positively real-

weighted graph. Antonoiu and Srimani [ANTONOIU95] proposed a self-stabilizing

 48

algorithm to construct an arbitrary spanning tree assuming the existence of a root node,

which is used as a reference node to build the spanning tree. In [ANTONOIU97], Antonoiu

and Srimani proposed another self-stabilizing algorithm which constructs minimum

spanning trees. Pan et al. [PAN99] proposed a self-stabilizing spanning tree construction

algorithm based on self-stabilizing maximum finding method. In their algorithm they find

the maximum identifier and determine distances of each node to the maximum identifier

node. Baala et al. [BAALA03] presented a random walk based spanning tree construction

algorithm which is self-stabilizing. Their algorithm is based on random walk strategy,

which is executed by independent mobile agents. Gupta and Srimani proposed two self-

stabilizing spanning tree algorithms in [GUPTA03]. They consider ad-hoc networks as the

system model in their design. In [HERAULT06], Herault et al. proposed a self-stabilizing

spanning tree algorithm for large scale systems in which the biggest id node becomes the

root of the final tree. In [KOSOWSKI06], Kosowski and Kuszner proposed two self-

stabilizing algorithms to find spanning tree in a polynomial number of rounds based on the

ids of the nodes. Blin et al. [BLIN09] proposed a self-stabilizing algorithm to find

minimum degree spanning tree in a network. They have extended the study proposed in

[AFEK91] by adding a degree reduction module which decreases the degree of the

resulting spanning tree in each round.

2.2.5.2 Conclusions

Many of these algorithms construct spanning trees using the unique ids of the nodes in

the network [AFEK91, DOLEV93, HERAULT06, KOSOWSKI06, PAN99]. Others use

different parameters such as unique weight of edges [ANTONOIU97], assumption of

existence of privileged nodes [ANTONOIU95, GUPTA03] or random walks [BAALA03].

Although these spanning tree construction methods provide fruitful solutions to the

topology control problem, to the best of our knowledge, we cannot find an algorithm,

which aims at finding a spanning tree that optimizes the distribution of messages. We

believe that many alternative meaningful metrics, such as degrees of nodes, can be used in

 49

constructing the spanning tree instead of the ids of nodes.

2.2.6 Conclusions for Resource Discovery Algorithms

We believe that combining advantages of different RD approaches would result in

useful studies for resource discovery in grids. For example, by using web services, one can

provide a simple interface to the users, while for the resource discovery, by using mobile

agents or P2P techniques, a scalable, reliable and also easy to use resource discovery

middleware can be designed. To the best of our knowledge, we cannot find a research

work, which is directly focused on addressing the problems, which are caused by the

characteristics of the grid environments and requirements of queries. For this purpose, in

this thesis, we propose a new cross-layer design approach in resource discovery, which

combines topology control and efficient resource discovery together.

Considering our analyses, we concluded that scalability should be taken into account in

the first glance. For this, we figured out that efficient topology control algorithms, which

are suitable for dissemination of resource discovery messages, should be studied such as

spanning trees. Moreover, for the dynamicity issues, we figured out that the topology

control algorithm, which is going to be used in the RD step, should be prone to the

dynamicity of the system. For that reasons we directed our attention to the self-stabilizing

spanning tree algorithms. We believe that a resource discovery algorithm, which inspires

all the advantages of the examined studies with a fault-tolerant topology control

mechanism, should be our objective for proposing efficient resource discovery algorithms.

2.3 Resource Allocation (RA) for Query Processing in Grid

Environments

Resource Allocation for the query processing domain can be formally defined as a

non-injective, non-surjective, multi-valued function from the set of tasks to the set of

candidate resources, where tasks correspond to the operations (scan, build, probe, etc.),

 50

which compose operators in a query (join, union, difference, etc.).

After completion of the previous stage, resource discovery [HAMEURLAIN10], a set of

resources that are capable of executing the tasks is assumed known. At this point, in order

to run these tasks effectively on the discovered resources, a resource allocation mechanism

must be executed in order to determine: (i) how many of these resources will be used, (ii)

which tasks will be executed by which resources and (iii) the action to be taken for

dynamicity of resource properties during execution of the tasks. Many studies refer to

different approaches for this purpose [GOUNARIS04, SLIMANI04, BUYYA05,

GOUNARIS05, KANT05, MANDAL05, SOE05, GOUNARIS06b, SILVA06,

VENUGOPAL06, BOSE07, ZHAO07, KOTOWSKI08, LIU08, GOUNARIS09, RUIZ09,

PATON09]. Existing studies are generally classified into two classes in the current

literature: static resource allocation and dynamic resource allocation. In static RA

approach, the allocation is performed once, and allocated nodes sustain execution until the

tasks are completed. On the other hand, in dynamic RA approach, according to the

monitored status of the resources, the allocation is dynamically modified during the

execution of the tasks. However, we believe that dynamicity of the RA algorithm should be

examined as a design parameter instead of a classification metric. For that reason, in this

section we classify the existing RA algorithms based on their most common attributes. In

this way, we have classified the existing studies as resource-centered resource allocation

strategies and task-centered resource allocation strategies according to whether their

objective is to optimize resource utilization or task execution, respectively. The

classification is shown in Figure 2.2.

 51

!"#$%&'"(
)**$'+,$-((

!"#$%&'"(
."-/"&"0(

1+#2((
."-/"&"0(

Figure 2.2 Classification for Resource Allocation Algorithms for Query Processing in Grid

Environments

For this classification, we have defined our scenario for the execution of the queries as

follows. A grid user submits a database query to any node in the grid. The query is pre-

processed in order to be optimized by the use of relational algebra before its execution. In

this step, the query is decomposed into its smallest executable parts, which are called tasks

in this chapter, and a task dependency graph is generated in which vertices represent tasks

and edges represent data flow between tasks. After finalizing the task dependency graph, a

resource discovery phase is accomplished for each task in order to find all the candidate

resources that have the capability to execute the corresponding task. After the resource

discovery phase, resource allocation is realized in order to schedule tasks on the resources.

Finding the optimum allocation scheme for the tasks has been proved to be NP-complete

[BACA89, WANG90], therefore in the resource allocation step, the aim is to find a near-

optimum solution which will shorten the execution time of the query. We provide a

synthesis of the recent resource allocation studies according to our classification. We also

provide evaluations and comparisons between these classes considering both quantitative

and qualitative criteria. For the quantitative evaluations and comparisons, we provide

simulation results using the GridSim [SULISTIO08] simulator. For the qualitative

evaluations and comparisons we examine the two classes according to the following

 52

criteria:

• Consideration of different task requirements: In a query, there may be different types

of tasks, which have different requirements. For instance, one task may require a

large amount of available memory space, whereas CPU characteristics may be much

more important for another task. Therefore consideration of these different

requirements for each task should be considered separately.

• Consideration of communication requirements between tasks: In queries, some tasks

communicate with each other. In other words, the data produced by one task might

be used by another task. Therefore data is transferred from one task to another in

some situations. The resource allocation scheme must consider this communication,

and hence precedence requirements between tasks, by taking into account the

network characteristics between resources.

• Consideration of load balance: Load balancing is another important issue in

allocating resources, because an allocation scheme which does not consider load

balance on the resources might cause skew problems.

• Consideration of properties of resources: Since the grid environment is

heterogeneous in its nature, different properties of resources, such as processor

speed, available memory, internal bus speeds, network connections, etc., should be

considered in order to allocate suitable resources to tasks. The precision of

performance estimations of resources is tightly coupled with the level of detail of

these properties.

• Scalability and reliability of the allocation method: Since the grid environment is

considered to be large-scale and dynamic, the number of candidate resources and

tasks might be very high and the nodes might be dynamic. Considering this fact, the

proposed method should not contain bottlenecks and single point of failures.

In the rest of this section, in Section 2.3.1, we examine recent survey studies in resource

 53

allocation for grid systems. In Section 2.3.2, we provide a detailed survey of resource

allocation methods according to our classification. In Section 2.3.3, we present a literature

survey related to fault-tolerance for query processing in grid environments in order to

address dynamicity of nodes in terms of their existence. Finally, in Section 2.3.4, we

discuss our conclusions and perspectives.

2.3.1 Existing Survey Studies and Motivations

Detailed survey studies can be found in the literature related to resource allocation and

job scheduling in grid systems [KRAUTER02, JIAN07, JIANG07, COSTA08,

EPIMAKHOV11]. Even though in this section we focus on resource allocation studies

especially for query processing purposes, we believe that it is also essential to understand

classical task scheduling and resource allocation in grid systems. For that reason, in this

section, we examine existing survey studies, which are focused on both classical RA and

RA for the query processing domain. There exist many survey studies related to classical

RA in grid systems in the literature; we mention here those which may be applicable to the

query processing domain [JIAN07, JIANG07, KRAUTER02]. On the other hand, we find

very few survey studies that are focused on the query processing domain [COSTA08,

EPIMAKHOV11].

In [KRAUTER02], Krauter et al. proposed a taxonomy and survey for resource

management systems (RMS) in grid systems. The authors proposed different

classifications for RMS according to machine organization within the grid, the resource

model, dissemination protocols, namespace organization, data store organization, resource

discovery, QoS (Quality of Service) support, scheduler organization, scheduling policy,

state estimation, and the rescheduling approach. For the resource allocation phase, they

proposed three different classes: centralized, hierarchical and decentralized resource

allocation methods. Even though this survey is very detailed, evaluation criteria and

comparison between different classes is not provided. In [JIAN07], Jian et al. presented a

survey study for grid scheduling systems. They have examined the existing methods in

 54

three classes: computational economy, agent-oriented and service-oriented scheduling

systems. Even though this study is very interesting, detailed evaluation criteria for

comparison between different methods are not introduced. Moreover, detailed analysis of

the examined studies based on the standardized metrics is not examined. In [JIANG07],

Jiang et al. proposed a survey study on job scheduling in grids. They examined and defined

the grid specifications and evaluation criteria. However the study is mostly focused on

security issues and fault tolerance. Classification between examined methods and a

comparative study is not provided.

In [COSTA08], Costa et al. presented an experimental evaluation and comparison between

different classes of grid RA algorithms which are focused on query scheduling. They

examined classes according to the grid systems’ characteristics. In their study, they

examined schedulers in two classes: centralized and hierarchical grid query schedulers.

Even though they provide comparisons based on experimental results, theoretical analyses

and evaluation criteria are not presented. In another fruitful study [EPIMAKHOV11],

Epimakhov et al. proposed a survey study which examines resource scheduling methods

for query optimization in data grid systems. They classify the existing methods as extended

classic and incentive based approaches according to whether the method is extended from

parallel and distributed systems or it is prepared from scratch for the grid environment.

They provide analyses for each class and compare them by simulation.

Although these survey studies provide comprehensive and detailed background about

resource allocation in grid systems, few survey studies are proposed which are focused on

resource allocation specifically for query processing in data grid systems. It is crucial that,

for analyses and survey studies in query processing domain, database queries and their

characteristics should be particularly taken into consideration. For this reason, in this

section, we provide evaluation criteria considering particular requirements for database

queries in grid systems. We provide a classification regarding the objectives of the existing

approaches; and present evaluations and comparisons between different classes by both

qualitative and quantitative criteria.

 55

2.3.2 Recent Resource Allocation Methods

In this section, we provide a literature survey on recent resource allocation methods,

which are designed for query processing in grid systems. We classified the studies

according to their optimization goals. For each class of methods, we describe synthetically

the main approach, followed by an evaluation and comparison with respect to the

evaluation criteria.

2.3.2.1 Task-Centered Resource Allocation Methods

In task-centered resource allocation methods, the proposed studies examine the RA

problem from the point of view of tasks. The primary objective is to minimize the task

execution time independently of the state of the resources, such as load balance or resource

utilization. The methods consider core characteristics of the resources like processor

frequency, available memory, available disk space, network bandwidth etc. The main

approach is to construct a ranking function for the resources by using these characteristics

and allocate tasks to the most powerful resources aiming at minimizing the execution time.

There can be found many studies in this class [BOSE07, GOUNARIS04, GOUNARIS06b,

KANT05, LIU08, MANDAL05, SILVA06, VENUGOPAL06]. For instance, in

[KANT05], Kant and Grosu proposed auction-based resource allocation protocols. They

proposed three auction protocols using parameters characterizing resources and jobs. In

each protocol they determined different rules for the auction. At the end of the auction, the

algorithm realizes resource allocation according to the matching of tasks and resources.

Mandal et al. [MANDAL05] proposed a workflow scheduling algorithm in grids by

ranking the discovered nodes according to their expected performances for a specific

application component. Gounaris et al. [GOUNARIS04, GOUNARIS06b] proposed a

resource scheduling method for parallel query processing in computational grids in which

the partitioned parallelism problem is mainly examined. In [BOSE07], Bose et al.

examined the problem of efficient resource allocation for a given set of parallel query sub-

plans by taking advantage of the bushy tree representation of queries. Liu and Karimi

 56

[LIU08] developed a grid query optimizer for query processing in grids. They consider the

resource discovery, resource allocation and query processing stages separately in their

study. They use weighted parameters to evaluate resource properties such as CPU speed,

available amount of memory, number of relations which are stored in the node, current

workload of the node and estimated mean transmission latency. Silva et al. [SILVA06]

presented an adaptive parallel query processing algorithm in which a resource allocation

module is included. In their algorithm, after generating a parallel query plan and after

discovering nodes, they sort the candidate nodes according to their throughput and realize

resource allocation incrementally by monitoring the ongoing query execution performance.

Venugopal et al. [VENUGOPAL06] proposed a grid service broker for scheduling e-

science applications in data grids. They focused on adaptive scheduling algorithms and

brokering strategies.

The task-centered resource allocation methods aim at minimizing query execution time by

assigning tasks to the most powerful resources which are able to execute them. Since their

perspective is from the tasks point of view, most of the studies in this class consider

different task requirements, mostly by giving different weights for the resources’ properties

for each different task. In this class of RA algorithms, there can be found both static and

dynamic resource allocation approaches. Nearly all the static resource allocation based

methods [BOSE07, GOUNARIS04, GOUNARIS06b, KANT05, LIU08, MANDAL05]

consider communication requirements of tasks by examining networking properties of

resources; on the other hand, most of the dynamic resource allocation studies [SILVA06,

VENUGOPAL06] do not consider communication and precedence requirements of tasks

as they are more focused on maintaining the optimum allocation in case of dynamicity of

the environment. Since the proposed methods are designed from the point of view of task

requirements, nearly all of the studies consider computational properties of nodes. In this

class of algorithms, the most popular design paradigm is the greedy approach. In most of

the studies, the most powerful resources are allocated without performance considerations

but by looking at the availability of sufficient resources. Cost functions in the mentioned

 57

studies consist of many resource properties, therefore, load balance is not considered as the

primary constraint. Most of the studies in this class are designed in a centralized manner.

Although heuristics are used in order to decrease complexity in the examined studies, in a

grid setting, in which both number of resources and tasks can be very high, the centralized

approach can negatively affect the scalability. It may also cause single point of failure

problems in centralized allocation management, which decreases the reliability of the

methods.

2.3.2.2 Resource-Centered Resource Allocation Methods

In resource-centered resource allocation methods, the studies look at the resource

allocation problem from the point of view of resources. The primary aim in these studies is

to maximize the resource utilization by considering both resource properties and load

balance between them. The main idea here is that maximizing the resource utilization

considering the sizes of tasks will maximize the throughput of the whole system.

According to our search on this class of methods, we realized that most of the existing

studies are concerned with dynamic resource allocation [GOUNARIS05, GOUNARIS09,

KOTOWSKI08, PATON09, RUIZ09], although there are few static resource allocation

studies as well [SOE05]. Soe et al. [SOE05] introduced a resource scheduling algorithm

for parallel query processing in grids. They consider both inter-query and intra-query

parallelism in scheduling resources. They consider the resource utilization ratios as the cost

metric. Processor allocation is achieved level by level via iterative refinements. In

[GOUNARIS05], Gounaris et al. proposed an algorithm for query processing in grids. The

proposed algorithm is service oriented, thus it is considered to be autonomous. In this

study, the initial resource allocation is achieved by the use of the algorithm which is

proposed in [GOUNARIS04] and then allocation is refined according to the monitored

query execution performance. Paton et al. [PATON09] proposed a dynamic resource

allocation algorithm for query processing in distributed large-scale dynamic environments.

Their study aims at optimizing query execution by ensuring load balance between

 58

resources. Kotowski et al. [KOTOWSKI08] introduced a parallel OLAP query processor in

grid systems which exploits both intra and inter query processing. The proposed study is

based on their previous database cluster middleware ParGRES [MATTOSO05], which

exploits query parallelism and load balancing. In [GOUNARIS09], Gounaris et al.

proposed an adaptive query processing method in grid environments. The authors mention

both data and state repartitioning in the distribution of data sources. Ruiz et al. [RUIZ09]

proposed a query allocation method for distributed information systems. Which is based on

satisfaction-based query load balancing (SQLB). SQLB is a flexible framework with self-

adapting algorithms to allocate queries while considering both query load balancing and

participants’ goals.

The resource-centered resource allocation methods aim at balancing load between

candidate resources. Nearly all mentioned studies focused on load balancing instead of task

requirements. Therefore, the different requirements of tasks and communication

requirements between them are not mentioned in many of these studies. On the other hand,

some studies consider properties of resources in allocating tasks in order to calculate a

proportional workload which can be considered as a more realistic metric. The key aim in

this class of algorithms is that optimizing the load balance between resources will result in

increased overall throughput. But the ignorance of communication requirements and

different requirements of tasks may cause degraded performance. In such cases, even if the

load is balanced between resources, the resource utilization may be dominated by

processes that communicate to each other using slow communication links, which may be

an inconvenient situation in terms of query optimization.

2.3.2.3 Qualitative Comparison Between Classes

The two different classes of studies, task-centered resource allocation and resource-

centered resource allocation methods, aim at allocating resources in grid systems for query

processing. Although these two classes share some common characteristics, they have

many differences, which give advantages and disadvantages to each class of studies. A

 59

summary of global comparison can be seen in Table 2.5. In both classes, since the

objective is resource allocation, the properties of resources are examined. On the other

hand, in task-centered resource allocation methods, communication requirements between

tasks, different task requirements and computational properties of resources have more

priority than the load balance between resources. Therefore, precise ranking functions are

proposed in order to find near-optimal resource allocation schemes in this class of studies.

On the other hand, this idea may easily cause unbalanced load distribution between

resources, which may lead to skew problems between parallelized tasks. One can say that,

if the different requirements of different tasks are uniformly distributed, the precise

ranking functions may cause balanced resource allocation, but in reality, the distribution of

task requirements should be considered separately in order to prove this assumption. On

the other hand, in resource-centered resource allocation methods, the load balance between

resources is assumed to lead to an increase in the overall throughput of the system, which

is a true but an incomplete prediction. In our case, providing load balance is necessary but

not sufficient to optimize the query execution since tasks within queries are dependent on

each other. Therefore, besides load balancing, communication requirements between tasks

should be considered as a function of environmental parameters such as network

connections. Both approaches contain resource allocation methods based on static and

dynamic allocations. Independently of being resource or task centered, the algorithms

based on static allocation can be considered as fragile in a grid environment since

dynamicity of resources may cause disruption of queries, whereas the algorithms based on

dynamic allocation are more robust in terms of continuation or enhancement of the initial

allocation’s performance. Most of the examined studies in this survey propose centralized

methods. Considering the characteristics of the grid systems, centralized methods may

cause serious scalability and reliability problems caused by the dynamicity and large scale

of the environment. Although decentralized methods deal with these problems, to the best

of our knowledge, we cannot find a study that meets all the core characteristics of the grid

systems in the distributed query processing domain.

 60

Evaluation Criteria Task-Centered Methods Resource-Centered Methods

Consideration of different task

requirements

Taken into account by the use

of weights in ranking functions

Not taken into account in most of

the studies

Consideration of communication

requirements between tasks

Taken into account by the use

of network requirement

parameters for each task

Taken into account in terms of

execution order, communication

requirements are not considered

Consideration of load balance Load balance is not taken into

account

Load balance is considered to be

the primary issue

Consideration of properties of

resources

Taken into account by the use

of detailed ranking functions

Not taken into account in most of

the studies

Scalability and reliability All studies are centralized, thus

contain bottlenecks and single

points of failure

Nearly all studies are centralized,

thus contain bottlenecks and

single points of failure. Those

which are decentralized, do not

suffer from scalability and

reliability problems

Table 2.5 Qualitative Evaluation Summary

2.3.2.4 Quantitative Evaluation and Comparison

 In this section, we provide quantitative evaluations and comparisons, between two

classes of resource allocation methods, by simulation. Since there are many factors that

affect a method’s performance, we believe that it is not appropriate to implement and

compare particular existing studies, as our implementations might not reflect their exact

capabilities. Therefore, in our simulations, we implement an algorithm for each class,

which uses basic parameters that reflect its classes’ characteristics. With the selected

parameters, we aim at obtaining meaningful results that allow comparison between two

classes.

We have used the GridSim [SULISTIO08] grid simulator for our simulations. GridSim is a

discrete event simulator, which is aimed at simulating task scheduling policies in grid

 61

environments. The resources in GridSim are modeled by considering their MIPS rating,

number of processing units, loads and their connection speeds in baud rates.

