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Découverte et allocation des ressources pour le 

traitement de requêtes dans les systèmes grilles 

Résumé 

 

De nos jours, les systèmes Grille, grâce à leur importante capacité de calcul et de 

stockage ainsi que leur disponibilité, constituent l’un des plus intéressants  environnements 

informatiques.  Dans beaucoup de différents domaines, on constate l’utilisation fréquente 

des facilités que les environnements Grille procurent.  

Le traitement des requêtes distribuées est l'un de ces domaines où il existe de grandes 

activités de recherche en cours, pour transférer l'environnement sous-jacent des systèmes 

distribués et parallèles à l'environnement Grille. 

 Dans le cadre de cette thèse, nous nous concentrons sur la découverte des ressources 

et des algorithmes d'allocation de ressources pour le traitement des requêtes dans les 

environnements Grille. Pour ce faire, nous proposons un algorithme de découverte des 

ressources pour le traitement des requêtes dans les systèmes Grille en introduisant le 

contrôle de topologie auto-stabilisant et l’algorithme de découverte des ressources dirigé 

par l’élection convergente.  Ensuite, nous présentons un algorithme d'allocation des 

ressources, qui réalise l'allocation des ressources pour les requêtes d’opérateur de jointure 

simple par la génération d’un espace de recherche réduit pour les nœuds candidats et en 

tenant compte des proximités des candidats aux sources de données. Nous présentons 

également un autre algorithme d'allocation des ressources pour les requêtes d’opérateurs de 

jointure multiple. Enfin, on propose un algorithme  d'allocation de ressources, qui apporte 

une tolérance aux pannes lors de l'exécution de la requête par l'utilisation de la réplication 

passive d'opérateurs à état. 

La contribution générale de cette thèse est double.  Premièrement, nous proposons un 
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nouvel algorithme de découverte de ressource en tenant compte des caractéristiques des 

environnements Grille. Nous nous adressons également aux problèmes d'extensibilité et de 

dynamicité en construisant une topologie efficace sur l'environnement Grille et en utilisant 

le concept d'auto-stabilisation, et par la suite nous adressons le problème de l'hétérogénéité 

en proposant l’algorithme de découverte de ressources dirigé par l’élection convergente. La 

deuxième contribution de cette thèse est la proposition d'un nouvel algorithme d'allocation 

des ressources en tenant compte des caractéristiques de l'environnement Grille. 

Nous abordons les problèmes causés par la grande échelle caractéristique en réduisant 

l'espace de recherche pour les ressources candidats. De ce fait nous réduisons les coûts de 

communication au cours de l'exécution de la requête en allouant des nœuds au plus près 

des sources de données. Et enfin nous traitons la dynamicité des nœuds, du point de vue de 

leur existence dans le système, en proposant un algorithme d'affectation des ressources 

avec une tolérance aux pannes. 

 

Mots-clés: Traitement des requêtes, découverte de ressources, contrôle de topologie auto-
stabilisant, arbres couvrants, allocation des ressources, tolérance aux pannes.  
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Resource Discovery and Allocation for Query 

Processing in Grid Systems 

Abstract 

Grid systems are today’s one of the most interesting computing environments because 

of their large computing and storage capabilities and their availability. Many different 

domains profit the facilities of grid environments. Distributed query processing is one of 

these domains in which there exists large amounts of ongoing research to port the 

underlying environment from distributed and parallel systems to the grid environment.  

In this thesis, we focus on resource discovery and resource allocation algorithms for 

query processing in grid environments. For this, we propose resource discovery algorithm 

for query processing in grid systems by introducing self-stabilizing topology control and 

converge-cast based resource discovery algorithms. Then, we propose a resource allocation 

algorithm, which realizes allocation of resources for single join operator queries by 

generating a reduced search space for the candidate nodes and by considering proximities 

of candidates to the data sources. We also propose another resource allocation algorithm 

for queries with multiple join operators. Lastly, we propose a fault-tolerant resource 

allocation algorithm, which provides fault-tolerance during the execution of the query by 

the use of passive replication of stateful operators.  

The general contribution of this thesis is twofold. First, we propose a new resource 

discovery algorithm by considering the characteristics of the grid environments. We 

address scalability and dynamicity problems by constructing an efficient topology over the 

grid environment using the self-stabilization concept; and we deal with the heterogeneity 

problem by proposing the converge-cast based resource discovery algorithm. The second 

main contribution of this thesis is the proposition of a new resource allocation algorithm 

considering the characteristics of the grid environment. We tackle the scalability problem 
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by reducing the search space for candidate resources. We decrease the communication 

costs during the query execution by allocating nodes closer to the data sources. And finally 

we deal with the dynamicity of nodes, in terms of their existence in the system, by 

proposing the fault-tolerant resource allocation algorithm. 

 

Keywords: Query processing, resource discovery, self-stabilization, topology control, 

spanning tree, resource allocation, fault-tolerance. 



 9 

TABLE OF CONTENTS 
CHAPTER 1 INTRODUCTION ............................................................................. 13 
 
 
1.1 Context, Motivations and Problems ...................................................................... 13 
1.2 Resource Discovery (RD) for Query Processing in Grid Environments ............... 15 
1.3 Resource Allocation (RA) for Query Processing in Grid Environments .............. 17 
1.4 Experimental Validation ........................................................................................ 19 
1.5 Contributions ......................................................................................................... 21 
1.6 Thesis Organization ............................................................................................... 22 
 
 
CHAPTER 2: STATE OF THE ART ...................................................................... 24 
 
 
2.1 Introduction ........................................................................................................... 24 
2.2 Resource Discovery (RD) for Query Processing in Grid Environments ............... 25 
  2.2.1 Grid Resource Discovery Based on Centralized and Hierarchical 
Architectures ................................................................................................................ 28 
    2.2.1.1 Grid Resource Discovery Using Centralized Systems ................................ 29 
    2.2.1.2 Grid Resource Discovery Using Hierarchical Systems ............................... 30 
    2.2.1.3 Comparison .................................................................................................. 31 
    2.2.1.4 Conclusions ................................................................................................. 33 
  2.2.2 Grid Resource Discovery Based on Peer to Peer (P2P) Systems ..................... 33 
    2.2.2.1 Grid Resource Discovery Based on Unstructured P2P Systems ................. 34 
    2.2.2.2 Grid Resource Discovery Based on Super-Peer Systems ............................ 35 
    2.2.2.3 Grid Resource Discovery Based on Structured P2P Systems ..................... 36 
    2.2.2.4 Comparison .................................................................................................. 38 
    2.2.2.5 Conclusions ................................................................................................. 39 
  2.2.3 Grid Resource Discovery Based on Agent Technologies ................................ 40 
    2.2.3.1 Agent Based Grid Resource Discovery on Unstructured Network 
Topology ...................................................................................................................... 40 
    2.2.3.2 Agent Based Grid Resource Discovery on Structured Network Topology  41 
    2.2.3.3 Comparison .................................................................................................. 42 



 10 

    2.2.3.4 Conclusions ................................................................................................. 43 
  2.2.4 Global Evaluation of Resource Discovery Methods ........................................ 44 
  2.2.5 Self-stabilizing Spanning Tree Construction Algorithms ................................ 46 
    2.2.5.1 Recent studies .............................................................................................. 47 
    2.2.5.2 Conclusions  ................................................................................................. 48 
  2.2.6 Conclusions for Resource Discovery Algorithms ............................................ 49 
2.3 Resource Allocation (RA) for Query Processing in Grid Environments .............. 49 
  2.3.1 Existing Survey Studies and Motivations ......................................................... 53 
  2.3.2 Recent Resource Allocation Methods .............................................................. 55 
    2.3.2.1 Task-Centered Resource Allocation Methods ............................................. 55 
    2.3.2.2 Resource-Centered Resource Allocation Methods ...................................... 57 
    2.3.2.3 Qualitative Comparison Between Classes ................................................... 58 
    2.3.2.4 Quantitative Evaluation and Comparison .................................................... 60 
  2.3.3 Fault-tolerance in Query Processing in Grid Environments ............................. 66 
    2.3.3.1 Recent Studies ............................................................................................. 67 
    2.3.3.2 Conclusions ................................................................................................. 68 
  2.3.4 Conclusions for Resource Allocation Algorithms ............................................ 69 
2.4 Overall Conclusions .............................................................................................. 69 
 
 
CHAPTER 3: RESOURCE DISCOVERY FOR QUERY PROCESSING IN 
GRID ENVIRONMENTS ......................................................................................... 72 
 
 
3.1 Introduction ........................................................................................................... 72 
3.2 Topology Control for Resource Discovery in Grid Environments ........................ 75 
  3.2.1 Selected Algorithms for Comparison ............................................................... 77 
    3.2.1.1 Memory-efficient self-stabilizing spanning tree algorithm (MEST) ........... 77 
    3.2.1.2 Asynchronous Concurrent Initiator Spanning Tree Algorithm (CIST) ....... 78 
  3.2.2 Proposed Algorithms ........................................................................................ 79 
    3.2.2.1 Maximum Degree Self-Stabilizing Spanning Tree Algorithm 1 (MDST1) 80 
    3.2.2.2 Maximum Degree Self-Stabilizing Spanning Tree Algorithm 2 (MDST2) 81 
    3.2.2.3 Maximum Degree Center Based Self-Stabilizing Spanning Tree 
Algorithm (MDCST) ................................................................................................... 83 
  3.2.3 Analysis ............................................................................................................ 84 



 11 

  3.2.4 Simulations ....................................................................................................... 87 
  3.2.5 Conclusion ........................................................................................................ 90 
3.3 Spanning Tree Based Resource Discovery for Query Processing in Grid 
Environments ............................................................................................................... 91 
  3.3.1 The Spanning Tree Based Resource Discovery (STRD) Algorithm ................ 92 
  3.3.2 Analysis ............................................................................................................ 93 
  3.3.3 Simulations ....................................................................................................... 95 
  3.3.4 Conclusion ........................................................................................................ 96 
3.4 Overall Conclusions .............................................................................................. 97 
 
 
CHAPTER 4: RESOURCE ALLOCATION FOR QUERY PROCESSING IN 
GRID ENVIRONMENTS ......................................................................................... 99 
 
 
4.1 Introduction ........................................................................................................... 99 
4.2 Single Join Operator Resource Allocation (SJORA) Algorithm ........................... 102 
  4.2.1 Proximity Based Candidate List Generation (PBCG) Algorithm .................... 102 
  4.2.2 Join Task Resource Allocation (JTRA) Algorithm .......................................... 104 
  4.2.3 Analysis ............................................................................................................ 108 
  4.2.4 Simulations ....................................................................................................... 109 
  4.2.5 Conclusion ........................................................................................................ 112 
4.3 Resource Allocation for a Multi Join Query ......................................................... 112 
  4.3.1 Multi Join Resource Allocation (MJORA) Algorithm ..................................... 112 
  4.3.2 Analysis ............................................................................................................ 116 
  4.3.3 Simulations ....................................................................................................... 117 
  4.3.4 Conclusion ........................................................................................................ 121 
4.4 Overall Conclusions .............................................................................................. 121 
 
 
CHAPTER 5: FAULT TOLERANT RESOURCE ALLOCATION FOR 
QUERY PROCESSING IN GRID ENVIRONMENTS ......................................... 123 
 
 
5.1 Introduction ........................................................................................................... 123 
5.2 Fault-Tolerant Resource Allocation (FTRA) Algorithm ....................................... 125 



 12 

  5.2.1 The Algorithm .................................................................................................. 125 
  5.2.2 Analysis ............................................................................................................ 134 
  5.2.3 Simulations ....................................................................................................... 134 
  5.3 Overall Conclusions ............................................................................................ 136 
 
 
CHAPTER 6: CONCLUSIONS ............................................................................... 137 
 
 
6.1 Summary of Studies .............................................................................................. 138 
6.2 Future Directions ................................................................................................... 140 
6.3 Overall Conclusions .............................................................................................. 142 
 
 
REFERENCES .......................................................................................................... 156 

 



 13 

CHAPTER 1:  INTRODUCTION 

Résumé 

Dans ce chapitre, nous présentons nos motivations de cette thèse. Nous présentons les 

définitions des problèmes abordés. Nous décrivons  brièvement un état de l'art et nous 

discutons nos contributions potentielles. Enfin, nous présentons l'idée principale derrière 

les algorithmes proposés ainsi que la structure de la thèse. 

Abstract 

In this chapter, we provide motivations for this thesis. We present the tackled problem 

definitions. We describe a state of the art very briefly and discuss the open issues and our 

potential contributions. Finally, we present the main idea behind the proposed algorithms 

and also the structure of the thesis.  

1.1 Context, Motivations and Problems 

Research activities are driven by new applications, technology trends, and innovative 

aspects. Since the 90s, the Internet becomes the most important driving force for scientific 

application development. As the technological development progresses, complex systems 

are developed in order to manage increasing large amounts of data, such as database 

management systems (DBMS). Those systems provide fast and reliable management 

methods to respond increasing demand for the data. The first database management 

systems are designed to work on centralized servers which both manage and store the data 

[DEWITT84]. However, with the increase in the scale of both data and users, the 

centralized DBMSs become inadequate. To overcome this problem, the researchers 

directed their attention to Distributed DBMS (DDBMS) design [OZSU11]. Distributing the 

DBMS over the network gives many flexibilities and scaling properties to the information 

technology. After distribution of the data, researchers directed their attention to increase 

the flexibility of those systems by integrating different types of data sources such as 
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DBMSs, XMLs, File Systems etc. This research makes out a new concept, mediation 

systems, which can be defined as systems which are focused on the integration of 

heterogeneous data sources in a large scale distributed environment [OZSU11]. 

The advances in the information technology bring forth together the increase in the need 

for shared resources in the large-scale domain. This fact leads researchers to propose inter-

connected virtual organizations, called Grids. Grid system is a large scale distributed 

environment which provides high number of powerful resources to its users 

[FOSTER04b]. The main objective of Grids is to provide a powerful and robust platform 

that serves those resources without being affected by the dynamicity of the nodes. The 

resources offered by Grids have to be accessible to the users easily without any deep 

technical knowledge. On the other hand, the management services such as job scheduling, 

load balancing, resource discovery and allocation must be realized in the background 

without user interaction. The grid systems are characterized by their dynamic, large scale 

and heterogeneous nature. The grid environment is large scale in terms of number of users, 

number of requests and number of resources. The resources are heterogeneous since they 

are not forced to be identical in grid environment. Moreover, the network presents a low 

bandwidth and a strong latency in most cases. A resource in the Grid may correspond to 

several different concepts. It may be a computational resource such as CPU, memory, 

storage unit, network; it may be a data source that provides metadata and its content such 

as database; or it may be a service, which is programmed to accomplish a specific task. On 

the other hand, a node corresponds to a computer in the grid, which contains some of those 

resources with a set of characteristics. The nodes in grid systems are dynamic in terms of 

dynamicity of their properties and dynamicity of their existence in the grid. At any time, 

there may be new nodes joining to the grid, or there may be some nodes that leave the 

system without any notice [FOSTER04b]. Under these characteristics, Grids aim to 

provide their users a large number of resources. Grid systems are widely used in today’s 

research and industry communities. For instance, computational scientists use to realize 

their heavy computational studies such as complex simulations, artificial intelligence, 
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image processing etc. Experimental researchers use grids to process experimental data that 

can have enormous sizes such as Large Hadron Collider (LHC) experiment in CERN. 

Corporations and industry also use grid resources to process and manage their high 

volumes of corporate data [FOSTER04b]. 

Due to the fact that the usage area of grid systems increases every day, the need for the 

adaptation of some existing concepts such as mediation systems to the grid environments is 

inevitable. The main difficulties in the adaptation period are caused by the different 

characteristics of the underlying environment. The main assumptions that exist in the 

distributed and parallel mediation systems do not hold in grid environments. Those 

assumptions can be listed as: i) nodes are homogenous, ii) system is stable and iii) there is 

a limited number of resources. The invalidity of those assumptions and characteristics of 

grid systems generate new critical problems and challenges in the extension of distributed 

and parallel systems to grids from the mediation systems’ point of view, especially in the 

distributed query-processing domain. Some of these problems, particularly in the domain 

of distributed query processing, can be listed as: i) resource discovery, ii) resource 

selection and task scheduling, iii) autonomous computing and monitoring services, iv) 

replication and caching, v) security issues and others. From those, resource discovery and 

resource allocation are two of the most attractive topics for today’s research community. 

For that reason, in this thesis, we focus on resource discovery and resource allocation 

problems in the domain of distributed query processing in grid environments. 

1.2 Resource Discovery (RD) for Query Processing in Grid Environments 

Resource discovery in grids can be defined as searching and locating resource 

candidates that are suitable for a job in which processing environments’ constraints are 

clearly specified. Resource discovery should be realized in a reasonable time by sticking 

the reliability restrictions considering heterogeneity, dynamicity and scale of the grid 

system. In this perspective, several methods have been proposed for RD problem in grid 

environments. Although there can be found many different classifications, existing studies 
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are generally classified into three main categories [HAMEURLAIN08, 

HAMEURLAIN10]: methods based on centralized/hierarchical systems [YU03, 

FOSTER04b, ANTONIOLETTI05, ELMROTH05, RAMOS06, KAUR07, MOLTO07], 

methods based on the peer to peer (P2P) systems [CAI03, CHEEMA05, MARZOLLA07, 

TRUNFIO07], and methods based on agent systems [CAO02, DING05, 

KAKARONTZAS06, YAN07, YU06]. Although these studies provide fruitful solutions to 

the RD problem, each class of studies has its own advantages and drawbacks. More 

precisely, the centralized and hierarchical methods provide fully functional resource 

discovery algorithms but they are badly adapted to the large scale and dynamic nature of 

the grid environments since the indexing mechanisms for the resource discovery process 

are centralized. On the other hand, in P2P based systems, the algorithms benefit all the 

advantages of the underlying environment. However, the methods suffer from the 

scalability issues, single point of failures or limitations that came with the type of the 

chosen P2P structure. Lastly, in agent-based studies, the algorithms exhibit the advantages 

of agent technologies such as flexibility and autonomy. However, the topological 

structures, which are used by the agents, cause single point of failure and bottleneck 

problems in large scale and highly dynamic environments such as grids. Resource 

discovery for query processing in grid environments requires a resource discovery method, 

which: i) is scalable, ii) allows discovery of resources by querying more than one resource 

attribute, iii) is prone to node failures and changes in the network topology, iv) allows 

searching resources with attributes within range values and v) returns up-to-date results 

taking dynamic resource attributes into consideration. Considering these requirements, to 

the best of our knowledge, we cannot find a complete resource discovery method for query 

processing in grid environments, which suits all listed requirements. For that reason, in this 

thesis, we first aim at proposing a resource discovery algorithm, which supports all the 

requirements listed above. In this manner, we first propose self-stabilizing spanning tree 

construction algorithms, to be used as topology control mechanisms over the grid 

environment by generating tree structures, which allow scalable and efficient broadcasting 
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and converge-casting of RD messages in the network. The proposed topology control 

mechanism is designed to be self-stabilizing to cope up with the dynamicity of the 

environment. Then, using the constructed tree structure, we propose a resource discovery 

algorithm, which broadcasts resource requirements and converge-casts up-to-date 

information of resources to the queried node. For this, we provide a detailed literature 

survey related to both resource discovery algorithms and self-stabilizing spanning tree 

construction algorithms. Then we propose three self-stabilizing spanning tree algorithms 

aiming at construction of spanning trees rooted round the center of the graph. We provide 

complexity analyses of proposed algorithms. We have implemented the proposed 

algorithms and two similar existing algorithms in the ns2 simulation environment. We 

compared our algorithms to each other and to the similar existing algorithms in terms of 

the spanning tree construction performances and discussed their suitability to the examined 

problem. Then, we propose spanning tree based resource discovery algorithm exploiting 

the advantages of the constructed spanning tree. We provide complexity analyses of the 

algorithm and we consolidate our analyses by implementing the algorithm in ns2 

simulation environment. We compared our algorithm with similar existing studies which 

use flooding based resource discovery methods and showed weaknesses and strengths of 

our algorithm. 

1.3 Resource Allocation (RA) for Query Processing in Grid 
Environments 

After completion of RD phase, a set of resource nodes, which are capable of executing 

the query, is returned to the system. From this point, in order to run the tasks effectively, a 

resource allocation mechanism must be executed in order to: (i) choose how many of those 

resources will be used, (ii) which nodes should be involved in the execution of the query 

and (iii) how should the system react in case of node failures during execution of the 

query. These issues may drastically affect the performance of the query execution in grid 

environments. Resource allocation for query processing can be defined as selecting and 
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allocating suitable nodes for executing query operators aiming at optimizing the runtime of 

the query execution. The optimum allocation of resources for query processing in large 

scale environments is proved to be NP-Complete [WANG90]. For that reason, existing 

studies search near optimal solutions for the RA problem using heuristic approaches. 

However, finding near optimal resource allocation alone may not be sufficient for 

efficiently processing queries in grid environments; defining the policies in case of node 

failures is also very important and should be included in the resource allocation method. 

Since grid environments are dynamic, eventual node failures are likely during the 

execution of queries. These failures might be very costly if the queries are long running 

and if the system is not designed fault-tolerant. Therefore fault-tolerance can be considered 

as a must in processing queries in grid environments. There can be found many studies in 

the current literature which address the problem of resource allocation for query processing 

in grid systems [GOUNARIS04, GOUNARIS05, SOE05, GOUNARIS06b, SILVA06, 

BOSE07, KOTOWSKI08, LIU08, GOUNARIS09]. Several survey studies examine and 

evaluate these studies with classification [COSTA08, EPIMAKHOV11, COKUSLU12]. 

Although the existing resource allocation studies provide interesting solutions to this 

problem, to the best of our knowledge none of these studies consider decreasing the scale 

of the search space for the candidate resources, which is very important for the scalability 

of the resource allocation phase. Moreover, we have found few studies which focus on the 

communication costs of the query execution [BOSE07, LIU08]. Another issue is that 

although many of these studies examine dynamicity of nodes, we find a very limited 

number of studies [SMITH05, SMITH07, TAYLOR08, BESTEHORN10] that consider 

dynamicity of nodes in terms of their existence in the grid environment. However, none of 

them is specialized on processing stateful query operators especially in grid environments. 

Considering our analysis on the current literature, we believe that there are still open issues 

that are not mentioned completely in the resource allocation domain for query processing, 

regarding the grid systems’ characteristics. For these reasons, in this thesis, we also 

propose new algorithms for resource allocation for query processing in grid systems. We 
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first provide a detailed literature survey about resource allocation algorithms and fault-

tolerant query processing algorithms. Then we propose a new resource allocation algorithm 

for one operator in a query taking proximities of candidates to the data sources into 

consideration by scaling down the search space for the candidate resources. Then we 

propose a resource allocation algorithm for processing the entire query consisting of 

multiple join operators exploiting the proposed algorithm for one join operator. Lastly we 

propose a resource allocation protocol for fault-tolerant query processing in grid 

environments. We provide analyses of the proposed algorithms. Then we consolidate the 

theoretical analyses with the simulation results and comparisons with the similar existing 

algorithms. 

 

 

 

1.4 Experimental Validation 
Grid is a respectively new concept in the information society. Although many discrete 

event simulators for networking can be found in the literature, most of them do not 

efficiently model grid environments since they do not include computing capabilities of 

resources in their model. In our case, in order to test and verify our studies, we need either 

a real grid environment or a suitable simulator. We have examined existing simulators 

which are suitable for grid applications namely GridSim, OptorSim, OPNET and ns2, we 

have evaluated them by considering their suitability to our objectives and we have 

concluded to use two of them in our simulations, GridSim and ns2. A detailed analysis 

about the aforementioned simulators can be found in [COKUSLU11_b]. 