In our simulation scenario, the tasks are treated as operations, which constitute query

operators. In this manner, simple, medium and complex queries are assumed to correspond

to 5, 10 and 20 tasks respectively. More than 20 tasks are considered as multiple

independent queries that are waiting to be executed. During the simulations, all tasks are

assumed to be independent. They are simulated according to their input data size, length in

number of instructions, and output data size. In the simulation setup, nodes are considered

as uni-processor computers in the grid environment. The nodes, tasks and users are

connected via simulated network links, which take into account baud rate, propagation

delay and maximum transmission unit in bytes. The characteristics of nodes are set

randomly using a uniform distribution within specific ranges. Tasks are also generated

randomly in the same manner. Four different parameters are specified for the tests, namely,

resource allocation type, number of nodes, number of tasks and CPU loads. For the

resource allocation type, two different resource allocation methods are simulated: (i) Task-

Centered Resource Allocation (TCRA) and (ii) Resource-Centered Resource Allocation

(RCRA). In TCRA, the algorithm orders tasks according to their lengths, and nodes

according to their reported MIPS ratings. Then nodes are allocated for the tasks in the same

order as the lists in a round-robin fashion. In RCRA, the algorithm allocates the node with

the least loaded CPU for each task. During the experiments, cost of resource allocation

process and time required to execute all submitted tasks are measured. The measured

values are in simulation time units and are used for comparison purposes.

In Figure 2.3, the time required for the resource allocation process is measured for scenario

sizes varying between 10 and 500 nodes. Simulations are conducted for different scenarios

consisting of 5 and 20 tasks. CPU loads of nodes are assigned randomly between 20% and

50%. The time required to complete the resource allocation process using different

algorithms in different scenarios is plotted in Figure 2.3. Allocation times for 5 and 20

tasks in a small scale environment varying from 10 to 60 nodes is shown in Figure 2.3.a

 62

and Figure 2.3.b, respectively. In Figure 2.3.c and Figure 2.3.d, allocation times for 5 and

20 tasks in larger scale environments are shown, which consists of between 50 and 500

nodes.

The theoretical time complexity of the TCRA algorithm consists of (i) obtaining each

node’s characteristics for ranking, (ii) sorting nodes according to their ranks and (iii)

sorting tasks according to their lengths. Thus it can be formalized as O(m * c + n * log n +

m * log m) where n is the number of tasks, m is the number of nodes and c is the

communication overhead constant for obtaining the characteristics of a node. On the other

hand, the time complexity of the RCRA algorithm consists of obtaining each nodes’

dynamic load information for every single task. Thus it can be formalized as O(n * m * c).

In the complexity analysis of both algorithms, c is considered as the determining factor

since it is considerably larger than other terms in the formulas because of the excessive

communication costs. For that reason, the complexity of the algorithms depend on the term

containing the constant c. The results of the simulations justify the complexity analyses of

the algorithms. As can be seen in Figure 2.3, allocation times of both algorithms increase

as the number of nodes increases. However, allocation time of the RCRA algorithm

increases faster than TCRA. The speedup values between the two algorithms for this test

can be seen in Figure 2.4.

 63

Figure 2.3 Allocation time for varying grid sizes.

It can be seen in Figure 2.4 that, as the number of nodes increases, the speedup value

remains nearly constant since the speedup depends mostly on the number of tasks due to

the communication costs. On the other hand, as the number of tasks increases, the speedup

increases as a function of the number of tasks.

 64

Figure 2.4 Speedup values for varying scale

In Figure 2.5, the time taken to execute all tasks during the simulation is measured for

varying CPU loads in candidate nodes. The number of nodes is fixed at 200 and the

number of tasks is fixed at 100. Task execution times are measured for varying node load

densities in ranges 0-30%, 10-40%, 20-50%,…, 70-100% and 80-100%. The results show

that TCRA gives better results compared to RCRA in an environment in which CPU loads

of nodes are smaller. However, for the cases where nodes are loaded more than nearly

70%, RCRA performs better in allocating better candidates for tasks.

 65

Figure 2.5 Execution time of tasks for varying CPU Loads

In Figure 2.6, we have examined how the execution time of tasks is affected by the

changes in number of nodes. CPU loads are assigned to nodes uniformly distributed

between 0% and 100%. Number of tasks were fixed at 175 in order to observe the behavior

of different allocation methods in cases where: (C1) the number of nodes is smaller than

the number of tasks, (C2) the number of nodes is greater than the number of tasks. As can

be seen in Figure 2.6, RCRA performs better in case C1. This is because load balancing

helps minimization of skew between task execution times. In case C2, TCRA performs

better since the probability of finding powerful and less loaded nodes is increased.

However, in case C1, the performance difference is more remarkable since in resource

scarce environments, load balance gains more importance [38]. On the other hand, in case

C2, the difference between the two approaches nearly converges to a constant after 250

nodes since sufficient resources can be found in any of such cases in which the number of

resources is much higher than number of tasks.

 66

Regarding the simulation results, RCRA can be considered to be favorable in cases in

which the number of nodes is smaller than the number of tasks, and in cases in which the

nodes are excessively busy. However, it must be noted that the complexity of RCRA is

relatively high, and it might be a limiting factor in large-scale environments. On the other

hand, TCRA performs comparatively better than RCRA in scenarios in which the number

of nodes is higher than the number of tasks. It can be also be favorable in large-scale

environments in which nodes are not excessively loaded.

Figure 2.6 Execution time of tasks for varying number of nodes

2.3.3 Fault-tolerance in Query Processing in Grid Environments

Since grid environments are dynamic, eventual node failures are likely during the

execution of queries. These failures may be very costly if the queries are long running and

if the system is not designed fault-tolerant. Therefore fault-tolerance can be considered as a

must in processing queries in grid environments. Since fault-tolerance involves in

allocation of new nodes, we consider it as a part of the resource allocation algorithm.

 67

In current literature, there can be found many resource allocation algorithms with

dynamicity support [GOUNARIS05, SILVA06, VENUGOPAL06, KOTOWSKI08,

GOUNARIS09, PATON09, RUIZ09]. Although these studies provide resource allocation

methods in cases of dynamicity of nodes, none of them consider failure of nodes during

execution of stateful operators in queries. Since stateful operators, such as hash join,

require recovery of states of the nodes in case of node failures, dynamic resource allocation

methods are not applicable in these cases. To the best of our knowledge, we find few

studies for fault-tolerant query processing in grid environments [SMITH05, SMITH07,

TAYLOR08, BESTEHORN10]. Although these studies provide fruitful algorithms, none

of them is specialized on processing stateful query operators in grid environments. In this

section, we present a brief literature survey related to resource allocation algorithms for

fault-tolerant query processing in grid environments.

2.3.3.1 Recent Studies

There can be found many studies in the literature, which examine resource allocation

for query processing in grid environments such as [GOUNARIS04, GOUNARIS05,

KANT05, MANDAL05, SOE05, GOUNARIS06b, SILVA06, VENUGOPAL06, BOSE07,

KOTOWSKI08, LIU08, GOUNARIS09, PATON09, RUIZ09]. These studies either

present static resource allocation algorithms in which the resource allocation is performed

once, and allocated nodes sustain execution until the tasks are completed; or they present

dynamic resource allocation algorithms in which allocation is dynamically modified during

the execution of the tasks according to the monitored status of the resources. Although

dynamic resource allocation algorithms take dynamicity of the environment into account,

none of these algorithms consider the case in which node failures occur. Still, there can be

found many other studies in the current literature, which examine fault-tolerant distributed

query processing in different environments [ABADI05, BALAZINSKA08,

BESTEHORN10, CHANDRASEKARAN03, HWANG05, HWANG07, KWON08,

SMITH05, SMITH07]. However, few of them are applicable in grid environments

 68

especially for processing stateful query operators such as hash joins [BESTEHORN10].

Smith and Watson presented a fault-tolerant query processing system for distributed query

processing in [SMITH05]. Their study is an extension to their previous work OGSA-DQP

[ALPDEMIR04] with the addition of fault detector and fault handler modules. In their

study, the queried node generates a query plan, performs an initial resource allocation and

initiates the execution of the query. For the fault tolerance, the algorithm performs a

rollback recovery protocol. In [SMITH07], Smith and Watson discuss failure recovery

alternatives in query processing in grid environments. In their study, they examined three

failure recovery alternatives namely restart, reduce and replace. Bestehorn et al. presented

a fault-tolerant query processing algorithm in structured P2P systems in

[BESTEHORN10]. In their study, they examined the query operations in two classes

namely stateless and stateful operations. The proposed method examines fault-tolerance

over these operations with two different perspectives: i) fault-tolerant routing and ii)

replication. The study exploits the functionalities proposed by the CAN peer to peer system

for selecting the backup peers. A very detailed survey study related to fault-tolerant

distributed query processing can be found in [TAYLOR08]. In his study, Taylor examines

different fault-tolerant distributed query processing algorithms in three classes namely: i)

upstream backup [SMITH07, SMITH05], ii) active standby [ABADI05,

BALAZINSKA08, CHANDRASEKARAN03] and iii) passive standby [HWANG05,

HWANG07, KWON08].

2.3.3.2 Conclusions

Considering our analyses related to fault-tolerance in query processing, we have found

many studies examining this problem. Although these studies present fruitful algorithms,

to the best of our knowledge, we cannot find studies designed especially for grid

environments, which examine fault-tolerance in stateful query operators. Most of the

examined studies are focused on stream processing which does not include stateful

operators. Moreover most of these studies are designed for P2P systems. Although there

 69

are many similarities between grid systems and P2P systems, in many aspects they have

slight differences. Therefore we believe that the characteristics of grid environments and

requirements of query processing tasks should be focused in order to find suitable RA

algorithms for fault-tolerant query processing in grid environments.

2.3.4 Conclusions for Resource Allocation Algorithms

 In this section, we classified, analyzed, evaluated and compared different kinds of

resource allocation methods in grid environments. We provided a classification by

considering the methods’ viewpoints to the resource allocation problem. We have

evaluated the different classes of methods considering important criteria for the query

processing domain in grids. Finally we compared different classes and presented some

remarks regarding their evaluations. We also present a brief literature survey about

resource allocation algorithms for fault-tolerant query processing in grid environments.

Even though we have examined many fruitful methods in this section, we cannot find

studies that provide a complete solution regarding both the grid environments’

characteristics and query processing requirements.

The studies, which are examined in this section, have advantages and disadvantages

compared to each other; therefore it is not possible, at this stage, to conclude that one is

superior to the other. Instead, they can be provided as alternative resource allocation

methods in systems such as parametric query optimization [BIZARRO09, IOANNIDIS97] in

order to contribute to the query optimization by choosing the appropriate allocation method

for the specific situation.

2.4 Overall Conclusions
In this chapter, we have analyzed, evaluated and compared the recent studies for

resource discovery, self-stabilizing spanning tree construction, resource allocation and

fault-tolerant query processing problems in grid environments by classification. With

respect to our analyses, we believe that there are still open issues and potential

 70

contributions for each of these problems. More precisely, regarding grid systems’

characteristics, following open issues in each studied problem attract our attention:

 i. Resource discovery for query processing in grid environments: Since grid system

is dynamic, and since properties of resources change in time, in order to obtain up-to-date

resource information, the RD algorithm should visit each node individually. In this

manner, unstructured P2P systems based RD algorithms are considered to be very suitable

for our purposes. However, since grid is a large-scale environment, the RD algorithm

should be scalable and should avoid using flooding of messages. Therefore, we believe that

without centralizing resources’ information, a topology control mechanism can be used for

efficient distribution of RD messages. On top of the generated topology, the resource

discovery can be realized by the use of efficient message distribution such as broadcasting

for request messages and converge-casting for response messages. Therefore, new resource

discovery methods can be proposed, aiming at i) decreasing message and time

complexities, ii) obtaining up-to-date resource information and iii) reliable resource

discovery that is prone to node failures and topology changes. In this manner, self-

stabilizing spanning tree structures might be used as a topology control mechanism with

the addition of an efficient routing algorithm.

 ii. Self-stabilizing spanning tree construction: The examined recent self-stabilizing

spanning tree algorithms present fruitful solutions to the spanning tree construction

problem. However, to the best of our knowledge, we have found few studies which aim at

decreasing the diameter of the constructed spanning tree. This property aims at efficient

distribution of messages through the whole grid environment. Therefore, new heuristical

algorithms can be proposed for constructing spanning trees with smaller diameters.

 iii. Resource allocation for query processing in grid environments: The resource

allocation algorithms for query processing is roughly studied in the current literature.

However, since grid is a relatively new concept, in general, existing studies are extensions

to the previous resource allocation algorithms which are designed for distributed and

parallel systems. To the best of our knowledge, we have found few studies which are

 71

designed especially for resource allocation for query processing in grid systems. Still, we

have found many missing contributions in the current literature such as allocating of nodes

considering proximities to the data sources. We believe that, new algorithms can be

designed for this purpose considering all characteristics of grid systems. Regarding our

analyses on the current literature, we also find that the resource allocation algorithm should

be designed in a bottom-up fashion, starting from allocation of resources for the most

atomic tasks in queries. Therefore we believe that an initial resource allocation algorithm

which is designed for only one query operator should be studied at first glance. Then,

extensions to the designated algorithm can be designed in order to cover the whole query.

 iv. Fault-tolerance for query processing in grid systems: The grid environment is

characterized by its dynamic nature. However, the dynamicity characteristic of the grid

should be examined in its two different meanings: i) dynamicity of properties of nodes and

ii) dynamicity of nodes in terms of their existance in the environment. Regarding our

literature survey, we found that most of the dynamic resource allocation algorithms

examined the dynamicity characteristic of grid systems in its first meaning (i). However,

its second meaning may have a big impact in the performance and reliability of query

execution in cases where nodes fail frequently. We have found very few studies in the

current literature which examined dynamicity of grid systems in its second meaning (ii).

Therefore, we believe that valuable contributions can be made to the research community

by examining fault-tolerance in this domain.

 72

CHAPTER 3: RESOURCE DISCOVERY FOR QUERY

PROCESSING IN GRID ENVIRONMENTS

Résumé

A travers ce chapitre, nous proposons un algorithme de découverte de ressources complet

qui se compose de deux couches : i) Le contrôle de topologie pour la découverte de

ressources dans les environnements Grille et ii) algorithme de la découverte de ressources

basé des arbres couvrants. Premièrement nous proposons trois algorithmes de contrôle de

topologie qui construisent des arbres couvrants auto-stabilisants, et qui peuvent être

utilisés dans le découvert de ressources pour le traitement des requêtes en environnements

Grille. Ensuite, nous proposons un algorithme de découverte de ressources en exploitant

les arbres couvrants lors de la distribution des messages de découverte des ressources.

Abstract

In this chapter, we propose a complete resource discovery algorithm that is composed of

two layers: i) topology control for resource discovery in grid environments and ii)

spanning tree based resource discovery algorithm. We first propose three topology control

algorithms that construct self-stabilizing spanning trees which can be used in the resource

discovery for query processing in grid environments. Then, we propose a resource

discovery algorithm by exploiting the spanning-tree during the distribution of resource

discovery messages.

3.1 Introduction
Resource discovery problem in grid systems can be defined as searching and locating

resource candidates that are suitable for a job, in spite of the dynamicity and large scale of

the environment. A resource in the Grid may correspond to several different concepts. It

may be a computational resource such as CPU, memory, storage unit or network; it may be

 73

a data source that provides metadata and its contents such as database; or it may be a

service which is programmed to accomplish a specific task. Effective usage of these

resources in a grid system relies on the discovery of the right resources for given tasks. The

main characteristics of the grid environment such as dynamicity, heterogeneity and large

scale make the resource discovery a time consuming process, which can negatively affect

the performance of query execution. The recent studies on grid resource discovery for

query processing were deeply analyzed in Chapter 2. Regarding our analyses and

conclusions, all different resource discovery approaches have their own advantages and

disadvantages. In this chapter, we aim at designing a resource discovery method which

brings some advantages of the existing approaches by extending them to overcome their

drawbacks.

To summarize the existing studies, we have examined the current literature in grid resource

discovery for query processing in three classes namely i) centralized/hierarchical systems

based grid resource discovery, ii) P2P systems based grid resource discovery and ii) agent

based grid resource discovery. Although centralized/hierarchical grid resource discovery

methods become very popular in the first decade of grid environments, their centralized

nature does not suit to dynamicity and large-scale characteristics of the grid environment.

On the other hand, P2P systems based RD methods are heavily used in the current

literature and they provide reliable RD algorithms and a decentralized control for the

scalability. The most recent P2P techniques use structured P2P systems, which increase the

performance of the resource discovery process drastically. Moreover, usage of the

distributed hash table (DHT) mappings exploits the scalability and reliability properties of

the P2P systems since all nodes in the system involve the resource discovery process.

However, DHTs have some disadvantages for the resource discovery domain. The usage of

DHTs limits the RD algorithms in terms of support for dynamic-attribute, multi-attribute

and range queries. To overcome these problems, many algorithms proposed to use the

topological structure of the overlay to efficiently distribute the RD queries directly between

the resources. For these purposes, super peer systems mention the topological structuring

 74

of resources. However, they use super peers mostly to act as central indexing servers,

which brings them the disadvantage of being single point of failures.

Regarding aforementioned analyses, in this chapter, we first propose algorithms to

structure the grid environment using efficient topological structures such as spanning trees

in order to address scalability problems. We design the proposed algorithm in self-

stabilizing fashion in order to address dynamicity characteristic of the grid system. Then,

by exploiting the topological structure, we propose a resource discovery method, which

broadcasts the RD queries over the spanning tree and which converge-casts the results

through the queried node efficiently aiming at decreasing the complexity of the RD

process.

The contribution of this chapter is twofold:

i. First, we propose three new self-stabilizing spanning tree construction algorithms

aiming at decreasing the diameter of the resulting spanning tree. Then we compare

our proposed algorithms to each other and to similar existing studies and choose

the best performer algorithm for RD purposes.

ii. Second, we propose a new resource discovery algorithm, which broadcasts the RD

queries to the whole environment and collects results by converge-casting the

response messages by exploiting the generated spanning tree.

The rest of this chapter is organized as follows, in section 3.2, we propose three self-

stabilizing spanning tree construction algorithms. We explain the algorithms in detail and

analyze them by considering their time and message complexities. We evaluate our

algorithms and provide quantitative comparisons between them and two existing similar

algorithms by simulation. Then we discuss the results and show that the proposed

algorithms perform better in many situations. In section 3.3, we propose the spanning tree

based resource discovery algorithm for query processing in grid environments. We present

the algorithm in detail, provide the complexity analyses and discuss the experimental

evaluations by comparison. Lastly, in section 3.4, we present our conclusions.

 75

3.2 Topology Control for Resource Discovery in Grid Environments

Spanning tree algorithms are widely used as topological control mechanisms in many

distributed applications. A spanning tree is a subset S of a graph G which contains every

node in G and which does not contain any cycles. With the growth in the scale of

distributed systems such as grid systems, the need for such topological control mechanisms

has gained significant importance. These control mechanisms decrease the complexity of

distributed algorithms caused by the connectivity of the underlying graph. By using

spanning trees, many distributed applications, especially those involving multicast or

broadcast operations, can be optimized by making use of their properties.

Distributed spanning tree construction algorithms become very popular in the last decade

since it is very hard to keep system wide information in large environments in order to

build such topologies centrally. Many algorithms have been developed to build different

types of spanning trees. Several studies focus on constructing minimum spanning trees in

which the sum of edge weights is minimized [AHUJA89, AWERBUCH87,

GALLAGHER83, LIEN88]. Minimum spanning trees are useful especially if

communication costs are required to be minimized. Studies such as [BLIN09] construct

minimum degree spanning trees in which degrees of vertices are minimized. This property

helps efficient routing of messages under heavy communication traffic. Some other studies

aim to construct minimum diameter spanning tree in which diameter of the resulting

spanning tree is minimized [BUTELLE95]. This property helps broadcasting of messages

by optimizing the distances between vertices in the graph.

Besides classical distributed spanning tree construction algorithms, some of these studies

also consider dynamicity and fault tolerance in their design. Self-stabilizing spanning tree

algorithms have gained importance recently [GARTNER03] by the wide spread usage of

unstable systems such as grids. Self-stabilizing concept guarantees the validity of spanning

tree structure without having the need to regenerate the spanning tree every time the

structure has changed. Self-stabilization is a paradigm for distributed systems that allows

 76

the system to achieve a desired global state, even in the presence of faults. The concept of

self stabilization was introduced in 1974 by Dijkstra [DIJKSTRA74]. The idea of self-

stabilizing algorithms is that independently of the global state of the system, the system

will reach to a correct global state after a finite amount of time. In a self-stabilizing

algorithm, each node maintains local variables, and changes its state according to only on

its local variables and the contents of its neighbors’ local variables. Each process checks

these local variables continuously and takes corrective actions in case of failures. The

contents of a node's local variables constitute its local state and the union of all local states

constitutes the system wide global state. The self-stabilization property allows the system

to stabilize by local corrections instead of system wide re-construction in case of failures.

Thence, self-stabilization is a very useful approach for the systems in which dynamicity

occurs frequently, such as grid systems. Therefore it may be convenient to use self-

stabilization paradigm in such environments while designing distributed applications.

In this section, we propose new algorithms for self-stabilizing spanning tree construction

that consider degrees of nodes in determining the root node. This heuristic is based on the

observation that a root node will be involved in more frequent communication than the rest

therefore it would be sensible that this node should have the property of having a higher

degree than the average. We also aim to compare our algorithms with existing studies. For

this purpose we selected two existing spanning tree construction algorithms which do not

consider any complex spanning tree property, a classical [KSHEMKALYANI08] and a

self-stabilizing spanning tree construction algorithm [AFEK91]. We have examined,

analyzed, implemented and tested these algorithms, and compared the test results in terms

of runtime of the algorithms and resulting spanning tree diameters.

The rest of this section is organized as follows: Section 3.2.1 examines the two selected

existing spanning tree construction algorithms by giving detailed analysis. The three new

self-stabilizing spanning tree algorithms are proposed in section 3.2.2. The correctness and

complexity analyses of the proposed algorithms are provided in section 3.2.3. The

implementation details of examined algorithms are given in section 3.2.4. Finally, in

 77

section 3.2.5, conclusions, tradeoffs, comparisons, advantages and drawbacks of the

proposed algorithms are discussed.

3.2.1 Selected Algorithms for Comparison

In this section, we examine and analyze two existing spanning tree construction

algorithms in detail: memory-efficient self-stabilizing spanning tree algorithm (MEST)

[AFEK91] and asynchronous concurrent initiator spanning tree algorithm (CIST)

[KSHEMKALYANI08]. These algorithms will be used as reference to compare with our

algorithms. The main difference between these two algorithms is the self-stabilization

property.

3.2.1.1 Memory-efficient self-stabilizing spanning tree algorithm (MEST)
In [AFEK91], authors propose a self-stabilizing spanning tree construction algorithm

with the assumption that nodes have unique identifiers and every node knows its

neighbors. They also assume that nodes are aware of their neighbors’ states; in other

words, when a node fails, neighbors of the failed node notice this failure and update their

neighbor lists. In this model, the authors do not consider any special node such as the root

node initially. Every node runs the same algorithm. At the beginning, each node tries to

construct a spanning tree rooted at itself. Then each node examines its neighbors’ roots and

selects the neighbor which has the biggest root as its parent. At the end, the biggest id node

becomes the root of the final spanning tree.

Each node i has local variables indicating its neighborhood (Ni), its parent node (Pi), its

root node (Ri) and its distance to the root node (Di). In the global legal state, each node has

the same root with the biggest node id in the graph, parents of nodes are within their

neighborhood and distance of each node is 1 bigger than its parent’s distance (Di = Dparent +

1). The root node has distance 0, and points to itself as its root and its parent. The

algorithm runs in an infinite loop and checks the legal state conditions continuously. To

achieve self stabilization, each node compares its neighbors’ roots with its own root. If any

 78

neighbor has a bigger id root, then the node sends a Request message to the biggest id root

through its neighbor in order to join its tree. When a root node receives such a message it

replies with a Grant message and allows that node to join its tree.

The algorithm checks two conditions to determine whether it is in a legal state or not:

A: [(Ri = i) Λ (Pi = i) Λ (Di = 0)] V [(Ri > i) Λ (Pi Є Ni) Λ (Ri = Rparent) Λ (Distance =

Dparent + 1 > 0)]

B: A Λ (Ri >= max(RNi))

Condition A states that either the node is a root node; or the node is not a root node, its root

is bigger than its id and same as its parent’s root, its parent is in its neighborhood and its

distance to the root is 1 bigger than its parent’s distance. Condition B states that condition

A holds true and node’s root is the biggest among its neighbors’ roots. When both A and B

are true, the node is considered to be in the legal state. The algorithm checks these two

conditions and takes action according to their correctness. When both conditions are false,

then the node is in an illegal state and sets itself as the root node of its own tree. If

condition A is true and node’s root is not the biggest id node within its neighbors’ roots,

then the node chooses to join to the tree with bigger root id. To realize this, the node sends

a Request message to the biggest id root within its neighbors’ roots through its neighbor. If

the condition B becomes true, then the node is in the legal state. The algorithm also takes

other actions in order to relay messages while checking these conditions. In case of failure

of an inner node in the tree, the children of the failed node notice this failure and switch to

the illegal state because of the failure of condition A. This failure triggers self-stabilization

property of this algorithm and relevant nodes take action in order to stabilize the spanning

tree.

3.2.1.2 Asynchronous Concurrent Initiator Spanning Tree Algorithm (CIST)
The asynchronous concurrent initiator spanning tree algorithm [KSHEMKALYANI08]

is a basic classical distributed spanning tree construction algorithm in which nodes only

need to know their neighborhood information. The algorithm does not ensure self-

 79

stabilization property. Each node starts to build its own tree rooted at itself at the

beginning. When a node wants to initiate the algorithm as a root, then it sends a Query

message to its neighborhood indicating that it is a root node. When a node receives a

Query message it compares the id of the sender with the id of its root, if new root has a

bigger id then the node changes its root to the new root. In this case if the node is a leaf

node then it sends an Accept message, if not it sends a Query message to its neighborhood

indicating its new root. If new root id is smaller than current root of the node, then the node

sends a Reject message to the sender of the Query message. When a node receives an

Accept message, then it adds the sender node to its children list. If that node is an initiator

then it finishes its execution upon receiving Accept messages from all its neighbors, if the

node is a relay node, it sends Accept message to its parent upon receiving Accept messages

from all of its neighbors. When a node receives a Reject message, it sends an Accept

message to its parent. Details of the algorithm can be found in [KSHEMKALYANI08].

3.2.2 Proposed Algorithms
In this section we propose three different self-stabilizing spanning tree algorithms. All

our algorithms construct the spanning tree by considering the highest degree node when

selecting the root of the tree. Nodes periodically send their variables to their neighbors in

order to inform them about their status. We assume the existence of trusted communication

channels between nodes in our algorithms. Only one hop information is required in our

model.

All three algorithms check the same conditions during self-stabilization. The conditions

are described below:

C1: The node is a legal root node (myParent = Id, myRoot = myTag, myDistance = 0)

C2: The node is a legal ordinary tree node (myRoot > myTag, myParent is my

neighbor, root of my parent = myRoot, myDistance = distance of my parent + 1)

C3: The node is the one which has the biggest root among its closed neighborhood

 80

3.2.2.1 Maximum Degree Self-Stabilizing Spanning Tree Algorithm 1 (MDST1)

We propose an extended version of MEST algorithm [AFEK91] by considering degrees

of nodes while selecting the root node [COKUSLU10]. The MEST algorithm constructs

the spanning tree according to the id of the nodes by choosing the biggest id node as the

root node. This heuristic may have some disadvantages in complex networks because it

does not consider the suitability of the chosen node as a root node. In many situations,

predefined constraints are advantageous in choosing the root node. For instance, choosing

the highest degree node as the root, or choosing the center of the graph, as the root node

may be preferable if the desired operation is broadcasting or multicasting. On the other

hand, simple and straightforward nature of MEST algorithm makes it preferable because of

its low complexity measures. For these reasons, we first propose to modify the MEST

algorithm so that it constructs a spanning tree rooted at the highest degree node. The

assumption here is that the highest degree node in the graph is a better candidate to be a

root node than a randomly chosen root. Because, this choice may decrease the diameter of

the resulting spanning tree since the height of the tree will be decreased. To realize this, we

first propose to use a simple hash function that combines degrees of nodes with their node

ids to generate a new unique node identifier which is sorted by the degree of nodes. We

called the resulting hash number as the Tag of a node. This function produces unique Tag

values for each node by inserting the degree value to the most significant part and id values

to the least significant part of the Tag number. It normalizes the least significant part by

inserting zeros at the beginning of the node ids. The algorithm uses Tag values in

determining the root node. The basic idea of our algorithm is similar to the MEST

algorithm; the difference is the usage of Tag values instead of ids of the nodes in

determining root node. At the end of the execution of the MDST1 algorithm, a spanning

tree rooted at the highest degree node is constructed. The finite state machine of the

algorithm can be seen in Figure 3.1. Each node starts its execution by setting its variables

so that it becomes a root node. Then the node checks the three conditions and takes an

action according to the results. If C1 or C2 is true and C3 is false, it means that the node

 81

has a neighbor with a bigger root. In this case the node chooses the maximum rooted

neighbor and sends a Request message to that root via its neighbor and changes its state to

WAIT_GRANT. The node changes its state to TREE_NODE upon receiving the Grant

message. If a node, which is in TREE_NODE state discovers that both C1 and C2 are false

then the node sets its variables so that it becomes a root and changes its state to ROOT. At

the end of the algorithm, only the root node remains in ROOT state, and all other nodes

change their states to TREE_NODE state. If any node fails, the neighbors of the failing

node update their variables, and take action if rules of the tree structure are broken.

The main contribution of this algorithm is the usage of the maximum degree node as the

root node and it aims at obtaining smaller diameter spanning trees, which may result in

significant profit in large-scale environments.

Figure 3.1 Finite State Machine of MDST1 Algorithm

3.2.2.2 Maximum Degree Self-Stabilizing Spanning Tree Algorithm 2 (MDST2)

In MDST1 algorithm, root selection and tree construction is held by a hand-shaking like

protocol. The node that wants to set its root to a new node sends a Request message to that

node and waits for a Grant message. In MDST2 we propose a completely new algorithm

 82

aiming at decreasing communication between nodes. For this purpose we remove Request

and Grant messages in MDST1. Instead of using these messages, nodes can freely set their

variables without asking permission from any other nodes. The three conditions, C1, C2

and C3 are still in use in this algorithm, but additionally we introduce a fourth condition in

order to increase efficiency of the algorithm. In MDST1 algorithm, even if there exists a

simple failure in the nodes such as distance value errors, those nodes reset their variables

and start the self-stabilizing algorithm from the beginning by declaring themselves as root

nodes. This kind of error can be frequently caused by addition or removal of nodes in the

spanning tree. These changes can result in alternations in the distance values in some child

nodes without changing their roots and parents. In MDST2, we take a simple corrective

action in case of that kind of failure by defining the condition 4:

• C4: The node is an ordinary tree node, but its distance value is false (myRoot >

myTag, myParent is my neighbor, root of my parent = myRoot, myDistance ≠ distance

of my parent + 1)

Each node starts its execution by setting its variables so that it becomes a root node. Then

each node scans its neighbors’ roots. If its root is not the highest Tag among its closed

neighborhood (C1 or C2 is true and C3 is false), it sets its variables so that its root becomes

the highest Tag root within its neighborhood. If the node finds that C1 and C2 conditions

are false, it checks the condition C4. If C4 is true, it means that a simple failure exists; in

this case, the node sets its distance to one greater than its parent’s distance. If C4 is false,

then the node declares itself as a root node and resets its variables. The algorithm can be

seen in Algorithm 3.1.

Algorithm 3.1. MDST2 Algorithm
Input: List of neighbors
Output: Spanning tree constructed

 83

1: if (C1 OR C2) AND !C3 then
2: Find maximum rooted neighbor
3: if id of maximum root ≠ id of my root then
4: myParent ß maximum rooted neighbor
5: myRoot ß maximum root
6: myDistance ß distance of my parent + 1
7: myType ß TREE_NODE
8: end if
9: else if !C1 AND !C2 then
10: if C4 then
11: myDistance ß distance of my parent + 1
12: else
13: myRoot ß myTag
14: myParent ß myId
15: myDistance ß 0
16: myType ß ROOT
17: end if
18: end if
19: end

In this algorithm, we aimed at decreasing message complexity of MDST1 algorithm. We

also noticed a shortcoming of both MEST and MDST1 algorithms and added a new

condition in order to increase the efficacy. Regarding these modifications, the main

contributions of the MDST2 algorithm can be stated as decreased message complexity and

increased effectiveness. These contributions inspired us to propose a completely different

algorithm than the existing MDST algorithm.

3.2.2.3 Maximum Degree Center Based Self-Stabilizing Spanning Tree Algorithm
(MDCST)

In the MDCST algorithm we further aim to improve the MDST2 algorithm by

considering the center of the tree. We assume that selecting center of the tree as the root

node may improve the spanning tree by decreasing the communication hops in

broadcasting messages. For that reason we add a self-stabilizing center finding algorithm

to the MDST2. In order to assure self-stabilization assumptions, we run the MDST2 and

center finding algorithms in sequence. In each sequence the center finding algorithm

 84

changes the Tag values of the nodes according to the distance values of nodes from the

leaves. The Tag values are generated by combination of three parameters in MDCST

algorithm. Those parameters are Height, Degree and Id values respectively where the

Height value for the node v indicates the height of the subtree rooted at the node v. For the

center finding phase, we used the algorithm proposed by Karaata et al. [KARAATA94].

This algorithm starts by assigning 0 to the Height values of the leaf nodes. Non-leaf nodes

select the second highest Height values within their neighborhood and set their Heights as

1 greater than that value. More details about the center finding algorithm can be found in

[KARAATA94].

The MDCST algorithm runs the MDST2 algorithm first, and constructs a spanning tree

rooted at the maximum degree node since all nodes have the same Height values initially.

After the spanning tree is generated the center finding algorithm runs in order to calculate

Height values of the nodes. After center finding algorithm completes its execution, Tag

values are updated. At this stage, Tag values are sorted by Height, Degree and Id of the

nodes respectively. Since MDST2 algorithm is self-stabilizing, and since Tag values are

changed, the MDST2 takes action in order to maintain the spanning tree. This maintenance

makes the tree rooted at the highest Tag value node which is the center of the initial tree.

The main contribution of this algorithm is the usage of the center node as the root. The

center node is the closest node to any other nodes in the tree. A spanning tree, which is

rooted at the center node, is expected to have smaller diameter and increased functionality

in broadcast and multicast operations.

3.2.3 Analysis
In this section we provide correctness and complexity analyses for the three proposed

algorithms, MDST1, MDST2 and MDCST. In the message complexity analyses, we do not

consider periodical messages between nodes, which allow nodes to share their variables.

Theorem The MDST1 algorithm constructs a correct spanning tree rooted at the

biggest degree node in finite number of steps.

 85

Proof. MDST1 Algorithm is based on the MEST Algorithm which is proved in

[AFEK91]. The MEST Algorithm is constructed on the assumption of existence of unique

node id's. The only change in the MDST1 algorithm is the use of the tag values instead of

node id's. The tag values are generated to be unique by considering the degrees and id's of

nodes and are sorted by the degree of nodes. Since newly generated tags are unique, the

proposed modification does not affect correctness of the algorithm.

Theorem The MDST2 algorithm constructs a correct spanning tree rooted at the

biggest degree node in finite steps.

Proof. MDST2 algorithm is a variance of the MDST1 algorithm in which the messages

are eliminated. Since the nodes share their variables with their neighbors periodically, any

change in a node is propagated through the spanning tree over the nodes. Therefore, the

periodic messaging between nodes replaces the messages in the MDST1 algorithm, which

does not affect the correctness of the algorithm.

Theorem The MDCST algorithm constructs a correct spanning tree rooted at the

biggest degree node in finite steps beginning from the third phase.

Proof. In MDCST algorithm the tag values of the nodes contain eccentricities, degrees

and id's of nodes. Since the new tags are also constructed to be unique, the modifications

do not conflict with any assumption of the previous algorithm. On the other hand, the first

phase of the algorithm constructs an arbitrary spanning tree rooted at the biggest degree

node since eccentricities are set to 0 initially. In the second phase, eccentricities are

calculated and all components of the tag values are determined. From this stage, the

MDCST algorithm executes in the same manner as the MDST2 algorithm using the tag

values. Therefore the MDCST algorithm stabilizes after the third phase.

Theorem MDST1 and MDST2 algorithms stabilize in h rounds where h is the height of

the resulting spanning tree.

Proof. In MDST1 and MDST2 algorithms, initially each node marks itself as the root of

its own tree. In the first round, the neighbors of the root node stabilize. In the second

round, 2-hop neighbors of the root are stabilized and so forth. Since the generated spanning

 86

tree is a BFS tree, the most distant nodes stabilize latest. Since the most distant nodes are h

hops away from the root, where h is the height of the generated spanning tree, the

algorithm stabilizes in h rounds.

Theorem The MDCST algorithm stabilizes in 3h rounds where h is the height of the

spanning tree.

Proof. In the first phase of the MDCST algorithm, MDST2 algorithm is executed to

construct the initial spanning tree. In the second phase the center finding algorithm is

executed in order to find the center of the initial tree. Lastly in the third phase, MDST2

algorithm is re-executed in order to finalize the construction of the spanning tree rooted at

the center of the initial tree. Each of these phases requires h rounds to stabilize, therefore

the MDCST algorithm stabilizes in 3h rounds.

Theorem The message complexity of the MDST1 algorithm is Θ(2*N*h) where N is the

number of nodes and h is the height of the spanning tree.

Proof. In each round of the MDST1 algorithm, each node sets its root and its parent by

the exchange of two messages namely request and grant. Since there are N nodes and since

the algorithm stabilizes in h rounds, the message complexity of the algorithm is Θ(2*N*h).

Theorem The message complexity of the MDST2 algorithm is Θ(N*h) where h is the

height of the resulting spanning tree and N is the number of node in the grid system.

Proof. The MDST2 algorithm stabilizes in h rounds. In each round a node sends 1

periodical update message to its neighbors. Since there are N nodes in the system, N*h

messages are required to stabilize the algorithm.

Theorem The message complexity of the MDCST algorithm is Θ(N*3h) where h is the

height of the resulting spanning tree and N is the number of node in the grid system.

Proof. The MDCST algorithm stabilizes in 3h rounds. In each round a node sends 1

periodical update message to its neighbors. Since there are N nodes in the system, N*3h

messages are required to stabilize the algorithm.

 87

3.2.4 Simulations

In this section, we have implemented and tested two existing (CIST, MEST) and three

newly proposed algorithms (MDST1, MDST2, MDCST) for the spanning tree

construction. We compare these algorithms regarding their runtime performances and

resulting spanning tree diameters. We also implement a brute-force algorithm (BFA) to

find the minimum diameter spanning trees in our scenarios in order to compare results of

the proposed algorithms against minimum diameters. For the BFA, we first find all

possible shortest path spanning trees in the graph. We then choose the minimum diameter

of all these shortest path spanning trees to obtain diameter of the minimum diameter

spanning tree, since the minimum diameter should be on one of the shortest path spanning

trees.

We have implemented the algorithms in the network simulator ns2 [FALL10]. For the self-

stabilizing algorithms, we have simulated failure detection module by using periodical

messaging between the neighboring nodes. Each node periodically sends a message to all

its neighbors indicating its variables (root, parent and distance). If any message is not

received from a neighbor in 2 periods then the node assumes that this neighbor has failed,

and takes action. In all algorithms, we used UDP protocol for messaging.

We have generated 8 experiment scenarios by using uniformly distributed random wired

network topologies ranging from 100 to 800 nodes. In self-stabilizing algorithms, the

periods of status updates and self-stabilizing loops affect the runtime of the algorithm

drastically. For that reason, we tried to choose the update interval as small as possible that

ns2 allows. The same update interval is used in all experimentations to ensure fair

comparison between algorithms.

Runtime results of the algorithms can be seen in Figure 3.2. The runtime of the MEST

Algorithm [AFEK91] increases as the size of the network grows. This increase is due to

the Request and Grant messages, which increase with the growth in the network. The CIST

algorithm’s runtime remains nearly constant as the network grows. This is because the

algorithm is not self-stabilizing, and the neighborhood information is known priori.

 88

MDST1 algorithm performs better than the MEST algorithm since MDST1 algorithm does

not use messages in case of distance failures. Moreover addition of the degree heuristic

may cause this improvement since a bigger degree node has more communication channels

than other nodes that decrease the traffic load on single transmission channels. The

MDST2 algorithm performs much better than all algorithms that are examined in this

section. The prevention of usage of Request and Grant messages decreases the runtime of

the algorithm drastically. On the other hand the MDCST algorithm performs somewhere

between MDST2 and MDST1 algorithms. This is because of sequential execution of center

finding and MDST2 algorithms. Figure 3.3 shows the diameters of the resulting spanning

trees by using 5 different algorithms and the diameter of the minimum diameter spanning

tree. The diameter of a tree is an important measure that is defined as the minimum

distance between the two most distant nodes in the tree. It affects the performance of

algorithms like routing and broadcasting algorithms, which use resulting spanning tree’s

properties.

It can be observed that both MEST [AFEK91] and CIST [KSHEMKALYANI08]

algorithms have resulted in similar results in terms of tree diameters, while the others have

resulted in smaller diameter spanning trees. This difference is caused by the degree

heuristic that is used in choosing the root node. We observe similar tree diameters in both

MDST1 and MDST2 algorithms since they use the same heuristic. The extra rule in

MDST2 algorithm results in smaller diameter tree, which is very close to the diameter of

the minimum diameter spanning tree. We also observe that both MDST1 and MDST2

algorithms choose the same nodes as root nodes, but the extra rule in MDST2 results in

different child-parent relations in the resulting tree which provides a smaller diameter

spanning tree. We expected that MDCST algorithm would generate better results than

MDST1 and MDST2 algorithms since it uses the center of the tree as the root node.

However, we observed that the results are not very different from MDST2 algorithm. This

is because in many situations the highest degree node was located around the center of the

tree.

 89

Figure 3.2 Runtime results of spanning tree construction algorithms

According to runtime and diameter results and comparisons we can say that MDST2

algorithm outperforms the remaining algorithms that are examined in this section. We also

observed that addition of the center heuristic does not improve the test results as we

expected.

 90

Figure 3.3 Diameter results of spanning tree construction algorithms

3.2.5 Conclusion
In this section, we proposed three new self-stabilizing spanning tree algorithms, which

use the heuristic of choosing the highest degree node as the root. We have designed,

implemented and tested our algorithms using network simulator ns2. In order to compare

our algorithms with the existing algorithms, we also implemented and tested two existing

spanning tree construction algorithms that rely on two different paradigms. We have

compared simulation results of five algorithms in total. We showed the differences and

similarities between the approaches in terms of runtime and tree diameter results.

According to the implementation results, we can say that the two existing algorithms

behave similarly in terms of the resulting spanning tree’s degrees when the constraints are

also similar. However, in MDST1 and MDST2 algorithms, with the use of maximum

degree heuristic, the diameter of the resulting spanning tree is decreased. In MCDST

algorithm, we realized that in complex network topologies, the root of the spanning tree,

 91

which is generated by using degree heuristic, is located around the center of the tree in

most scenarios. Therefore, we concluded that using the center of the tree as root node does

not improve the resulting spanning tree significantly. According to the runtime results, we

can say that our algorithms outperformed the other two compared existing algorithms.

According to our experimental observations, we can conclude that in dynamic

environments such as grid systems, self-stabilizing algorithms can be used effectively.

Moreover choosing the highest degree node as the root of the tree can improve the

resulting spanning tree by decreasing the tree diameter.