GridSim [SULISTIO08] is a discrete event simulator which is aimed at simulating task 

scheduling policies in grid environments. It models the resources by considering their 

MIPS rating, number of processing units, loads and their baud rates. The tasks are 

simulated by considering input data size, length of task in number of instructions and 

output data size. The resources, tasks and users are connected via simulated network links 
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which consider baud rate, propagation delay and  maximum transmission unit in bytes. 

OptorSim [BELL03] is another grid simulation environment which simulates architecture 

of the EU Data Grid [GAGLIARDI02]. The simulation was constructed assuming that the 

Grid consists of several sites, each of which may provide computational and data-storage 

resources for submitted jobs. Computing Elements (CEs) run jobs, which use the data in 

files stored on Storage Elements (SEs) and a single Resource Broker controls the 

scheduling of jobs to CEs. In OptorSim, the resources are specified by their number of 

worker elements in the computing element in each site, number of storage elements in each 

site, the size of storage elements and bandwidth between each site. The jobs are specified 

by their file requirements, required file sizes, computing elements' preferences to execute 

the job and job selection probabilities. OPNET is a commercial high level event based 

network simulator. It is a very large and powerful network simulator with variety of 

possibilities such as simulating entire heterogeneous networks with various protocols. 

OPNET provides various tools for simulation including network model editor, node model 

editor and process model editor. OPNET supports grid computing for distributed 

simulations. It provides various computing and networking resource types from various 

vendors. Therefore it gives the user the ability to generate heterogeneous realistic 

environments with detailed characteristics of resources. In the application level, it allows 

users to implement their own jobs to be executed on the simulated environment. Ns2 

(Network Simulator 2, version 2.34) [FALL10] is a discrete event simulator which is 

developed at ISI, California. Ns2 provides substantial support for simulation of TCP, 

routing, and multicast protocols over wired and wireless (local and satellite) networks. Ns2 

began its development in 1989 as a variant of the REAL network simulator. In years it has 

evolved substantially and has included contributions from other researchers, including 

wireless code from the UCB Daedelus and CMU Monarch projects and Sun Microsystems. 

The ns2 has become the de facto standard simulator in experimenting wired and wireless 

network applications since it is an open source and powerful tool in simulating networks. 

Although all these simulators provide powerful tools for simulating grid applications, 
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each of them has some drawbacks that can be used as a decisive factor. For instance, 

OPNET is a complete simulator, however it is not an open-source software. This property 

limits the reachability of the environment. On the other hand, OptorSim simulates the grid 

environment without having support for real implementation of testing protocols. 

Regarding the characteristics of those simulation environments, we decided that GridSim 

and ns2 are two suitable simulation environments for validating our algorithms.  

 

1.5 Contributions 
In this thesis, we propose algorithms for resource discovery and allocation for query 

processing in grid environments. We have listed the distinguishing characteristics of grid 

systems and we aim at contributing the research community by tackling with each one of 

these characteristics in both problems, RD and RA. In RD part, the proposed algorithms 

and their contributions are listed as follows:  

i. Self-stabilizing spanning tree construction algorithms: We propose three self-stabilizing 

spanning tree algorithms. With these algorithms, we contribute the scalability problem 

by finding spanning trees with smaller diameters. We also deal with the dynamicity 

problem by designing our algorithms in a self-stabilizing manner. We compared our 

algorithms with the similar studies and showed that the proposed algorithms outperform 

the compared studies in terms of both spanning tree construction costs and spanning tree 

diameters. 

ii. Spanning Tree Based Resource Discovery (STRD) algorithm: We propose a spanning 

tree based resource discovery algorithm, which extracts up-to-date resource information 

by exploiting the spanning tree. With this algorithm, we tackle the heterogeneity 

problem by contacting each node in the grid distinctly. We also contribute to the 

scalability problem during the resource discovery by exploiting multi-cast and 

converge-cast operations over the spanning tree structure. 
In RA problem, the proposed algorithms and their contributions are as follows: 
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i. Single Join Operator Resource Allocation (SJORA) algorithm: In SJORA algorithm, 

we allocate resources for queries consisting of a single join operator. The SJORA 

algorithm is composed of the following two consecutive algorithms:  

Proximity Based Candidate List Generation (PBCG) algorithm: In this algorithm, we 

decrease the search space for the candidate list of join tasks. The limited number of 

candidate resources contributes the scalability of the resource allocation algorithm. We 

also generate a list of candidate nodes that are close to the data sources. This idea 

contributes to the performance of the query execution by decreasing the 

communication costs. 

Join Task Resource Allocation (JTRA) algorithm: This algorithm finds optimum 

allocation of resources for one join task in a query. In this algorithm we deal with the 

heterogeneity problem by considering different communication costs between 

candidate and data sources. 

ii. Multi-join Resource Allocation (MJORA) algorithm: We propose the query resource 

allocation algorithm to materialize initial resource allocation for a multi-join operator 

queries. We contribute to the scalability and heterogeneity problems by exploiting the 

JTRA algorithm.  

iii. Fault-Tolerant Resource Allocation (FTRA) Algorithm: We propose the FTRA 

algorithm to ensure fault-tolerance during the execution of the query. In this manner, 

we contribute to the dynamicity problem by passive replication of stateful operators in 

the query. 

 

1.6 Thesis Organization 
The rest of this document is organized as follows: Chapter 2 gives a detailed synthesis 

of recent studies related to resource discovery and resource allocation methods for query 

processing in grid systems by introducing classifications and evaluation criteria. We 

analyze existing studies and discuss their advantages and drawbacks. We identify open 

issues and potential contributions for RD and RA problems. In Chapter 3, we concentrate 
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on the resource discovery problem. We first propose self-stabilizing spanning tree 

algorithms to ensure efficient topology control for resource discovery. Then, we propose a 

spanning tree based resource discovery algorithm. In Chapter 4, we propose initial resource 

allocation algorithms for query processing in grid environments. We examine single join 

operator resource allocation algorithm, and multi-join resource allocation algorithm in 

detail. The fault-tolerant resource allocation algorithm in grid systems is proposed in 

Chapter 5. Finally conclusions and perspectives are presented in Chapter 6.  
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CHAPTER 2: STATE OF THE ART 
Résumé 

Dans ce chapitre, nous présentons une étude détaillée de la littérature à propos de la 

découverte de ressources et des algorithmes d'allocation de ressources pour le traitement 

des requêtes dans les systèmes Grille. En premier lieu, nous examinons les algorithmes de 

découverte de ressources par classification. En ce qui concerne nos analyses sur les 

algorithmes de découverte de ressources, nous étudions également  les algorithmes auto-

stabilisants de construction des arbres couvrants déjà existants et habituellement utilisés 

comme des mécanismes de contrôle de topologie pour la découverte de ressources. 

Ensuite, nous passons en revue les algorithmes existants d'allocation des ressources pour 

le traitement des requêtes dans les systèmes Grille par classification. Enfin, nous 

examinons les algorithmes à tolérance de panne d'allocation de ressources. 

 

Abstract 

In this chapter, we provide a detailed literature survey about resource discovery and 

resource allocation algorithms for query processing in grid systems. We first examine 

resource discovery algorithms by classification. Regarding our analyses about the existing 

resource discovery algorithms, we also survey existing self-stabilizing spanning tree 

construction algorithms to be used as topology control mechanisms for the resource 

discovery. Then we survey the existing resource allocation algorithms for query processing 

in grid systems by classification. Lastly we examine existing fault-tolerant resource 

allocation algorithms. 

 

2.1 Introduction 
Grid systems are very useful platforms for distributed computing, especially for 

situations in which the scale of data and user requests is very high. They have gained 

remarkable importance in the last decade since resource requirements of recent 



 25 

applications increased drastically. Their powerful computing capabilities attract many 

researchers’ attention and lead them to port their research to the grid environments. 

Distributed query processing is one of these domains in which many studies exist to deal 

with fundamental characteristics of grid environments such as large scale, heterogeneity 

and dynamicity. However, these characteristics bring new problems to the query 

processing domain such as resource discovery, resource selection, resource allocation, 

autonomous computing, monitoring, replication and caching, security issues and many 

others [GOUNARIS05]. In this thesis, we are focused on the resource discovery and 

resource allocation problems for query processing in grid environments. In order to 

understand the state of the art in these problems, in this chapter, we provide a detailed 

literature survey related to the resource discovery and resource allocation methods for 

query processing in grid environments. Firstly, in Section 2.2, we provide analyses for 

existing resource discovery studies with classification. Then, according to our conclusions 

on the current resource discovery methods, we directed our attention to topology control 

algorithms for resource discovery in grid systems. For that, we examined self-stabilizing 

spanning tree algorithms, which address scalability and dynamicity issues in grid 

environments. In Section 2.3, we provide a detailed literature survey on resource allocation 

algorithms for query processing in grid systems. Then, considering the dynamicity 

characteristic of grid environments, we provide a survey study related to fault-tolerance for 

query processing in grid. Finally in Section 2.4, we present our conclusions and 

perspectives about open issues and potential contributions on the RD and RA problems. 

2.2 Resource Discovery (RD) for Query Processing in Grid Environments 

Resource discovery problem in grid systems can be defined as searching and locating 

resource candidates, which are suitable for executing jobs in a reasonable time in spite of 

the dynamicity and large scale of the environment. Success of Grid systems mainly relies 

on efficient usage of the right resources. Therefore, resource discovery is an important step 

in finding these resources. But the characteristics of the grid systems make the resource 
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discovery a time consuming process, which can decrease the performance of the whole 

system. Several methods have been proposed to solve the resource discovery problem in 

Grid systems. The existing studies are classified into three main classes in the current 

literature [COKUSLU09, COKUSLU10_iji, HAMEURLAIN08, HAMEURLAIN10]: 

methods based on (i) centralized and hierarchical systems, (ii) P2P systems and (iii) agent 

systems. 

In this section, we provide a literature survey related to the resource discovery methods for 

query processing in grid systems. We examined the existing studies in three classes 

namely: grid resource discovery methods based on (i) centralized and hierarchical 

architectures, (ii) P2P systems and (iii) agent systems. A summary of the classification for 

resource discovery is shown in Figure 2.1. For each class of methods, we describe 

synthetically the main approach, followed by a deep analysis and comparison with respect 

to the most important criteria, namely: complexity, scalability, dynamicity, reliability and 

support for multi-attribute, dynamic-attribute and range queries. The importance and 

impact of these criteria are explained below: 

• Complexity is a basic measure which helps determining the runtime of the 

algorithm. In our thesis, complexity measure is considered in two aspects, message 

and time complexities. The message complexity deals with the number of 

transferred messages. Relatively higher message complexities may result in 

congestion in the network which may negatively affect the performance of the 

algorithms. On the other hand, time complexity determines how many steps are 

required for the termination of the algorithm. 

• Scalability is a very important measure, because grids are large scale environments 

in their nature. The performance of a system which is not scalable, degrades very 

rapidly as the size of the environment grows. This fact may cause the algorithm to 

perform poorly in such environments. 

• Dynamicity is another important factor in analyzing Grid algorithms since nodes in 
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Grid systems might be highly dynamic in terms of joining and leaving the system, 

mostly without any notice. The algorithms that tolerate the dynamicity of the 

environment are more suitable for grid systems.  

• Reliability is also an important measure because in some cases, erroneous query 

results may cause irrecoverable faults. For instance, RD algorithms, which may 

result false-positive errors might not be suitable in Grid systems. 

• Support for multi-attribute, dynamic-attribute and range queries is a decisive 

criterion on selecting the methodology in most cases since the running applications 

may require those types of queries.  

We also present a brief literature survey related to self-stabilizing spanning tree 

construction algorithms, which can be used as topology control mechanisms for resource 

discovery. 
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Figure 2.1 Classification for Resource Discovery Algorithms for Query Processing in Grid 

Environments  
 

2.2.1 Grid Resource Discovery Based on Centralized and Hierarchical Architectures  

Centralized and hierarchical systems emerged as suitable approaches, which provide 

easy to access tools for grid services [ANTONIOLETTI05, ELMROTH05, KAUR07, 

MOLTO07, RAMOS06, YU03]. In such systems, resource information is stored and 

updated in central or hierarchically located servers, and resource discovery is realized by 

querying these servers. Centralized and hierarchical resource discovery mechanisms are 

mostly used by the web service based grid resource management tools 

[ANTONIOLETTI05]. There are only few web services based tools that use other classes 

of approaches such as peer-to-peer resource discovery [TALIA04, TALIA05].  In this 
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subsection, we focus on centralized and hierarchical systems and present a survey of recent 

studies, which provide grid resource discovery services using centralized and hierarchical 

approaches [BEHESHTI07, CZAJKOWSKI01, ELMROTH05, FITZGERALD97, 

FOSTER97, KAUR07, LI02, MOLTO07, RAMOS06, RIEDEL07, YU03]. We classify 

them according to the topology of resource information. In centralized methods, resource 

information is stored in a central server, whereas in hierarchical methods resource 

information is divided and partially distributed to several locations. We give detailed 

analysis for each study and evaluate them according to important qualitative criteria 

namely, scalability, dynamicity, reliability and support for multi-attribute, dynamic-

attribute and range queries. 

 

2.2.1.1 Grid Resource Discovery Using Centralized Systems 

Grid resource discovery using centralized systems is excessively studied and 

implemented in grid environments. The main idea behind this class of methods relies on 

the central management of metadata related to the resource information in the grid 

environment. Most of the studies in this class profit from existing information provider 

systems such as LDAP (Lightweight Directory Access Protocol) or UDDI (Universal 

Description Discovery and Integration). There can be found many studies in this class, 

which became very popular in the first decades of grid systems [FITZGERALD97, 

KAUR07, MOLTO07, RIEDEL07, YU03, MOLTO07]. For instance, in [YU03], Yu et al. 

developed a web services based grid service publication directory system (GMD) in which 

service for resources and clients are provided via web by using XML formatted messages. 

Kaur and Sengupta [KAUR07] presented a centralized resource discovery mechanism for 

grids which relies on web services. In [MOLTO07], Molto et al. proposed a metascheduler 

grid service that can be accessed through the network by users who are interested in task 

allocation and scheduling in computational grids. In [RIEDEL07], authors present a web 

services based grid middleware (UNICORE 6) in which resources are represented by web 



 30 

services. In [FITZGERALD97], authors proposed a Meta-computing Directory Service 

(MDS) for resource management in grid systems which is based on LDAP central servers. 

 The grid resource discovery using centralized systems provide grid middleware 

developers an easy to use interface to manage grid resources. They keep grid resource 

information by using centralized databases. In a large-scale grid environment, the 

centralization of the service may easily create bottlenecks on the central servers. The 

bottleneck problem may be raised both because of frequent resource updates or large 

number of query requests waiting to be processed. The centralization causes another 

important problem in dynamic grids as being a single point of failure. Failure of one of the 

central servers in the system may cause the whole system to become unavailable. In some 

approaches, the idea of replication of central servers is depicted in order to eliminate single 

point of failures. But replication of servers in a large-scale dynamic grid may be very 

expensive in terms of communication costs. The proposed systems support the multi-

attribute and range queries since the resource information is stored in databases, which are 

capable of processing complex queries. But since the update of dynamic resource attributes 

are held in discrete intervals, most of these systems do not support dynamic-attribute 

queries. 

 

2.2.1.2 Grid Resource Discovery Using Hierarchical Systems 

In recent years, as the size of the grid environments grows, researchers directed their 

attention to hierarchical systems to overcome the problems caused by centralized systems 

in resource discovery. Many algorithms are proposed in this class to address drawbacks of 

the centralized systems [BEHESHTI07, ELMROTH05, LI02, RAMOS06, YIN07]. From 

those, Elmroth and Tordsson proposed a grid resource broker and job submission system in 

[ELMROTH05] in which index servers, which are responsible for resource information, 

are organized in a hierarchical topology. In [RAMOS06], Ramos et al. proposed a web 

service for resource discovery in grids, based on Globus Toolkit (GT3), a hierarchical 

topology in which the grid environment is divided into virtual organizations (VO). 



 31 

Beheshti and Moshkenani proposed a resource discovery method by joining agents, 

ontologies and web services [BEHESHTI07]. They used SOA concept in which the 

metadata related to resources is distributed to a portion of nodes. In [LI02] Li et al. 

presented a grid resource discovery model which is inspired by network routing 

mechanisms. In [YIN07], Yin et al. proposed a 3-layer hierarchical grid resource discovery 

method. 

The hierarchical systems based grid resource discovery algorithms provide more 

scalable platforms than the centralized ones and still provide simple user interfaces to 

manage grid resources. In a large-scale grid environment, the hierarchical topology of the 

service decreases the probability of bottleneck problem. However single point of failure 

problem still exists since failure of one of the master servers in the system may cause a 

large part of the nodes become invisible to the queries. All proposed algorithms in this 

class support the multi-attribute and range queries since the resource information is stored 

in databases that are capable of processing complex queries. And since, in many studies, 

the information is verified in the resource nodes after querying databases, the proposed 

algorithms also support dynamic-attribute queries. 

 

2.2.1.3 Comparison 

The summary of comparison between resource discovery using centralized and 

hierarchical systems can be seen in Table 2.1.  

 RD Using Centralized Systems RD Using Hierarchical Systems 

Scalability 
Not scalable due to bottleneck 

problem 

Better scalable because of the 

hierarchical distribution of load 

Dynamicity 

Tolerant to node dynamicity, but not 

tolerant to indexing mechanism's 

dynamicity 

Tolerant to node dynamicity, better 

tolerant to indexing mechanism's 

dynamicity 

Reliability 
Reliable in terms of query 

correctness, but not reliable in terms 

Reliable in terms of query correctness, 

better reliable in terms of single point of 
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of single point of failure failure 

Range Queries 

Supported since queries are resolved 

in centralized servers without any 

hashing 

Supported since queries are resolved 

within hierarchically distributed servers 

without any hashing 

Multi-attribute Queries 

Supported since queries are resolved 

in centralized servers without any 

hashing 

Supported since queries are resolved 

within the super-peers without any 

hashing 

Dynamic-attribute 

Queries 

Not supported because of the 

periodic updates 

Not supported because of the periodic 

updates 

Table 2.1 Comparison summary between two resource discovery methods 

Both centralized and hierarchical methods behave closely against nearly all the evaluation 

criteria. The main difference is in scalability and reliability. The centralized systems suffer 

from the bottleneck problems in large scale. There also exists the single point of failure 

problem. Even though some studies propose to replicate the centralized index server, this 

procedure might be very expensive in terms of messaging complexity in large scale. On the 

other hand, hierarchical systems distribute the load into many locations instead of one 

central server. This property increases the scalability of the system by distributing load on 

index servers. They also decrease the effect of single point of failures. In case of a failure 

of an index server, a part of the system becomes unreachable instead of the whole. Support 

for dynamic attribute queries requires that the query be processed within the resource 

nodes. Since the idea in the examined solutions is indexing the resource information in 

central locations, they do not support dynamic attribute queries. Some of the examined 

algorithms propose solutions for this problem, but the solutions are independent from the 

classification that we propose. By taking the evaluations into consideration, we can say 

that the centralized methods are not suitable for the large-scale environments. But they 

might be well suited to the systems in which the scale is small and indexing server is 

reliable. In such cases centralized systems can be used effectively. On the other hand, 

hierarchical methods are more suitable for environments in which scale is bigger since the 

load is distributed to many locations. But even the load is hierarchically distributed; those 
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methods may still suffer from bottleneck problem in large scale. 

 

2.2.1.4 Conclusions 

In this section, we have synthesized and analyzed recent grid resource discovery 

methods, which are based on centralized and hierarchical systems. We evaluated them 

according to the aforementioned qualitative criteria, and compared different classes of 

methods with each other. These types of resource discovery algorithms seem to have many 

disadvantages in large-scale dynamic grid environments. But their simple design brings 

them to the foreground and makes them suitable techniques to be used in many grid 

management tools. Most web service based grid management tools use centralized and 

hierarchical grid resource discovery techniques. With regards to the examined methods, it 

can be said that centralized and hierarchical systems based approaches are suitable for 

small-scale grid environments in which the dynamicity of nodes is low. In such 

environments, they provide a very simple and standard resource management platform. 

There is vast amount of ongoing research in this topic, which is aimed at solving problems 

mostly caused by scalability issues. 

 

2.2.2 Grid Resource Discovery Based on Peer to Peer (P2P) Systems  

In the first decade of Grid systems, centralized and hierarchical systems emerged as 

suitable approaches that provide an easy to use platform independent tool for Grid services 

[ANTONIOLETTI05]. However, most of these methods could not be adapted to today’s 

large scale environments since scalability and dynamicity in grids restrict their usage area. 

For these reasons, other approaches were investigated to be used in grid systems to 

overcome these problems. Thus, researchers directed their attention to the P2P systems to 

evaluate their capabilities on grid platforms. Synergy and convergence between grid and 

P2P systems were clearly pointed out in [IAMNITCHI03, IAMNITCHI05, TALIA05]. 

P2P systems were proven to work efficiently under large-scale environments. A rich 
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survey on P2P systems can be found in [ANDROUTSELLIS04]. The P2P based 

algorithms can be classified into three classes depending on how peers are organized: i) 

structured P2P systems, ii) unstructured P2P systems and iii) super-peer systems 

[HAMEURLAIN10]. In unstructured P2P systems, the peers are not organized to construct 

any topology and resource discovery is realized by diffusion of messages to the network. 

In super-peer systems, some nodes are selected to act as directory services (super-peers). 

Resource information is held by those super-peers in order to find resources in the grid 

system. In structured P2P systems, peers are organized into virtual organizations. 

Discovery of resources in such systems is realized by using distributed hash tables (DHT). 

Different methods were proposed by using all these different P2P systems [CAI03, 

CHEEMA05, MARZOLLA07, TRUNFIO07]. Very comprehensive and detailed survey 

studies on the grid resource discovery based on P2P systems can be found in 

[TRUNFIO07, RANJAN08, SEDAGHAT08, HAMEURLAIN10].  

In this section, we first describe recent resource discovery algorithms based on three 

different classes of P2P systems: Unstructured P2P Systems, Super-peer Systems and 

Structured P2P Systems. Next, we give a detailed analysis of these algorithms. Then we 

provide a qualitative evaluation for each class of algorithms with respect to the introduced 

criteria. 

2.2.2.1 Grid Resource Discovery Based on Unstructured P2P Systems 

The unstructured P2P systems are the first milestones of the P2P systems. The 

participants do not construct a special network topology. Instead, they are connected to 

each other through their neighboring nodes. In unstructured P2P systems based grid 

resource discovery studies [FILALI08, IAMNITCHI03], each node in the grid is treated as 

a participant of the P2P system and is responsible for providing its resource information. 

For instance, Iamnitchi and Foster [IAMNITCHI03] proposed a P2P approach in which 

nodes construct an unstructured P2P system by publishing their resource information to the 

network. Filali, Huet, and Vergoni [FILALI08] proposed an unstructured P2P based 
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resource discovery method for Grids in which the resource nodes send their resource 

information periodically to their neighbors and the neighbors store this information in their 

cache. 

Considering the nature of the unstructured P2P resource discovery techniques, in most 

cases, because of the common routing mechanisms; the complexity of the algorithms are 

around O(N2) which makes the approach unscalable. The message and in some cases time 

complexities have higher order of growth than the scale of the network. 