3.3 Spanning Tree Based Resource Discovery for Query Processing in
Grid Environments

Resource Discovery is one of the key issues in successful Grid systems. New

methodologies for Resource Discovery are constantly researched due to the dynamicity,

heterogeneity and large-scale characteristics of grid environments. Resource discovery

(RD) in Grids can be defined as searching and locating resource candidates that are

suitable for a job in which processing environments’ constraints are clearly specified. On

the other hand, the problem is defined as realizing the resource discovery in a reasonable

time, considering the characteristics of the environment. The problems that may arise

because of the dynamicity and large-scale properties of the environment were addressed in

the section 3.2 by the use of self-stabilizing spanning trees. However, in order to discover

up-to-date resource information in such a topology, resource discovery algorithms are

required, which realizes efficient distribution of request and response messages related to

resources.

There can be found many studies in the current literature for resource discovery in grid

environments. Although these studies present fruitful solutions to the RD problem, to the

best of our knowledge, we cannot find a complete solution, which addresses all

requirements of query processing caused by the characteristics of grid systems.

Requirements related to the scalability and dynamicity were addressed in previous section.

 92

However, in order to obtain reliable up-to-date RD results, an RD algorithm should visit all

nodes in the grid environment. We cannot find a resource discovery algorithm, which uses

efficient topology control structures that are prone to dynamicity of the underlying

environments. For these reasons, in this section, we propose the Spanning Tree Based

Resource Discovery (STRD) algorithm, which exploits the self-stabilizing spanning tree

that is generated by the MDST2 algorithm.

3.3.1 The Spanning Tree Based Resource Discovery (STRD) Algorithm

In STRD algorithm, we aim at efficiently discover resources by exploiting the

underlying spanning-tree structure. In order to obtain reliable up-to-date results, the

algorithm contacts with all nodes in the grid environment. The main contribution of the

STRD algorithm is to efficiently scatter the resource discovery requirement lists and gather

the results to the queried node exploiting the self-stabilizing spanning tree structure. For

the STRD algorithm, we assume that the self-stabilizing spanning tree exists. In this

spanning tree the nodes communicate with only their child and parent nodes.

Our algorithm starts its execution by the reception of a query by any arbitrary node in the

grid environment. Such node analyses the query and prepares a requirement list (RL) for

the resource discovery. The queried node sends the RL to the root of the spanning tree via

its parent. When the root node receives the RL, it sends a message (RD_Req) to all its child

nodes. This message is broadcasted to the spanning tree until it reaches to the leaf nodes.

When a leaf node receives RD_Req message, it generates a response message (RD_Resp)

and inserts its id into this message if it meets the requirements for the resource discovery.

Then it sends the RD_Resp message to its parent. The parent node waits until all its child

nodes respond to the RD_Req message. When all child nodes respond, it merges all

responses, including its own response, to a new RD_Resp message, and sends this message

to its parent. The RD_Resp messages are converge-casted upwards until they reach the root

node. When the converge-cast is completed, the root node relays the result, which includes

 93

all discovered resources, to the queried node. The flow of the algorithm is shown in Figure

3.4.

!"#$%#&'()&#' *))+'()&#' ,-+#$-./'()&#' 0#.1'()&#'

!"#$2'
*#3"%$#4#-+'0%5+'

67#3'

67#3'

67#58'

67#58'

67#58'

Figure 3.4 The STRD Algorithm Sequence Diagram

3.3.2 Analysis

The STDR algorithm exploits the underlying spanning tree. Therefore it shares many

important properties with the underlying topology. In this section we provide reliability

and complexity analyses for the STRD algorithm.

Theorem The STRD algorithm returns up-to-date results for the resource discovery

without having false negative errors.

Proof. The STRD algorithm runs over the self-stabilizing spanning tree, which is

constructed by one of the proposed self-stabilizing spanning tree construction algorithms in

section 3.2. Since the constructed tree is a spanning tree, by definition, it contains all the

nodes in the grid environment. All these nodes involve the STRD algorithm by responding

to the resource discovery request by considering their properties. Therefore the algorithm

does not contain false-negative errors. Since the resource discovery request is processed in

 94

each node by itself, the resulting information is always considered to be up-to-date.

Moreover, the underlying topology is self-stabilizing, which means that eventual node

failures do not affect the correctness of the topology and the STRD algorithm in

consequence.

Theorem The message complexity of the STRD algorithm is Θ(2h+2N) where N is the

number of nodes in the spanning tree and h is the height of the spanning tree.

Proof. The STRD algorithm starts its execution by the reception of a query. Following

this, the queried node sends a requirement list message to the root node through the

spanning tree. This phase results h messages to be sent, where h is the height of the

spanning tree. In the second phase, the root node distributes a resource discovery request

message to all nodes in the spanning tree, which results in N messages to be sent to the

network, where N is the number of nodes in the spanning tree. After all these messages are

distributed, nodes converge-cast response messages. This phase results in N messages to be

distributed since the response messages are merged in parent nodes. When the response

message reaches to the root node, it is sent to the queried node through the spanning tree,

which results in h messages to be sent. At the end, the whole process requires 2h+2N

message exchanges.

Theorem The time complexity of the STRD algorithm is Θ(4h) where h is the height of

the spanning tree.

Proof. Following the reception of query by an arbitrary node in the grid environment,

the queried node sends a requirement list message to the root node through the spanning

tree. This phase requires h rounds for the message to reach to the root node where h is the

height of the spanning tree. In the second phase, the root node distributes a resource

discovery request message to all nodes in the spanning tree, which requires h rounds since

the messages are sent in parallel by the nodes, which are at the same level. After the

messages are distributed, nodes converge-cast response messages which requires again h

rounds similarly. At the last step, the root node relays the final response message to the

 95

queried node, which is h hops away. In total, the STRD algorithm requires 4h rounds for

the completion.

3.3.3 Simulations

In this section, we have implemented and tested the STRD algorithm. We also

implemented a flooding based resource discovery algorithm (FBRD) to be used as

comparison purposes. In FBRD algorithm, similar to [IAMNITCHI03], the resource

discovery request is flooded to the grid environment starting from the queried node. Then,

each node that meets the requirements sends response messages to the queried node. We

compare the two algorithms regarding their runtime performances to complete resource

discovery.

We have implemented the algorithms in the network simulator ns2 [FALL10]. We have

generated 7 experiment scenarios by using uniformly distributed random wired network

topologies ranging from 100 to 700 nodes. In STRD algorithm the self-stabilizing spanning

tree is constructed beforehand. We have randomly chosen 20 nodes as data sources in each

scenario. We discovered these resources regarding existence of the required data. We also

discovered many properties of these resources alongside the data existence.

In Figure 3.5, the time required to discover resources is measured. The query is posted to a

randomly chosen node in the system. As it can be seen in the simulation results, the

runtime of the STRD algorithm remains nearly constant in the testing scenario, whereas the

runtime of FBRD algorithm increases drastically as the number of nodes increases. The

time complexity of the STRD algorithm is bound by the height of the spanning tree. For

that reason, although the number of nodes increases, the performance of the algorithm

remains nearly constant as soon as the height of the spanning tree does not change. On the

other hand, the time and message complexities of the FBRD algorithm is O(N2), therefore

the increase in the number of nodes results in a quadratic increase in the runtime of the

resource discovery algorithm.

 96

Figure 3.5 Runtime of the STRD algorithm

3.3.4 Conclusion
In this section we proposed the Spanning Tree Based Resource Discovery algorithm,

which relies on the existence of a self-stabilizing spanning tree structure in the grid

environment. In the STRD algorithm we exploited the self-stabilizing spanning tree

construction algorithms that are proposed in the previous sections. We presented our

algorithm in detail and provided the reliability and complexity analyses. We have

consolidated our analyses with simulation and provided comparisons with an algorithm

that uses flooding during the resource discovery.

Regarding our analyses and simulation results, we can conclude that the STRD algorithm

meets nearly all requirements listed in the section 3.1. Since the algorithm uses self-

 97

stabilizing spanning tree structure, it is prone to node failures. The efficient broadcasting

and converge-casting of resource discovery messages increases the scalability of the

algorithm. Moreover, since the algorithm does not use any limitations for the dissemination

of resource discovery messages, it efficiently reaches to every node in the grid

environment. Therefore it can be considered to be reliable in terms of correctness of the

resource discovery results. Since the resource discovery messages are distributed to all

nodes without having complex structures such as DHT’s, the algorithm supports different

types of queries such as multi-attribute, dynamic-attribute and range queries.

3.4 Overall Conclusions

Resource discovery constitutes a very important stage in query processing in grid

environments. Differently from classical resource discovery algorithms, in grid

environments and for query processing purposes, there can be listed many important

requirements that should be met by a resource discovery algorithm. These requirements are

listed and detailed in Chapter 2 as being complexity, scalability, dynamicity, reliability,

support for multi-attribute, dynamic-attribute and range queries. Regarding the presented

literature survey in Chapter 2, we concluded that the most reliable way to discover

resources, in order to obtain up-to-date resource information, is to contact each resource

individually in the grid environment. However, this method raises scalability problems

since the grid system is large scale. Most of the existing studies solve the scalability

problems by limiting the dispersion of resource discovery messages by using some metrics

such as hop counts. However this method causes false negative errors since the resource

discovery message cannot reach to every node in the system. Other methods use

hierarchical structuring in the environment by keeping information of groups of resources

in selected nodes. But this time the results become out-of-date since dynamic properties of

resources are updated periodically in the selected nodes. Although there exist many studies

in the current literature using different techniques, each have their own advantages and

drawbacks. To the best of our knowledge, we find few algorithms that use topological

 98

structures in distributing the resource discovery messages. For these reasons, in this

chapter, we first proposed three self-stabilizing spanning tree construction algorithms. We

provided correctness and complexity analyses of the proposed algorithms. We have tested

our algorithms in ns2 simulation environment. We have also implemented two existing

spanning tree construction algorithms for comparison purposes. We have compared in total

5 algorithms. We have discussed the weaknesses and strengths of our algorithms and

showed the situations in which our algorithms outperform the similar existing studies. We

then proposed a spanning tree based resource discovery algorithm that uses one of the

proposed self-stabilizing spanning tree construction algorithms as a topology control

mechanism. We provided reliability and complexity analyses for the proposed algorithm.

We consolidated our analyses with simulation results. We have implemented and tested

our algorithm and compared with a similar existing study.

We showed that the proposed resource discovery algorithm, in conjunction with the

proposed self-stabilizing spanning tree construction algorithms, provide a complete

solution regarding the requirements of query processing in grid environments. Our solution

address the problems caused by the dynamicity of the environment by the use of self-

stabilizing concept in the topology control layer. We address the scalability problems by

the use of a spanning tree, which allows our algorithm to efficiently distribute the resource

discovery messages. The proposed STRD algorithm aims at decreasing the complexity of

the resource discovery process by using converge-casting of RD messages over the

spanning tree. Lastly, we ensure support for dynamic attribute, multi-attribute and range

queries by contacting each resource in the grid environment.

 99

CHAPTER 4: RESOURCE ALLOCATION FOR QUERY

PROCESSING IN GRID ENVIRONMENTS

Résumé

Nous proposons, dans ce quatrième chapitre, de nouveaux algorithmes d'allocation des

ressources pour le traitement des requêtes dans les environnements Grille, compte tenu

des proximités de nœuds candidats aux sources de données. Nous limitons d'abord,

l'espace de recherche pour les ressources candidats. Ensuite, nous affectons des nœuds en

commençant par le plus proche des nœuds aux sources de données. Nous présentons des

analyses théoriques des algorithmes proposés et puis nous consoliderons ces analyses avec

les simulations.

Abstract

In this chapter, we propose new resource allocation algorithms for query processing in

grid environments considering proximities of candidate nodes to the data sources. We first

limit the search space for the candidate resources. Then, we allocate nodes starting from

the closest node to the data sources. We provide theoretical analyses of the proposed

algorithms and consolidate analyses with the simulations.

4.1 Introduction

The number of different domains that exploit the facilities of grid environments

increases everyday as the grid systems become more popular. Their large computing and

storage capabilities attract many researchers’ attention and leads them to propose new

methods to port their existing computing environments to the grid systems [FOSTER04b].

Distributed query processing is one of these domains in which there exists large amounts

of ongoing research to port the underlying environment from distributed and parallel

systems to the grid systems [HUANG03, ANTONIOLETTI05, PACITTI07,

 100

KOTOWSKI08, TANIAR08]. However, grid system’s characteristics reveal many

problems. It is generally assumed that grid systems have very large number of resources.

These resources may correspond to computational resources such as CPU, memory,

storage unit or network; they may be data sources, which provide metadata and its contents

such as database; or they may be services, which accomplish specific tasks. On the other

hand, a node corresponds to a computer in the grid, which contains some of those

resources with a set of characteristics. To efficiently execute queries in the grid

environment, suitable allocation of resources is essential. Resource allocation (RA) can be

defined as selecting and allocating suitable nodes for executing query operators aiming at

optimizing the runtime of the query execution. The optimum allocation of resources for

query processing in large scale environments is proved to be NP-Complete [WANG90].

For this reason, existing studies search near optimal solutions for the RA problem using

heuristic approaches. Resource allocation determines how many of the candidate resources

will be used, and which tasks will be executed by which resources. These issues may

drastically affect the performance of the query execution in grid environments. There can

be found many studies in the current literature which address the problem of resource

allocation for query processing in grid systems [GOUNARIS04, GOUNARIS05, SOE05,

GOUNARIS06b, SILVA06, BOSE07, KOTOWSKI08, LIU08, GOUNARIS09]. Several

survey studies examine and evaluate these studies with classification [COSTA08,

EPIMAKHOV11, COKUSLU12]. Although the existing resource allocation studies

provide interesting solutions to this problem, to the best of our knowledge, none of these

studies consider decreasing the scale of the search space for the candidate resources.

Moreover, we have found few studies which focus on the communication costs during the

resource allocation [BOSE07, LIU08]. Thus, we believe that there are still some open

issues that are not mentioned completely regarding the grid systems’ characteristics.

In this chapter, we aim at designing a resource allocation algorithm for query processing in

grid environments. For this, we first propose the Single Join Operator Resource Allocation

(SJORA) algorithm that realizes resource allocation for queries consisting of a single join

 101

operator [COKUSLU12_b]. In SJORA, we first generate a reduced search space for the

candidate nodes. Then, we create an initial allocation plan considering proximity of the

candidate nodes to the data sources. After SJORA, we further extend our algorithm and

propose Multi-Join Resource Allocation (MJORA) algorithm, which allocates resources

for queries consisting of multiple join operators. In MJORA, assuming the existence of the

tree representation of queries, we traverse the query tree and, exploiting the SJORA

algorithm, realize the resource allocation for the queries consisting of multiple join

operators.

The contribution of this study is twofold. First, we address scalability of the resource

allocation method by decreasing the size of the search space for candidate resources. The

second contribution addresses the heterogeneity problem by selecting candidate nodes

according to their proximities to the data sources aiming at decreasing data transfer costs.

Throughout this study, we assume that the relations, which are involved in the join

operator, are horizontally partitioned into the grid where each partition resides in only one

node. The existing partitioning may or may not be based on the join attribute. Therefore

repartitioning may be required during the execution of the join operator. We examine a

join operator as it consists of two atomic tasks namely scan and join. Scan tasks act as

providers to the join tasks by reading the data from the storage unit and sending this data to

the corresponding join tasks. Considering data locality constraint, we assume that the scan

tasks are executed on the nodes where the partitions of the base relations reside. We call

such nodes as scan nodes. The scan nodes may either be nodes that hold base relations, or

they may be nodes that are already allocated for another join operator that produces

temporary relations to the current join operator. On the other hand, we call the nodes in

which join tasks are executed as join nodes. Lastly, the node that receives the query at the

beginning will be called as queried node for the rest of this chapter.

The rest of this chapter is structured as follows. In section 4.2, we introduce the Single Join

Operator Resource Allocation algorithm in detail. In section 4.3, we present the Multi Join

Resource Allocation Algorithm. Finally in section 4.4, conclusions are presented.

 102

4.2 Single Join Operator Resource Allocation (SJORA) Algorithm

In this section, we propose the Single Join Operator Resource Allocation (SJORA)

algorithm for queries consisting of one join operator [COKUSLU12_b]. In the SJORA

algorithm, we aim at finding suitable nodes for the scan and join tasks, which compose the

join operator. Due to the data locality constraint, the scan tasks are allocated at the nodes in

which the partitions of relations reside. However, the search space for the candidates of the

join tasks is very large since there are no strict constraints beforehand for the join nodes.

For this reason, we first aim at reducing the search space for the candidates of join nodes.

To realize this, we designed the SJORA algorithm as consisting of two complementary

algorithms. In this manner, we first propose Proximity Based Candidate List Generation

(PBCG) Algorithm in section 4.2.1. After determining the list of candidate nodes, we

propose Join Task Resource Allocation (JTRA) Algorithm in section 4.2.2, which

determines the parallelization degree and finalizes the allocation of resources.

4.2.1 Proximity Based Candidate List Generation (PBCG) Algorithm

The resource allocation for join tasks is not a straightforward process since every node

in the grid environment is practically a candidate resource for these tasks. In a large-scale

environment, it might not be suitable to consider such a large number of nodes as

candidates for the join task since this may cause performance degradation for the resource

allocation process. Although there might be some constraints to decrease the number of

candidates for join tasks, such as hardware or software constraints, we believe that the

most profitable constraint would be the proximity of candidates to the scan nodes. For that

reason, in PBCG algorithm, we try to refine the set of candidates by choosing the set of

nodes that are closer to the scan nodes in the grid. To realize this, we start flooding a

message beginning from each scan node. The first node that collects flooded messages

from all scan nodes is considered to be located at the center of the scan nodes. The

algorithm in the queried node as shown in Algorithm 4.1. At the beginning, the algorithm

 103

sends a startPBCG message to all scan nodes, which causes them to start flooding

operation (line 1). After sending this message, queried node waits for the candidate nodes

to respond to the flooded messages. Upon receiving a message from a candidate, the

queried node adds the sender to the candidate list (line 3). The first replied candidate is

considered to be the closest candidate to all scan nodes. In line 4, the algorithm checks the

termination condition. Since the queried node is not aware when the flooding ends, it has

to use a termination condition to finalize the algorithm. This allows the queried node to

decide when to stop waiting for new messages for the PBCG algorithm. In our algorithm,

we used the most distant scan nodes (nodeA and nodeB) for determining the termination

condition. Receiving a PBCGCandidate message from one of these two nodes simply

means that the flooded messages are spread at least to all scan nodes. To realize this, if the

replied candidate is one of the most distant scan nodes, queried node terminates the

algorithm and finalizes the candidate list.

Algorithm 4.1. PBCG Algorithm in the queried node
Input: (i) The list of scan nodes
 (ii) The most distant scan nodes (nodeA and nodeB)
Output: List of candidate nodes
1: send startPBCG message to all scan nodes
2: upon receiving a PBCGCandidate message:
3: add sender to the PBCGCandidateList
4: if sender = nodeA or nodeB then
5: terminate
6: else
7: continue receiving messages
8: endif
9: end

The algorithm, which is run in other nodes, is shown in Algorithm 4.2. When a node in the

grid system receives a message, it checks its type. If the message type is startPBCG, the

node starts the flooding by sending a PBCGFlooding message to all its neighbors (line 3).

The termination condition for flooding is embedded in this message as hopLimit value,

which is the hop count between the most distant scan nodes. If the received message type

 104

is PBCGFlooding, the node extracts hopCount value from the message and increments by

one (line 6). It then adds origin of the message to the receivedScanNodes list (line 7). If the

receivedScanNodes list contains all scan nodes, the node sends a PBCGCandidate message

to the queried node, which indicates that it is a candidate for the join task (line 9). The

node then checks if the message should be relayed (line 11); if the termination condition is

not met yet, the node relays the message by sending it to all its neighbors except the sender

of the message (line 12). Each time the message is relayed, it is diffused to other nodes in

the grid. The flooding operation continues hopLimit hops away from the scan nodes. This

ensures that at least t nodes will be candidate for the join operation where t is the number

of scan nodes.

Algorithm 4.2. PBCG Algorithm in other nodes
1: Upon receiving a message:
2: if message type is startPBCG then
3: send PBCGFlooding message to all neighbors
4: else if message type is PBCGFlooding
5: extract hopCount and hopLimit values from the message
6: increment hopCount by one
7: add origin of the message into the receivedScanNodes
8: if receivedScanNodes includes all scan nodes then
9: send PBCGCandidate message to the queried node
10: end if
11: if hopCount < hopLimit then
12: relay PBCGFlooding message to all neighbors except the sender
of the message
13: else
14: stop flooding the message
15: end if
16: end if
17: end

4.2.2 Join Task Resource Allocation (JTRA) Algorithm

The basic execution of queries with partitioned parallelism can be realized by the

allocation of a single node for the join task initially. On the other hand, parallelization of

the join task might drastically increase or decrease the performance of the query execution

 105

depending on the characteristics of the allocated nodes. For this reason, determining

parallelization degree for a join operator is very important in query processing in grid

environments, in which resources are heterogeneous. There are many different parameters

that affect the performance of execution of a query in such environments. A resource

allocation algorithm, which covers all these parameters, may cause excessive computation

time to decide the parallelization degree and which nodes to allocate. Therefore,

heuristically selected parameters are generally used in the current resource allocation

algorithms [GAROFALAKIS97, GOMOLUCH03, SLIMANI04, MANDAL05, BOSE07,

LIU08]. We believe that, in grid environments, data transmission costs are the determining

factor in execution time of a query. Therefore, in JTRA algorithm, we propose a resource

allocation algorithm, which considers the data transmission costs as the decision function

for the parallelization degree. Although there are some similarities between the JTRA

algorithm and the algorithm which is proposed in [GOUNARIS06b], the difference is that,

our algorithm allocates nodes starting from the closest nodes to the scan nodes which

ensures smaller data transfer costs. Another difference is that, our algorithm includes a

decision function for the parallelism degree, based on the estimated data transfer costs,

which struggles the heterogeneity issues in grid environment.

In JTRA algorithm, we use the candidate list, which is generated by the PBCG algorithm.

This list contains candidate resources, which are closer to the scan nodes. The top of the

list contains the closest candidate whereas the bottom parts contain more distant

candidates. The JTRA algorithm can be seen in Algorithm 3. We start JTRA algorithm by

taking a node from the top of the candidate list (line 2), which is located at the center of the

scan nodes. Then we measure communication speeds between the selected node and the

scan nodes (line 3). This measurement is realized on the go by the use of round-trip-time

(RTT). After gathering communication speed information, the algorithm calculates the new

estimated data transfer cost. The addition of another candidate increases parallelization

degree of the join task. As the parallelization degree increases, the amount of data to be

transferred to each join node decreases. However, since newly selected candidates get

 106

more distant, the lastly added node will have a poorer communication capability. This

reveals a trade-off between decreased amount of data transfer and increased data transfer

costs.

Algorithm 4.3. JTRA Algorithm
Input: (i) The list of join candidates (candidateList)
 (ii) The metadata about the relations
Output: List of nodes that are allocated for the join task
 1: do
 2: nodeC ß take a node from top of the candidateList
 3: measure connection speeds between all scan nodes and nodeC
 4: newEstimation ß estimate new data transmission time
 5: if newEstimation < queryRuntimeEstimation then
 6: add nodeC to the selectedNodes list
 7: queryRuntimeEstimation ß newEstimation
 8: end if
 9: while candidateList is not empty
10: allocate selected nodes for the join task
11: end

Since the the size of the search space for the candidate nodes is limited by the use of the

PBGC algorithm, the JTRA algorithm iterates the whole candidate list. In each iteration,

the data transfer cost of the join operator is estimated. If addition of a candidate does not

lead to a performance increase, the algorithm skips the addition of that candidate and

iterates through the next candidate in the list. At the end of the algorithm, the best sorted

resource combination within the candidate list is allocated for the join task.

The estimation of data transfer costs in JTRA algorithm consists of three parameters:

(i) communication speeds between scan and join nodes (Sij), (ii) local bandwidth of each

join node (Bj), (iii) sizes of partitions in each scan node (|Pi|). From those parameters, Bj

and |Pi| are provided by the resource discovery step. However, Sij is determined on-the-go

each time a new candidate node is added. Even if the measurements for Sij are accurate

individually, at the runtime, they might differ from the measured values when all scan

nodes send their data to the join nodes concurrently. In such cases, the local bandwidth of a

 107

join node might become insufficient to meet all incoming packets. In such cases, the

congestion control mechanism of the underlying communication protocol regularizes the

transfer rate of the sender nodes. In today’s networking environments, most of the

communication is handled by the TCP protocol, which provides its own congestion control

mechanism. The main idea behind TCP’s congestion control is to ask senders to decrease

transmission rate for a specified amount if congestion occurs. This amount is generally

determined proportionally regarding to the percentage of the sender’s transmission over the

entire traffic [FALL10]. Therefore, we heuristically normalize the Sij measurements

beforehand as appears in Algorithm 4.4.

Algorithm 4.4. Connection speed measurements normalization
algorithm
Input: (i) Measured connection speeds between scan and join nodes (Sij)
 (ii) Local bandwidth of join node (Bj)
Output: Normalized list of Sij
1: sumj ß Sij

i=0!>n
"

2: difference ß Bj - sumj
3: if difference > 0 then
4: for i =0 to n do
5: Sij = Sij – (difference * (Sij / sumj)
6: end for
7: end if
8: end

Assuming that the partitions are evenly distributed on the scan nodes and redistribution of

tuples will be uniform, the data transfer time between n scan nodes and m join nodes will

be bounded by the slowest communication link. In such a setting, the data to be transferred

from each scan node i to a join node will be {|Pi| / m}. Therefore the data transfer time

estimation can be constructed as follows.

max
i=0!>n
j=0!>m

| Pi |
m*Sij

 (1)

 108

The equation (1) returns the cost for data transmission between scan and join nodes

considering the slowest parallel portion of the join task. Since all the remaining parallel

portions of join task should wait for the slowest portion, it is the determining portion for

the entire data transmission costs of the examined join task.

4.2.3 Analysis

In this section we provide time and message complexity analyses of the proposed

algorithms, PBCG and JTRA.

Theorem 1. The PBCG algorithm has O(d) time complexity, where d is the diameter of

the network.

Proof. PBCG algorithm uses the distance between the most distant scan nodes for the

termination condition. In the worst-case scenario, the distance between the two most

distant nodes in the network is the diameter of the network. Since the algorithm propagates

d hops away from each scan node, the time complexity of the algorithm is O(d) where d is

the diameter of the network.

Theorem 2. The PBCG algorithm has O(nN2) message complexity, where n is the

number of the scan nodes and N is the number of the nodes in the grid system.

Proof. In PBCG algorithm, each scan node initiates a flooding operation originated

from itself. Therefore there are n messages to be flooded to the network. In the worst case,

the flooding operation lasts until all the nodes in the network receives flooded messages.

Since each flooding operation has N2 message complexity, the total worst case message

complexity of the algorithm is O(nN2).

Theorem 3. The worst case time complexity of the JTRA algorithm is O(nN), where n is

the number of scan nodes and N is the number of nodes in the network.

Proof. The JTRA algorithm uses the candidate list, which is generated by the PBCG

algorithm. In the worst case, the list contains all nodes in the network. For each of these

candidates, the JTRA algorithm measures the connection speed between the candidate and

n scan nodes by sending them RTT messages. Therefore, the worst case time complexity of

the algorithm is bounded by the number of messages which is O(nN).

 109

Theorem 4. The worst case message complexity of the JTRA algorithm is O(nN), where

n is the number of scan nodes and N is the number of nodes in the network.

Proof. The JTRA algorithm uses two messages for measuring the communication speed

between each candidate and scan nodes. Since in the worst case the algorithm uses N

candidates, the total number of message exchange is 2nN which can be expresses as O(nN)

in the big o notation.

4.2.4 Simulations

In this section we present quantitative evaluation of the Single Join Operator Resource

Allocation (SJORA) algorithm by comparing it with a comparative algorithm (CA) which

reflects the common properties of the recent resource allocation algorithms such as

[GOUNARIS04, GOUNARIS06b]. The main idea behind the CA is very similar to the

algorithm proposed by Gounaris et al. [GOUNARIS04, GOUNARIS06b]. The algorithm

ranks the nodes in the grid according to their properties. In our case, the most important

property that influences the simulation results is the connection speed of the nodes.

Therefore the CA algorithm ranks the nodes according to their connection speeds. Then the

ranked nodes are sorted and the algorithm starts to allocate nodes starting from the top of

the list. When addition of a new node does not lead to a performance increase, the

algorithm terminates. We have implemented SJORA and CA algorithms in ns2 simulation

environment and collected results for the cost of resource allocation process and duration

of query execution.

We have generated grid simulation scenarios consisting of 100 through 700 nodes. Each

node in the scenario represents a uni-processor computer in the grid system that has

arbitrary connections to other nodes in the grid environment. The bandwidths of duplex

connections between nodes are randomly assigned between 1 and 10 Gbps. We have

randomly determined 20 scan nodes in each scenario. The distribution of these scan nodes

are realized randomly over the simulated environment. Each scan node is assumed to store

a partition of a base relation. The size of partitions in each node is assumed to be 50

 110

GBytes and each scan node stores only one partition.

We have collected test results for the cost of resource allocation process and the time

required to complete the query execution. Figure 4.1, shows the cost of the resource

allocation process. As it can be seen in Figure 4.1, the cost of the SJORA algorithm is

higher than the CA. This is because the SJORA algorithm processes its entire candidate list

to find the best possible resource allocation within its candidates.

Figure 4.1 Cost for the resource allocation process

On the other hand, CA stops adding new resources whenever its performance increase

drops below a certain threshold value. The approach used by CA may miss better resource

allocation combinations with higher number of resources. However it is conceptually

impossible to evaluate all possible resource allocation combinations.

Figure 4.2 shows the simulated query execution durations for the simulated query. In the

figure, it can be seen that the resources allocated by the SJORA algorithm execute the

query faster than the resources that are allocated by the CA. This is because, although the

 111

resources that are allocated by the CA are the highest ranked nodes in the grid, they might

be placed far from the scan nodes, which may result in slower data transfer rates. On the

other hand, the resources that are allocated by the SJORA algorithm are closer to the scan

nodes. For that reason, SJORA algorithm ensures allocation of more effective resources in

terms of the communication performances with the scan nodes. This heuristic results in

SJORA algorithm outperforming the CA.

Regarding the simulation results, which are shown in figures 4.1 and 4.2, the SJORA

algorithm is more preferable if the resource allocation costs do not exceed the estimated

query execution durations. In our simulation scenarios, the durations of query executions

are much higher than the costs of the resource allocation processes. Therefore, in such

cases, the SJORA algorithm might be considered as a better alternative to the existing

resource allocation algorithms that are based on ranking functions.

Figure 4.2 Time required to complete the query execution

 112

4.2.5 Conclusion

In this section, we proposed a Single Join Operator Resource Allocation (SJORA)

algorithm, which generates a finite candidate resource list by exploiting proximities of the

candidates to the scan nodes. We presented our algorithm in detail and provided

complexity analyses. Then, we strengthened our perspectives by the use of quantitative

analyses and simulations. We showed that our algorithm outperforms the algorithms that

use ranking functions without having the proximity information to the data sources.

Regarding the simulation results, we conclude that the SJORA algorithm might be a strong

alternative to the existing resource allocation algorithms in many cases in which queries

deal with large amount of distributed data. As indicated in its name, the SJORA algorithm

is a resource allocation algorithm for queries consisting of a single join operator. The

resource allocation algorithm for multiple join operator queries is presented in the next

section.

4.3 Resource Allocation for a Multi Join Query

In this section, we extend the SJORA algorithm and propose the Multi Join Resource

Allocation (MJORA) algorithm for queries consisting of multiple join operators. In the

MJORA algorithm, we aim at finding suitable nodes for all tasks, which compose the join

operators in the entire query. However, since the residing nodes of the temporary relations

are not determined beforehand, we design the MJORA algorithm in bottom-up fashion

starting from allocation of resources to the operators that use base relations. The rest of this

section is organized as follows: In section 4.3.1, we propose the MJORA algorithm. In

section 4.3.2, we present the analyses of the proposed algorithm. In section 4.3.3, we

consolidate our analyses with the simulation results. Finally in section 4.3.4, we present

our conclusions.

4.3.1 Multi Join Resource Allocation (MJORA) Algorithm

In this section, we examine hash join queries, which consist of one or more join

 113

operators, as a use case for query operators. We assume that the optimized query operator

tree is provided explicitly. The relations that are involved in the query are assumed to be

horizontally partitioned into the grid without replication. We consider a query as consisting

of hash join operators which are composed of atomic tasks namely scan, build and probe.

Scan tasks act as providers to the build and probe tasks by reading tuples from their storage

units and sending to corresponding tasks. Build tasks receive tuples from their scan tasks

and build hash tables for that operator. Probe tasks are blocked during the execution of

their corresponding build tasks. After build tasks complete, probe tasks start receiving

tuples from their corresponding scan tasks and check for matching tuples in the hash table.

Probe tasks pipeline matched tuples through their successor tasks in the query tree. More

detailed explanation of the hash join operator in distributed environments can be found in

[OZSU11].

In section 4.2, we find and allocate suitable resources for queries consisting of a single join

operator assuming scan tasks are already allocated. Since queries may consist of more than

one join operator, it is necessary to extend the SJORA algorithm by materializing the

allocation of all tasks in the entire query. In this section, we propose the Multi Join

Resource Allocation (MJORA) algorithm, which allocates nodes for the entire query that

consists of multiple join operators. For the MJORA algorithm, we use tree representation

of queries. An example query with its tree representation is shown in Figure 4.3. Vertices

in the query tree represent tasks and directed edges represent data flow between tasks. In

MJORA algorithm, we consider that queries consist of join operators, and join operators

consist of scan, build and probe tasks. Each join operator in the query may be composed of

more than one pair of build and probe tasks that execute concurrently over the different

data partitions. The build and probe tasks in each pair are tightly coupled. Therefore we

decided to allocate each pair of build and probe tasks in the same resource. For simplicity,

in the rest of this paper, these pairs of build and probe tasks are named as join tasks.

 114

!"# !$#!%#!&#

'"# '&# '%# '$#

()*+#"#

',-./0#

12'"######'&3########2'%#######'$34###

()*+#&#

()*+#%#

"-0#5,6,/#7)*+#08-9-#

&+:#5,6,/#7)*+#08-9-#

Figure 4.3 An example query and its query tree

Previously, in SJORA algorithm [COKUSLU12_b], we assumed that the partitions of base

relations are known at the end of the resource discovery stage. However, for the temporary

relations, it is not possible to find out their physical locations before precedent join tasks

are allocated. Therefore, in MJORA algorithm, we execute the SJORA algorithm starting

from the join tasks that are located at the lowest level of the query tree. These kinds of join

tasks are marked as 1st level join tasks in Figure 4.3. Then, we allocate the join tasks that

are located at the 2nd level in the query tree. We repeat this process until all tasks are

allocated in the query. To realize this, we apply post-order tree traversal on the query tree.

The generation of the query tree involves query optimization steps such as query

reordering. Since this kind of optimization is out of scope of this thesis, we assume that the

query tree is already provided exclusively. The MJORA algorithm is executed by the

queried node. A snapshot of the initial resource allocation is stored in the query tree that

resides on the queried node. Each vertex in the query tree contains a data structure called

treeElement, which is shown in Figure 4.4. The treeElement contains four principal fields

namely type, list, left and right. Type field indicates the type of the task whether it is a scan

 115

or a join task. List field contains a list of allocated nodes for the task, which is initially

empty. Left and right fields point to the left and right subtrees in the query tree.

Figure 4.4 Data structure for the treeElement

The MJORA algorithm is shown in Algorithm 5. The algorithm runs recursively a post-

order tree traversal (lines 1 to 6). In line 7, the algorithm processes the visited vertex. If the

visited vertex is a scan task, MJORA algorithm fills list field of the treeElement with the

list of nodes in which the partitions of the processed relation reside (line 8). Else, if the

visited vertex is a join task, the list field is filled with the results of the SJORA algorithm.

In this step, the list of partitions of base or temporary relations is provided by the child

vertices (line 10). The estimated sizes of the temporary relations (sizes) are assumed to be

provided exclusively. The most distant nodes and the distance between them for the

partitions of temporary relations (nodeA, nodeB and dist) are provided by the topology

control algorithm of the resource discovery module [COKUSLU10]. At the end of

execution of the MJORA algorithm, all the vertices in the query tree contain the list of

selected nodes for the corresponding task. At this stage, the queried node sends the query

tree to all selected nodes in order to complete allocation of nodes and to start execution of

the query.

Algorithm 4.5. MJORA algorithm
Input: Root of the query tree
Output: List of nodes to be allocated for each operator

 116

1: MJORAAlgorithm(treeNode)
2: if treeNode is empty then
3: return
4: else
5: MJORAAlgorithm(treeNode.left)
6: MJORAAlgorithm(treeNode.right)
7: if treeNode.type = SCAN then
8: treeNode.list = nodes in which partitions reside
9: else if treeNode.type = JOIN then
10: treeNode.list = SJORA(treeNode.left.list! treeNode.right.list,
nodeA, nodeB, dist, sizes)
11: end if
12: end if
13: return
14: end

4.3.2 Analysis

In this section we provide time and message complexity analyses of the proposed

algorithm, MJORA.

Theorem 1. The MJORA algorithm has O(jnN) time complexity, where j is the number

of join operators in the query, n is the number of scan nodes and N is the number of nodes

in the grid system.

Proof. MJORA algorithm uses the SJORA algorithm for each join operator in the

query tree. Since the time complexity of the SJORA algorithm is O(nN), the time

complexity of the MJORA algorithm is O(jnN) for a query that consists of j join operators.

Theorem 2. The MJORA algorithm has O(jnN2) message complexity, where j is the

number of join operators in the query, n is the number of the scan nodes and N is the

number of the nodes in the grid system.

Proof. The MJORA algorithm uses the SJORA algorithm for each join operator in the

query tree. Since the message complexity of the SJORA algorithm is O(nN2), the total

message complexity of the MJORA algorithm is O(jnN2) for a query that consists j join

operators.

 117

4.3.3 Simulations

In this section we present evaluation of the Multi-Join Resource Allocation (MJORA)

algorithm by simulation. We compare our algorithm with a comparative algorithm (CA)

which reflects the common properties of the recent resource allocation algorithms such as

[GOUNARIS04, GOUNARIS06b]. The main idea behind the CA is very similar to the

algorithm proposed by Gounaris et al. [GOUNARIS04, GOUNARIS06b]. The algorithm

ranks the nodes in the grid according to their properties. In our case, the most important

property that influences the simulation results is the connection speed of the nodes.

Therefore the CA algorithm ranks the nodes according to their connection speeds. Then the

ranked nodes are sorted and the algorithm starts to allocate nodes starting from the top of

the list. When addition of a new node does not lead to a performance increase, the

algorithm terminates. The CA algorithm traverses the query tree and allocates resources for

each join operator in the query. We have implemented MJORA and CA algorithms in ns2

simulation environment and measured the cost of resource allocation process and duration

of execution of a sample query.

We have generated grid simulation scenarios consisting of 100 through 800 nodes. Each

node in the scenario represents a uni-processor computer in the grid system that has

arbitrary connections to other nodes in the grid environment. The bandwidths of duplex

connections between nodes are randomly assigned between 1 and 10 Gbps. In our

simulation scenario, we have simulated resource allocation and execution of a sample

query consisting of 3 join operators, which joins 4 relations in total. The formal

representation of the sample query is shown in the figure 4.5 where R1, R2, R3 and R4

present relations and presents join operator.

{(R1 R2) (R3 R4)}

Figure 4.5 Formal representation of the sample query

Each relation is horizontally partitioned into 5 arbitrary scan nodes in our scenarios. The

 118

distribution of the scan nodes is realized randomly over the simulated environment. Each

scan node is assumed to store a partition of a base relation of size 50 GBytes. Each scan

node stores only one partition.

We have collected test results for the cost of resource allocation process and duration of

query execution. Figure 4.6, shows the cost of the resource allocation process for the entire

query. As it can be seen in Figure 4.6, the cost of the MJORA algorithm is higher than the

CA. This is because the MJORA algorithm processes its entire candidate list to find the

best possible resource allocation within its candidates and measures the communication

speeds from each candidate node to all scan nodes while calculating the estimated query

duration. This overhead results in the MJORA performs slower than the CA in return for a

better selection of resources. However, it can be seen in the figure that the MJORA

algorithm scales well with the number of nodes in the grid environment. The cost of

resource allocation process remains nearly constant as the number of nodes increase. This

is caused by the limitation of the candidate resource search space. In each scenario the

algorithm examines nearly the same number of candidate resource in the MJORA.

 119

Figure 4.6 Cost of the resource allocation process for MJORA Algorithm

Like the MJORA, the CA remains also nearly constant as the number of nodes increase.

This is because in CA, the algorithm stops adding new resources when the performance

increase reaches to a threshold limit, instead of examining all resources in the candidate

list. Otherwise, the CA would examine every resource in the grid environment. This

approach may miss better resource allocation combinations with higher number of

resources. However it is conceptually impossible to evaluate all possible resource

allocation combinations.

Figure 4.7 shows the simulated query execution durations for the simulated query. In the

figure, it can be seen that the resources allocated by the MJORA algorithm execute the

query faster than the resources that are allocated by the CA. This is because, although the

 120

resources that are allocated by the CA are the highest ranked nodes in the grid, they might

be placed far from the scan nodes, which may result in slower data transfer rates. On the

other hand, the resources that are allocated by the MJORA algorithm are closer to the scan

nodes. For that reason, MJORA algorithm ensures allocation of more effective resources in

terms of the communication performances with the scan nodes.

Regarding the simulation results, which are shown in figures 4.6 and 4.7, the MJORA

algorithm is more preferable if the cost of the initial resource allocation does not exceed

the estimated query execution durations. In our simulation scenarios, the durations of query

executions are much higher than the costs of the resource allocation processes. Therefore,

in such cases, the MJORA algorithm might be considered as a better alternative to the

existing resource allocation algorithms that are based on ranking functions.

Figure 4.7 Time required to complete the query execution

 121

4.3.4 Conclusion

In this section, we proposed the Multi-Join Resource Allocation (MJORA) algorithm,

which allocates resources for a query consisting of multiple join operators by exploiting

the SJORA algorithm that is presented in previous section. We presented our algorithm in

detail and provided complexity analyses. We approve our analyses by the simulation and

showed that our algorithm outperforms the similar existing algorithms in cases in which

the query execution durations are much higher than the cost of the initial resource

allocation. We showed that the MJORA algorithm can be considered a scalable algorithm

that can be used as a strong alternative to the existing algorithms in many cases.

4.4 Overall Conclusions
Resource allocation is one of the key prospects that affect the performance of query

processing in grid environments. Allocating right resources for tasks in queries may

increase the performance drastically. However, it is proved that finding the best resource

allocation is an NP-Complete problem. Therefore, spending excessive time for resource

allocation step must be avoided. For this reason, current studies present heuristic

approximation algorithms for resource allocation problem. The existing studies for

resource allocation in grid systems were examined in detail in Chapter 2. Regarding our

analyses on the current literature, we have determined the common missing points of

existing resource allocation algorithms. Most of the existing resource allocation studies

present detailed functions for ranking resources in the grid environment. However, we

discovered that these studies rank all the resources in the grid environment, which may

negatively affect the scalability of the resource allocation algorithm. Besides, we find few

studies that consider the proximities of candidate resources to the data sources in the grid

environment. Regarding our conclusions, we aim at contributing these common missing

points of the existing studies. We first start from allocating nodes for queries that consist of

single join operators considering proximities of candidate nodes to the data sources. For

 122

this, in section 4.2, we proposed the Single Join Operator Resource Allocation (SJORA)

algorithm. In SJORA, we first limit the search space of the candidate nodes using the

diameter of the sub-graph consisting of data sources. Then we sort the limited candidate

resource list according to the proximities of candidate nodes to the data sources. Lastly, we

select nodes in this list by calculating the estimated data communication costs for the given

query. We presented the complexity analyses of the proposed algorithm and consolidated

these analyses with simulations. Then, by exploiting the SJORA algorithm, we proposed

the Multi Join Resource Allocation (MJORA) algorithm in section 4.3, which allocates

nodes for queries consisting of multiple join operators. We traverse the tree representation

of the queries by using the post-order tree traversal and for each join task in the query tree,

we call the SJORA algorithm to allocate nodes. We provide complexity analyses and

present the simulation results of the proposed algorithm. We discussed the advantages and

disadvantages of the MJORA algorithm and showed the situations in which the MJORA

outperforms similar existing studies.