On the other hand, this approach can easily handle dynamicity of the Grid since both 

resources and indexing nodes are distributed to the entire network. In any case, even if the 

network is very dynamic, queries are not lost in the network and propagation of the queries 

continues until a TTL value is reached. Nearly all unstructured systems suffer from false-

positive errors caused by the usage of TTL limitations. Even if the searched resources exist 

and are available on the Grid, the system may return unsuccessful results to the queries 

because the TTL limit is reached. Otherwise, when TTL is set to a higher value, asymptotic 

increase of the messages negatively affects the bandwidth and runtime of the algorithms. 

Nevertheless, the unstructured P2P systems support range, multi-attribute and dynamic-

attribute queries easily. 

2.2.2.2 Grid Resource Discovery Based on Super-Peer Systems 

The super-peer systems emerged as an alternative to the unstructured P2P systems in 

order to address scalability issues. In super-peer systems, some nodes (super-peers) in the 

environment are considered to be privileged and act differently from the remaining nodes 

[YANG03]. Most commonly, in super-peer based resource discovery algorithms, the 

super-peers are responsible for keeping the information of a group of nodes. There can be 

found many studies in the current literature which use super-peer systems based resource 

discovery [MARZOLLA05, MASTROIANNI05, PUPPIN05]. Mastroianni, Talia, and 

Verta [MASTROIANNI05] proposed a resource discovery mechanism in which some 

nodes are selected as super-peers acting as directory services. Puppin et al. [PUPPIN05] 



 36 

proposed a grid information service based on super-peer approach. They defined some 

nodes as super-peers, and then created clusters by using the super-peer neighborhoods. 

Marzolla, Mordacchini, and Orlando [MARZOLLA05] defined the concept of Workload 

Management Systems (WMS) which act as an indexing service for a subset of virtual 

organizations in the Grid.  

Most super-peer based P2P algorithms use flooding between the super-peers. Decreasing 

the size of the flooding domain reduces time and message complexities of algorithms. 

Nearly all of this type of algorithms have message complexities O(S2) and time 

complexities O(S) where S is the number of super-peers in the network. Even these types 

of algorithms can be considered as more scalable than unstructured systems; super-peers 

may suffer from being bottlenecks in the system when the number of requests is large. 

Moreover, the super-peers are responsible for a set of resources and failure of a super-peer 

will break the imaginary connection of the resources which exist and are available. 

Therefore, dynamicity of a super-peer badly affects the domain of the queries. This fact 

also negatively affects the reliability of this approach by turning super-peers into single 

point of failures. However, since the queries are resolved by super-peers by checking the 

index tables, this approach supports range queries and multi-attribute queries easily. But 

because of the resource information is collected by the super-peers at periodic intervals, 

this method does not support dynamic-attribute queries in its nature. 

2.2.2.3 Grid Resource Discovery Based on Structured P2P Systems 

The structured P2P systems become popular in the last decades of the P2P systems by 

the use of distributed hash tables (DHT). In structured P2P systems, the identifier values of 

information is hashed and mapped to a set of nodes in the system in a deterministic or 

distributed fashion [ELANSARY03]. The structured P2P systems based resource discovery 

methods [ANDRZEJAK02, CAI03, OPPENHEIMER04, SPENCE03, TALIA07] use 

DHT’s to store resources’ information. Therefore the resource discovery is realized by 

DHT lookups in most of these studies. For instance, Cai et al. [CAI03] proposed a grid 
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resource discovery system (MAAN), based on P2P, which supports multi attribute and 

range queries. Each MAAN node is an instance of a Chord system and the resource 

information is mapped to Chord key-space. Andrzejak [ANDRZEJAK02] proposed a P2P 

grid resource discovery mechanism based on CAN P2P system. Oppenheimer et al. 

[OPPENHEIMER04] proposed a structured P2P based resource discovery mechanism 

(SWORD) which supports both range queries and multi-attribute queries. In SWORD, the 

server nodes are connected to each other by using Bamboo P2P system and use DHT 

system to index the resources. In XenoSearch, Spence and Harris [SPENCE03] proposed a 

P2P based resource allocation method for distributed environments. The proposed 

algorithm is an extension of the Pastry P2P system [ROWSTRON01]. Talia, Trunfio, and 

Zeng [TALIA07] proposed a DHT based resource discovery mechanism for large scale 

Grids which is based on Chord Structured DHT system.  

Since these algorithms use topological structures, time and message complexities of 

the algorithms are around O(logN). In many algorithms all resource nodes get involved in 

the query processing, which means that, theoretically, all nodes will have the same load. 

This eliminates the bottlenecks in the system and ensures the scalability of the structured 

P2P approach. On the other hand, in most algorithms, the queries are distributed to the 

network by following a defined path in the topological structure. Therefore, failure of a 

node which will forward the query may result in loss of queries in the network. This brings 

the single point of failure problem in a dynamic Grid environment. But, the use of 

structured query routing mechanisms eliminates false-positive errors since the query is 

relayed to the end of its search domain. Even if the nature of structured P2P based resource 

discovery algorithms do not support range, multi-attribute and dynamic-attribute queries, 

nearly all algorithms that are developed in this scope find reasonable solutions to support 

all different types of queries. 
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2.2.2.4 Comparison 

We described and analyzed several grid resource discovery algorithms that are 

developed by using different P2P techniques. Although each algorithm has its own 

advantages and disadvantages, commonalities can be clearly distinguished when they are 

examined in their own classes. Regarding those commonalities, a comparison can be easily 

performed between three different classes of P2P techniques. A summary of comparison 

can be seen in Table 2.2 which is described below. 

 

 Unstructured P2P Super-peer P2P Structured P2P 

Scalability Not scalable due to time 

and message complexities 

Not scalable due to 

bottlenecks 

Scalable since complexities are 

low and load is distributed 

Dynamicity Tolerant to node 

dynamicity since queries 

are resolved within the 

nodes 

Performs poorly when the 

Grid is dynamic 

Performs poorly when the Grid 

is dynamic 

Reliability Not reliable because of the 

false-positive errors 

Not reliable because of the 

false-positive errors and 

single point of failures 

Reliable since no single point 

of failures and no false-positive 

errors exist 

Range Queries Supported  since queries 

are resolved within the 

nodes without any hashing 

Supported  since queries are 

resolved within the super-

peers without any hashing 

Supported  using complicated 

techniques 

Multi-

attribute 

Queries 

Supported  since queries 

are resolved within the 

nodes without any hashing 

Supported since queries are 

resolved within the super-

peers without any hashing 

Supported using complicated 

techniques 

Dynamic-

attribute 

Queries 

Supported  since queries 

return always up-to-date 

results 

not supported since resource 

information in the super-peers 

is updated in discrete 

Supported  using complicated 

techniques 
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intervals 

Table 2.2 Summary of comparison between P2P based resource discovery methods 

Regarding our analyses, we can say that the unstructured P2P based grid resource 

discovery systems are suitable for small scale, highly dynamic Grid environments in which 

different types of queries are required. If the scale is large, and false-positive errors are 

fatal, then other methods should be examined. Super-peer based grid resource discovery 

mechanisms are suitable for middle-scale Grid networks in which reliability of super-peers 

is strictly provided. They are not suitable for dynamic-attribute queries and if the false 

positive-errors cause serious problems. Structured P2P based methods, on the other hand, 

are suitable for large-scale Grid systems in which reliability is important and dynamicity is 

low. 

2.2.2.5 Conclusions 

In this section, we provided a literature survey related to resource discovery methods 

based on P2P systems with classification. For each class of methods, we described 

synthetically the main idea, with a detailed analysis. A qualitative evaluation of described 

methods was provided. With respect to our analyses and evaluations, it can be concluded 

that P2P systems provide a wide range of solutions to the resource discovery problem 

meeting different requirements in each class. The unstructured P2P systems based 

approaches are considered to be the most suitable solutions regarding the reliability, 

dynamicity and support for different types of queries properties. However they are poorly 

adapted to the large scale of the environment since the underlying multicasting methods 

are flooding based in general. On the other hand, super-peer based systems answers the 

scalability issues with trading off the dynamicity and reliability problems. The most recent 

solutions, structured P2P systems based resource discovery, conforms many of the required 

specifications by trading of simplicity of the RD method. We believe that P2P systems 

provide very suitable platforms to be used in the RD problem. Advantages of each class 

should be examined carefully and a combination of them should be studied as an 
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alternative RD method.  

2.2.3 Grid Resource Discovery Based on Agent Technologies 

In this section, we propose a synthetic review of the state of the art and analysis of 

some recent resource discovery algorithms that are based on agent systems. Many of these 

algorithms profit from using agents as monitoring services. On the other hand studies, 

which are based on mobile agents (MA), profit mainly from their autonomy property, 

which allows the query to determine migration site by itself. Although the type of the 

utilized agent differs from each other, we decided to classify them according to their 

underlying network topologies since we believe that underlying topology has more impact 

on the evaluation of these algorithms. In this perspective, we defined two classes: 

algorithms that do not rely on a structured network topology and those that generate a 

network topology to accomplish resource discovery tasks. We also provide an evaluation 

for each class of grid resource discovery algorithms. Then, we show the comparison 

between RD methods based on different classes of agent systems. 

2.2.3.1 Agent Based Grid Resource Discovery on Unstructured Network Topology 

In agent based grid resource discovery approaches in which the underlying network 

topology is unstructured [DING05, JUN00, TANG06, YU06], the agents and the agent 

requests are diffused to the environment freely without any pattern to search resources. 

More precisely, Ding et al. [DING05] proposed a heuristic agent-based resource discovery 

algorithm in their study in which agents cooperate to find available resources. Jun et al. 

[JUN00] introduced an agent-based resource discovery model in which the agents running 

at different nodes learn about the existence of each other using a mechanism called 

distributed awareness. In [YU06], a mobile agent based grid resource management system 

is presented in which an information server creates mobile agents according to the required 

resources’ properties. Tang and Huang [TANG06] proposed a grid resource management 
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algorithm based on mobile agents. They also described an architectural model for 

acquisition of Grid information.  

In agent based grid resource discovery approaches in which the underlying network 

topology is unstructured, the system does not suffer from bottleneck problem. The main 

factor which affects the scalability of the system is diffusion technique of the requests. 

When agents are used, the diffusion is handled by using flooding approach which is 

unscalable because of its message complexity. On the other hand, if mobile agents are 

used, because of their autonomy and self-decision properties, more clever routing 

techniques are applied to increase scalability. On the other hand, when the Grid is 

dynamic, since in agent based approaches flooding is used to distribute the queries, 

dynamicity of the nodes does not perturb the dissemination of queries. But when the 

mobile agents are used, the queries are routed on a single path, and the failure on any node 

on this path may cause loss of queries in the network. The algorithms do not have single 

point of failures in general since central managers do not exist. Moreover, the distribution 

of queries is not limited by a TTL value which eliminates false-positive errors. But we 

believe that in large scale environments in which an unstructured network topology exists, 

TTL values are essential to avoid extremely long query response durations. Nevertheless, 

nearly all analyzed algorithms which belong to this classification support range, multi-

attribute and dynamic-attribute queries easily since they process queries within the nodes 

without any discrete mapping function such as hashing. 

2.2.3.2 Agent Based Grid Resource Discovery on Structured Network Topology 

In this class of studies [KAKARONTZAS06, MANVI05, PUH07, YAN07], the agents 

generate structures such as clustered virtual organizations to hierarchically distribute 

resource information management. The resource discovery queries are processed by agents 

that are responsible from a group of resources’ information. For instance, Yan et al. 

[YAN07] proposed a system in which the resources are divided into some Virtual 

Organizations (VO) each having an index server and several nodes. Kakarontzas and 
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Savvas [KAKARONTZAS06] presented an agent-based approach to grid resource 

discovery. The approach is based on client agents which act on behalf of Grid users. In 

[MANVI05], an agent based resource allocation model (ARAM) is presented in which the 

resource information is updated by interacting with the grid information servers. In their 

design, mobile agents, which are called Job Agents (JA), search for the available resources. 

Puh, Jezic, and Kusek [PUH07] proposed a multi-agent resource discovery algorithm for 

Grids. 

In structured networks, the bottleneck problem is eliminated since the load on nodes is 

distributed. Moreover, because of the structured nature, migration of mobile agents or 

distribution of queries is held with more efficient routing techniques which increase the 

scalability of the system. But this advantage brings some problems such as single point of 

failures. When the Grid is dynamic, since some nodes act as relay nodes or manager of a 

subset of resource nodes, the dynamicity of the network may perturb the dissemination of 

queries. The failure of a node in the structure will cause loss of queries in the network. 

Moreover, failure of a node which manages a large subset of resources will cause a large 

number of resources to become invisible to the queries even if they exist. On the other 

hand, nearly all analyzed algorithms which belong to this class support range and multi-

attribute queries easily since they are processed within the nodes without any discrete 

mapping function such as hashing. The dynamic-attribute queries are also supported by the 

use of agent technology which allows the resources to send updates about their dynamic 

attributes continuously instead of at periodical intervals. 

2.2.3.3 Comparison 

A summary of the comparison can be seen in Table 2.3. The agent based resource 

discovery systems that use unstructured network topology is less scalable than those which 

use structured network topology because of the larger time and message complexities. 

However they are more tolerant to dynamicity of environment caused by the use of 

flooding of messages. Both classes of methods are considered to be unreliable because of 
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either single point of failures or false-positive errors. Luckily both classes of methods 

support all types of queries. 

 Unstructured Network Topology Structured Network Topology 

Scalability Not scalable due to time and message 

complexities 

Scalable because of the hierarchical 

distribution of load 

Dynamicity Tolerant to node dynamicity since 

queries are distributed in parallel, but 

not tolerant in some approaches in 

which query migrates on a single path 

Not tolerant since dynamicity of nodes in the 

structure may result in disconnectivity of a 

large portion of the resources 

Reliability Not reliable because of either false-

positive errors or single point of failures 

Not reliable because of the single point of 

failures 

Range Queries Supported since queries are resolved 

within the resource nodes without any 

hashing 

Supported since queries are resolved within 

the nodes without any hashing 

Multi-attribute 

Queries 

Supported since queries are resolved 

within the resource nodes without any 

hashing 

Supported since queries are resolved within 

the nodes without any hashing 

Dynamic-

attribute Queries 

Supported since queries are resolved 

within the resource nodes without any 

hashing 

Supported since agents update the resource 

information dynamically 

Table 2.3 Summary of comparison between agent based resource discovery methods 

 

2.2.3.4 Conclusions 

Several agent based grid resource discovery algorithms are described and analyzed in 

this section. Comparison of each class of agent based resource discovery methods is 
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explained with respect to the defined criteria. Both structured and unstructured network 

topology based methods have their own advantages and disadvantages. Regarding the 

analysis, we can say that on top of an unstructured network topology, scalability and 

dynamicity properties depend on which type of agent is used: mobile agent or agent. In 

large scale grids in which dynamicity of nodes is relatively low, mobile agent based 

systems are preferable because of their autonomy properties that allow efficient migration. 

If the scale is relatively small and dynamicity is high, agent based algorithms become 

advantageous since they eliminate single point of failures. On the other hand in structured 

network topologies, regardless of which kind of agent is used, the system is scalable since 

hierarchical structuring of the network decreases the complexity without generating 

bottlenecks. But those systems generally suffer from the single point of failures since 

manager nodes’ dynamicity badly affects the reliability. 

 

2.2.4 Global Evaluation of Resource Discovery Methods 

We analyzed and evaluated recent studies related to different methodologies used in 

grid resource discovery in the previous sections. We focused on centralized/hierarchical 

systems, P2P systems and agent systems based grid resource discovery techniques for 

query processing. In Table 2.4, a summary of comparison of the different methodologies 

can be found. 

 

 RD Based on Centralized / 

Hierarchical Systems 

RD Based on P2P Systems  RD Based on Agent Systems 

Scalability  Suitable for small-scale grid 

environments 

Suitable for large-scale grid 

environments  

Suitable for small-medium 

scale grid environments  

Dynamicity  Tolerant to resource 

dynamicity but not tolerant 

to indexing mechanism’s 

Perform poorly when the 

environment is dynamic  

Tolerant because of the 

autonomy property of agents  
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dynamicity 

Reliability  Reliable in terms of query 

correctness, but not reliable 

in terms of single point of 

failure 

Reliable since false-positive 

errors and single point of 

failures do not exist  

Not reliable because of either 

false-positive errors or single 

point of failures  

Range 

Queries  

Supported Supported using complicated 

techniques  

Supported since queries are 

resolved within the resource 

nodes without any hashing  

Multi-

attribute 

Queries  

Supported Supported using complicated 

techniques  

Supported since queries are 

resolved within the resource 

nodes without any hashing  

Dynamic-

attribute 

Queries  

Not supported because of 

periodic updates of resource 

information 

Supported using complicated 

techniques  

Supported since queries are 

resolved within the resource 

nodes without any hashing  

Table 2.4 Summary of Comparison Between Different Classes of RD Methods 

The Centralized/Hierarchical systems, P2P systems and Agent systems based techniques 

are broadly being studied in today’s grid resource discovery systems. The resource 

discovery methods based on the Centralized and Hierarchical systems were heavily used in 

the first decade of grid environments. They became a de-facto standard in grid resource 

management very rapidly [ANTONIOLETTI05]. Their simple design brings them to the 

foreground and makes them suitable techniques to be used in many grid management tools. 

However, these methods have many disadvantages in today’s large scale dynamic grid 

environments. With regards to the examined studies, we can say that these methods are 

suitable for small scale grid environments in which the dynamicity of nodes is low. In such 

environments, they provide a very simple and standard resource management platform. 

There is vast amount of ongoing research in this topic which is aimed at solving problems 

mostly caused by the scalability issues. On the other side, most recent P2P techniques use 
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structured DHT systems which increase the performance of the queries drastically. 

Moreover, usage of the DHT mappings brings the scalability and reliability of the P2P 

systems since all nodes in the system involves the resource discovery process. But, DHTs 

are not miraculous and have some disadvantages for the resource discovery domain. The 

usage of DHTs limits the RD algorithm in terms of support for dynamic-attribute queries. 

Since dynamic-attributes of resources are changing in time, keeping these attributes in 

DHTs is not feasible. To solve this problem, many algorithms use the topological structure 

of the overlay to efficiently distribute the query directly between the resource nodes. 

Inheriting all properties of overlay systems, P2P based grid resource discovery methods are 

suitable for large scale dynamic environments in which reliability of queries is important. 

Lastly, agent based systems are attractive, mainly because of their autonomy property. 

They have capabilities to determine new migration sites according to their migration 

policies. This property might easily be used to accomplish efficient route selection for 

queries which converges to the result in each step. However, their non-deterministic nature 

results in false positive errors in many recent studies in which inefficient flooding 

techniques are avoided. Most of the agent based RD techniques process the queries inside 

the resource nodes while the query is traversing the network. This brings the advantage of 

having up-to-date resource information all the time which makes this class of algorithms 

support dynamic-attribute queries. Regarding these attributes, agent based resource 

discovery methods are suitable for dynamic middle-scale Grid environments in which 

some false-positive errors are acceptable.  

2.2.5 Self-stabilizing Spanning Tree Construction Algorithms 

Spanning tree algorithms are widely used in many distributed applications as efficient 

topology control mechanisms. A spanning tree is a subset S of a graph G which contains 

every node in G and which does not contain any cycles. With the growth in the scale of 

distributed systems such as grid systems, the need for such topological control mechanisms 

has gained significant importance. These control mechanisms decrease the complexity of 
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distributed algorithms caused by the connectivity of the underlying graph. By using 

spanning trees, many distributed applications, especially those involving multicast or 

broadcast operations, can be optimized by making use of their properties. Many algorithms 

have been developed to build different types of spanning trees. Several studies focus on 

constructing minimum spanning trees in which the sum of edge weights is minimized 

[AHUJA89, AWERBUCH87, GALLAGHER83, LIEN88]. Studies such as [BLIN09] 

construct a minimum degree spanning tree in which degrees of vertices are minimized. 

Some other studies aim at constructing minimum diameter spanning trees in which 

diameter of the resulting spanning tree is minimized [BUTELLE95]. Besides classical 

distributed spanning tree construction algorithms, some of these studies also consider 

dynamicity and fault tolerance in their design. Self-stabilizing spanning tree algorithms 

have gained importance recently [GARTNER03] by the wide spread usage of unstable 

systems. Self-stabilizing concept guarantees the validity of spanning tree structure without 

having the need to regenerate the spanning tree every time the structure has changed 

[DIJKSTRA74]. The idea of self-stabilizing algorithms is that independent of the global 

state of the system, the system will reach to a correct global state after a finite amount of 

time. Self-stabilization is a very useful approach for the systems in which dynamicity 

occurs frequently, such as grid systems.  

 

2.2.5.1 Recent studies 

There can be found many studies in the current literature related to self-stabilizing 

spanning tree construction [AFEK91, ANTONOIU95, ANTONOIU97, BAALA03, 

DOLEV93, GUPTA03, HERAULT06, KOSOWSKI06, PAN99]. Afek et al. [AFEK91] 

proposed a memory-efficient self-stabilizing spanning tree algorithm for general networks. 

Dolev et al. [DOLEV93] proposed a uniform BFS spanning tree algorithm based on the 

id’s of the nodes. Butelle et al. [BUTELLE95] presented a uniform self-stabilizing 

algorithm which finds a minimum diameter spanning tree of an arbitrary positively real-

weighted graph. Antonoiu and Srimani [ANTONOIU95] proposed a self-stabilizing 
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algorithm to construct an arbitrary spanning tree assuming the existence of a root node, 

which is used as a reference node to build the spanning tree. In [ANTONOIU97], Antonoiu 

and Srimani proposed another self-stabilizing algorithm which constructs minimum 

spanning trees. Pan et al. [PAN99] proposed a self-stabilizing spanning tree construction 

algorithm based on self-stabilizing maximum finding method. In their algorithm they find 

the maximum identifier and determine distances of each node to the maximum identifier 

node. Baala et al. [BAALA03] presented a random walk based spanning tree construction 

algorithm which is self-stabilizing. Their algorithm is based on random walk strategy, 

which is executed by independent mobile agents. Gupta and Srimani proposed two self-

stabilizing spanning tree algorithms in [GUPTA03]. They consider ad-hoc networks as the 

system model in their design. In [HERAULT06], Herault et al. proposed a self-stabilizing 

spanning tree algorithm for large scale systems in which the biggest id node becomes the 

root of the final tree. In [KOSOWSKI06], Kosowski and Kuszner proposed two self-

stabilizing algorithms to find spanning tree in a polynomial number of rounds based on the 

ids of the nodes. Blin et al. [BLIN09] proposed a self-stabilizing algorithm to find 

minimum degree spanning tree in a network. They have extended the study proposed in 

[AFEK91] by adding a degree reduction module which decreases the degree of the 

resulting spanning tree in each round.  

 

2.2.5.2 Conclusions 

Many of these algorithms construct spanning trees using the unique ids of the nodes in 

the network [AFEK91, DOLEV93, HERAULT06, KOSOWSKI06, PAN99]. Others use 

different parameters such as unique weight of edges [ANTONOIU97], assumption of 

existence of privileged nodes [ANTONOIU95, GUPTA03] or random walks [BAALA03]. 