 123

CHAPTER 5: FAULT TOLERANT RESOURCE

ALLOCATION FOR QUERY PROCESSING IN GRID
ENVIRONMENTS

Résumé

A travers ce cinquième chapitre, nous proposons un nouvel algorithme d'allocation de

ressources doté d’une tolérance aux pannes pour le traitement des requêtes dans les

environnements Grille. L'algorithme proposé est basé sur la réplication passive des

opérateurs à état dans les requêtes. Après une présentation des analyses théoriques de

l'algorithme proposé, nous consoliderons nos analyses avec les simulations.

Abstract

In this chapter, we propose a new algorithm for fault tolerant resource allocation for

query processing in grid environments. The proposed algorithm is based on the passive

replication of stateful operators in queries. We provide theoretical analyses of the

proposed algorithm and we consolidate our analyses with the simulations.

5.1 Introduction

Grid systems are differentiated from distributed and parallel systems by their large

scale, dynamic and heterogeneous characteristics [FOSTER04b]. These characteristics

raise additional challenges to the distributed query processing domain such as resource

discovery, resource selection, resource allocation, autonomous computing, monitoring,

replication and caching, security issues and many others [GOUNARIS05]. In previous

chapters, chapter 3 and chapter 4, we have proposed new algorithms for resource discovery

and resource allocation problems and we have finalized resource discovery and near

optimal initial resource allocation for processing queries in grid environments. However,

finding near optimal resource allocation alone may not be sufficient for efficiently

 124

processing queries in grid environments. Defining the policies in case of node failures

during query execution is also very important and should be included in the resource

allocation method. Since grid environments are dynamic, eventual node failures are likely

during the execution of queries. These failures may be very costly if the queries are long

running and if the system is not designed fault-tolerant. Therefore fault-tolerance can be

considered as a must in processing queries in grid environments. Since fault-tolerance

involves in allocation of new nodes, we consider it as a part of the resource allocation step.

In the current literature, there can be found many resource allocation algorithms with

dynamicity support [GOUNARIS05, SILVA06, VENUGOPAL06, KOTOWSKI08,

GOUNARIS09, PATON09, RUIZ09]. Although these studies provide resource allocation

methods by considering dynamicity of their properties, none of them consider failure of

nodes during execution of stateful operators in queries. A query operator is considered to

be stateful if the execution of the operator requires storage of any kind of state such as a

hash table [BESTEHORN10]. Since stateful operators like hash join, require recovery of

states of the nodes in case of node failures, dynamic resource allocation methods are not

sufficient in these cases. We have found few studies for fault-tolerant query processing

[SMITH05, SMITH07, TAYLOR08, BESTEHORN10]. Although these studies provide

fruitful algorithms, none of them is specialized on processing stateful query operators in

grid environments.

In this chapter, we propose a resource allocation algorithm for fault-tolerant query

processing in grid environments based on passive replication of stateful operations in

queries. For finding the initial resource allocation scheme, we use the MJORA algorithm,

which is proposed in chapter 4. After completion of the initial resource allocation, each

allocated node applies a replication policy by itself according to the type of the task that it

executes.

The contribution of this chapter is the presentation of fault-tolerance for stateful query

operators in grid environments. For this, we propose Fault-Tolerant Resource Allocation

(FTRA) algorithm for grid systems.

 125

In this chapter, we assume that the node that posts the query and the nodes in which base

relations reside, are fault-tolerant or stable by default during the execution of the query.

We consider a query as consisting of hash join operators which are composed of atomic

tasks namely scan, build and probe. Scan tasks act as providers to the build and probe tasks

by reading tuples from their storage units and sending to corresponding tasks. Build tasks

receive tuples from their scan tasks and create hash tables for that operator. Probe tasks are

blocked during the execution of their corresponding build tasks. After build tasks

complete, probe tasks start receiving tuples from their corresponding scan tasks and check

for matching tuples in the hash table. Probe tasks pipeline matched tuples through their

successor tasks in the query tree. More detailed description of distributed hash join

operator can be found in [OZSU11].

The structure of this chapter is as follows; in section 5.2 we propose the fault-tolerant

resource allocation (FTRA) algorithm for query processing in grid environments. In

section 5.3 analyses of the proposed algorithm are presented. We strengthen our analyses

with simulation in section 5.4. Finally, in section 5.5, we present our conclusions.

5.2 Fault-Tolerant Resource Allocation (FTRA) Algorithm

In this section, we propose the Fault-Tolerant Resource Allocation (FTRA) algorithm

for query processing in grid environments based on the passive replication of stateful join

operators in queries. The FTRA algorithm is responsible for the fault-tolerance of the

nodes that are allocated for the join tasks. These nodes, which execute tasks, are named as

master nodes and the nodes, which are allocated for the fault-tolerance purpose, are named

as backup nodes or replicas. It is assumed that a master node and its replica do not fail at

the same time.

5.2.1 The Algorithm

The FTRA algorithm is composed of 4 steps, i) replica selection, ii) query execution &

backing-up, iii) failure detection and iv) failure recovery. These steps are defined below:

 126

i) Replica selection: The replica selection step is realized before the master node starts

its execution. When the MJORA algorithm completes, each master node determines a

backup node by choosing its closest available neighbor. The selection of the closest

available neighbor as the replica aims at minimizing the replication overhead that will be

caused by the FTRA. In this step, we assume that a master node have always at least one

available neighbor for replica selection.

ii) Query execution & backing-up: After the replica selection step, the master node

starts executing the query while backing up its state for fault-tolerance. In order to avoid

synchronization issues between replicas and master nodes, the replication scheme in this

step is chosen to be passive replication. In passive replication, the states of the master

nodes are backed-up to their replicas periodically. The states depend on the type of tasks

that are being executed. More precisely, build tasks generate hash tables for the join

operators. The failure of a node during the execution of build task results in the loss of the

hash table that is generated so far. Therefore, during the execution of the build task the

state is composed of the hash table and the sequence number of the last tuple that is

received. On the other hand, probe tasks receive tuples from their predecessors, check the

hash table for occurrences and send results to their successors in a pipelined fashion.

Execution of a probe task means that the build task is already terminated and the hash table

is already constructed. It also implies that the hash table is already backed-up. Therefore,

during the execution of the probe task the state is composed only of the sequence number

of the last received tuple. The update interval of the replication period is determined

heuristically. The states of master nodes are backed-up incrementally. In other words,

during the execution of build task, each time the state of the master node is backed-up,

only the additions to the hash table is transferred to the replica node since the last back-up.

iii) Failure detection: In FTRA, the failure detection is held by both master nodes and

replicas. Failures of nodes are detected by exploiting the periodical back-up messages. The

replica nodes monitor failures of their master nodes and master nodes monitor failure of

their replicas by examining delivery of back-up and their acknowledgement messages.

 127

iv) Failure recovery: Whenever a replica node detects failure of its master node, it

replaces itself with its master and notifies its predecessor and successor nodes for the

failure recovery. Before it starts acting as a master node, it requests a replica node for itself

by choosing its closest available neighbor. On the other hand, if a master node detects

failure of its replica, it requests a new replica and backs-up its last state entirely once.

The algorithm is executed successively to the MJORA algorithm that is proposed in

chapter 4. When the MJORA algorithm is executed beforehand, the algorithm outputs a

tree structure, query tree, which contains the tree representation of the query with the

selected nodes included for the initial resource allocation. A sample query tree is shown in

figure 5.1.

!"#$%&'(%)*+,%

-)*+%%%%%%*.,%%%%%%%%)*/%%%%%%%*0,1%%%

!"#$%+%

23456%!"#$%
78926%9575"25:%$':59%
75;6%75;%
(8<=26%(8<=2%

!"#$%.%

23456%!"#$%
78926%9575"25:%$':59%
75;6%75;%
(8<=26%(8<=2%

>'8$%+%

23456%>'8$%
78926%9575"25:%$':59%
75;6%75;%
(8<=26%(8<=2%

!"#$%&'(%)*.,% !"#$%&'(%)*/,%

!"#$%/%

23456%!"#$%
78926%9575"25:%$':59%
75;6%75;%
(8<=26%(8<=2%

!"#$%0%

23456%!"#$%
78926%9575"25:%$':59%
75;6%75;%
(8<=26%(8<=2%

>'8$%.%

23456%>'8$%
78926%9575"25:%$':59%
75;6%75;%
(8<=26%(8<=2%

!"#$%&'(%)*0,%

>'8$%/%

23456%>'8$%
78926%9575"25:%$':59%
75;6%75;%
(8<=26%(8<=2%

Figure 5.1 Example query tree that is used for input of the FTRA algorithm

Each vertex in the query tree is composed of a data structure named treeElement. The

treeElement data structure and its contents are shown in the figure 5.2. In this data

 128

structure, type represents the type of the task as whether a scan or a join task. List field

stores the list of selected nodes for that task at the end of the MJORA algorithm. Left and

right fields points to the left and right children in the query tree.

!"##$%#&#'!(

•  !"#$%$&)(!*+#(
•  '&&'()(%,-!(
• )*!"#$&)(%#.(
• )*!"#$&)(",/0!(

Figure 5.2 Data structure that is used in the query tree

 The FTRA algorithm inputs the query tree and starts processing it by using post order

tree traversal. Each time the algorithm visits a vertex in the query tree, it sends a request

message to the selected resources in order to inform them about the initial allocation. This

allows selected nodes to know their successor and predecessor nodes to communicate with.

The formal presentation of the FTRA algorithm in the queried node is shown in algorithm

5.1.

Algorithm 5.1. FTRA algorithm in the queried node
Input: Root of the query tree
Output: Query execution
1: FTRAAlgorithm(treeNode)
2: if treeNode is empty then
3: return
4: else
5: FTRAAlgorithm(treeNode.left)
6: FTRAAlgorithm(treeNode.right)
7: if treeNode.type = SCAN then
8: send AllocScanReq to the each node in treeNode.list
9: else if treeNode.type = JOIN then
10: send AllocJoinReq to the each node in treeNode.list
11: end if
12: end if
13: return
14: end

After finishing the query tree traversal, the queried node waits for the resulting tuples

as a pipelined fashion. The other nodes in the grid environment, which receive request

messages, involve in the query execution by tracing the finite state machine steps that is

 129

shown in Figure 5.4. Basic algorithm steps in the nodes that are assigned for different types

of tasks are shown below. In algorithm 5.2, the execution of FTRA algorithm in a node

that executes scan task is presented. The execution steps of the FTRA algorithm in a node

that is assigned for a join task is shown in algorithm 5.3. Lastly, in algorithm 5.4 the

algorithm steps for a node that is allocated for replication is presented.

Algorithm 5.2. Basic steps of FTRA algorithm in a scan node
Input: Received messages
Output: Execution of the required steps
1: Upon reception of AllocScanReq message:
2: Wait StartScan message from all successor nodes
3: When all successor nodes send StartScan message
4: Start sending tuples to the corresponding successor nodes
5: When the data is completely consumed
6: Send ScanEnd message to all successor nodes
7: end

Algorithm 5.3. Basic steps of FTRA algorithm in a join node
Input: Received messages
Output: Execution of the required steps
1: Upon reception of AllocJoinReq message:
2: Send ReplicaReq message to the nearest neighbor
3: Upon receiving ReplicaResp, send StartScan message to all

predecessor nodes
4: Build the hash table using the received tuples from the scan nodes
5: Periodically send hash table updates to the backup node
6: if the backup node is failed then
7: Select another backup node
8: end if
9: When build task is finished, send StartScan message to the scan

nodes that hold partitions of the relation that is used in the probe
task

10: Execute probe task using the received tuples
11: Periodically send last received tuple information to the backup node
12: When probe task is finished, send ScanEnd message to the successor

nodes
13: end

Algorithm 5.4. Basic steps of FTRA algorithm in a backup node
Input: Received messages

 130

Output: Execution of the required steps
1: Upon reception of ReplicaReq message:
2: Send ReplicaResp message to the master node
3: Record periodical state updates
4: if master node is failed then
5: Send AllocUpdate message to all predecessors of the master node

in order to suspend communication
6: Select a backup node by sending ReplicaReq message to the

nearest neighbor
7: Change type of task to join
8: Send StartScan message to all predecessors to resume the query

execution as a master node
9: end if
10: end

The finite state machine of the entire protocol for all types of tasks is shown in the

Figure 5.3. The detailed description of the state machine with message types and states are

described below.

 131

Figure 5.3 Finite state machine of the FTRA

The message types which are used in the FTRA algorithm are described below:

• AllocScanReq: This message is sent by the queried node to the data sources in

which partitions of base relations are stored, in order to inform them for the

allocation of scan tasks.

• AllocScanResp: The data sources accept allocation of scan tasks by sending this

message to the queried node.

• AllocJoinReq: The nodes that are selected for join tasks are allocated by the use of

this message.

• AllocJoinResp: The allocated nodes respond to the queried node by sending this

message.

 132

• ReplicaReq: Upon successful allocation of resources for the join tasks, each

allocated node sends a ReplicaReq message to its closest neighbor in order to

allocate a replica for itself.

• ReplicaResp: The nodes that are requested to be back-up nodes respond to their

masters by sending this message.

• StartScan: Whenever an allocated node for a join task becomes ready for

execution, it sends a StartScan message to its predecessor indicating that it is ready

for receiving tuples.

• AllocUpdate: When a back-up node detects failure of its master, it becomes a

master node and notifies the predecessors and successors of its failed master by

sending AllocUpdate messages. This message also includes the checkpoint

information about the execution of the task.

• ScanEnd: This message is sent to the successor nodes in order to notify the end of

data production by either the scan or probe tasks.

During the execution of the FTRA, a node may be one of the 11 states, which are described

below:

• IDLE: Each node starts execution of the FTRA algorithm in the IDLE state.

• PREP_SCAN: Upon reception of AllocScanReq message, a node changes its state

to PREP_SCAN in order to prepare execution of scan task. Such node waits at this

state until all its successors become ready for the delivery of tuples.

• SCAN: Whenever all successors of a scan node become ready to receive tuples, the

node changes its state from PREP_SCAN to the SCAN. In this state, the node reads

tuples from its storage unit and sends them to the corresponding nodes that execute

join tasks.

• SUSPEND_SCAN: When failure of a node that executes join tasks occurs, the node

which produces data for that failed node suspends producing tuples temporarily

until the failed node is recovered.

 133

• PREP_BUILD: Any node that is selected for a join task changes its state upon

receiving AllocJoinReq message. Such node waits at this state until it determines a

replica node before start its execution.

• BUILD: A node, which is at PREP_BUILD state, changes its state to BUILD

whenever it receives accept response from its replica. During this state, the node

receives tuples from its precedent node and generates hash table for the related

partition of the relation.

• PROBE: When a node finishes generation of the hash table at BUILD state, it

switches to the PROBE state and sends StartScan message to the precedents that

are responsible from the partitions of probe relation. During this state, the node

receives tuples from its precedents processes the join by using the hash table. The

results are passed to successor nodes in a pipelined fashion.

• REPLICA_FAIL_BUILD and REPLICA_FAIL_PROBE: If the replica of a master

node failed at the BUILD or PROBE states, the node changes its state to these states

and stays there until it finds a new replica. Upon finding the new replica, the node

backs-up its state on the new replica and continues its operation.

• REPLICA: Any node in the grid may receive requests for becoming a replica of a

master node upon receiving ReplicaReq message. Such node replies the request if it

is at the IDLE state. A node, which is at other states, does not reply to this request.

For simplicity, we do not show such cases in the state machine. We assume that

there always exist some nodes at the IDLE state within a node’s neighborhood.

During the REPLICA state, the node backs-up the state of its master node in

periodical intervals.

• PREP_PROBE: When a replica detects failure of its master while the master node

is in the PROBE state, it changes its state to PREP_PROBE and searches a replica

node for itself. Upon finding a replica, such node changes its state to PROBE and

continues the join task.

 134

• END: Every node that executes FTRA finishes the algorithm at this state.

5.2.2 Analysis

In this section, we present time and message complexity analyses of the FTRA

algorithm.

Theorem 1. The overhead of the FTRA algorithm to the standard query execution in

terms of time complexity is O(j), where j is the number of join operators in the query.

Proof. The standard execution of a query in a grid environment consists of execution of

scan, build and probe tasks. In FTRA algorithm, additionally to the standard execution,

replica selection is required for each join operator before starting the execution. For each

join operator, selection of a replica node involves 4 steps. Since there are j join operators in

the query, the total time overhead of the FTRA algorithm is (4j) which can be defined as

O(j) in the big o notation.

Theorem 1. The overhead of the FTRA algorithm to the standard query execution in

terms of message complexity is O(jnm), where j is the number of join operators in the

query, n is the number of scan nodes and m is the number of allocated nodes for the join

tasks.

Proof. In FTRA algorithm, since allocated nodes become ready to receive tuples from

their precedent nodes only after they set their backup nodes, beginning of scan tasks are

subject to synchronization with their successors. This synchronization requires each

allocated node to send a message to its scan nodes. Therefore, for each join operator, the

FTRA algorithm requires nm message exchanges. Therefore, the total message overhead of

the FTRA algorithm is O(jnm).

5.2.3 Simulations

In this section we present the simulation results and quantitative evaluations for the

Fault-tolerant Resource Allocation (FTRA) algorithm. We compare our algorithm to the

MJORA algorithm and examine the overhead that is caused by the replication.

 135

For the simulation scenario, we used the same simulation setting that is used in the

section 4.3.3. We measured the cost of the resource allocation process.

The figure 5.4 shows the costs of MJORA and FTRA algorithms. As it can be seen in

the figure, there is a slight difference between the MJORA and the FTRA. In all different

simulation scenarios, the FTRA requires a constant amount of time in order to provide

fault tolerance. This overhead is caused by the selection of the replica nodes. In FTRA,

after completion of the initial resource allocation, the algorithm executes the finite state

machine steps that are shown in the figure 5.3. In our scenarios, since the number of join

operators and number of scan nodes are constant, the overhead of the FTRA algorithm is

bound by the number of allocated nodes in the initial resource allocation. During our

simulations, we observed that the number of allocated nodes by the MJORA algorithm

does not alter significantly. Therefore, the overhead of the FTRA algorithm remains nearly

constant as the number of nodes increase.

 136

Figure 5.4 Cost of the FTRA Algorithm

5.3 Overall Conclusions

Resource allocation for query processing in grid systems is a very important step that

directly affects the performance of query execution. Since grid environments are

differentiated from other distributed environments by their large-scale, dynamic and

heterogeneous nature, the resource allocation algorithm should address all problems that

are caused by these characteristics. In previous chapter, chapter 4, we have proposed

resource allocation algorithms aiming at addressing scalability and heterogeneity problems.

In this chapter, aiming at addressing the dynamicity problems, we proposed a fault-tolerant

resource allocation (FTRA) algorithm for query processing in grid environments that

 137

tolerates node failures during the execution of the query. Although there can be found

many studies in the current literature, to the best of our knowledge, we cannot find a study

which focuses on the dynamicity of nodes in the grid environment in terms of node

failures. For that reason, we aim at contributing the query-processing domain by proposing

fault-tolerance in resource allocation.

In this chapter, we proposed the Fault-tolerant Resource Allocation algorithm, which

ensures fault-tolerance during the execution of the query. We presented our algorithm in

detail and proposed complexity analyses. Then, we strengthened our perspectives by the

use of quantitative analyses and simulations. The simulation results show that the FTRA

algorithm is a very favorable algorithm with little overhead to the MJORA algorithm.

Since it provides fault-tolerance, it can be preferred in situations in which the queries are

long running and in environments in which node failures are likely.

 138

CHAPTER 6: CONCLUSIONS

Résumé

Dans ce chapitre final, tout en résumant les études présentées dans cette thèse, nous

soulignons nos contributions et les études proposées. Ensuite, nous discutons de nouveaux

problèmes qui sont soulevés par les algorithmes proposés et nous présentons nos

orientations futures.

Abstract

In this chapter, we summarize studies that are presented in this thesis by highlighting our

contributions and proposed studies. Then we discuss new problems that are raised by the

proposed algorithms and present our future directions. Lastly, we conclude our thesis by

presenting our findings and conclusions briefly.

6.1 Summary of Studies

Resource discovery and resource allocation are two of the most important research

topics in distributed query processing domain, considering characteristics of grid

environments. This thesis addresses these two problems by proposing new algorithms

which take grid systems’ characteristics into consideration. We provide these algorithms,

present their analyses and consolidate the theoretical analyses with simulations. We

compared the proposed algorithms with selected existing studies and highlighted our

algorithms’ strengths and weaknesses. The overall contributions of this thesis are listed

below.

i) State-of-the-Art: We first proposed a detailed literature survey in chapter 2. We

proposed evaluation criteria that we find important. Then we classified the existing

studies by considering these evaluation criteria. We analyzed the literature and

determined the common deficiencies of existing studies. By considering these

deficiencies, we discussed the potential contributing points for each research domain,

 139

resource discovery and resource allocation. The proposed state-of-the-art studies,

which constitute the contents of chapter 2, are published in [COKUSLU09,

COKUSLU10_iji, COKUSLU12, HAMEURLAIN10].

ii) Resource Discovery: After examining the current state-of-the-art on the resource

discovery subject, we concluded that the resource discovery process should exploit

existence of an underlying topology control mechanism. For this purpose, we

proposed a suitable topology control mechanism first. Regarding the common

communication requirements of resource discovery, we proposed three new self-

stabilizing spanning tree construction algorithms. The constructed spanning trees are

aimed to be rooted near the center of the graph in order to decrease the complexities of

the resource discovery process. For this purpose, we use the degrees of nodes when

determining the root of the constructed spanning tree. Then, we proposed a resource

discovery algorithm by exploiting the generated topology. The proposed algorithm is

scalable and prone to dynamicity of nodes in the system. Therefore, we contribute the

resource discovery domain by addressing problems caused by the large scale,

heterogeneity and dynamicity of the grid environments. We have designed,

implemented, simulated and compared the proposed algorithms with similar existing

studies in the current literature. We showed that the proposed spanning tree

construction algorithms construct spanning trees with smaller diameters. We also

showed that they outperform similar studies in terms of runtime durations. For the

Spanning Tree Based Resource Discovery algorithm, we compared the proposed

algorithm with the algorithms that use flooding during the resource discovery phase.