Although these spanning tree construction methods provide fruitful solutions to the 

topology control problem, to the best of our knowledge, we cannot find an algorithm, 

which aims at finding a spanning tree that optimizes the distribution of messages. We 

believe that many alternative meaningful metrics, such as degrees of nodes, can be used in 
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constructing the spanning tree instead of the ids of nodes.   

 

2.2.6 Conclusions for Resource Discovery Algorithms 

We believe that combining advantages of different RD approaches would result in 

useful studies for resource discovery in grids. For example, by using web services, one can 

provide a simple interface to the users, while for the resource discovery, by using mobile 

agents or P2P techniques, a scalable, reliable and also easy to use resource discovery 

middleware can be designed. To the best of our knowledge, we cannot find a research 

work, which is directly focused on addressing the problems, which are caused by the 

characteristics of the grid environments and requirements of queries. For this purpose, in 

this thesis, we propose a new cross-layer design approach in resource discovery, which 

combines topology control and efficient resource discovery together.  

Considering our analyses, we concluded that scalability should be taken into account in 

the first glance. For this, we figured out that efficient topology control algorithms, which 

are suitable for dissemination of resource discovery messages, should be studied such as 

spanning trees. Moreover, for the dynamicity issues, we figured out that the topology 

control algorithm, which is going to be used in the RD step, should be prone to the 

dynamicity of the system. For that reasons we directed our attention to the self-stabilizing 

spanning tree algorithms. We believe that a resource discovery algorithm, which inspires 

all the advantages of the examined studies with a fault-tolerant topology control 

mechanism, should be our objective for proposing efficient resource discovery algorithms.   

  

2.3 Resource Allocation (RA) for Query Processing in Grid 

Environments 

Resource Allocation for the query processing domain can be formally defined as a 

non-injective, non-surjective, multi-valued function from the set of tasks to the set of 

candidate resources, where tasks correspond to the operations (scan, build, probe, etc.), 
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which compose operators in a query (join, union, difference, etc.).  

After completion of the previous stage, resource discovery [HAMEURLAIN10], a set of 

resources that are capable of executing the tasks is assumed known. At this point, in order 

to run these tasks effectively on the discovered resources, a resource allocation mechanism 

must be executed in order to determine: (i) how many of these resources will be used, (ii) 

which tasks will be executed by which resources and (iii) the action to be taken for 

dynamicity of resource properties during execution of the tasks. Many studies refer to 

different approaches for this purpose [GOUNARIS04, SLIMANI04, BUYYA05, 

GOUNARIS05, KANT05, MANDAL05, SOE05, GOUNARIS06b, SILVA06, 

VENUGOPAL06, BOSE07, ZHAO07, KOTOWSKI08, LIU08, GOUNARIS09, RUIZ09, 

PATON09]. Existing studies are generally classified into two classes in the current 

literature: static resource allocation and dynamic resource allocation. In static RA 

approach, the allocation is performed once, and allocated nodes sustain execution until the 

tasks are completed. On the other hand, in dynamic RA approach, according to the 

monitored status of the resources, the allocation is dynamically modified during the 

execution of the tasks. However, we believe that dynamicity of the RA algorithm should be 

examined as a design parameter instead of a classification metric. For that reason, in this 

section we classify the existing RA algorithms based on their most common attributes. In 

this way, we have classified the existing studies as resource-centered resource allocation 

strategies and task-centered resource allocation strategies according to whether their 

objective is to optimize resource utilization or task execution, respectively. The 

classification is shown in Figure 2.2. 
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Figure 2.2 Classification for Resource Allocation Algorithms for Query Processing in Grid 

Environments 

For this classification, we have defined our scenario for the execution of the queries as 

follows. A grid user submits a database query to any node in the grid. The query is pre-

processed in order to be optimized by the use of relational algebra before its execution. In 

this step, the query is decomposed into its smallest executable parts, which are called tasks 

in this chapter, and a task dependency graph is generated in which vertices represent tasks 

and edges represent data flow between tasks. After finalizing the task dependency graph, a 

resource discovery phase is accomplished for each task in order to find all the candidate 

resources that have the capability to execute the corresponding task. After the resource 

discovery phase, resource allocation is realized in order to schedule tasks on the resources. 

Finding the optimum allocation scheme for the tasks has been proved to be NP-complete 

[BACA89, WANG90], therefore in the resource allocation step, the aim is to find a near-

optimum solution which will shorten the execution time of the query. We provide a 

synthesis of the recent resource allocation studies according to our classification. We also 

provide evaluations and comparisons between these classes considering both quantitative 

and qualitative criteria. For the quantitative evaluations and comparisons, we provide 

simulation results using the GridSim [SULISTIO08] simulator. For the qualitative 

evaluations and comparisons we examine the two classes according to the following 
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criteria: 

 

• Consideration of different task requirements: In a query, there may be different types 

of tasks, which have different requirements. For instance, one task may require a 

large amount of available memory space, whereas CPU characteristics may be much 

more important for another task. Therefore consideration of these different 

requirements for each task should be considered separately. 

• Consideration of communication requirements between tasks: In queries, some tasks 

communicate with each other. In other words, the data produced by one task might 

be used by another task. Therefore data is transferred from one task to another in 

some situations. The resource allocation scheme must consider this communication, 

and hence precedence requirements between tasks, by taking into account the 

network characteristics between resources. 

• Consideration of load balance: Load balancing is another important issue in 

allocating resources, because an allocation scheme which does not consider load 

balance on the resources might cause skew problems. 

• Consideration of properties of resources: Since the grid environment is 

heterogeneous in its nature, different properties of resources, such as processor 

speed, available memory, internal bus speeds, network connections, etc., should be 

considered in order to allocate suitable resources to tasks. The precision of 

performance estimations of resources is tightly coupled with the level of detail of 

these properties.  

• Scalability and reliability of the allocation method: Since the grid environment is 

considered to be large-scale and dynamic, the number of candidate resources and 

tasks might be very high and the nodes might be dynamic. Considering this fact, the 

proposed method should not contain bottlenecks and single point of failures.  

 

In the rest of this section, in Section 2.3.1, we examine recent survey studies in resource 
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allocation for grid systems. In Section 2.3.2, we provide a detailed survey of resource 

allocation methods according to our classification. In Section 2.3.3, we present a literature 

survey related to fault-tolerance for query processing in grid environments in order to 

address dynamicity of nodes in terms of their existence. Finally, in Section 2.3.4, we 

discuss our conclusions and perspectives.  

 

2.3.1 Existing Survey Studies and Motivations 

Detailed survey studies can be found in the literature related to resource allocation and 

job scheduling in grid systems [KRAUTER02, JIAN07, JIANG07, COSTA08, 

EPIMAKHOV11]. Even though in this section we focus on resource allocation studies 

especially for query processing purposes, we believe that it is also essential to understand 

classical task scheduling and resource allocation in grid systems. For that reason, in this 

section, we examine existing survey studies, which are focused on both classical RA and 

RA for the query processing domain. There exist many survey studies related to classical 

RA in grid systems in the literature; we mention here those which may be applicable to the 

query processing domain [JIAN07, JIANG07, KRAUTER02]. On the other hand, we find 

very few survey studies that are focused on the query processing domain [COSTA08, 

EPIMAKHOV11].   

In [KRAUTER02], Krauter et al. proposed a taxonomy and survey for resource 

management systems (RMS) in grid systems. The authors proposed different 

classifications for RMS according to machine organization within the grid, the resource 

model, dissemination protocols, namespace organization, data store organization, resource 

discovery, QoS (Quality of Service) support, scheduler organization, scheduling policy, 

state estimation, and the rescheduling approach. For the resource allocation phase, they 

proposed three different classes: centralized, hierarchical and decentralized resource 

allocation methods. Even though this survey is very detailed, evaluation criteria and 

comparison between different classes is not provided. In [JIAN07], Jian et al. presented a 

survey study for grid scheduling systems. They have examined the existing methods in 
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three classes: computational economy, agent-oriented and service-oriented scheduling 

systems. Even though this study is very interesting, detailed evaluation criteria for 

comparison between different methods are not introduced. Moreover, detailed analysis of 

the examined studies based on the standardized metrics is not examined. In [JIANG07], 

Jiang et al. proposed a survey study on job scheduling in grids. They examined and defined 

the grid specifications and evaluation criteria. However the study is mostly focused on 

security issues and fault tolerance. Classification between examined methods and a 

comparative study is not provided.  

In [COSTA08], Costa et al. presented an experimental evaluation and comparison between 

different classes of grid RA algorithms which are focused on query scheduling. They 

examined classes according to the grid systems’ characteristics. In their study, they 

examined schedulers in two classes: centralized and hierarchical grid query schedulers. 

Even though they provide comparisons based on experimental results, theoretical analyses 

and evaluation criteria are not presented. In another fruitful study [EPIMAKHOV11], 

Epimakhov et al. proposed a survey study which examines resource scheduling methods 

for query optimization in data grid systems. They classify the existing methods as extended 

classic and incentive based approaches according to whether the method is extended from 

parallel and distributed systems or it is prepared from scratch for the grid environment. 

They provide analyses for each class and compare them by simulation.   

Although these survey studies provide comprehensive and detailed background about 

resource allocation in grid systems, few survey studies are proposed which are focused on 

resource allocation specifically for query processing in data grid systems. It is crucial that, 

for analyses and survey studies in query processing domain, database queries and their 

characteristics should be particularly taken into consideration. For this reason, in this 

section, we provide evaluation criteria considering particular requirements for database 

queries in grid systems. We provide a classification regarding the objectives of the existing 

approaches; and present evaluations and comparisons between different classes by both 

qualitative and quantitative criteria.  
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2.3.2 Recent Resource Allocation Methods 

In this section, we provide a literature survey on recent resource allocation methods, 

which are designed for query processing in grid systems. We classified the studies 

according to their optimization goals. For each class of methods, we describe synthetically 

the main approach, followed by an evaluation and comparison with respect to the 

evaluation criteria. 

 

2.3.2.1 Task-Centered Resource Allocation Methods  

In task-centered resource allocation methods, the proposed studies examine the RA 

problem from the point of view of tasks. The primary objective is to minimize the task 

execution time independently of the state of the resources, such as load balance or resource 

utilization. The methods consider core characteristics of the resources like processor 

frequency, available memory, available disk space, network bandwidth etc. The main 

approach is to construct a ranking function for the resources by using these characteristics 

and allocate tasks to the most powerful resources aiming at minimizing the execution time. 

There can be found many studies in this class [BOSE07, GOUNARIS04, GOUNARIS06b, 

KANT05, LIU08, MANDAL05, SILVA06, VENUGOPAL06]. For instance, in 

[KANT05], Kant and Grosu proposed auction-based resource allocation protocols. They 

proposed three auction protocols using parameters characterizing resources and jobs. In 

each protocol they determined different rules for the auction. At the end of the auction, the 

algorithm realizes resource allocation according to the matching of tasks and resources. 

Mandal et al. [MANDAL05] proposed a workflow scheduling algorithm in grids by 

ranking the discovered nodes according to their expected performances for a specific 

application component. Gounaris et al. [GOUNARIS04, GOUNARIS06b] proposed a 

resource scheduling method for parallel query processing in computational grids in which 

the partitioned parallelism problem is mainly examined. In [BOSE07], Bose et al. 

examined the problem of efficient resource allocation for a given set of parallel query sub-

plans by taking advantage of the bushy tree representation of queries. Liu and Karimi 
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[LIU08] developed a grid query optimizer for query processing in grids. They consider the 

resource discovery, resource allocation and query processing stages separately in their 

study. They use weighted parameters to evaluate resource properties such as CPU speed, 

available amount of memory, number of relations which are stored in the node, current 

workload of the node and estimated mean transmission latency. Silva et al. [SILVA06] 

presented an adaptive parallel query processing algorithm in which a resource allocation 

module is included. In their algorithm, after generating a parallel query plan and after 

discovering nodes, they sort the candidate nodes according to their throughput and realize 

resource allocation incrementally by monitoring the ongoing query execution performance. 

Venugopal et al. [VENUGOPAL06] proposed a grid service broker for scheduling e-

science applications in data grids. They focused on adaptive scheduling algorithms and 

brokering strategies. 

The task-centered resource allocation methods aim at minimizing query execution time by 

assigning tasks to the most powerful resources which are able to execute them. Since their 

perspective is from the tasks point of view, most of the studies in this class consider 

different task requirements, mostly by giving different weights for the resources’ properties 

for each different task. In this class of RA algorithms, there can be found both static and 

dynamic resource allocation approaches. Nearly all the static resource allocation based 

methods [BOSE07, GOUNARIS04, GOUNARIS06b, KANT05, LIU08, MANDAL05] 

consider communication requirements of tasks by examining networking properties of 

resources; on the other hand, most of the dynamic resource allocation studies [SILVA06, 

VENUGOPAL06] do not consider communication and precedence requirements of tasks 

as they are more focused on maintaining the optimum allocation in case of dynamicity of 

the environment. Since the proposed methods are designed from the point of view of task 

requirements, nearly all of the studies consider computational properties of nodes. In this 

class of algorithms, the most popular design paradigm is the greedy approach. In most of 

the studies, the most powerful resources are allocated without performance considerations 

but by looking at the availability of sufficient resources. Cost functions in the mentioned 
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studies consist of many resource properties, therefore, load balance is not considered as the 

primary constraint. Most of the studies in this class are designed in a centralized manner. 

Although heuristics are used in order to decrease complexity in the examined studies, in a 

grid setting, in which both number of resources and tasks can be very high, the centralized 

approach can negatively affect the scalability. It may also cause single point of failure 

problems in centralized allocation management, which decreases the reliability of the 

methods.  

 

2.3.2.2 Resource-Centered Resource Allocation Methods 

In resource-centered resource allocation methods, the studies look at the resource 

allocation problem from the point of view of resources. The primary aim in these studies is 

to maximize the resource utilization by considering both resource properties and load 

balance between them. The main idea here is that maximizing the resource utilization 

considering the sizes of tasks will maximize the throughput of the whole system. 

According to our search on this class of methods, we realized that most of the existing 

studies are concerned with dynamic resource allocation [GOUNARIS05, GOUNARIS09, 

KOTOWSKI08, PATON09, RUIZ09], although there are few static resource allocation 

studies as well [SOE05]. Soe et al. [SOE05] introduced a resource scheduling algorithm 

for parallel query processing in grids. They consider both inter-query and intra-query 

parallelism in scheduling resources. They consider the resource utilization ratios as the cost 

metric. Processor allocation is achieved level by level via iterative refinements. In 

[GOUNARIS05], Gounaris et al. proposed an algorithm for query processing in grids. The 

proposed algorithm is service oriented, thus it is considered to be autonomous. In this 

study, the initial resource allocation is achieved by the use of the algorithm which is 

proposed in [GOUNARIS04] and then allocation is refined according to the monitored 

query execution performance. Paton et al. [PATON09] proposed a dynamic resource 

allocation algorithm for query processing in distributed large-scale dynamic environments. 

Their study aims at optimizing query execution by ensuring load balance between 
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resources. Kotowski et al. [KOTOWSKI08] introduced a parallel OLAP query processor in 

grid systems which exploits both intra and inter query processing. The proposed study is 

based on their previous database cluster middleware ParGRES [MATTOSO05], which 

exploits query parallelism and load balancing. In [GOUNARIS09], Gounaris et al. 

proposed an adaptive query processing method in grid environments. The authors mention 

both data and state repartitioning in the distribution of data sources. Ruiz et al. [RUIZ09] 

proposed a query allocation method for distributed information systems. Which is based on 

satisfaction-based query load balancing (SQLB). SQLB is a flexible framework with self-

adapting algorithms to allocate queries while considering both query load balancing and 

participants’ goals.  

The resource-centered resource allocation methods aim at balancing load between 

candidate resources. Nearly all mentioned studies focused on load balancing instead of task 

requirements. Therefore, the different requirements of tasks and communication 

requirements between them are not mentioned in many of these studies. On the other hand, 

some studies consider properties of resources in allocating tasks in order to calculate a 

proportional workload which can be considered as a more realistic metric. The key aim in 

this class of algorithms is that optimizing the load balance between resources will result in 

increased overall throughput. But the ignorance of communication requirements and 

different requirements of tasks may cause degraded performance. In such cases, even if the 

load is balanced between resources, the resource utilization may be dominated by 

processes that communicate to each other using slow communication links, which may be 

an inconvenient situation in terms of query optimization.  

 

2.3.2.3 Qualitative Comparison Between Classes 

The two different classes of studies, task-centered resource allocation and resource-

centered resource allocation methods, aim at allocating resources in grid systems for query 

processing. Although these two classes share some common characteristics, they have 

many differences, which give advantages and disadvantages to each class of studies. A 
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summary of global comparison can be seen in Table 2.5. In both classes, since the 

objective is resource allocation, the properties of resources are examined. On the other 

hand, in task-centered resource allocation methods, communication requirements between 

tasks, different task requirements and computational properties of resources have more 

priority than the load balance between resources. Therefore, precise ranking functions are 

proposed in order to find near-optimal resource allocation schemes in this class of studies. 

On the other hand, this idea may easily cause unbalanced load distribution between 

resources, which may lead to skew problems between parallelized tasks. One can say that, 

if the different requirements of different tasks are uniformly distributed, the precise 

ranking functions may cause balanced resource allocation, but in reality, the distribution of 

task requirements should be considered separately in order to prove this assumption. On 

the other hand, in resource-centered resource allocation methods, the load balance between 

resources is assumed to lead to an increase in the overall throughput of the system, which 

is a true but an incomplete prediction. In our case, providing load balance is necessary but 

not sufficient to optimize the query execution since tasks within queries are dependent on 

each other. Therefore, besides load balancing, communication requirements between tasks 

should be considered as a function of environmental parameters such as network 

connections. Both approaches contain resource allocation methods based on static and 

dynamic allocations. Independently of being resource or task centered, the algorithms 

based on static allocation can be considered as fragile in a grid environment since 

dynamicity of resources may cause disruption of queries, whereas the algorithms based on 

dynamic allocation are more robust in terms of continuation or enhancement of the initial 

allocation’s performance. Most of the examined studies in this survey propose centralized 

methods. Considering the characteristics of the grid systems, centralized methods may 

cause serious scalability and reliability problems caused by the dynamicity and large scale 

of the environment. Although decentralized methods deal with these problems, to the best 

of our knowledge, we cannot find a study that meets all the core characteristics of the grid 

systems in the distributed query processing domain.  
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Evaluation Criteria Task-Centered Methods Resource-Centered Methods 

Consideration of different task 

requirements 

Taken into account by the use 

of weights in ranking functions 

Not taken into account in most of 

the studies 

Consideration of communication 

requirements between tasks 

Taken into account by the use 

of network requirement 

parameters for each task 

Taken into account in terms of 

execution order, communication 

requirements are not considered 

Consideration of load balance Load balance is not taken into 

account 

Load balance is considered to be 

the primary issue 

Consideration of properties of 

resources 

Taken into account by the use 

of detailed ranking functions 

Not taken into account in most of 

the studies 

Scalability and reliability All studies are centralized, thus 

contain bottlenecks and single 

points of failure 

Nearly all studies are centralized, 

thus contain bottlenecks and 

single points of failure. Those 

which are decentralized, do not 

suffer from scalability and 

reliability problems 

Table 2.5 Qualitative Evaluation Summary 

 

2.3.2.4 Quantitative Evaluation and Comparison 

 In this section, we provide quantitative evaluations and comparisons, between two 

classes of resource allocation methods, by simulation. Since there are many factors that 

affect a method’s performance, we believe that it is not appropriate to implement and 

compare particular existing studies, as our implementations might not reflect their exact 

capabilities. Therefore, in our simulations, we implement an algorithm for each class, 

which uses basic parameters that reflect its classes’ characteristics. With the selected 

parameters, we aim at obtaining meaningful results that allow comparison between two 

classes.  

We have used the GridSim [SULISTIO08] grid simulator for our simulations. GridSim is a 

discrete event simulator, which is aimed at simulating task scheduling policies in grid 
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environments. The resources in GridSim are modeled by considering their MIPS rating, 

number of processing units, loads and their connection speeds in baud rates. 

In our simulation scenario, the tasks are treated as operations, which constitute query 

operators. In this manner, simple, medium and complex queries are assumed to correspond 

to 5, 10 and 20 tasks respectively. More than 20 tasks are considered as multiple 

independent queries that are waiting to be executed. During the simulations, all tasks are 

assumed to be independent. They are simulated according to their input data size, length in 

number of instructions, and output data size. In the simulation setup, nodes are considered 

as uni-processor computers in the grid environment. The nodes, tasks and users are 

connected via simulated network links, which take into account baud rate, propagation 

delay and maximum transmission unit in bytes. The characteristics of nodes are set 

randomly using a uniform distribution within specific ranges. Tasks are also generated 

randomly in the same manner. Four different parameters are specified for the tests, namely, 

resource allocation type, number of nodes, number of tasks and CPU loads. For the 

resource allocation type, two different resource allocation methods are simulated: (i) Task-

Centered Resource Allocation (TCRA) and (ii) Resource-Centered Resource Allocation 

(RCRA). In TCRA, the algorithm orders tasks according to their lengths, and nodes 

according to their reported MIPS ratings. Then nodes are allocated for the tasks in the same 

order as the lists in a round-robin fashion. In RCRA, the algorithm allocates the node with 

the least loaded CPU for each task. During the experiments, cost of resource allocation 

process and time required to execute all submitted tasks are measured. The measured 

values are in simulation time units and are used for comparison purposes. 

In Figure 2.3, the time required for the resource allocation process is measured for scenario 

sizes varying between 10 and 500 nodes. Simulations are conducted for different scenarios 

consisting of 5 and 20 tasks. CPU loads of nodes are assigned randomly between 20% and 

50%. The time required to complete the resource allocation process using different 

algorithms in different scenarios is plotted in Figure 2.3. Allocation times for 5 and 20 

tasks in a small scale environment varying from 10 to 60 nodes is shown in Figure 2.3.a 
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and Figure 2.3.b, respectively. In Figure 2.3.c and Figure 2.3.d, allocation times for 5 and 

20 tasks in larger scale environments are shown, which consists of between 50 and 500 

nodes.  

The theoretical time complexity of the TCRA algorithm consists of (i) obtaining each 

node’s characteristics for ranking, (ii) sorting nodes according to their ranks and (iii) 

sorting tasks according to their lengths. Thus it can be formalized as O(m * c + n * log n + 

m * log m) where n is the number of tasks, m is the number of nodes and c is the 

communication overhead constant for obtaining the characteristics of a node. On the other 

hand, the time complexity of the RCRA algorithm consists of obtaining each nodes’ 

dynamic load information for every single task. Thus it can be formalized as O(n * m * c). 

In the complexity analysis of both algorithms, c is considered as the determining factor 

since it is considerably larger than other terms in the formulas because of the excessive 

communication costs. For that reason, the complexity of the algorithms depend on the term 

containing the constant c. The results of the simulations justify the complexity analyses of 

the algorithms. As can be seen in Figure 2.3, allocation times of both algorithms increase 

as the number of nodes increases. However, allocation time of the RCRA algorithm 

increases faster than TCRA. The speedup values between the two algorithms for this test 

can be seen in Figure 2.4. 
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Figure 2.3 Allocation time for varying grid sizes. 