We showed that the proposed algorithm outperforms these studies especially in large-

scale environments. We also demonstrated that the proposed algorithms are scalable as

the number of nodes in the grid environment increases. The contents of this chapter

are partially published in [COKUSLU10].

iii) Resource allocation: After completing the resource discovery step, we have directed

our attention to the resource allocation problem in chapter 4. Regarding our analyses

 140

on the existing resource allocation studies, we provided resource allocation algorithms

that consider proximities of candidate nodes to the data sources. For this, we first

proposed an algorithm that allocates resources for a query that consists of a single join

operator by taking the nodes’ proximities to the data sources into consideration. Then

we extended this algorithm to allocate resources for queries consisting of multi-join

operators. We have designed, analyzed, simulated and compared our algorithms with

similar algorithms in the current literature. We showed that the proposed algorithm

results in better query execution performances in the simulated scenarios. We also

discussed the causes of higher costs in the proposed resource allocation algorithm and

examined the situations in which our algorithms are favorable. The contents of this

chapter are partially published in [COKUSLU12_b].

iv) Fault-tolerant resource allocation: The algorithms that are proposed in chapter 4

address heterogeneity and large-scale characteristics of grid environments in allocating

resources. In chapter 5, we addressed dynamicity problem by considering node

failures during the execution of the queries. Considering our literature survey analyses

for the fault-tolerant resource allocation, we have directed our attention to proposing a

fault-tolerant resource allocation algorithm based on passive replication of stateful

query operators in queries. We have designed, analyzed, simulated and compared our

algorithm with our previously proposed resource allocation algorithm in order to

evaluate fault-tolerance overhead. We showed advantages and disadvantages of the

proposed algorithm and analyzed the situations in which our algorithm is favorable.

6.2 Future Directions
In this section, we present our future directions and discuss some of the challenges and

open issues that we have encountered throughout the preparation of this thesis.

i) Challenges in resource discovery for query processing in grid environments: In section

3.2 we have proposed self-stabilizing spanning tree construction algorithms for

topology control for resource discovery. During the proposition of the algorithms, we

 141

showed that constructing the spanning tree with smaller diameters increases

performance of the resource discovery process. We believe that constructing the

spanning tree rooted at the center of the graph will further decrease the diameter of the

resulting spanning tree. However, there are only few center finding algorithms that are

directly focused on finding centers of arbitrary graphs. Therefore we believe that more

studies can be conducted on this subject to further improve the performance of the

resource discovery method.

ii) Challenges in resource allocation for query processing in grid environments: In section

4.2, we aimed at finding candidate nodes that are closest to the data sources for the

resource allocation. However, there is not a study, to the best of our knowledge, which

finds an arbitrary node in a graph G that is located at the center of a subset S of the

graph G. This may allow finding better candidate resources for the resource allocation,

since the proposed nodes will be the closest ones to all data sources. Moreover, finding

weighted centers is more interesting subject, which is not yet examined in detail. By

finding weighted centers, candidate nodes can be selected by considering weights of

tasks that are waiting to be allocated. A larger task may be allocated closer to the data

sources, whereas a smaller task, which will be executed in parallel to the larger tasks,

may be allocated at farther candidates.

iii) Challenges in fault tolerant resource allocation for query processing in grid

environments: In chapter 5 we proposed the Fault-tolerant Resource Allocation

(FTRA) Algorithm, assuming that the queried node and data sources are stable during

the execution of the query. Since in grid environments there is no such guarantee,

fault-tolerance of these nodes should be studied explicitly. We also assumed that the

master nodes have always at least one available node for replication within its

neighborhood. Since this assumption may not always hold, it must be relaxed in the

future studies.

We believe that starting from these open issues, more refined resource discovery and

resource allocation techniques can be proposed.

 142

6.3 Overall Conclusions
In this thesis, we first determined the distinguishing characteristics of the grid systems.

Then we have listed the challenges for resource discovery and resource allocation domains

caused by the characteristics of grid environments. We proposed resource discovery and

resource allocation algorithms aiming at addressing these challenges. We believe that the

algorithms, which are proposed in this thesis, contribute to the existing literature in many

aspects and are useful for the query-processing domain in grid environments. We also

believe that this thesis opens new issues and challenges for the query-processing domain,

which may lead other researchers to search solutions to the aforementioned problems.

 143

REFERENCES

[ABADI05] D. Abadi, Y. Ahmad, M. Balazinska, U. Cetintemel, M. Cherniack, J. Hwang,
W. Lindner, A. Maskey, A. Rasin, E. Ryvkina, N. Tatbul, Y. Xing, and S. Zdonik, "The
Design of the Borealis Stream Processing Engine," in 2nd Biennial Conference on
Innovative Data Systems Research (CIDR'05), 2005, pp. 277-289.

[AFEK91] Y. Afek, S. Kutten, and M. Yung, "Memory-Efficient Self Stabilizing
Protocols for General Networks," WDAG90: Proceedings of the 4th International
Workshop on Distributed Algorithms, pp. 15-28, 1991.

[AHUJA89] M. Ahuja and Y. Zhu, "A Distributed Algorithm for Minimum Weight
Spanning Trees Based on Echo Algorithms," Proceedings of the 9th International
Conference on Distributed Computing Systems, pp. 2-8, 1989.

[ALPDEMIR04] M. Alpdemir, A. Mukherjee, A. Gounaris, N. Paton, P. Watson, A.
Fernandes, and D. Fitzgerald, "OGSA-DQP: A Service for Distributed Querying on the
Grid, Advances in Database Technology - EDBT 2004." vol. 2992, E. Bertino, et al., Eds.:
Springer Berlin / Heidelberg, 2004, pp. 3923-3923.

[ANDROUTSELLIS04] S. Androutsellis-theotokis and D. Spinellis, "A survey of peer-to-
peer content distribution technologies," ACM Computing Surveys, vol. 36, pp. 335-371,
2004.

[ANDRZEJAK02] A. Andrzejak and Z. Xu, "Scalable, efficient range queries for Grid
information services," 2nd Int. Conf. on Peer-to-Peer Computing, P2P 2002, 2002.

[ANTONIOLETTI05] M. Antonioletti, M. Atkinson, R. Baxter, A. Borley, N. P. C. Hong,
B. Collins, N. Hardman, A. C. Hume, A. Knox, M. Jackson, A. Krause, S. Laws, J.
Magowan, N. W. Paton, D. Pearson, T. Sugden, P. Watson, and M. Westhead, "The design
and implementation of Grid database services in OGSA-DAI: Research Articles," Concurr.
Comput. : Pract. Exper., vol. 17, pp. 357-376, 2005.

[ANTONOIU95] G. Antonoiu and P. K. Srimani, "A Self-Stabilizing Distributed
Algorithm to Construct An Arbitrary Spanning Tree of a Connected Graph," Computers
and Mathematics with Applications, vol. 30, pp. 1-7, 1995.

[ANTONOIU97] G. Antonoiu and P. K. Srimani, "Distributed Self-Stabilizing Algorithm
for Minimum Spanning Tree Construction," Euro-Par97: Proceedings of the Third
International Euro-Par Conference on Parallel Processing, London, UK, pp. 480-487, 1997.

 144

[AWERBUCH87] B. Awerbuch, "Optimal Distributed Algorithms for Minimum Weight
Spanning Tree, Counting, Leader Election and related problems," Proceedings of the 9th
Annual ACM Symposium on Theory of Computing, pp. 230-240, 1987.

[BAALA03] H. Baala, O. Flauzac, J. Gaber, M. Bui, and T. El-Ghazawi, "A self-
stabilizing distributed algorithm for spanning tree construction in wireless ad hoc
networks," Journal of Parallel and Distributed Computing, vol. 63, pp. 97-104, 2003.

[BALAZINSKA08] M. Balazinska, H. Balakrishnan, S. R. Madden, and M. Stonebraker,
"Fault-tolerance in the borealis distributed stream processing system," ACM Trans.
Database Syst., vol. 33, pp. 1-44, 2008.

[BEHESHTI07] S. M. R. Beheshti and M. S. Moshkenani, "Development of Grid resource
discovery service based on semantic information," 2007, pp. 141-148.

[BELL03] W. Bell, D. Cameron, P. Millar, L. Capozza, K. Stockinger, and F. Zini,
"Optorsim: A Grid Simulator for Studying Dynamic Data Replication Strategies,"
International Journal of High Performance Computing Applications\, vol. 17\, pp. 403\-
416\, 2003.

[BESTEHORN10] M. Bestehorn, C. von der Weth, E. Buchmann, and K. Böhm, "Fault-
tolerant query processing in structured P2P-systems," Distributed and Parallel Databases,
vol. 28, pp. 33-66, 2010.

[BIZARRO09] P. Bizarro, N. Bruno, and D. J. DeWitt, "Progressive Parametric Query
Optimization," IEEE Trans. on Knowl. and Data Eng., vol. 21, pp. 582-594, 2009.

[BLIN09] L. Blin, M. G. Potop-Butucaru, and S. Rovedakis, "Self-stabilizing minimum-
degree spanning tree within one from the optimal degree," IPDPS '09: Proceedings of the
2009 IEEE International Symposium on Parallel\&Distributed Processing, pp. 1-11, 2009.

[BOSE07] S. K. Bose, S. Krishnamoorthy, and N. Ranade, "Allocating Resources to
Parallel Query Plans in Data Grids," GCC '07: Proceedings of the Sixth International
Conference on Grid and Cooperative Computing, pp. 210--220, 2007.

[BUTELLE95] F. Butelle, C. Lavault, and M. Bui, "A Uniform Self-Stabilizing Minimum
Diameter Tree Algorithm (Extended Abstract)," WDAG '95: Proceedings of the 9th
International Workshop on Distributed Algorithms, pp. 257-272, 1995.

[BUYYA05] R. Buyya, D. Abramson, and S. Venugopal, "The Grid Economy,"

 145

Proceedings of the IEEE, vol. 93, pp. 698-714, 2005.

[CAI03] M. Cai, M. Frank, J. Chen, and P. Szekely, "MAAN: A multi-attribute
addressable network for Grid information services," 4th Int. Workshop on Grid
Computing, GRID 2003, 2003.

[CAO02] J. Cao, D. Spooner, J. D. Turner, S. Jarvis, D. J. Kerbyson, S. Saini, and G.
Nudd, "Agent-Based Resource Management for Grid Computing," CCGRID02:
Proceedings of the 2nd IEEE/ACM International Symposium on Cluster Computing and
the Grid, p. 350, 2002.

[CHANDRASEKARAN03] S. Chandrasekaran, O. Cooper, A. Deshpande, M. J. Franklin,
J. M. Hellerstein, W. Hong, S. Krishnamurthy, S. R. Madden, F. Reiss, and M. A. Shah,
"TelegraphCQ: continuous dataflow processing," Proceedings of the 2003 ACM SIGMOD
international conference on Management of data, San Diego, California, pp. 668-668,
2003.

[CHEEMA05] A. S. Cheema, M. Muhammad, and I. Gupta, "Peer-to-Peer Discovery of
Computational Resources for Grid Applications," GRID '05: Proceedings of the 6th
IEEE/ACM International Workshop on Grid Computing, pp. 179-185, 2005.

[WANG90] W. Chihping, "The complexity of processing tree queries in distributed
databases," in Parallel and Distributed Processing, 1990. Proceedings of the Second IEEE
Symposium on, 1990, pp. 604-611.

[COKUSLU09] D. Cokuslu, A. Hameurlain, and K. Erciyes, "Grid resource discovery
based on web services," International Conference for Internet Technology and Secured
Transactions, ICITST 2009, pp. 1 -6, 2009.

[COKUSLU10] D. Cokuslu, K. Erciyes, and A. Hameurlain, "A Maximum Degree Self-
Stabilizing Spanning Tree Algorithm," in The 25th International Symposium on Computer
and Information Sciences (ISCIS 2010), 2010, pp. 393-396.

[COKUSLU10_iji] D. Cokuslu, A. Hameurlain, and K. Erciyes, "Grid Resource
Discovery Based on Centralized and Hierarchical Architectures," International Journal for
Infonomics (IJI), vol. 3, pp. 283-292, 2010.

[COKUSLU12] D. Cokuslu, A. Hamuerlain, and K. Erciyes, "Resource Allocation for
Query Processing in Grid Systems: A Survey," International Journal of Computer Systems
Science and Engineering, vol. 27, 2012.

 146

[COKUSLU12_b] D. Cokuslu, A. Hamuerlain, K. Erciyes, and F. Morvan, "Resource
Allocation Algorithm for a Relational Join Operator in Grid Systems," in proceedings of
16th International Database Engineering & Applications Symposium, IDEAS12, Prague,
Czech, 2012, pp. 139-145.

[COSTA08] R. L. d. C. Costa and P. Furtado, "Scheduling in Grid Databases,"
Proceedings of the 22nd International Conference on Advanced Information Networking
and Applications - Workshops, pp. 696-701, 2008.

[CZAJKOWSKI01] K. Czajkowski, S. Fitzgerald, I. Foster, and C. Kesselman, "Grid
information services for distributed resource sharing," High Performance Distributed
Computing, 2001. Proceedings. 10th IEEE International Symposium on, pp. 181-194,
2001.

[DEWITT84] D. J. DeWitt, R. H. Katz, F. Olken, L. D. Shapiro, M. R. Stonebraker, and
D. A. Wood, "Implementation techniques for main memory database systems," SIGMOD
Rec., vol. 14, pp. 1-8, 1984.

[DIJKSTRA74] E. W. Dijkstra, "Self-stabilizing systems in spite of distributed control,"
Communications of the ACM, vol. 17, pp. 643-644, 1974.

[DING05] S. Ding, J. Yuan, J. Ju, and L. Hu, "A Heuristic Algorithm for Agent-Based
Grid Resource Discovery," Intl. Conf. on e-Technology, e-Commerce and e-Service, pp.
222-225, 2005.

[DOLEV93] S. Dolev, "Optimal Time Self Stabilization in Dynamic Systems (Preliminary
Version)," WDAG '93: Proceedings of the 7th International Workshop on Distributed
Algorithms, pp. 160-173, 1993.

[ELANSARY03] S. El-Ansary, "Title," Type Report 2003.

[ELMROTH05] E. Elmroth and J. Tordsson, "An interoperable, standards-based grid
resource broker and job submission service," e-Science and Grid Computing, 2005. First
International Conference on, pp. 212-220, 2005.

[EPIMAKHOV11] I. Epimakhov, A. Hameurlain, T. Dillon, and F. Morvan, "Resource
Scheduling Methods for Query Optimization in Data Grid Systems, Advances in Databases
and Information Systems." vol. 6909, J. Eder, et al., Eds.: Springer Berlin / Heidelberg,
2011, pp. 185-199.

[COKUSLU11_b] K. Erciyes, O. Dagdeviren, D. Cokuslu, O. Yılmaz, and H. Gumus,

 147

"Modeling and Simulation Tools for Mobile Ad hoc Networks," in Mobile Ad Hoc
Networks, Current Status and Future Trends, J. Loo, et al., Eds.: CRC Press, 2011.

[FALL10] K. Fall and K. Varadhan, "Title," Type Report 2010.

[BACA89] D. Fernandez-Baca, "Allocating modules to processors in a distributed
system," Software Engineering, IEEE Transactions on, vol. 15, pp. 1427-1436, 1989.

[FILALI08] I. Filali, F. Huet, and C. Vergoni, "A Simple Cache Based Mechanism for
Peer to Peer Resource Discovery in Grid Environments," CCGRID '08, Eighth IEEE
International Symposium on Cluster Computing and the Grid, pp. 602-608, 2008.

[FITZGERALD97] S. Fitzgerald, I. Foster, C. Kesselman, G. V. Laszewski, W. Smith,
and S. Tuecke, "A Directory Service for Configuring High-Performance Distributed
Computations," In Proc. 6th IEEE Symp. on High Performance Distributed Computing,
pp. 365-375, 1997.

[FOSTER97] I. Foster and C. Kesselman, "Globus: A metacomputing infrastructure
toolkit," International Journal of Supercomputer Applications, vol. 11, pp. 115-128, 1997.

[FOSTER04b] I. Foster and C. Kesselman, The Grid: Blueprint for a New Computing
Infrastructure: Morgan Kaufmann Publishers, 2004.

[GAGLIARDI02] F. Gagliardi, B. Jones, M. Reale, and S. Burke, "European DataGrid
Project: Experiences of Deploying a Large Scale Testbed for E-science Applications,
Performance Evaluation of Complex Systems: Techniques and Tools." vol. 2459, M.
Calzarossa and S. Tucci, Eds.: Springer Berlin / Heidelberg, 2002, pp. 255-264.

[GALLAGHER83] R. G. Gallagher, P. A. Humblet, and P. M. Spira, "A Distributed
Algorithm for Minimum-Weight Spanning Trees," ACM Transactions on Programming
Languages and Systems, vol. 5, pp. 66-77, 1983.

[GAROFALAKIS97] M. N. Garofalakis and Y. E. Ioannidis, "Parallel Query Scheduling
and Optimization with Time- and Space-Shared Resources," VLDB '97: Proceedings of
the 23rd International Conference on Very Large Data Bases, San Francisco, CA, USA, pp.
296--305, 1997.

[GARTNER03] F. C. Gartner, "A Survey of Self-Stabilizing Spanning-Tree Construction
Algorithms," Swiss Federal Institute of Technology (EPFL), School of Computer and
Communication Sciences,, Technical Report IC/2003/38 June 10, 2003.

 148

[GOMOLUCH03] J. Gomoluch and M. Schroeder, "Market-Based Resource Allocation
for Grid Computing: A Model and Simulation," 2003.

[GOUNARIS04] A. Gounaris, R. Sakellariou, N. W. Paton, and A. A. A. Fernandes,
"Resource Scheduling For Parallel Query Processing On Computational Grids," Grid
Computing, 2004. Proceedings. Fifth IEEE/ACM International Workshop on, pp. 396-401,
2004.

[GOUNARIS05] A. Gounaris, J. Smith, N. W. Paton, R. Sakellariou, A. A. A. Fernandez,
and P. Watson, "Adapting to Changing Resource Performance in Grid Query Processing,"
DMG, Lecture Notes in Computer Science, pp. 30-44, 2005.

[GOUNARIS06b] A. Gounaris, R. Sakellariou, N. W. Paton, and A. A. Fernandes, "A
novel approach to resource scheduling for parallel query processing on computational
grids," Distrib. Parallel Databases, vol. 19, pp. 87-106, 2006.

[GOUNARIS09] A. Gounaris, J. Smith, N. W. Paton, R. Sakellariou, A. A. Fernandes,
and P. Watson, "Adaptive workload allocation in query processing in autonomous
heterogeneous environments," Distrib. Parallel Databases, vol. 25, pp. 125-164, 2009.

[GUPTA03] S. K. Gupta and P. K. Srimani, "Self-stabilizing multicast protocols for ad
hoc networks," Journal of Parallel and Distributed Computing, vol. 63, pp. 87-96, 2003.

[HAMEURLAIN08] A. Hameurlain, F. Morvan, and M. E. Samad, "Large Scale Data
management in Grid Systems: a Survey," IEEE International Conference on Information
and Communication Technologies: from Theory to Applications (ICTTA), Damas - Syrie,
07/04/2008-11/04/2008, 2008.

[HAMEURLAIN10] A. Hameurlain, D. Cokuslu, and K. Erciyes, "Resource discovery in
grid systems: a survey," International Journal of Metadata, Semantics and Ontologies, vol.
5, pp. 251-263, 2010.

[HERAULT06] T. Herault, P. Lemarinier, O. Peres, L. Pilard, and J. Beauquier, "Self-
stabilizing Spanning Tree Algorithm for Large Scale Systems," Stabilization, Safety, and
Security of Distributed Systems, vol. 4280, pp. 574-575, 2006.

[HUANG03] C. Huang, Z. Wu, G. Zheng, and X. Wu, "Dart: A Framework for Grid-
Based Database Resource Access and Discovery," Grid and Cooperative Computing, pp.
855-862, 2003.

[HWANG05] J.-H. Hwang, M. Balazinska, A. Rasin, U. Cetintemel, M. Stonebraker, and

 149

S. Zdonik, "High-Availability Algorithms for Distributed Stream Processing,"
Proceedings of the 21st International Conference on Data Engineering, pp. 779-790, 2005.

[IAMNITCHI03] A. Iamnitchi and I. Foster, "Chapter 1 A Peer-to-Peer Approach to
Resource Location in Grid Environments, Kluwer," 2003.

[IAMNITCHI05] A. Iamnitchi and D. Talia, "P2P computing and interaction with grids,"
Future Generation Computer Systems, vol. 21, pp. 331-332, 2005.

[IOANNIDIS97] Y. E. Ioannidis, R. T. Ng, K. Shim, and T. K. Sellis, "Parametric query
optimization," The VLDB Journal, vol. 6, pp. 132-151, 1997.