 

It can be seen in Figure 2.4 that, as the number of nodes increases, the speedup value 

remains nearly constant since the speedup depends mostly on the number of tasks due to 

the communication costs. On the other hand, as the number of tasks increases, the speedup 

increases as a function of the number of tasks. 
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Figure 2.4 Speedup values for varying scale 

 

In Figure 2.5, the time taken to execute all tasks during the simulation is measured for 

varying CPU loads in candidate nodes. The number of nodes is fixed at 200 and the 

number of tasks is fixed at 100. Task execution times are measured for varying node load 

densities in ranges 0-30%, 10-40%, 20-50%,…, 70-100% and 80-100%. The results show 

that TCRA gives better results compared to RCRA in an environment in which CPU loads 

of nodes are smaller. However, for the cases where nodes are loaded more than nearly 

70%, RCRA performs better in allocating better candidates for tasks.  
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Figure 2.5 Execution time of tasks for varying CPU Loads 

 

In Figure 2.6, we have examined how the execution time of tasks is affected by the 

changes in number of nodes. CPU loads are assigned to nodes uniformly distributed 

between 0% and 100%. Number of tasks were fixed at 175 in order to observe the behavior 

of different allocation methods in cases where: (C1) the number of nodes is smaller than 

the number of tasks, (C2) the number of nodes is greater than the number of tasks. As can 

be seen in Figure 2.6, RCRA performs better in case C1. This is because load balancing 

helps minimization of skew between task execution times. In case C2, TCRA performs 

better since the probability of finding powerful and less loaded nodes is increased. 

However, in case C1, the performance difference is more remarkable since in resource 

scarce environments, load balance gains more importance [38]. On the other hand, in case 

C2, the difference between the two approaches nearly converges to a constant after 250 

nodes since sufficient resources can be found in any of such cases in which the number of 

resources is much higher than number of tasks.  



 66 

Regarding the simulation results, RCRA can be considered to be favorable in cases in 

which the number of nodes is smaller than the number of tasks, and in cases in which the 

nodes are excessively busy. However, it must be noted that the complexity of RCRA is 

relatively high, and it might be a limiting factor in large-scale environments. On the other 

hand, TCRA performs comparatively better than RCRA in scenarios in which the number 

of nodes is higher than the number of tasks. It can be also be favorable in large-scale 

environments in which nodes are not excessively loaded. 

 

 
Figure 2.6 Execution time of tasks for varying number of nodes  

 

2.3.3 Fault-tolerance in Query Processing in Grid Environments 

Since grid environments are dynamic, eventual node failures are likely during the 

execution of queries. These failures may be very costly if the queries are long running and 

if the system is not designed fault-tolerant. Therefore fault-tolerance can be considered as a 

must in processing queries in grid environments. Since fault-tolerance involves in 

allocation of new nodes, we consider it as a part of the resource allocation algorithm.  
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In current literature, there can be found many resource allocation algorithms with 

dynamicity support [GOUNARIS05, SILVA06, VENUGOPAL06, KOTOWSKI08, 

GOUNARIS09, PATON09, RUIZ09]. Although these studies provide resource allocation 

methods in cases of dynamicity of nodes, none of them consider failure of nodes during 

execution of stateful operators in queries. Since stateful operators, such as hash join, 

require recovery of states of the nodes in case of node failures, dynamic resource allocation 

methods are not applicable in these cases. To the best of our knowledge, we find few 

studies for fault-tolerant query processing in grid environments [SMITH05, SMITH07, 

TAYLOR08, BESTEHORN10]. Although these studies provide fruitful algorithms, none 

of them is specialized on processing stateful query operators in grid environments. In this 

section, we present a brief literature survey related to resource allocation algorithms for 

fault-tolerant query processing in grid environments.  

 

2.3.3.1 Recent Studies 

There can be found many studies in the literature, which examine resource allocation 

for query processing in grid environments such as [GOUNARIS04, GOUNARIS05, 

KANT05, MANDAL05, SOE05, GOUNARIS06b, SILVA06, VENUGOPAL06, BOSE07, 

KOTOWSKI08, LIU08, GOUNARIS09, PATON09, RUIZ09]. These studies either 

present static resource allocation algorithms in which the resource allocation is performed 

once, and allocated nodes sustain execution until the tasks are completed; or they present 

dynamic resource allocation algorithms in which allocation is dynamically modified during 

the execution of the tasks according to the monitored status of the resources. Although 

dynamic resource allocation algorithms take dynamicity of the environment into account, 

none of these algorithms consider the case in which node failures occur. Still, there can be 

found many other studies in the current literature, which examine fault-tolerant distributed 

query processing in different environments [ABADI05, BALAZINSKA08, 

BESTEHORN10, CHANDRASEKARAN03, HWANG05, HWANG07, KWON08, 

SMITH05, SMITH07]. However, few of them are applicable in grid environments 
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especially for processing stateful query operators such as hash joins [BESTEHORN10].  

Smith and Watson presented a fault-tolerant query processing system for distributed query 

processing in [SMITH05]. Their study is an extension to their previous work OGSA-DQP 

[ALPDEMIR04] with the addition of fault detector and fault handler modules. In their 

study, the queried node generates a query plan, performs an initial resource allocation and 

initiates the execution of the query. For the fault tolerance, the algorithm performs a 

rollback recovery protocol. In [SMITH07], Smith and Watson discuss failure recovery 

alternatives in query processing in grid environments. In their study, they examined three 

failure recovery alternatives namely restart, reduce and replace. Bestehorn et al. presented 

a fault-tolerant query processing algorithm in structured P2P systems in 

[BESTEHORN10]. In their study, they examined the query operations in two classes 

namely stateless and stateful operations. The proposed method examines fault-tolerance 

over these operations with two different perspectives: i) fault-tolerant routing and ii) 

replication. The study exploits the functionalities proposed by the CAN peer to peer system 

for selecting the backup peers. A very detailed survey study related to fault-tolerant 

distributed query processing can be found in [TAYLOR08]. In his study, Taylor examines 

different fault-tolerant distributed query processing algorithms in three classes namely: i) 

upstream backup [SMITH07, SMITH05], ii) active standby [ABADI05, 

BALAZINSKA08, CHANDRASEKARAN03] and iii) passive standby [HWANG05, 

HWANG07, KWON08].  

 

2.3.3.2 Conclusions 

Considering our analyses related to fault-tolerance in query processing, we have found 

many studies examining this problem. Although these studies present fruitful algorithms, 

to the best of our knowledge, we cannot find studies designed especially for grid 

environments, which examine fault-tolerance in stateful query operators. Most of the 

examined studies are focused on stream processing which does not include stateful 

operators. Moreover most of these studies are designed for P2P systems. Although there 
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are many similarities between grid systems and P2P systems, in many aspects they have 

slight differences. Therefore we believe that the characteristics of grid environments and 

requirements of query processing tasks should be focused in order to find suitable RA 

algorithms for fault-tolerant query processing in grid environments. 

 

2.3.4 Conclusions for Resource Allocation Algorithms 

 In this section, we classified, analyzed, evaluated and compared different kinds of 

resource allocation methods in grid environments. We provided a classification by 

considering the methods’ viewpoints to the resource allocation problem. We have 

evaluated the different classes of methods considering important criteria for the query 

processing domain in grids. Finally we compared different classes and presented some 

remarks regarding their evaluations. We also present a brief literature survey about 

resource allocation algorithms for fault-tolerant query processing in grid environments. 

Even though we have examined many fruitful methods in this section, we cannot find 

studies that provide a complete solution regarding both the grid environments’ 

characteristics and query processing requirements.  

The studies, which are examined in this section, have advantages and disadvantages 

compared to each other; therefore it is not possible, at this stage, to conclude that one is 

superior to the other. Instead, they can be provided as alternative resource allocation 

methods in systems such as parametric query optimization [BIZARRO09, IOANNIDIS97] in 

order to contribute to the query optimization by choosing the appropriate allocation method 

for the specific situation.  

 

2.4 Overall Conclusions 
In this chapter, we have analyzed, evaluated and compared the recent studies for 

resource discovery, self-stabilizing spanning tree construction, resource allocation and 

fault-tolerant query processing problems in grid environments by classification. With 

respect to our analyses, we believe that there are still open issues and potential 
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contributions for each of these problems. More precisely, regarding grid systems’ 

characteristics, following open issues in each studied problem attract our attention: 

 i. Resource discovery for query processing in grid environments: Since grid system 

is dynamic, and since properties of resources change in time, in order to obtain up-to-date 

resource information, the RD algorithm should visit each node individually. In this 

manner, unstructured P2P systems based RD algorithms are considered to be very suitable 

for our purposes. However, since grid is a large-scale environment, the RD algorithm 

should be scalable and should avoid using flooding of messages. Therefore, we believe that 

without centralizing resources’ information, a topology control mechanism can be used for 

efficient distribution of RD messages. On top of the generated topology, the resource 

discovery can be realized by the use of efficient message distribution such as broadcasting 

for request messages and converge-casting for response messages. Therefore, new resource 

discovery methods can be proposed, aiming at i) decreasing message and time 

complexities, ii) obtaining up-to-date resource information and iii) reliable resource 

discovery that is prone to node failures and topology changes. In this manner, self-

stabilizing spanning tree structures might be used as a topology control mechanism with 

the addition of an efficient routing algorithm. 

 ii. Self-stabilizing spanning tree construction: The examined recent self-stabilizing 

spanning tree algorithms present fruitful solutions to the spanning tree construction 

problem. However, to the best of our knowledge, we have found few studies which aim at 

decreasing the diameter of the constructed spanning tree. This property aims at efficient 

distribution of messages through the whole grid environment. Therefore, new heuristical 

algorithms can be proposed for constructing spanning trees with smaller diameters.  

 iii. Resource allocation for query processing in grid environments: The resource 

allocation algorithms for query processing is roughly studied in the current literature. 

However, since grid is a relatively new concept, in general, existing studies are extensions 

to the previous resource allocation algorithms which are designed for distributed and 

parallel systems. To the best of our knowledge, we have found few studies which are 
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designed especially for resource allocation for query processing in grid systems. Still, we 

have found many missing contributions in the current literature such as allocating of nodes 

considering proximities to the data sources. We believe that, new algorithms can be 

designed for this purpose considering all characteristics of grid systems. Regarding our 

analyses on the current literature, we also find that the resource allocation algorithm should 

be designed in a bottom-up fashion, starting from allocation of resources for the most 

atomic tasks in queries. Therefore we believe that an initial resource allocation algorithm 

which is designed for only one query operator should be studied at first glance. Then, 

extensions to the designated algorithm can be designed in order to cover the whole query.  

 iv.  Fault-tolerance for query processing in grid systems: The grid environment is 

characterized by its dynamic nature. However, the dynamicity characteristic of the grid 

should be examined in its two different meanings: i) dynamicity of properties of nodes and 

ii) dynamicity of nodes in terms of their existance in the environment. Regarding our 

literature survey, we found that most of the dynamic resource allocation algorithms 

examined the dynamicity characteristic of grid systems in its first meaning (i). However, 

its second meaning may have a big impact in the performance and reliability of query 

execution in cases where nodes fail frequently. We have found very few studies in the 

current literature which examined dynamicity of grid systems in its second meaning (ii). 

Therefore, we believe that valuable contributions can be made to the research community 

by examining fault-tolerance in this domain. 
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CHAPTER 3: RESOURCE DISCOVERY FOR QUERY 

PROCESSING IN GRID ENVIRONMENTS 

Résumé 

A travers ce chapitre, nous proposons un algorithme de découverte de ressources complet 

qui se compose de deux couches : i) Le contrôle de topologie pour la découverte de 

ressources dans les environnements Grille et ii) algorithme de la découverte de ressources 

basé des arbres couvrants. Premièrement nous proposons trois algorithmes de contrôle de 

topologie qui construisent des arbres couvrants auto-stabilisants, et qui peuvent être 

utilisés dans le découvert de ressources pour le traitement des requêtes en environnements 

Grille. Ensuite, nous proposons un algorithme de découverte de ressources en exploitant 

les arbres couvrants lors de la distribution des messages de découverte des ressources. 

 

Abstract 

In this chapter, we propose a complete resource discovery algorithm that is composed of 

two layers: i) topology control for resource discovery in grid environments and ii) 

spanning tree based resource discovery algorithm. We first propose three topology control 

algorithms that construct self-stabilizing spanning trees which can be used in the resource 

discovery for query processing in grid environments. Then, we propose a resource 

discovery algorithm by exploiting the spanning-tree during the distribution of resource 

discovery messages.  
 

3.1 Introduction 
Resource discovery problem in grid systems can be defined as searching and locating 

resource candidates that are suitable for a job, in spite of the dynamicity and large scale of 

the environment. A resource in the Grid may correspond to several different concepts. It 

may be a computational resource such as CPU, memory, storage unit or network; it may be 
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a data source that provides metadata and its contents such as database; or it may be a 

service which is programmed to accomplish a specific task. Effective usage of these 

resources in a grid system relies on the discovery of the right resources for given tasks. The 

main characteristics of the grid environment such as dynamicity, heterogeneity and large 

scale make the resource discovery a time consuming process, which can negatively affect 

the performance of query execution. The recent studies on grid resource discovery for 

query processing were deeply analyzed in Chapter 2. Regarding our analyses and 

conclusions, all different resource discovery approaches have their own advantages and 

disadvantages. In this chapter, we aim at designing a resource discovery method which 

brings some advantages of the existing approaches by extending them to overcome their 

drawbacks. 

To summarize the existing studies, we have examined the current literature in grid resource 

discovery for query processing in three classes namely i) centralized/hierarchical systems 

based grid resource discovery, ii) P2P systems based grid resource discovery and ii) agent 

based grid resource discovery.  Although centralized/hierarchical grid resource discovery 

methods become very popular in the first decade of grid environments, their centralized 

nature does not suit to dynamicity and large-scale characteristics of the grid environment. 

On the other hand, P2P systems based RD methods are heavily used in the current 

literature and they provide reliable RD algorithms and a decentralized control for the 

scalability. The most recent P2P techniques use structured P2P systems, which increase the 

performance of the resource discovery process drastically. Moreover, usage of the 

distributed hash table (DHT) mappings exploits the scalability and reliability properties of 

the P2P systems since all nodes in the system involve the resource discovery process. 

However, DHTs have some disadvantages for the resource discovery domain. The usage of 

DHTs limits the RD algorithms in terms of support for dynamic-attribute, multi-attribute 

and range queries. To overcome these problems, many algorithms proposed to use the 

topological structure of the overlay to efficiently distribute the RD queries directly between 

the resources. For these purposes, super peer systems mention the topological structuring 
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of resources. However, they use super peers mostly to act as central indexing servers, 

which brings them the disadvantage of being single point of failures. 

Regarding aforementioned analyses, in this chapter, we first propose algorithms to 

structure the grid environment using efficient topological structures such as spanning trees 

in order to address scalability problems. We design the proposed algorithm in self-

stabilizing fashion in order to address dynamicity characteristic of the grid system. Then, 

by exploiting the topological structure, we propose a resource discovery method, which 

broadcasts the RD queries over the spanning tree and which converge-casts the results 

through the queried node efficiently aiming at decreasing the complexity of the RD 

process. 

The contribution of this chapter is twofold:  

i. First, we propose three new self-stabilizing spanning tree construction algorithms 

aiming at decreasing the diameter of the resulting spanning tree. Then we compare 

our proposed algorithms to each other and to similar existing studies and choose 

the best performer algorithm for RD purposes.  

ii. Second, we propose a new resource discovery algorithm, which broadcasts the RD 

queries to the whole environment and collects results by converge-casting the 

response messages by exploiting the generated spanning tree.  

The rest of this chapter is organized as follows, in section 3.2, we propose three self-

stabilizing spanning tree construction algorithms. We explain the algorithms in detail and 

analyze them by considering their time and message complexities. We evaluate our 

algorithms and provide quantitative comparisons between them and two existing similar 

algorithms by simulation. Then we discuss the results and show that the proposed 

algorithms perform better in many situations. In section 3.3, we propose the spanning tree 

based resource discovery algorithm for query processing in grid environments. We present 

the algorithm in detail, provide the complexity analyses and discuss the experimental 

evaluations by comparison. Lastly, in section 3.4, we present our conclusions. 
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3.2 Topology Control for Resource Discovery in Grid Environments 

Spanning tree algorithms are widely used as topological control mechanisms in many 

distributed applications. A spanning tree is a subset S of a graph G which contains every 

node in G and which does not contain any cycles. With the growth in the scale of 

distributed systems such as grid systems, the need for such topological control mechanisms 

has gained significant importance. These control mechanisms decrease the complexity of 

distributed algorithms caused by the connectivity of the underlying graph. By using 

spanning trees, many distributed applications, especially those involving multicast or 

broadcast operations, can be optimized by making use of their properties.  

Distributed spanning tree construction algorithms become very popular in the last decade 

since it is very hard to keep system wide information in large environments in order to 

build such topologies centrally. Many algorithms have been developed to build different 

types of spanning trees. Several studies focus on constructing minimum spanning trees in 

which the sum of edge weights is minimized [AHUJA89, AWERBUCH87, 

GALLAGHER83, LIEN88]. Minimum spanning trees are useful especially if 

communication costs are required to be minimized. Studies such as [BLIN09] construct 

minimum degree spanning trees in which degrees of vertices are minimized. This property 

helps efficient routing of messages under heavy communication traffic. Some other studies 

aim to construct minimum diameter spanning tree in which diameter of the resulting 

spanning tree is minimized [BUTELLE95]. This property helps broadcasting of messages 

by optimizing the distances between vertices in the graph. 

Besides classical distributed spanning tree construction algorithms, some of these studies 

also consider dynamicity and fault tolerance in their design. Self-stabilizing spanning tree 

algorithms have gained importance recently [GARTNER03] by the wide spread usage of 

unstable systems such as grids. Self-stabilizing concept guarantees the validity of spanning 

tree structure without having the need to regenerate the spanning tree every time the 

structure has changed. Self-stabilization is a paradigm for distributed systems that allows 
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the system to achieve a desired global state, even in the presence of faults. The concept of 

self stabilization was introduced in 1974 by Dijkstra [DIJKSTRA74]. The idea of self-

stabilizing algorithms is that independently of the global state of the system, the system 

will reach to a correct global state after a finite amount of time. In a self-stabilizing 

algorithm, each node maintains local variables, and changes its state according to only on 

its local variables and the contents of its neighbors’ local variables. Each process checks 

these local variables continuously and takes corrective actions in case of failures. The 

contents of a node's local variables constitute its local state and the union of all local states 

constitutes the system wide global state. The self-stabilization property allows the system 

to stabilize by local corrections instead of system wide re-construction in case of failures. 

Thence, self-stabilization is a very useful approach for the systems in which dynamicity 

occurs frequently, such as grid systems. Therefore it may be convenient to use self-

stabilization paradigm in such environments while designing distributed applications.  

In this section, we propose new algorithms for self-stabilizing spanning tree construction 

that consider degrees of nodes in determining the root node. This heuristic is based on the 

observation that a root node will be involved in more frequent communication than the rest 

therefore it would be sensible that this node should have the property of having a higher 

degree than the average. We also aim to compare our algorithms with existing studies. For 

this purpose we selected two existing spanning tree construction algorithms which do not 

consider any complex spanning tree property, a classical [KSHEMKALYANI08] and a 

self-stabilizing spanning tree construction algorithm [AFEK91]. We have examined, 

analyzed, implemented and tested these algorithms, and compared the test results in terms 

of runtime of the algorithms and resulting spanning tree diameters.  

The rest of this section is organized as follows: Section 3.2.1 examines the two selected 

existing spanning tree construction algorithms by giving detailed analysis. The three new 

self-stabilizing spanning tree algorithms are proposed in section 3.2.2. The correctness and 

complexity analyses of the proposed algorithms are provided in section 3.2.3. The 

implementation details of examined algorithms are given in section 3.2.4. Finally, in 
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section 3.2.5, conclusions, tradeoffs, comparisons, advantages and drawbacks of the 

proposed algorithms are discussed. 

 

3.2.1 Selected Algorithms for Comparison 

In this section, we examine and analyze two existing spanning tree construction 

algorithms in detail: memory-efficient self-stabilizing spanning tree algorithm (MEST) 

[AFEK91] and asynchronous concurrent initiator spanning tree algorithm (CIST) 

[KSHEMKALYANI08]. These algorithms will be used as reference to compare with our 

algorithms. The main difference between these two algorithms is the self-stabilization 

property. 

 

3.2.1.1 Memory-efficient self-stabilizing spanning tree algorithm (MEST) 
In [AFEK91], authors propose a self-stabilizing spanning tree construction algorithm 

with the assumption that nodes have unique identifiers and every node knows its 

neighbors. They also assume that nodes are aware of their neighbors’ states; in other 

words, when a node fails, neighbors of the failed node notice this failure and update their 

neighbor lists. In this model, the authors do not consider any special node such as the root 

node initially. Every node runs the same algorithm. At the beginning, each node tries to 

construct a spanning tree rooted at itself. Then each node examines its neighbors’ roots and 

selects the neighbor which has the biggest root as its parent. At the end, the biggest id node 

becomes the root of the final spanning tree. 

Each node i has local variables indicating its neighborhood (Ni), its parent node (Pi), its 

root node (Ri) and its distance to the root node (Di). In the global legal state, each node has 

the same root with the biggest node id in the graph, parents of nodes are within their 

neighborhood and distance of each node is 1 bigger than its parent’s distance (Di = Dparent + 

1). The root node has distance 0, and points to itself as its root and its parent. The 

algorithm runs in an infinite loop and checks the legal state conditions continuously. To 

achieve self stabilization, each node compares its neighbors’ roots with its own root. If any 
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neighbor has a bigger id root, then the node sends a Request message to the biggest id root 

through its neighbor in order to join its tree. When a root node receives such a message it 

replies with a Grant message and allows that node to join its tree.  

The algorithm checks two conditions to determine whether it is in a legal state or not:  

A:  [(Ri = i) Λ (Pi = i) Λ (Di = 0)] V [(Ri > i) Λ (Pi Є Ni) Λ (Ri = Rparent) Λ (Distance = 

Dparent + 1 > 0)] 

B:  A Λ (Ri >= max(RNi)) 

Condition A states that either the node is a root node; or the node is not a root node, its root 

is bigger than its id and same as its parent’s root, its parent is in its neighborhood and its 

distance to the root is 1 bigger than its parent’s distance. Condition B states that condition 

A holds true and node’s root is the biggest among its neighbors’ roots. When both A and B 

are true, the node is considered to be in the legal state. The algorithm checks these two 

conditions and takes action according to their correctness. When both conditions are false, 

then the node is in an illegal state and sets itself as the root node of its own tree. If 

condition A is true and node’s root is not the biggest id node within its neighbors’ roots, 

then the node chooses to join to the tree with bigger root id. To realize this, the node sends 

a Request message to the biggest id root within its neighbors’ roots through its neighbor. If 

the condition B becomes true, then the node is in the legal state. The algorithm also takes 

other actions in order to relay messages while checking these conditions. In case of failure 

of an inner node in the tree, the children of the failed node notice this failure and switch to 

the illegal state because of the failure of condition A. This failure triggers self-stabilization 

property of this algorithm and relevant nodes take action in order to stabilize the spanning 

tree.  