[HWANG07] Jeong-hyon Hwang, Ying Xing, and S. Zdonik, "A cooperative, self-
configuring high-availability solution for stream processing," in ICDE, 2007.

[JIAN07] Y. Jian and Y. Liu, "The State of the Art in Grid Scheduling Systems,"
Proceedings of the Third International Conference on Natural Computation - Volume 04,
pp. 619-623, 2007.

[JIANG07] C. Jiang, C. Wang, X. Liu, and Y. Zhao, "A survey of job scheduling in
grids," Proceedings of the joint 9th Asia-Pacific web and 8th international conference on
web-age information management conference on Advances in data and web management,
Huang Shan, China, pp. 419-427, 2007.

[JUN00] K. Jun, L. Boloni, K. Palacz, and D. C. Marinescu, "Agent-Based Resource
Discovery," in Proc. 9th IEEE Heterogeneous Computing Workshop, 2000.

[KAKARONTZAS06] G. Kakarontzas and I. K. Savvas, "Agent-Based Resource
Discovery and Selection for Dynamic Grids," Proc of the 15th IEEE Intl. Workshops on
Enabling Technologies, pp. 195-200, 2006.

[KANT05] U. Kant and D. Grosu, "Double Auction Protocols for Resource Allocation in
Grids," ITCC '05: Proceedings of the International Conference on Information
Technology: Coding and Computing (ITCC'05) - Volume I, pp. 366-371, 2005.

[KARAATA94] M. H. Karaata, S. V. Pemmaraju, S. C. Bruell, and S. Ghosh, "Self-
stabilizing algorithms for finding centers and medians of trees," PODC94, Proceedings of
the thirteenth annual ACM symposium on Principles of distributed computing, New York,
NY, USA, p. 374, 1994.

[KAUR07] D. Kaur and J. Sengupta, "Resource Discovery in Web-Services Based Grids,"

 150

Proceedings Of World Academy Of Science, Engineering And Technology, pp. 284-288,
2007.

[KOSOWSKI06] A. Kosowski and L. Kuszner, "A Self-stabilizing Algorithm for Finding
a Spanning Tree in a Polynomial Number of Moves," Paralel and Distributed Non-
numerical Algorithms, vol. 3911/2006, pp. 75-82, 2006.

[KOTOWSKI08] N. Kotowski, A. A. B. Lima, E. Pacitti, P. Valduriez, and M. Mattoso,
"Parallel query processing for OLAP in grids," Concurr. Comput. : Pract. Exper., vol. 20,
pp. 2039-2048, 2008.

[KRAUTER02] K. Krauter, R. Buyya, and M. Maheswaran, "A taxonomy and survey of
grid resource management systems for distributed computing," Softw. Pract. Exper., vol.
32, pp. 135-164, 2002.

[KSHEMKALYANI08] A. D. Kshemkalyani and M. Singhal, Distributed Computing:
Principles, Algorithms, and Systems: Cambridge University Press, 2008.

[KWON08] Y. Kwon, M. Balazinska, and A. Greenberg, "Fault-tolerant stream
processing using a distributed, replicated file system," Proc. VLDB Endow., vol. 1, pp.
574-585, 2008.

[LI02] W. Li, Z. Xu, F. Dong, and J. Zhang, "Grid Resource Discovery Based on a
Routing-Transferring Model," 2002, pp. 145-156.

[LIEN88] Y. N. Lien, "A New Node-Join-Tree Distributed Algorithm for Minimum
Weight Spanning Trees," Proceedings of the 8th International Conference on Distributed
Computing System, pp. 334-240, 1988.

[LIU08] S. Liu and H. A. Karimi, "Grid query optimizer to improve query processing in
grids," Future Gener. Comput. Syst., vol. 24, pp. 342-353, 2008.

[MANDAL05] A. Mandal, K. Kennedy, C. Koelbel, G. Marin, J. Mellor-Crummey, B.
Liu, and L. Johnsson, "Scheduling Strategies For Mapping Application Workflows Onto
The Grid," Proceedings, 14th IEEE International Symposium on High Performance
Distributed Computing, pp. 125-134, 2005.

[MANVI05] S. S. Manvi, M. N. Birje, and B. Prasad, "An Agent-based Resource
Allocation Model for Grid Computing," IEEE SCC, pp. 311-314, 2005.

[MARZOLLA05] M. Marzolla, M. Mordacchini, and S. Orlando, "Resource discovery in

 151

a dynamic Grid environment," DEXA Workshop 2005, 2005.

[MARZOLLA07] M. Marzolla, M. Mordacchini, and S. Orlando, "Peer-to-peer systems
for discovering resources in a dynamic grid," Parallel Comput., vol. 33, pp. 339-358, 2007.

[MASTROIANNI05] C. Mastroianni, D. Talia, and O. Verta, "A super-peer model for
resource discovery services in large-scale Grids," Future Generation Computer Systems,
2005.

[MATTOSO05] M. Mattoso, G. Zimbrão, R. A. B. Lima, A. Baião, V. P. Braganholo, A.
Aveleda, B. Mir, B. K. Almentero, and M. N. Costa, "ParGRES: a middleware for
executing OLAP queries in parallel," COPPE/UFRJ, Technical Report ES-690, 2005.

[MOLTO07] G. Molt\'o, V. Hern\'andez, and J. M. Alonso, "A service-oriented WSRF-
based architecture for metascheduling on computational Grids," Future Generation
Computing Systems, vol. 24, pp. 317-328, 2008.

[MOLTO07] G. Molto, V. Hernandez, and J. M. Alonso, "A service-oriented WSRF-
based architecture for metascheduling on computational Grids," Future Generation
Computing Systems, vol. 24, pp. 317-328, 2008.

[OPPENHEIMER04] D. Oppenheimer, J. Albrecht, D. Patterson, and A. Vahdat,
"Scalable Wide-Area Resource Discovery, Technical Report CSD04 -1334, University of
California Berkeley," 2004.

[OZSU11] M. T. Özsu and P. Valduriez, Principles of Distributed Database Systems,
Third Edition: Springer, 2011.

[PACITTI07] E. Pacitti, P. Valduriez, and M. Mattoso, "Grid Data Management: Open
Problems and New Issues," Journal of Grid Computing, vol. 5, pp. 273-281, 2007.

[PAN99] R. C. Pan, J. Z. Wang, and L. R. Chow, "A self-stabilizing distributed spanning
tree construction algorithm with a distributed demon," Tamsui Oxford Journal of
Mathematical Sciences, vol. 15, pp. 23-32, 1999.

[PATON09] N. W. Paton, J. Buenabad-Chavez, M. Chen, V. Raman, G. Swart, I. Narang,
D. M. Yellin, and A. A. Fernandes, "Autonomic query parallelization using non-dedicated
computers: an evaluation of adaptivity options," The VLDB Journal, vol. 18, pp. 119-140,
2009.

[PUH07] M. Puh, G. Jezic, and M. Kusek, "Multi-agent System for Resource Discovery in

 152

Grid Network," 16th IEEE International Workshops on Enabling Technologies:
Infrastructures for Collaborative Enterprises, pp. 320-324, 2007.

[PUPPIN05] D. Puppin, S. Moncelli, R. Baraglia, N. Tonelotto, and F. Silvestri, "A Grid
information service based on Peer-to-Peer," EuroPar, Springer LNCS, 2005.

[RUIZ09] J.-A. Quian\'e-Ruiz, P. Lamarre, and P. Valduriez, "A self-adaptable query
allocation framework for distributed information systems," The VLDB Journal, vol. 18, pp.
649-674, 2009.

[RUIZ09] J.-A. Quiane-Ruiz, P. Lamarre, and P. Valduriez, "A self-adaptable query
allocation framework for distributed information systems," The VLDB Journal, vol. 18, pp.
649-674, 2009.

[RAMOS06] T. G. Ramos and A. C. Magalhaes, "An Extensible Resource Discovery
Mechanism for Grid Computing Environments," CCGRID '06: Proceedings of the Sixth
IEEE International Symposium on Cluster Computing and the Grid, pp. 115-122, 2006.

[RANJAN08] R. Ranjan, A. Harwood, and R. Buyya, "Peer-to-peer-based resource
discovery in global grids: a tutorial," Communications Surveys \& Tutorials, IEEE, vol. 10,
pp. 6-33, 2008.

[RIEDEL07] M. Riedel, B. Schuller, D. Mallmann, R. Menday, A. Streit, B. Tweddell, M.
S. Memon, A. S. Memon, B. Demuth, and T. Lippert, "Web Services Interfaces and Open
Standards Integration into the European UNICORE 6 Grid Middleware," EDOCW '07:
Proceedings of the 2007 Eleventh International IEEE EDOC Conference Workshop, pp.
57-60, 2007.

[ROWSTRON01] A. Rowstron and P. Druschel, "Pastry: Scalable, decentralized object
location, and routing for large-scale peer-to-peer systems," Lecture Notes in Computer
Science, pp. 329-350, 2001.

[SEDAGHAT08] M. Sedaghat, M. Othman, and M. N. Sulaiman, Information
Technology, 2008. ITSim 2008. International Symposium on, pp. 1-9, 2008.

[SILVA06] V. F. V. D. Silva, M. L. Dutra, F. Porto, B. Schulze, A. C. Barbosa, and J. C.
de Oliveira, "An adaptive parallel query processing middleware for the Grid: Research
Articles," Concurr. Comput. : Pract. Exper., vol. 18, pp. 621-634, 2006.

[SLIMANI04] Y. Slimani, F. Najjar, and N. Mami, "An Adaptive Cost Model for
Distributed Query Optimization on the Grid," OTM Workshops, pp. 79-87, 2004.

 153

[SMITH05] J. Smith and P. Watson, "Fault-tolerance in distributed query processing," in
Database Engineering and Application Symposium, 2005. IDEAS 2005. 9th International,
2005, pp. 329-338.

[SMITH07] J. Smith and P. Watson, "Failure Recovery Alternatives in Grid-Based
Distributed Query Processing: A Case Study, Knowledge and Data Management in
GRIDs," D. Talia, et al., Eds.: Springer US, 2007, pp. 51-63.

[SOE05] K. M. Soe, A. A. Nwe, T. N. Aung, T. T. Naing, and N. L. Thein, "Efficient
Scheduling of Resources for Parallel Query Processing on Grid-based Architecture,"
Information and Telecommunication Technologies, 2005. APSITT 2005 Proceedings. 6th
Asia-Pacific Symposium on, pp. 276-281, 2005.

[SPENCE03] D. Spence and T. Harris, "Xenosearch: Distributed resource discovery in the
xenoserver open platform," In Proceedings of HPDC, p. 216, 2003.

[SULISTIO08] A. Sulistio, U. Cibej, S. Venugopal, B. Robic, and R. Buyya, "A toolkit
for modelling and simulating data Grids: an extension to GridSim," Concurr. Comput. :
Pract. Exper., vol. 20, pp. 1591-1609, 2008.

[TALIA04] D. Talia and P. Trunfio, "Web Services for Peer-to-Peer Resource Discovery
on the Grid," Proc. of the Sixth Thematic Workshop of the EU Network of Excellence
DELOS, pp. 73-84, 2004.

[TALIA05] D. Talia and P. Trunfio, "Peer-to-Peer protocols and Grid services for
resource discovery on Grids," Advances in Parallel Computing, vol. 14, pp. 83-103, 2005.

[TALIA07] D. Talia, P. Trunfio, and J. Zeng, "Peer-to-Peer Models for Resource
Discovery in Large-Scale Grids: A Scalable Architecture," High Performance Computing
for Computational Science - VECPAR 2006, pp. 66-78, 2007.

[TANG06] X. Tang and L. Huang, "Grid Resource Management Based on Mobile Agent,"
WISE Workshops, pp. 230-238, 2006.

[TANIAR08] D. Taniar, C. H. C. Leung, W. Rahayu, and S. Goel, High Performance
Parallel Database Processing and Grid Databases: Wiley Publishing, 2008.

[TAYLOR08] N. E. Taylor, "Recovery from Node Failure in Distributed Query
Processing," University of Pennsylvania Department of Computer and Information
Science, MS-CIS-08-38, 2008.

 154

[TRUNFIO07] P. Trunfio, D. Talia, H. Papadakis, P. Fragopoulou, M. Mordacchini, M.
Pennanen, K. Popov, V. Vlassov, and S. Haridi, "Peer-to-Peer resource discovery in Grids:
Models and systems," Future Gener. Comput. Syst., vol. 23, pp. 864-878, 2007.

[VENUGOPAL06] S. Venugopal, R. Buyya, and L. Winton, "A Grid service broker for
scheduling e-Science applications on global data Grids: Research Articles," Concurr.
Comput. : Pract. Exper., vol. 18, pp. 685-699, 2006.

[YAN07] M. Yan, Q. Yu-hui, W. Gang, and Z. Ju-Hua, "Study of Grid Resource
Discovery Based on Mobile Agent," Proc. of the 3rd Intl. Conf. on Semantics, Knowledge
and Grid, pp. 570-571, 2007.

[YANG03] B. Yang and H. Garcia-Molina, "Designing a super-peer network," Data
Engineering, 2003. Proceedings. 19th International Conference on, pp. 49-60, 2003.

[YIN07] Y. Yin, H. Cui, and X. Chen, "The Grid Resource Discovery Method Based on
Hierarchical Model," Information Technology Journal, vol. 6, pp. 1090-1094, 2007.

[YU03] J. Yu, S. Venugopal, and R. Buyya, "Grid Market Directory: A Web Services
based Grid Service Publication Directory," Grid Computing and Distributed Systems
(GRIDS) Lab, Dept. of Computer Science and Software Engineering, The University of
Melbourne, 2003.

[YU06] J. Yu, C. Zhao, and Y. Pan, "Grid Resource Management Based on Mobile
Agent," Proc. of the Intl. Conf. on Computational Intelligence for Modeling Control and
Automation and Intl. Conf. on Intelligent Agents Web Technologies and Intl Commerce,
pp. 255-256, 2006.

[ZHAO07] X. Zhao, L. Xu, and B. Wang, "A Resource Allocation Model with Cost-
Performance Ratio in Data Grid," SNPD '07: Proceedings of the Eighth ACIS
International Conference on Software Engineering, Artificial Intelligence, Networking, and
Parallel/Distributed Computing, pp. 371-376, 2007.

Resource Discovery and Allocation for Query Processing in Grid Systems

Abstract
Grid systems are today’s one of the most interesting computing environments because of their large computing and storage

capabilities and their availability. Many different domains profit the facilities of grid environments. Distributed query processing is one
of these domains in which there exists large amounts of ongoing research to port the underlying environment from distributed and
parallel systems to the grid environment.

In this thesis, we focus on resource discovery and resource allocation algorithms for query processing in grid environments. For
this, we propose resource discovery algorithm for query processing in grid systems by introducing self-stabilizing topology control and
converge-cast based resource discovery algorithms. Then, we propose a resource allocation algorithm, which realizes allocation of
resources for single join operator queries by generating a reduced search space for the candidate nodes and by considering proximities of
candidates to the data sources. We also propose another resource allocation algorithm for queries with multiple join operators. Lastly, we
propose a fault-tolerant resource allocation algorithm, which provides fault-tolerance during the execution of the query by the use of
passive replication of stateful operators.

The general contribution of this thesis is twofold. First, we propose a new resource discovery algorithm by considering the
characteristics of the grid environments. We address scalability and dynamicity problems by constructing an efficient topology over the
grid environment using the self-stabilization concept; and we deal with the heterogeneity problem by proposing the converge-cast based
resource discovery algorithm. The second main contribution of this thesis is the proposition of a new resource allocation algorithm
considering the characteristics of the grid environment. We tackle the scalability problem by reducing the search space for candidate
resources. We decrease the communication costs during the query execution by allocating nodes closer to the data sources. And finally
we deal with the dynamicity of nodes, in terms of their existence in the system, by proposing the fault-tolerant resource allocation
algorithm.

Keywords: Query processing, resource discovery, self-stabilization, topology control, spanning tree, resource allocation, fault-tolerance.

Découverte et allocation des ressources pour le traitement de requêtes dans les systèmes grilles

Résumé

De nos jours, les systèmes Grille, grâce à leur importante capacité de calcul et de stockage ainsi que leur disponibilité, constituent
l’un des plus intéressants environnements informatiques. Dans beaucoup de différents domaines, on constate l’utilisation fréquente des
facilités que les environnements Grille procurent.

Le traitement des requêtes distribuées est l'un de ces domaines où il existe de grandes activités de recherche en cours, pour
transférer l'environnement sous-jacent des systèmes distribués et parallèles à l'environnement Grille.

 Dans le cadre de cette thèse, nous nous concentrons sur la découverte des ressources et des algorithmes d'allocation de ressources
pour le traitement des requêtes dans les environnements Grille. Pour ce faire, nous proposons un algorithme de découverte des
ressources pour le traitement des requêtes dans les systèmes Grille en introduisant le contrôle de topologie auto-stabilisant et
l’algorithme de découverte des ressources dirigé par l’élection convergente. Ensuite, nous présentons un algorithme d'allocation des
ressources, qui réalise l'allocation des ressources pour les requêtes d’opérateur de jointure simple par la génération d’un espace de
recherche réduit pour les nœuds candidats et en tenant compte des proximités des candidats aux sources de données. Nous présentons
également un autre algorithme d'allocation des ressources pour les requêtes d’opérateurs de jointure multiple. Enfin, on propose un
algorithme d'allocation de ressources, qui apporte une tolérance aux pannes lors de l'exécution de la requête par l'utilisation de la
réplication passive d'opérateurs à état.

La contribution générale de cette thèse est double. Premièrement, nous proposons un nouvel algorithme de découverte de
ressource en tenant compte des caractéristiques des environnements Grille. Nous nous adressons également aux problèmes d'extensibilité
et de dynamicité en construisant une topologie efficace sur l'environnement Grille et en utilisant le concept d'auto-stabilisation, et par la
suite nous adressons le problème de l'hétérogénéité en proposant l’algorithme de découverte de ressources dirigé par l’élection
convergente. La deuxième contribution de cette thèse est la proposition d'un nouvel algorithme d'allocation des ressources en tenant
compte des caractéristiques de l'environnement Grille.

Nous abordons les problèmes causés par la grande échelle caractéristique en réduisant l'espace de recherche pour les ressources
candidats. De ce fait nous réduisons les coûts de communication au cours de l'exécution de la requête en allouant des nœuds au plus près
des sources de données. Et enfin nous traitons la dynamicité des nœuds, du point de vue de leur existence dans le système, en proposant
un algorithme d'affectation des ressources avec une tolérance aux pannes.

Mots-clés: Traitement des requêtes, découverte de ressources, contrôle de topologie auto-stabilisant, arbres couvrants, allocation

des ressources, tolérance aux pannes.

	Résumé
	CHAPTER 1: INTRODUCTION
	1.1 Context, Motivations and Problems
	1.2 Resource Discovery (RD) for Query Processing in Grid Environments
	1.3 Resource Allocation (RA) for Query Processing in Grid Environments
	1.4 Experimental Validation
	1.5 Contributions
	1.6 Thesis Organization

	CHAPTER 2: STATE OF THE ART
	2.1 Introduction
	2.2 Resource Discovery (RD) for Query Processing in Grid Environments
	2.2.1 Grid Resource Discovery Based on Centralized and Hierarchical Architectures
	2.2.2 Grid Resource Discovery Based on Peer to Peer (P2P) Systems
	2.2.3 Grid Resource Discovery Based on Agent Technologies
	2.2.4 Global Evaluation of Resource Discovery Methods
	2.2.5 Self-stabilizing Spanning Tree Construction Algorithms
	2.2.6 Conclusions for Resource Discovery Algorithms

	2.3 Resource Allocation (RA) for Query Processing in Grid Environments
	2.3.1 Existing Survey Studies and Motivations
	2.3.2 Recent Resource Allocation Methods
	2.3.3 Fault-tolerance in Query Processing in Grid Environments
	2.3.4 Conclusions for Resource Allocation Algorithms

	2.4 Overall Conclusions

	CHAPTER 3: RESOURCE DISCOVERY FOR QUERY PROCESSING IN GRID ENVIRONMENTS
	3.1 Introduction
	3.2 Topology Control for Resource Discovery in Grid Environments
	3.2.1 Selected Algorithms for Comparison
	3.2.2 Proposed Algorithms
	3.2.3 Analysis
	3.2.4 Simulations
	3.2.5 Conclusion

	3.3 Spanning Tree Based Resource Discovery for Query Processing in Grid Environments
	3.3.1 The Spanning Tree Based Resource Discovery (STRD) Algorithm
	3.3.2 Analysis
	3.3.3 Simulations
	3.3.4 Conclusion

	3.4 Overall Conclusions

	CHAPTER 4: RESOURCE ALLOCATION FOR QUERY PROCESSING IN GRID ENVIRONMENTS
	4.1 Introduction
	4.2 Single Join Operator Resource Allocation (SJORA) Algorithm
	4.2.1 Proximity Based Candidate List Generation (PBCG) Algorithm
	4.2.2 Join Task Resource Allocation (JTRA) Algorithm
	4.2.3 Analysis
	4.2.4 Simulations
	4.2.5 Conclusion

	4.3 Resource Allocation for a Multi Join Query
	4.3.1 Multi Join Resource Allocation (MJORA) Algorithm
	4.3.2 Analysis
	4.3.3 Simulations
	4.3.4 Conclusion

	4.4 Overall Conclusions

	CHAPTER 5: FAULT TOLERANT RESOURCE ALLOCATION FOR QUERY PROCESSING IN GRID ENVIRONMENTS
	5.1 Introduction
	5.2 Fault-Tolerant Resource Allocation (FTRA) Algorithm
	5.2.1 The Algorithm
	5.2.2 Analysis
	5.2.3 Simulations

	5.3 Overall Conclusions

	CHAPTER 6: CONCLUSIONS
	6.1 Summary of Studies
	6.2 Future Directions
	6.3 Overall Conclusions

	REFERENCES
	Résumé