 

3.2.1.2 Asynchronous Concurrent Initiator Spanning Tree Algorithm (CIST) 
The asynchronous concurrent initiator spanning tree algorithm [KSHEMKALYANI08] 

is a basic classical distributed spanning tree construction algorithm in which nodes only 

need to know their neighborhood information. The algorithm does not ensure self-



 79 

stabilization property. Each node starts to build its own tree rooted at itself at the 

beginning. When a node wants to initiate the algorithm as a root, then it sends a Query 

message to its neighborhood indicating that it is a root node. When a node receives a 

Query message it compares the id of the sender with the id of its root, if new root has a 

bigger id then the node changes its root to the new root. In this case if the node is a leaf 

node then it sends an Accept message, if not it sends a Query message to its neighborhood 

indicating its new root. If new root id is smaller than current root of the node, then the node 

sends a Reject message to the sender of the Query message. When a node receives an 

Accept message, then it adds the sender node to its children list. If that node is an initiator 

then it finishes its execution upon receiving Accept messages from all its neighbors, if the 

node is a relay node, it sends Accept message to its parent upon receiving Accept messages 

from all of its neighbors. When a node receives a Reject message, it sends an Accept 

message to its parent. Details of the algorithm can be found in [KSHEMKALYANI08].  

 

3.2.2 Proposed Algorithms 
In this section we propose three different self-stabilizing spanning tree algorithms. All 

our algorithms construct the spanning tree by considering the highest degree node when 

selecting the root of the tree. Nodes periodically send their variables to their neighbors in 

order to inform them about their status. We assume the existence of trusted communication 

channels between nodes in our algorithms. Only one hop information is required in our 

model. 

All three algorithms check the same conditions during self-stabilization. The conditions 

are described below: 

C1: The node is a legal root node ( myParent = Id, myRoot = myTag, myDistance = 0 ) 

C2: The node is a legal ordinary tree node ( myRoot > myTag, myParent is my 

neighbor, root of my parent = myRoot, myDistance = distance of my parent + 1) 

C3: The node is the one which has the biggest root among its closed neighborhood 
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3.2.2.1 Maximum Degree Self-Stabilizing Spanning Tree Algorithm 1 (MDST1) 

We propose an extended version of MEST algorithm [AFEK91] by considering degrees 

of nodes while selecting the root node [COKUSLU10]. The MEST algorithm constructs 

the spanning tree according to the id of the nodes by choosing the biggest id node as the 

root node. This heuristic may have some disadvantages in complex networks because it 

does not consider the suitability of the chosen node as a root node. In many situations, 

predefined constraints are advantageous in choosing the root node. For instance, choosing 

the highest degree node as the root, or choosing the center of the graph, as the root node 

may be preferable if the desired operation is broadcasting or multicasting. On the other 

hand, simple and straightforward nature of MEST algorithm makes it preferable because of 

its low complexity measures. For these reasons, we first propose to modify the MEST 

algorithm so that it constructs a spanning tree rooted at the highest degree node. The 

assumption here is that the highest degree node in the graph is a better candidate to be a 

root node than a randomly chosen root. Because, this choice may decrease the diameter of 

the resulting spanning tree since the height of the tree will be decreased. To realize this, we 

first propose to use a simple hash function that combines degrees of nodes with their node 

ids to generate a new unique node identifier which is sorted by the degree of nodes. We 

called the resulting hash number as the Tag of a node. This function produces unique Tag 

values for each node by inserting the degree value to the most significant part and id values 

to the least significant part of the Tag number. It normalizes the least significant part by 

inserting zeros at the beginning of the node ids. The algorithm uses Tag values in 

determining the root node. The basic idea of our algorithm is similar to the MEST 

algorithm; the difference is the usage of Tag values instead of ids of the nodes in 

determining root node. At the end of the execution of the MDST1 algorithm, a spanning 

tree rooted at the highest degree node is constructed. The finite state machine of the 

algorithm can be seen in Figure 3.1. Each node starts its execution by setting its variables 

so that it becomes a root node. Then the node checks the three conditions and takes an 

action according to the results. If C1 or C2 is true and C3 is false, it means that the node 
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has a neighbor with a bigger root. In this case the node chooses the maximum rooted 

neighbor and sends a Request message to that root via its neighbor and changes its state to 

WAIT_GRANT. The node changes its state to TREE_NODE upon receiving the Grant 

message. If a node, which is in TREE_NODE state discovers that both C1 and C2 are false 

then the node sets its variables so that it becomes a root and changes its state to ROOT. At 

the end of the algorithm, only the root node remains in ROOT state, and all other nodes 

change their states to TREE_NODE state. If any node fails, the neighbors of the failing 

node update their variables, and take action if rules of the tree structure are broken.  

The main contribution of this algorithm is the usage of the maximum degree node as the 

root node and it aims at obtaining smaller diameter spanning trees, which may result in 

significant profit in large-scale environments. 

 

Figure 3.1 Finite State Machine of MDST1 Algorithm 

3.2.2.2 Maximum Degree Self-Stabilizing Spanning Tree Algorithm 2 (MDST2) 

In MDST1 algorithm, root selection and tree construction is held by a hand-shaking like 

protocol. The node that wants to set its root to a new node sends a Request message to that 

node and waits for a Grant message. In MDST2 we propose a completely new algorithm 
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aiming at decreasing communication between nodes. For this purpose we remove Request 

and Grant messages in MDST1. Instead of using these messages, nodes can freely set their 

variables without asking permission from any other nodes. The three conditions, C1, C2 

and C3 are still in use in this algorithm, but additionally we introduce a fourth condition in 

order to increase efficiency of the algorithm. In MDST1 algorithm, even if there exists a 

simple failure in the nodes such as distance value errors, those nodes reset their variables 

and start the self-stabilizing algorithm from the beginning by declaring themselves as root 

nodes. This kind of error can be frequently caused by addition or removal of nodes in the 

spanning tree. These changes can result in alternations in the distance values in some child 

nodes without changing their roots and parents.  In MDST2, we take a simple corrective 

action in case of that kind of failure by defining the condition 4: 

• C4: The node is an ordinary tree node, but its distance value is false ( myRoot > 

myTag, myParent is my neighbor, root of my parent = myRoot, myDistance ≠ distance 

of my parent + 1) 

Each node starts its execution by setting its variables so that it becomes a root node. Then 

each node scans its neighbors’ roots. If its root is not the highest Tag among its closed 

neighborhood (C1 or C2 is true and C3 is false), it sets its variables so that its root becomes 

the highest Tag root within its neighborhood. If the node finds that C1 and C2 conditions 

are false, it checks the condition C4. If C4 is true, it means that a simple failure exists; in 

this case, the node sets its distance to one greater than its parent’s distance. If C4 is false, 

then the node declares itself as a root node and resets its variables. The algorithm can be 

seen in Algorithm 3.1.  

Algorithm 3.1. MDST2 Algorithm 
Input: List of neighbors 
Output: Spanning tree constructed 
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1:  if (C1 OR C2) AND !C3 then 
2:     Find maximum rooted neighbor 
3:     if id of maximum root ≠ id of my root then 
4:         myParent ß maximum rooted neighbor 
5:  myRoot ß maximum root 
6:  myDistance ß distance of my parent + 1 
7:  myType ß TREE_NODE 
8:     end if 
9:  else if !C1 AND !C2 then 
10:    if C4 then 
11:        myDistance ß distance of my parent + 1 
12:    else 
13:        myRoot ß myTag 
14:        myParent ß myId 
15:        myDistance ß 0 
16:        myType ß ROOT 
17:    end if 
18: end if 
19: end 

 

In this algorithm, we aimed at decreasing message complexity of MDST1 algorithm. We 

also noticed a shortcoming of both MEST and MDST1 algorithms and added a new 

condition in order to increase the efficacy. Regarding these modifications, the main 

contributions of the MDST2 algorithm can be stated as decreased message complexity and 

increased effectiveness. These contributions inspired us to propose a completely different 

algorithm than the existing MDST algorithm. 

 

3.2.2.3 Maximum Degree Center Based Self-Stabilizing Spanning Tree Algorithm 
(MDCST) 

In the MDCST algorithm we further aim to improve the MDST2 algorithm by 

considering the center of the tree. We assume that selecting center of the tree as the root 

node may improve the spanning tree by decreasing the communication hops in 

broadcasting messages. For that reason we add a self-stabilizing center finding algorithm 

to the MDST2. In order to assure self-stabilization assumptions, we run the MDST2 and 

center finding algorithms in sequence. In each sequence the center finding algorithm 
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changes the Tag values of the nodes according to the distance values of nodes from the 

leaves. The Tag values are generated by combination of three parameters in MDCST 

algorithm. Those parameters are Height, Degree and Id values respectively where the 

Height value for the node v indicates the height of the subtree rooted at the node v. For the 

center finding phase, we used the algorithm proposed by Karaata et al. [KARAATA94]. 

This algorithm starts by assigning 0 to the Height values of the leaf nodes. Non-leaf nodes 

select the second highest Height values within their neighborhood and set their Heights as 

1 greater than that value. More details about the center finding algorithm can be found in 

[KARAATA94].  

The MDCST algorithm runs the MDST2 algorithm first, and constructs a spanning tree 

rooted at the maximum degree node since all nodes have the same Height values initially. 

After the spanning tree is generated the center finding algorithm runs in order to calculate 

Height values of the nodes. After center finding algorithm completes its execution, Tag 

values are updated. At this stage, Tag values are sorted by Height, Degree and Id of the 

nodes respectively. Since MDST2 algorithm is self-stabilizing, and since Tag values are 

changed, the MDST2 takes action in order to maintain the spanning tree. This maintenance 

makes the tree rooted at the highest Tag value node which is the center of the initial tree.  

The main contribution of this algorithm is the usage of the center node as the root. The 

center node is the closest node to any other nodes in the tree. A spanning tree, which is 

rooted at the center node, is expected to have smaller diameter and increased functionality 

in broadcast and multicast operations. 

 

3.2.3 Analysis 
In this section we provide correctness and complexity analyses for the three proposed 

algorithms, MDST1, MDST2 and MDCST. In the message complexity analyses, we do not 

consider periodical messages between nodes, which allow nodes to share their variables.  

Theorem The MDST1 algorithm constructs a correct spanning tree rooted at the 

biggest degree node in finite number of steps. 
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Proof. MDST1 Algorithm is based on the MEST Algorithm which is proved in 

[AFEK91]. The MEST Algorithm is constructed on the assumption of existence of unique 

node id's. The only change in the MDST1 algorithm is the use of the tag values instead of 

node id's. The tag values are generated to be unique by considering the degrees and id's of 

nodes and are sorted by the degree of nodes. Since newly generated tags are unique, the 

proposed modification does not affect correctness of the algorithm. 

Theorem The MDST2 algorithm constructs a correct spanning tree rooted at the 

biggest degree node in finite steps.  

Proof. MDST2 algorithm is a variance of the MDST1 algorithm in which the messages 

are eliminated. Since the nodes share their variables with their neighbors periodically, any 

change in a node is propagated through the spanning tree over the nodes. Therefore, the 

periodic messaging between nodes replaces the messages in the MDST1 algorithm, which 

does not affect the correctness of the algorithm. 

Theorem The MDCST algorithm constructs a correct spanning tree rooted at the 

biggest degree node in finite steps beginning from the third phase.  

Proof. In MDCST algorithm the tag values of the nodes contain eccentricities, degrees 

and id's of nodes. Since the new tags are also constructed to be unique, the modifications 

do not conflict with any assumption of the previous algorithm. On the other hand, the first 

phase of the algorithm constructs an arbitrary spanning tree rooted at the biggest degree 

node since eccentricities are set to 0 initially. In the second phase, eccentricities are 

calculated and all components of the tag values are determined. From this stage, the 

MDCST algorithm executes in the same manner as the MDST2 algorithm using the tag 

values. Therefore the MDCST algorithm stabilizes after the third phase. 

Theorem MDST1 and MDST2 algorithms stabilize in h rounds where h is the height of 

the resulting spanning tree. 

Proof. In MDST1 and MDST2 algorithms, initially each node marks itself as the root of 

its own tree. In the first round, the neighbors of the root node stabilize. In the second 

round, 2-hop neighbors of the root are stabilized and so forth. Since the generated spanning 
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tree is a BFS tree, the most distant nodes stabilize latest. Since the most distant nodes are h 

hops away from the root, where h is the height of the generated spanning tree, the 

algorithm stabilizes in h rounds.  

Theorem The MDCST algorithm stabilizes in 3h rounds where h is the height of the 

spanning tree. 

Proof. In the first phase of the MDCST algorithm, MDST2 algorithm is executed to 

construct the initial spanning tree. In the second phase the center finding algorithm is 

executed in order to find the center of the initial tree. Lastly in the third phase, MDST2 

algorithm is re-executed in order to finalize the construction of the spanning tree rooted at 

the center of the initial tree. Each of these phases requires h rounds to stabilize, therefore 

the MDCST algorithm stabilizes in 3h rounds.  

Theorem The message complexity of the MDST1 algorithm is Θ(2*N*h) where N is the 

number of nodes and h is the height of the spanning tree. 

Proof. In each round of the MDST1 algorithm, each node sets its root and its parent by 

the exchange of two messages namely request and grant. Since there are N nodes and since 

the algorithm stabilizes in h rounds, the message complexity of the algorithm is Θ(2*N*h). 

Theorem The message complexity of the MDST2 algorithm is Θ(N*h) where h is the 

height of the resulting spanning tree and N is the number of node in the grid system. 

Proof. The MDST2 algorithm stabilizes in h rounds. In each round a node sends 1 

periodical update message to its neighbors. Since there are N nodes in the system, N*h 

messages are required to stabilize the algorithm. 

Theorem The message complexity of the MDCST algorithm is Θ(N*3h) where h is the 

height of the resulting spanning tree and N is the number of node in the grid system. 

Proof. The MDCST algorithm stabilizes in 3h rounds. In each round a node sends 1 

periodical update message to its neighbors. Since there are N nodes in the system, N*3h 

messages are required to stabilize the algorithm. 
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3.2.4 Simulations 

In this section, we have implemented and tested two existing (CIST, MEST) and three 

newly proposed algorithms (MDST1, MDST2, MDCST) for the spanning tree 

construction. We compare these algorithms regarding their runtime performances and 

resulting spanning tree diameters. We also implement a brute-force algorithm (BFA) to 

find the minimum diameter spanning trees in our scenarios in order to compare results of 

the proposed algorithms against minimum diameters. For the BFA, we first find all 

possible shortest path spanning trees in the graph. We then choose the minimum diameter 

of all these shortest path spanning trees to obtain diameter of the minimum diameter 

spanning tree, since the minimum diameter should be on one of the shortest path spanning 

trees. 

We have implemented the algorithms in the network simulator ns2 [FALL10]. For the self-

stabilizing algorithms, we have simulated failure detection module by using periodical 

messaging between the neighboring nodes. Each node periodically sends a message to all 

its neighbors indicating its variables (root, parent and distance). If any message is not 

received from a neighbor in 2 periods then the node assumes that this neighbor has failed, 

and takes action. In all algorithms, we used UDP protocol for messaging.  

We have generated 8 experiment scenarios by using uniformly distributed random wired 

network topologies ranging from 100 to 800 nodes. In self-stabilizing algorithms, the 

periods of status updates and self-stabilizing loops affect the runtime of the algorithm 

drastically. For that reason, we tried to choose the update interval as small as possible that 

ns2 allows. The same update interval is used in all experimentations to ensure fair 

comparison between algorithms. 

Runtime results of the algorithms can be seen in Figure 3.2. The runtime of the MEST 

Algorithm [AFEK91] increases as the size of the network grows. This increase is due to 

the Request and Grant messages, which increase with the growth in the network. The CIST 

algorithm’s runtime remains nearly constant as the network grows. This is because the 

algorithm is not self-stabilizing, and the neighborhood information is known priori. 
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MDST1 algorithm performs better than the MEST algorithm since MDST1 algorithm does 

not use messages in case of distance failures. Moreover addition of the degree heuristic 

may cause this improvement since a bigger degree node has more communication channels 

than other nodes that decrease the traffic load on single transmission channels. The 

MDST2 algorithm performs much better than all algorithms that are examined in this 

section. The prevention of usage of Request and Grant messages decreases the runtime of 

the algorithm drastically. On the other hand the MDCST algorithm performs somewhere 

between MDST2 and MDST1 algorithms. This is because of sequential execution of center 

finding and MDST2 algorithms. Figure 3.3 shows the diameters of the resulting spanning 

trees by using 5 different algorithms and the diameter of the minimum diameter spanning 

tree. The diameter of a tree is an important measure that is defined as the minimum 

distance between the two most distant nodes in the tree. It affects the performance of 

algorithms like routing and broadcasting algorithms, which use resulting spanning tree’s 

properties. 

It can be observed that both MEST [AFEK91] and CIST [KSHEMKALYANI08] 

algorithms have resulted in similar results in terms of tree diameters, while the others have 

resulted in smaller diameter spanning trees. This difference is caused by the degree 

heuristic that is used in choosing the root node. We observe similar tree diameters in both 

MDST1 and MDST2 algorithms since they use the same heuristic. The extra rule in 

MDST2 algorithm results in smaller diameter tree, which is very close to the diameter of 

the minimum diameter spanning tree. We also observe that both MDST1 and MDST2 

algorithms choose the same nodes as root nodes, but the extra rule in MDST2 results in 

different child-parent relations in the resulting tree which provides a smaller diameter 

spanning tree. We expected that MDCST algorithm would generate better results than 

MDST1 and MDST2 algorithms since it uses the center of the tree as the root node. 

However, we observed that the results are not very different from MDST2 algorithm. This 

is because in many situations the highest degree node was located around the center of the 

tree. 
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Figure 3.2 Runtime results of spanning tree construction algorithms 

According to runtime and diameter results and comparisons we can say that MDST2 

algorithm outperforms the remaining algorithms that are examined in this section. We also 

observed that addition of the center heuristic does not improve the test results as we 

expected.  
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Figure 3.3 Diameter results of spanning tree construction algorithms 

3.2.5 Conclusion 
In this section, we proposed three new self-stabilizing spanning tree algorithms, which 

use the heuristic of choosing the highest degree node as the root. We have designed, 

implemented and tested our algorithms using network simulator ns2. In order to compare 

our algorithms with the existing algorithms, we also implemented and tested two existing 

spanning tree construction algorithms that rely on two different paradigms. We have 

compared simulation results of five algorithms in total. We showed the differences and 

similarities between the approaches in terms of runtime and tree diameter results. 

According to the implementation results, we can say that the two existing algorithms 

behave similarly in terms of the resulting spanning tree’s degrees when the constraints are 

also similar. However, in MDST1 and MDST2 algorithms, with the use of maximum 

degree heuristic, the diameter of the resulting spanning tree is decreased. In MCDST 

algorithm, we realized that in complex network topologies, the root of the spanning tree, 
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which is generated by using degree heuristic, is located around the center of the tree in 

most scenarios. Therefore, we concluded that using the center of the tree as root node does 

not improve the resulting spanning tree significantly. According to the runtime results, we 

can say that our algorithms outperformed the other two compared existing algorithms.  

According to our experimental observations, we can conclude that in dynamic 

environments such as grid systems, self-stabilizing algorithms can be used effectively. 

Moreover choosing the highest degree node as the root of the tree can improve the 

resulting spanning tree by decreasing the tree diameter.  

3.3 Spanning Tree Based Resource Discovery for Query Processing in 
Grid Environments 

Resource Discovery is one of the key issues in successful Grid systems. New 

methodologies for Resource Discovery are constantly researched due to the dynamicity, 

heterogeneity and large-scale characteristics of grid environments. Resource discovery 

(RD) in Grids can be defined as searching and locating resource candidates that are 

suitable for a job in which processing environments’ constraints are clearly specified. On 

the other hand, the problem is defined as realizing the resource discovery in a reasonable 

time, considering the characteristics of the environment. The problems that may arise 

because of the dynamicity and large-scale properties of the environment were addressed in 

the section 3.2 by the use of self-stabilizing spanning trees. However, in order to discover 

up-to-date resource information in such a topology, resource discovery algorithms are 

required, which realizes efficient distribution of request and response messages related to 

resources.  

There can be found many studies in the current literature for resource discovery in grid 

environments. Although these studies present fruitful solutions to the RD problem, to the 

best of our knowledge, we cannot find a complete solution, which addresses all 

requirements of query processing caused by the characteristics of grid systems. 

Requirements related to the scalability and dynamicity were addressed in previous section. 
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However, in order to obtain reliable up-to-date RD results, an RD algorithm should visit all 

nodes in the grid environment. We cannot find a resource discovery algorithm, which uses 

efficient topology control structures that are prone to dynamicity of the underlying 

environments. For these reasons, in this section, we propose the Spanning Tree Based 

Resource Discovery (STRD) algorithm, which exploits the self-stabilizing spanning tree 

that is generated by the MDST2 algorithm.  

 

3.3.1 The Spanning Tree Based Resource Discovery (STRD) Algorithm 

In STRD algorithm, we aim at efficiently discover resources by exploiting the 

underlying spanning-tree structure. In order to obtain reliable up-to-date results, the 

algorithm contacts with all nodes in the grid environment. The main contribution of the 

STRD algorithm is to efficiently scatter the resource discovery requirement lists and gather 

the results to the queried node exploiting the self-stabilizing spanning tree structure. For 

the STRD algorithm, we assume that the self-stabilizing spanning tree exists. In this 

spanning tree the nodes communicate with only their child and parent nodes.  

Our algorithm starts its execution by the reception of a query by any arbitrary node in the 

grid environment.  Such node analyses the query and prepares a requirement list (RL) for 

the resource discovery. The queried node sends the RL to the root of the spanning tree via 

its parent. When the root node receives the RL, it sends a message (RD_Req) to all its child 

nodes. This message is broadcasted to the spanning tree until it reaches to the leaf nodes. 

When a leaf node receives RD_Req message, it generates a response message (RD_Resp) 

and inserts its id into this message if it meets the requirements for the resource discovery. 

Then it sends the RD_Resp message to its parent. The parent node waits until all its child 

nodes respond to the RD_Req message. When all child nodes respond, it merges all 

responses, including its own response, to a new RD_Resp message, and sends this message 

to its parent. The RD_Resp messages are converge-casted upwards until they reach the root 

node. When the converge-cast is completed, the root node relays the result, which includes 
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all discovered resources, to the queried node. The flow of the algorithm is shown in Figure 

3.4.  
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Figure 3.4 The STRD Algorithm Sequence Diagram 

3.3.2 Analysis 

The STDR algorithm exploits the underlying spanning tree. Therefore it shares many 

important properties with the underlying topology. In this section we provide reliability 

and complexity analyses for the STRD algorithm.  

Theorem The STRD algorithm returns up-to-date results for the resource discovery 

without having false negative errors. 

Proof. The STRD algorithm runs over the self-stabilizing spanning tree, which is 

constructed by one of the proposed self-stabilizing spanning tree construction algorithms in 

section 3.2. Since the constructed tree is a spanning tree, by definition, it contains all the 

nodes in the grid environment. All these nodes involve the STRD algorithm by responding 

to the resource discovery request by considering their properties. Therefore the algorithm 

does not contain false-negative errors. Since the resource discovery request is processed in 
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each node by itself, the resulting information is always considered to be up-to-date. 

Moreover, the underlying topology is self-stabilizing, which means that eventual node 

failures do not affect the correctness of the topology and the STRD algorithm in 

consequence.   

Theorem The message complexity of the STRD algorithm is Θ(2h+2N) where N is the 

number of nodes in the spanning tree and h is the height of the spanning tree. 

Proof. The STRD algorithm starts its execution by the reception of a query. Following 

this, the queried node sends a requirement list message to the root node through the 

spanning tree. This phase results h messages to be sent, where h is the height of the 

spanning tree. In the second phase, the root node distributes a resource discovery request 

message to all nodes in the spanning tree, which results in N messages to be sent to the 

network, where N is the number of nodes in the spanning tree. After all these messages are 

distributed, nodes converge-cast response messages. This phase results in N messages to be 

distributed since the response messages are merged in parent nodes. When the response 

message reaches to the root node, it is sent to the queried node through the spanning tree, 

which results in h messages to be sent. At the end, the whole process requires 2h+2N 

message exchanges.  

Theorem The time complexity of the STRD algorithm is Θ(4h) where h is the height of 

the spanning tree.  

Proof. Following the reception of query by an arbitrary node in the grid environment, 

the queried node sends a requirement list message to the root node through the spanning 

tree. This phase requires h rounds for the message to reach to the root node where h is the 

height of the spanning tree. In the second phase, the root node distributes a resource 

discovery request message to all nodes in the spanning tree, which requires h rounds since 

the messages are sent in parallel by the nodes, which are at the same level. After the 

messages are distributed, nodes converge-cast response messages which requires again h 

rounds similarly. At the last step, the root node relays the final response message to the 
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queried node, which is h hops away. In total, the STRD algorithm requires 4h rounds for 

the completion.  

 

3.3.3 Simulations 

In this section, we have implemented and tested the STRD algorithm. We also 

implemented a flooding based resource discovery algorithm (FBRD) to be used as 

comparison purposes. In FBRD algorithm, similar to [IAMNITCHI03], the resource 

discovery request is flooded to the grid environment starting from the queried node. Then, 

each node that meets the requirements sends response messages to the queried node. We 

compare the two algorithms regarding their runtime performances to complete resource 

discovery.  

We have implemented the algorithms in the network simulator ns2 [FALL10]. We have 

generated 7 experiment scenarios by using uniformly distributed random wired network 

topologies ranging from 100 to 700 nodes. In STRD algorithm the self-stabilizing spanning 

tree is constructed beforehand. We have randomly chosen 20 nodes as data sources in each 

scenario. We discovered these resources regarding existence of the required data. We also 

discovered many properties of these resources alongside the data existence.  

In Figure 3.5, the time required to discover resources is measured. The query is posted to a 

randomly chosen node in the system. As it can be seen in the simulation results, the 

runtime of the STRD algorithm remains nearly constant in the testing scenario, whereas the 

runtime of FBRD algorithm increases drastically as the number of nodes increases. The 

time complexity of the STRD algorithm is bound by the height of the spanning tree. For 

that reason, although the number of nodes increases, the performance of the algorithm 

remains nearly constant as soon as the height of the spanning tree does not change. On the 

other hand, the time and message complexities of the FBRD algorithm is O(N2), therefore 

the increase in the number of nodes results in a quadratic increase in the runtime of the 

resource discovery algorithm.  
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Figure 3.5 Runtime of the STRD algorithm 

 

3.3.4 Conclusion 
In this section we proposed the Spanning Tree Based Resource Discovery algorithm, 

which relies on the existence of a self-stabilizing spanning tree structure in the grid 

environment. In the STRD algorithm we exploited the self-stabilizing spanning tree 

construction algorithms that are proposed in the previous sections. We presented our 

algorithm in detail and provided the reliability and complexity analyses. We have 

consolidated our analyses with simulation and provided comparisons with an algorithm 

that uses flooding during the resource discovery.  

Regarding our analyses and simulation results, we can conclude that the STRD algorithm 

meets nearly all requirements listed in the section 3.1. Since the algorithm uses self-
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stabilizing spanning tree structure, it is prone to node failures. The efficient broadcasting 

and converge-casting of resource discovery messages increases the scalability of the 

algorithm. Moreover, since the algorithm does not use any limitations for the dissemination 

of resource discovery messages, it efficiently reaches to every node in the grid 

environment. Therefore it can be considered to be reliable in terms of correctness of the 

resource discovery results. Since the resource discovery messages are distributed to all 

nodes without having complex structures such as DHT’s, the algorithm supports different 

types of queries such as multi-attribute, dynamic-attribute and range queries.  

3.4 Overall Conclusions 

Resource discovery constitutes a very important stage in query processing in grid 

environments. Differently from classical resource discovery algorithms, in grid 

environments and for query processing purposes, there can be listed many important 

requirements that should be met by a resource discovery algorithm. These requirements are 

listed and detailed in Chapter 2 as being complexity, scalability, dynamicity, reliability, 

support for multi-attribute, dynamic-attribute and range queries. Regarding the presented 

literature survey in Chapter 2, we concluded that the most reliable way to discover 

resources, in order to obtain up-to-date resource information, is to contact each resource 

individually in the grid environment. However, this method raises scalability problems 

since the grid system is large scale. Most of the existing studies solve the scalability 

problems by limiting the dispersion of resource discovery messages by using some metrics 

such as hop counts. However this method causes false negative errors since the resource 

discovery message cannot reach to every node in the system. Other methods use 

hierarchical structuring in the environment by keeping information of groups of resources 

in selected nodes. But this time the results become out-of-date since dynamic properties of 

resources are updated periodically in the selected nodes. Although there exist many studies 

in the current literature using different techniques, each have their own advantages and 

drawbacks. To the best of our knowledge, we find few algorithms that use topological 
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structures in distributing the resource discovery messages. For these reasons, in this 

chapter, we first proposed three self-stabilizing spanning tree construction algorithms. We 

provided correctness and complexity analyses of the proposed algorithms. We have tested 

our algorithms in ns2 simulation environment. We have also implemented two existing 

spanning tree construction algorithms for comparison purposes. We have compared in total 

5 algorithms. We have discussed the weaknesses and strengths of our algorithms and 

showed the situations in which our algorithms outperform the similar existing studies. We 

then proposed a spanning tree based resource discovery algorithm that uses one of the 

proposed self-stabilizing spanning tree construction algorithms as a topology control 

mechanism. We provided reliability and complexity analyses for the proposed algorithm. 

We consolidated our analyses with simulation results. We have implemented and tested 

our algorithm and compared with a similar existing study.  

We showed that the proposed resource discovery algorithm, in conjunction with the 

proposed self-stabilizing spanning tree construction algorithms, provide a complete 

solution regarding the requirements of query processing in grid environments. Our solution 

address the problems caused by the dynamicity of the environment by the use of self-

stabilizing concept in the topology control layer. We address the scalability problems by 

the use of a spanning tree, which allows our algorithm to efficiently distribute the resource 

discovery messages. The proposed STRD algorithm aims at decreasing the complexity of 

the resource discovery process by using converge-casting of RD messages over the 

spanning tree. Lastly, we ensure support for dynamic attribute, multi-attribute and range 

queries by contacting each resource in the grid environment. 
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CHAPTER 4: RESOURCE ALLOCATION FOR QUERY 

PROCESSING IN GRID ENVIRONMENTS 

Résumé 

Nous proposons, dans ce quatrième chapitre, de nouveaux algorithmes d'allocation des 

ressources pour le traitement des requêtes dans les environnements Grille, compte tenu 

des proximités de nœuds candidats aux sources de données. Nous limitons d'abord, 

l'espace de recherche pour les ressources candidats. Ensuite, nous affectons des nœuds en 

commençant par le plus proche des nœuds  aux sources de données. Nous présentons des 

analyses théoriques des algorithmes proposés et puis nous consoliderons ces analyses avec 

les simulations. 

 

Abstract 

In this chapter, we propose new resource allocation algorithms for query processing in 

grid environments considering proximities of candidate nodes to the data sources. We first 

limit the search space for the candidate resources. Then, we allocate nodes starting from 

the closest node to the data sources. We provide theoretical analyses of the proposed 

algorithms and consolidate analyses with the simulations.  

4.1 Introduction 

The number of different domains that exploit the facilities of grid environments 

increases everyday as the grid systems become more popular. Their large computing and 

storage capabilities attract many researchers’ attention and leads them to propose new 

methods to port their existing computing environments to the grid systems [FOSTER04b]. 

Distributed query processing is one of these domains in which there exists large amounts 

of ongoing research to port the underlying environment from distributed and parallel 

systems to the grid systems [HUANG03, ANTONIOLETTI05, PACITTI07, 
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KOTOWSKI08, TANIAR08]. However, grid system’s characteristics reveal many 

problems. It is generally assumed that grid systems have very large number of resources. 

These resources may correspond to computational resources such as CPU, memory, 

storage unit or network; they may be data sources, which provide metadata and its contents 

such as database; or they may be services, which accomplish specific tasks. On the other 

hand, a node corresponds to a computer in the grid, which contains some of those 

resources with a set of characteristics. To efficiently execute queries in the grid 

environment, suitable allocation of resources is essential. Resource allocation (RA) can be 

defined as selecting and allocating suitable nodes for executing query operators aiming at 

optimizing the runtime of the query execution. The optimum allocation of resources for 

query processing in large scale environments is proved to be NP-Complete [WANG90]. 

For this reason, existing studies search near optimal solutions for the RA problem using 

heuristic approaches. Resource allocation determines how many of the candidate resources 

will be used, and which tasks will be executed by which resources. These issues may 

drastically affect the performance of the query execution in grid environments. There can 

be found many studies in the current literature which address the problem of resource 

allocation for query processing in grid systems [GOUNARIS04, GOUNARIS05, SOE05, 

GOUNARIS06b, SILVA06, BOSE07, KOTOWSKI08, LIU08, GOUNARIS09]. Several 

survey studies examine and evaluate these studies with classification [COSTA08, 

EPIMAKHOV11, COKUSLU12]. Although the existing resource allocation studies 

provide interesting solutions to this problem, to the best of our knowledge, none of these 

studies consider decreasing the scale of the search space for the candidate resources. 

Moreover, we have found few studies which focus on the communication costs during the 

resource allocation [BOSE07, LIU08]. Thus, we believe that there are still some open 

issues that are not mentioned completely regarding the grid systems’ characteristics.  

In this chapter, we aim at designing a resource allocation algorithm for query processing in 

grid environments. For this, we first propose the Single Join Operator Resource Allocation 

(SJORA) algorithm that realizes resource allocation for queries consisting of a single join 



 101 

operator [COKUSLU12_b]. In SJORA, we first generate a reduced search space for the 

candidate nodes. Then, we create an initial allocation plan considering proximity of the 

candidate nodes to the data sources. After SJORA, we further extend our algorithm and 

propose Multi-Join Resource Allocation (MJORA) algorithm, which allocates resources 

for queries consisting of multiple join operators. In MJORA, assuming the existence of the 

tree representation of queries, we traverse the query tree and, exploiting the SJORA 

algorithm, realize the resource allocation for the queries consisting of multiple join 

operators.  

The contribution of this study is twofold. First, we address scalability of the resource 

allocation method by decreasing the size of the search space for candidate resources. The 

second contribution addresses the heterogeneity problem by selecting candidate nodes 

according to their proximities to the data sources aiming at decreasing data transfer costs.  

Throughout this study, we assume that the relations, which are involved in the join 

operator, are horizontally partitioned into the grid where each partition resides in only one 

node. The existing partitioning may or may not be based on the join attribute. Therefore 

repartitioning may be required during the execution of the join operator. We examine a 

join operator as it consists of two atomic tasks namely scan and join. Scan tasks act as 

providers to the join tasks by reading the data from the storage unit and sending this data to 

the corresponding join tasks. Considering data locality constraint, we assume that the scan 

tasks are executed on the nodes where the partitions of the base relations reside. We call 

such nodes as scan nodes. The scan nodes may either be nodes that hold base relations, or 

they may be nodes that are already allocated for another join operator that produces 

temporary relations to the current join operator. On the other hand, we call the nodes in 

which join tasks are executed as join nodes. Lastly, the node that receives the query at the 

beginning will be called as queried node for the rest of this chapter.  

The rest of this chapter is structured as follows. In section 4.2, we introduce the Single Join 

Operator Resource Allocation algorithm in detail. In section 4.3, we present the Multi Join 

Resource Allocation Algorithm. Finally in section 4.4, conclusions are presented.  
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4.2 Single Join Operator Resource Allocation (SJORA) Algorithm 

In this section, we propose the Single Join Operator Resource Allocation (SJORA) 

algorithm for queries consisting of one join operator [COKUSLU12_b]. In the SJORA 

algorithm, we aim at finding suitable nodes for the scan and join tasks, which compose the 

join operator. Due to the data locality constraint, the scan tasks are allocated at the nodes in 

which the partitions of relations reside. However, the search space for the candidates of the 

join tasks is very large since there are no strict constraints beforehand for the join nodes. 

For this reason, we first aim at reducing the search space for the candidates of join nodes. 

To realize this, we designed the SJORA algorithm as consisting of two complementary 

algorithms. In this manner, we first propose Proximity Based Candidate List Generation 

(PBCG) Algorithm in section 4.2.1. After determining the list of candidate nodes, we 

propose Join Task Resource Allocation (JTRA) Algorithm in section 4.2.2, which 

determines the parallelization degree and finalizes the allocation of resources.  

 

4.2.1 Proximity Based Candidate List Generation (PBCG) Algorithm 

The resource allocation for join tasks is not a straightforward process since every node 

in the grid environment is practically a candidate resource for these tasks. In a large-scale 

environment, it might not be suitable to consider such a large number of nodes as 

candidates for the join task since this may cause performance degradation for the resource 

allocation process. Although there might be some constraints to decrease the number of 

candidates for join tasks, such as hardware or software constraints, we believe that the 

most profitable constraint would be the proximity of candidates to the scan nodes. For that 

reason, in PBCG algorithm, we try to refine the set of candidates by choosing the set of 

nodes that are closer to the scan nodes in the grid. To realize this, we start flooding a 

message beginning from each scan node. The first node that collects flooded messages 

from all scan nodes is considered to be located at the center of the scan nodes. The 

algorithm in the queried node as shown in Algorithm 4.1. At the beginning, the algorithm 
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sends a startPBCG message to all scan nodes, which causes them to start flooding 

operation (line 1). After sending this message, queried node waits for the candidate nodes 

to respond to the flooded messages. Upon receiving a message from a candidate, the 

queried node adds the sender to the candidate list (line 3). The first replied candidate is 

considered to be the closest candidate to all scan nodes. In line 4, the algorithm checks the 

termination condition. Since the queried node is not aware when the flooding ends, it has 

to use a termination condition to finalize the algorithm. This allows the queried node to 

decide when to stop waiting for new messages for the PBCG algorithm. In our algorithm, 

we used the most distant scan nodes (nodeA and nodeB) for determining the termination 

condition. Receiving a PBCGCandidate message from one of these two nodes simply 

means that the flooded messages are spread at least to all scan nodes. To realize this, if the 

replied candidate is one of the most distant scan nodes, queried node terminates the 

algorithm and finalizes the candidate list.  

 

Algorithm 4.1. PBCG Algorithm in the queried node 
Input:  (i) The list of scan nodes 
 (ii) The most distant scan nodes (nodeA and nodeB) 
Output:    List of candidate nodes 
1: send startPBCG message to all scan nodes 
2: upon receiving a PBCGCandidate message: 
3: add sender to the PBCGCandidateList 
4: if sender = nodeA or nodeB then 
5:     terminate 
6: else 
7:     continue receiving messages 
8: endif 
9: end 

  

The algorithm, which is run in other nodes, is shown in Algorithm 4.2. When a node in the 

grid system receives a message, it checks its type. If the message type is startPBCG, the 

node starts the flooding by sending a PBCGFlooding message to all its neighbors (line 3). 

The termination condition for flooding is embedded in this message as hopLimit value, 

which is the hop count between the most distant scan nodes. If the received message type 
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is PBCGFlooding, the node extracts hopCount value from the message and increments by 

one (line 6). It then adds origin of the message to the receivedScanNodes list (line 7). If the 

receivedScanNodes list contains all scan nodes, the node sends a PBCGCandidate message 

to the queried node, which indicates that it is a candidate for the join task (line 9). The 

node then checks if the message should be relayed (line 11); if the termination condition is 

not met yet, the node relays the message by sending it to all its neighbors except the sender 

of the message (line 12). Each time the message is relayed, it is diffused to other nodes in 

the grid. The flooding operation continues hopLimit hops away from the scan nodes. This 

ensures that at least t nodes will be candidate for the join operation where t is the number 

of scan nodes.  

 
Algorithm 4.2. PBCG Algorithm in other nodes 
1: Upon receiving a message: 
2: if message type is startPBCG then 
3:     send PBCGFlooding message to all neighbors 
4: else if message type is PBCGFlooding 
5:     extract hopCount and hopLimit values from the message 
6:     increment hopCount by one 
7:     add origin of the message into the receivedScanNodes 
8:     if receivedScanNodes includes all scan nodes then 
9:         send PBCGCandidate message to the queried node 
10:   end if 
11:   if hopCount < hopLimit then 
12:       relay PBCGFlooding message to all neighbors except the sender 
of the       message 
13:   else 
14:       stop flooding the message 
15:   end if 
16: end if 
17: end 

 

4.2.2 Join Task Resource Allocation (JTRA) Algorithm 

The basic execution of queries with partitioned parallelism can be realized by the 

allocation of a single node for the join task initially. On the other hand, parallelization of 

the join task might drastically increase or decrease the performance of the query execution 
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depending on the characteristics of the allocated nodes. For this reason, determining 

parallelization degree for a join operator is very important in query processing in grid 

environments, in which resources are heterogeneous. There are many different parameters 

that affect the performance of execution of a query in such environments. A resource 

allocation algorithm, which covers all these parameters, may cause excessive computation 

time to decide the parallelization degree and which nodes to allocate. Therefore, 

heuristically selected parameters are generally used in the current resource allocation 

algorithms [GAROFALAKIS97, GOMOLUCH03, SLIMANI04, MANDAL05, BOSE07, 

LIU08]. We believe that, in grid environments, data transmission costs are the determining 

factor in execution time of a query. Therefore, in JTRA algorithm, we propose a resource 

allocation algorithm, which considers the data transmission costs as the decision function 

for the parallelization degree. Although there are some similarities between the JTRA 

algorithm and the algorithm which is proposed in [GOUNARIS06b], the difference is that, 

our algorithm allocates nodes starting from the closest nodes to the scan nodes which 

ensures smaller data transfer costs. Another difference is that, our algorithm includes a 

decision function for the parallelism degree, based on the estimated data transfer costs, 

which struggles the heterogeneity issues in grid environment.  

In JTRA algorithm, we use the candidate list, which is generated by the PBCG algorithm. 

This list contains candidate resources, which are closer to the scan nodes. The top of the 

list contains the closest candidate whereas the bottom parts contain more distant 

candidates. The JTRA algorithm can be seen in Algorithm 3. We start JTRA algorithm by 

taking a node from the top of the candidate list (line 2), which is located at the center of the 

scan nodes. Then we measure communication speeds between the selected node and the 

scan nodes (line 3). This measurement is realized on the go by the use of round-trip-time 

(RTT). After gathering communication speed information, the algorithm calculates the new 

estimated data transfer cost. The addition of another candidate increases parallelization 

degree of the join task. As the parallelization degree increases, the amount of data to be 

transferred to each join node decreases. However, since newly selected candidates get 
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more distant, the lastly added node will have a poorer communication capability. This 

reveals a trade-off between decreased amount of data transfer and increased data transfer 

costs.  

 

Algorithm 4.3. JTRA Algorithm 
Input:  (i) The list of join candidates (candidateList) 
 (ii) The metadata about the relations 
Output: List of nodes that are allocated for the join task 
  1: do 
  2:     nodeC ß take a node from top of the candidateList 
  3:     measure connection speeds between all scan nodes and nodeC 
  4:    newEstimation ß estimate new data transmission time 
  5:     if newEstimation < queryRuntimeEstimation then 
  6:         add nodeC to the selectedNodes list 
  7: queryRuntimeEstimation ß newEstimation 
  8:     end if 
  9: while candidateList is not empty 
10: allocate selected nodes for the join task 
11: end 

 

Since the the size of the search space for the candidate nodes is limited by the use of the 

PBGC algorithm, the JTRA algorithm iterates the whole candidate list. In each iteration, 

the data transfer cost of the join operator is estimated. If addition of a candidate does not 

lead to a performance increase, the algorithm skips the addition of that candidate and 

iterates through the next candidate in the list. At the end of the algorithm, the best sorted 

resource combination within the candidate list is allocated for the join task.  

The estimation of data transfer costs in JTRA algorithm consists of three parameters:  

(i) communication speeds between scan and join nodes (Sij), (ii) local bandwidth of each 

join node (Bj), (iii) sizes of partitions in each scan node (|Pi|). From those parameters, Bj 

and |Pi| are provided by the resource discovery step. However, Sij is determined on-the-go 

each time a new candidate node is added. Even if the measurements for Sij are accurate 

individually, at the runtime, they might differ from the measured values when all scan 

nodes send their data to the join nodes concurrently. In such cases, the local bandwidth of a 
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join node might become insufficient to meet all incoming packets. In such cases, the 

congestion control mechanism of the underlying communication protocol regularizes the 

transfer rate of the sender nodes. In today’s networking environments, most of the 

communication is handled by the TCP protocol, which provides its own congestion control 

mechanism. The main idea behind TCP’s congestion control is to ask senders to decrease 

transmission rate for a specified amount if congestion occurs. This amount is generally 

determined proportionally regarding to the percentage of the sender’s transmission over the 

entire traffic [FALL10]. Therefore, we heuristically normalize the Sij measurements 

beforehand as appears in Algorithm 4.4.  

 

Algorithm 4.4. Connection speed measurements normalization 
algorithm 
Input:  (i) Measured connection speeds between scan and join nodes (Sij) 
 (ii) Local bandwidth of join node (Bj) 
Output: Normalized list of Sij 
1: sumj ß Sij

i=0!>n
"  

2: difference ß Bj - sumj 
3: if difference > 0 then 
4:     for i =0 to n do 
5:         Sij = Sij – (difference * (Sij / sumj) 
6:     end for 
7: end if 
8: end 

 

Assuming that the partitions are evenly distributed on the scan nodes and redistribution of 

tuples will be uniform, the data transfer time between n scan nodes and m join nodes will 

be bounded by the slowest communication link. In such a setting, the data to be transferred 

from each scan node i to a join node will be {|Pi| / m}. Therefore the data transfer time 

estimation can be constructed as follows. 

max
i=0!>n
j=0!>m

| Pi |
m*Sij

   (1) 
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The equation (1) returns the cost for data transmission between scan and join nodes 

considering the slowest parallel portion of the join task. Since all the remaining parallel 

portions of join task should wait for the slowest portion, it is the determining portion for 

the entire data transmission costs of the examined join task. 

4.2.3 Analysis 

In this section we provide time and message complexity analyses of the proposed 

algorithms, PBCG and JTRA.  

Theorem 1. The PBCG algorithm has O(d) time complexity, where d is the diameter of 

the network.  

Proof. PBCG algorithm uses the distance between the most distant scan nodes for the 

termination condition. In the worst-case scenario, the distance between the two most 

distant nodes in the network is the diameter of the network. Since the algorithm propagates 

d hops away from each scan node, the time complexity of the algorithm is O(d) where d is 

the diameter of the network.  

Theorem 2. The PBCG algorithm has O(nN2) message complexity, where n is the 

number of the scan nodes and N is the number of the nodes in the grid system.  

Proof. In PBCG algorithm, each scan node initiates a flooding operation originated 

from itself. Therefore there are n messages to be flooded to the network. In the worst case, 

the flooding operation lasts until all the nodes in the network receives flooded messages. 

Since each flooding operation has N2 message complexity, the total worst case message 

complexity of the algorithm is O(nN2).  

Theorem 3. The worst case time complexity of the JTRA algorithm is O(nN), where n is 

the number of scan nodes and N is the number of nodes in the network.  

Proof. The JTRA algorithm uses the candidate list, which is generated by the PBCG 

algorithm. In the worst case, the list contains all nodes in the network. For each of these 

candidates, the JTRA algorithm measures the connection speed between the candidate and 

n scan nodes by sending them RTT messages. Therefore, the worst case time complexity of 

the algorithm is bounded by the number of messages which is O(nN).  
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Theorem 4. The worst case message complexity of the JTRA algorithm is O(nN), where 

n is the number of scan nodes and N is the number of nodes in the network.  

Proof. The JTRA algorithm uses two messages for measuring the communication speed 

between each candidate and scan nodes. Since in the worst case the algorithm uses N 

candidates, the total number of message exchange is 2nN which can be expresses as O(nN) 

in the big o notation. 

4.2.4 Simulations 

In this section we present quantitative evaluation of the Single Join Operator Resource 

Allocation (SJORA) algorithm by comparing it with a comparative algorithm (CA) which 

reflects the common properties of the recent resource allocation algorithms such as 

[GOUNARIS04, GOUNARIS06b]. The main idea behind the CA is very similar to the 

algorithm proposed by Gounaris et al. [GOUNARIS04, GOUNARIS06b]. The algorithm 

ranks the nodes in the grid according to their properties. In our case, the most important 

property that influences the simulation results is the connection speed of the nodes. 

Therefore the CA algorithm ranks the nodes according to their connection speeds. Then the 

ranked nodes are sorted and the algorithm starts to allocate nodes starting from the top of 

the list. When addition of a new node does not lead to a performance increase, the 

algorithm terminates. We have implemented SJORA and CA algorithms in ns2 simulation 

environment and collected results for the cost of resource allocation process and duration 

of query execution. 

We have generated grid simulation scenarios consisting of 100 through 700 nodes. Each 

node in the scenario represents a uni-processor computer in the grid system that has 

arbitrary connections to other nodes in the grid environment. The bandwidths of duplex 

connections between nodes are randomly assigned between 1 and 10 Gbps. We have 

randomly determined 20 scan nodes in each scenario. The distribution of these scan nodes 

are realized randomly over the simulated environment. Each scan node is assumed to store 

a partition of a base relation. The size of partitions in each node is assumed to be 50 
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GBytes and each scan node stores only one partition.  

We have collected test results for the cost of resource allocation process and the time 

required to complete the query execution. Figure 4.1, shows the cost of the resource 

allocation process. As it can be seen in Figure 4.1, the cost of the SJORA algorithm is 

higher than the CA. This is because the SJORA algorithm processes its entire candidate list 

to find the best possible resource allocation within its candidates. 

 
Figure 4.1 Cost for the resource allocation process 

 

On the other hand, CA stops adding new resources whenever its performance increase 

drops below a certain threshold value. The approach used by CA may miss better resource 

allocation combinations with higher number of resources. However it is conceptually 

impossible to evaluate all possible resource allocation combinations. 

Figure 4.2 shows the simulated query execution durations for the simulated query. In the 

figure, it can be seen that the resources allocated by the SJORA algorithm execute the 

query faster than the resources that are allocated by the CA. This is because, although the 
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resources that are allocated by the CA are the highest ranked nodes in the grid, they might 

be placed far from the scan nodes, which may result in slower data transfer rates. On the 

other hand, the resources that are allocated by the SJORA algorithm are closer to the scan 

nodes. For that reason, SJORA algorithm ensures allocation of more effective resources in 

terms of the communication performances with the scan nodes. This heuristic results in 

SJORA algorithm outperforming the CA.  

Regarding the simulation results, which are shown in figures 4.1 and 4.2, the SJORA 

algorithm is more preferable if the resource allocation costs do not exceed the estimated 

query execution durations. In our simulation scenarios, the durations of query executions 

are much higher than the costs of the resource allocation processes. Therefore, in such 

cases, the SJORA algorithm might be considered as a better alternative to the existing 

resource allocation algorithms that are based on ranking functions. 

 
Figure 4.2 Time required to complete the query execution 
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4.2.5 Conclusion 

In this section, we proposed a Single Join Operator Resource Allocation (SJORA) 

algorithm, which generates a finite candidate resource list by exploiting proximities of the 

candidates to the scan nodes. We presented our algorithm in detail and provided 

complexity analyses. Then, we strengthened our perspectives by the use of quantitative 

analyses and simulations. We showed that our algorithm outperforms the algorithms that 

use ranking functions without having the proximity information to the data sources.  

Regarding the simulation results, we conclude that the SJORA algorithm might be a strong 

alternative to the existing resource allocation algorithms in many cases in which queries 

deal with large amount of distributed data. As indicated in its name, the SJORA algorithm 

is a resource allocation algorithm for queries consisting of a single join operator. The 

resource allocation algorithm for multiple join operator queries is presented in the next 

section.  

4.3 Resource Allocation for a Multi Join Query 

In this section, we extend the SJORA algorithm and propose the Multi Join Resource 

Allocation (MJORA) algorithm for queries consisting of multiple join operators. In the 

MJORA algorithm, we aim at finding suitable nodes for all tasks, which compose the join 

operators in the entire query. However, since the residing nodes of the temporary relations 

are not determined beforehand, we design the MJORA algorithm in bottom-up fashion 

starting from allocation of resources to the operators that use base relations. The rest of this 

section is organized as follows: In section 4.3.1, we propose the MJORA algorithm. In 

section 4.3.2, we present the analyses of the proposed algorithm. In section 4.3.3, we 

consolidate our analyses with the simulation results. Finally in section 4.3.4, we present 

our conclusions.  

 

4.3.1 Multi Join Resource Allocation (MJORA) Algorithm 

In this section, we examine hash join queries, which consist of one or more join 



 113 

operators, as a use case for query operators. We assume that the optimized query operator 

tree is provided explicitly. The relations that are involved in the query are assumed to be 

horizontally partitioned into the grid without replication. We consider a query as consisting 

of hash join operators which are composed of atomic tasks namely scan, build and probe. 

Scan tasks act as providers to the build and probe tasks by reading tuples from their storage 

units and sending to corresponding tasks. Build tasks receive tuples from their scan tasks 

and build hash tables for that operator. Probe tasks are blocked during the execution of 

their corresponding build tasks. After build tasks complete, probe tasks start receiving 

tuples from their corresponding scan tasks and check for matching tuples in the hash table. 

Probe tasks pipeline matched tuples through their successor tasks in the query tree. More 

detailed explanation of the hash join operator in distributed environments can be found in 

[OZSU11].  

In section 4.2, we find and allocate suitable resources for queries consisting of a single join 

operator assuming scan tasks are already allocated. Since queries may consist of more than 

one join operator, it is necessary to extend the SJORA algorithm by materializing the 

allocation of all tasks in the entire query. In this section, we propose the Multi Join 

Resource Allocation (MJORA) algorithm, which allocates nodes for the entire query that 

consists of multiple join operators. For the MJORA algorithm, we use tree representation 

of queries. An example query with its tree representation is shown in Figure 4.3. Vertices 

in the query tree represent tasks and directed edges represent data flow between tasks. In 

MJORA algorithm, we consider that queries consist of join operators, and join operators 

consist of scan, build and probe tasks. Each join operator in the query may be composed of 

more than one pair of build and probe tasks that execute concurrently over the different 

data partitions. The build and probe tasks in each pair are tightly coupled. Therefore we 

decided to allocate each pair of build and probe tasks in the same resource. For simplicity, 

in the rest of this paper, these pairs of build and probe tasks are named as join tasks.  
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Figure 4.3 An example query and its query tree 

 

Previously, in SJORA algorithm [COKUSLU12_b], we assumed that the partitions of base 

relations are known at the end of the resource discovery stage. However, for the temporary 

relations, it is not possible to find out their physical locations before precedent join tasks 

are allocated. Therefore, in MJORA algorithm, we execute the SJORA algorithm starting 

from the join tasks that are located at the lowest level of the query tree. These kinds of join 

tasks are marked as 1st level join tasks in Figure 4.3. Then, we allocate the join tasks that 

are located at the 2nd level in the query tree. We repeat this process until all tasks are 

allocated in the query. To realize this, we apply post-order tree traversal on the query tree. 

The generation of the query tree involves query optimization steps such as query 

reordering. Since this kind of optimization is out of scope of this thesis, we assume that the 

query tree is already provided exclusively. The MJORA algorithm is executed by the 

queried node. A snapshot of the initial resource allocation is stored in the query tree that 

resides on the queried node. Each vertex in the query tree contains a data structure called 

treeElement, which is shown in Figure 4.4. The treeElement contains four principal fields 

namely type, list, left and right. Type field indicates the type of the task whether it is a scan 
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or a join task. List field contains a list of allocated nodes for the task, which is initially 

empty. Left and right fields point to the left and right subtrees in the query tree.  

 

 
Figure 4.4 Data structure for the treeElement 

 

The MJORA algorithm is shown in Algorithm 5. The algorithm runs recursively a post-

order tree traversal (lines 1 to 6). In line 7, the algorithm processes the visited vertex. If the 

visited vertex is a scan task, MJORA algorithm fills list field of the treeElement with the 

list of nodes in which the partitions of the processed relation reside (line 8). Else, if the 

visited vertex is a join task, the list field is filled with the results of the SJORA algorithm. 

In this step, the list of partitions of base or temporary relations is provided by the child 

vertices (line 10). The estimated sizes of the temporary relations (sizes) are assumed to be 

provided exclusively. The most distant nodes and the distance between them for the 

partitions of temporary relations (nodeA, nodeB and dist) are provided by the topology 

control algorithm of the resource discovery module [COKUSLU10]. At the end of 

execution of the MJORA algorithm, all the vertices in the query tree contain the list of 

selected nodes for the corresponding task. At this stage, the queried node sends the query 

tree to all selected nodes in order to complete allocation of nodes and to start execution of 

the query.  
 

Algorithm 4.5. MJORA algorithm 
Input: Root of the query tree 
Output: List of nodes to be allocated for each operator 
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1: MJORAAlgorithm(treeNode) 
2:     if treeNode is empty then  
3:        return 
4:     else 
5:       MJORAAlgorithm(treeNode.left) 
6:       MJORAAlgorithm(treeNode.right) 
7:       if treeNode.type = SCAN then  
8:           treeNode.list = nodes in which partitions reside 
9:       else if treeNode.type = JOIN then 
10:           treeNode.list = SJORA(treeNode.left.list! treeNode.right.list, 
nodeA, nodeB, dist, sizes) 
11:     end if 
12:   end if 
13:   return 
14: end 

 
4.3.2 Analysis 

In this section we provide time and message complexity analyses of the proposed 

algorithm, MJORA.  

Theorem 1. The MJORA algorithm has O(jnN) time complexity, where j is the number 

of join operators in the query, n is the number of scan nodes and N is the number of nodes 

in the grid system.  

Proof. MJORA algorithm uses the SJORA algorithm for each join operator in the 

query tree. Since the time complexity of the SJORA algorithm is O(nN), the time 

complexity of the MJORA algorithm is O(jnN) for a query that consists of j join operators.  

Theorem 2. The MJORA algorithm has O(jnN2) message complexity, where j is the 

number of join operators in the query, n is the number of the scan nodes and N is the 

number of the nodes in the grid system.  

Proof. The MJORA algorithm uses the SJORA algorithm for each join operator in the 

query tree. Since the message complexity of the SJORA algorithm is O(nN2), the total 

message complexity of the MJORA algorithm is O(jnN2) for a query that consists j join 

operators.  
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4.3.3 Simulations 

In this section we present evaluation of the Multi-Join Resource Allocation (MJORA) 

algorithm by simulation. We compare our algorithm with a comparative algorithm (CA) 

which reflects the common properties of the recent resource allocation algorithms such as 

[GOUNARIS04, GOUNARIS06b]. The main idea behind the CA is very similar to the 

algorithm proposed by Gounaris et al. [GOUNARIS04, GOUNARIS06b]. The algorithm 

ranks the nodes in the grid according to their properties. In our case, the most important 

property that influences the simulation results is the connection speed of the nodes. 

Therefore the CA algorithm ranks the nodes according to their connection speeds. Then the 

ranked nodes are sorted and the algorithm starts to allocate nodes starting from the top of 

the list. When addition of a new node does not lead to a performance increase, the 

algorithm terminates. The CA algorithm traverses the query tree and allocates resources for 

each join operator in the query. We have implemented MJORA and CA algorithms in ns2 

simulation environment and measured the cost of resource allocation process and duration 

of execution of a sample query. 

We have generated grid simulation scenarios consisting of 100 through 800 nodes. Each 

node in the scenario represents a uni-processor computer in the grid system that has 

arbitrary connections to other nodes in the grid environment. The bandwidths of duplex 

connections between nodes are randomly assigned between 1 and 10 Gbps. In our 

simulation scenario, we have simulated resource allocation and execution of a sample 

query consisting of 3 join operators, which joins 4 relations in total. The formal 

representation of the sample query is shown in the figure 4.5 where R1, R2, R3 and R4 

present relations and  presents join operator. 

 

{(R1  R2)  (R3  R4)} 

Figure 4.5 Formal representation of the sample query 

 

Each relation is horizontally partitioned into 5 arbitrary scan nodes in our scenarios. The 
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distribution of the scan nodes is realized randomly over the simulated environment. Each 

scan node is assumed to store a partition of a base relation of size 50 GBytes. Each scan 

node stores only one partition.  

We have collected test results for the cost of resource allocation process and duration of 

query execution. Figure 4.6, shows the cost of the resource allocation process for the entire 

query. As it can be seen in Figure 4.6, the cost of the MJORA algorithm is higher than the 

CA. This is because the MJORA algorithm processes its entire candidate list to find the 

best possible resource allocation within its candidates and measures the communication 

speeds from each candidate node to all scan nodes while calculating the estimated query 

duration. This overhead results in the MJORA performs slower than the CA in return for a 

better selection of resources. However, it can be seen in the figure that the MJORA 

algorithm scales well with the number of nodes in the grid environment. The cost of 

resource allocation process remains nearly constant as the number of nodes increase. This 

is caused by the limitation of the candidate resource search space. In each scenario the 

algorithm examines nearly the same number of candidate resource in the MJORA.  
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Figure 4.6 Cost of the resource allocation process for MJORA Algorithm 

 

Like the MJORA, the CA remains also nearly constant as the number of nodes increase. 

This is because in CA, the algorithm stops adding new resources when the performance 

increase reaches to a threshold limit, instead of examining all resources in the candidate 

list. Otherwise, the CA would examine every resource in the grid environment. This 

approach may miss better resource allocation combinations with higher number of 

resources. However it is conceptually impossible to evaluate all possible resource 

allocation combinations. 

Figure 4.7 shows the simulated query execution durations for the simulated query. In the 

figure, it can be seen that the resources allocated by the MJORA algorithm execute the 

query faster than the resources that are allocated by the CA. This is because, although the 
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resources that are allocated by the CA are the highest ranked nodes in the grid, they might 

be placed far from the scan nodes, which may result in slower data transfer rates. On the 

other hand, the resources that are allocated by the MJORA algorithm are closer to the scan 

nodes. For that reason, MJORA algorithm ensures allocation of more effective resources in 

terms of the communication performances with the scan nodes.  

Regarding the simulation results, which are shown in figures 4.6 and 4.7, the MJORA 

algorithm is more preferable if the cost of the initial resource allocation does not exceed 

the estimated query execution durations. In our simulation scenarios, the durations of query 

executions are much higher than the costs of the resource allocation processes. Therefore, 

in such cases, the MJORA algorithm might be considered as a better alternative to the 

existing resource allocation algorithms that are based on ranking functions. 

 
Figure 4.7 Time required to complete the query execution 
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4.3.4 Conclusion 

In this section, we proposed the Multi-Join Resource Allocation (MJORA) algorithm, 

which allocates resources for a query consisting of multiple join operators by exploiting 

the SJORA algorithm that is presented in previous section. We presented our algorithm in 

detail and provided complexity analyses. We approve our analyses by the simulation and 

showed that our algorithm outperforms the similar existing algorithms in cases in which 

the query execution durations are much higher than the cost of the initial resource 

allocation. We showed that the MJORA algorithm can be considered a scalable algorithm 

that can be used as a strong alternative to the existing algorithms in many cases. 

4.4 Overall Conclusions 
Resource allocation is one of the key prospects that affect the performance of query 

processing in grid environments. Allocating right resources for tasks in queries may 

increase the performance drastically. However, it is proved that finding the best resource 

allocation is an NP-Complete problem. Therefore, spending excessive time for resource 

allocation step must be avoided. For this reason, current studies present heuristic 

approximation algorithms for resource allocation problem. The existing studies for 

resource allocation in grid systems were examined in detail in Chapter 2. Regarding our 

analyses on the current literature, we have determined the common missing points of 

existing resource allocation algorithms. Most of the existing resource allocation studies 

present detailed functions for ranking resources in the grid environment. However, we 

discovered that these studies rank all the resources in the grid environment, which may 

negatively affect the scalability of the resource allocation algorithm. Besides, we find few 

studies that consider the proximities of candidate resources to the data sources in the grid 

environment. Regarding our conclusions, we aim at contributing these common missing 

points of the existing studies. We first start from allocating nodes for queries that consist of 

single join operators considering proximities of candidate nodes to the data sources. For 
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this, in section 4.2, we proposed the Single Join Operator Resource Allocation (SJORA) 

algorithm. In SJORA, we first limit the search space of the candidate nodes using the 

diameter of the sub-graph consisting of data sources. Then we sort the limited candidate 

resource list according to the proximities of candidate nodes to the data sources. Lastly, we 

select nodes in this list by calculating the estimated data communication costs for the given 

query. We presented the complexity analyses of the proposed algorithm and consolidated 

these analyses with simulations. Then, by exploiting the SJORA algorithm, we proposed 

the Multi Join Resource Allocation (MJORA) algorithm in section 4.3, which allocates 

nodes for queries consisting of multiple join operators. We traverse the tree representation 

of the queries by using the post-order tree traversal and for each join task in the query tree, 

we call the SJORA algorithm to allocate nodes. We provide complexity analyses and 

present the simulation results of the proposed algorithm. We discussed the advantages and 

disadvantages of the MJORA algorithm and showed the situations in which the MJORA 

outperforms similar existing studies.  
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CHAPTER 5: FAULT TOLERANT RESOURCE 

ALLOCATION FOR QUERY PROCESSING IN GRID 
ENVIRONMENTS 

Résumé 

A travers ce cinquième chapitre, nous proposons un nouvel algorithme d'allocation de 

ressources doté d’une tolérance aux pannes pour le traitement des requêtes dans les 

environnements Grille. L'algorithme proposé est basé sur la réplication passive des 

opérateurs à état dans les requêtes. Après une présentation des analyses théoriques de 

l'algorithme proposé, nous consoliderons nos analyses avec les simulations. 

 

Abstract 

In this chapter, we propose a new algorithm for fault tolerant resource allocation for 

query processing in grid environments. The proposed algorithm is based on the passive 

replication of stateful operators in queries. We provide theoretical analyses of the 

proposed algorithm and we consolidate our analyses with the simulations.  

5.1 Introduction 

Grid systems are differentiated from distributed and parallel systems by their large 

scale, dynamic and heterogeneous characteristics [FOSTER04b]. These characteristics 

raise additional challenges to the distributed query processing domain such as resource 

discovery, resource selection, resource allocation, autonomous computing, monitoring, 

replication and caching, security issues and many others [GOUNARIS05]. In previous 

chapters, chapter 3 and chapter 4, we have proposed new algorithms for resource discovery 

and resource allocation problems and we have finalized resource discovery and near 

optimal initial resource allocation for processing queries in grid environments. However, 

finding near optimal resource allocation alone may not be sufficient for efficiently 
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processing queries in grid environments. Defining the policies in case of node failures 

during query execution is also very important and should be included in the resource 

allocation method. Since grid environments are dynamic, eventual node failures are likely 

during the execution of queries. These failures may be very costly if the queries are long 

running and if the system is not designed fault-tolerant. Therefore fault-tolerance can be 

considered as a must in processing queries in grid environments. Since fault-tolerance 

involves in allocation of new nodes, we consider it as a part of the resource allocation step.  

In the current literature, there can be found many resource allocation algorithms with 

dynamicity support [GOUNARIS05, SILVA06, VENUGOPAL06, KOTOWSKI08, 

GOUNARIS09, PATON09, RUIZ09]. Although these studies provide resource allocation 

methods by considering dynamicity of their properties, none of them consider failure of 

nodes during execution of stateful operators in queries. A query operator is considered to 

be stateful if the execution of the operator requires storage of any kind of state such as a 

hash table [BESTEHORN10]. Since stateful operators like hash join, require recovery of 

states of the nodes in case of node failures, dynamic resource allocation methods are not 

sufficient in these cases. We have found few studies for fault-tolerant query processing 

[SMITH05, SMITH07, TAYLOR08, BESTEHORN10]. Although these studies provide 

fruitful algorithms, none of them is specialized on processing stateful query operators in 

grid environments.  

In this chapter, we propose a resource allocation algorithm for fault-tolerant query 

processing in grid environments based on passive replication of stateful operations in 

queries. For finding the initial resource allocation scheme, we use the MJORA algorithm, 

which is proposed in chapter 4. After completion of the initial resource allocation, each 

allocated node applies a replication policy by itself according to the type of the task that it 

executes.  

The contribution of this chapter is the presentation of fault-tolerance for stateful query 

operators in grid environments. For this, we propose Fault-Tolerant Resource Allocation 

(FTRA) algorithm for grid systems.  
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In this chapter, we assume that the node that posts the query and the nodes in which base 

relations reside, are fault-tolerant or stable by default during the execution of the query. 

We consider a query as consisting of hash join operators which are composed of atomic 

tasks namely scan, build and probe. Scan tasks act as providers to the build and probe tasks 

by reading tuples from their storage units and sending to corresponding tasks. Build tasks 

receive tuples from their scan tasks and create hash tables for that operator. Probe tasks are 

blocked during the execution of their corresponding build tasks. After build tasks 

complete, probe tasks start receiving tuples from their corresponding scan tasks and check 

for matching tuples in the hash table. Probe tasks pipeline matched tuples through their 

successor tasks in the query tree. More detailed description of distributed hash join 

operator can be found in [OZSU11]. 

The structure of this chapter is as follows; in section 5.2 we propose the fault-tolerant 

resource allocation (FTRA) algorithm for query processing in grid environments. In 

section 5.3 analyses of the proposed algorithm are presented. We strengthen our analyses 

with simulation in section 5.4. Finally, in section 5.5, we present our conclusions.  

5.2 Fault-Tolerant Resource Allocation (FTRA) Algorithm 

In this section, we propose the Fault-Tolerant Resource Allocation (FTRA) algorithm 

for query processing in grid environments based on the passive replication of stateful join 

operators in queries. The FTRA algorithm is responsible for the fault-tolerance of the 

nodes that are allocated for the join tasks. These nodes, which execute tasks, are named as 

master nodes and the nodes, which are allocated for the fault-tolerance purpose, are named 

as backup nodes or replicas. It is assumed that a master node and its replica do not fail at 

the same time. 

5.2.1 The Algorithm 

The FTRA algorithm is composed of 4 steps, i) replica selection, ii) query execution & 

backing-up, iii) failure detection and iv) failure recovery. These steps are defined below:  
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i) Replica selection: The replica selection step is realized before the master node starts 

its execution. When the MJORA algorithm completes, each master node determines a 

backup node by choosing its closest available neighbor. The selection of the closest 

available neighbor as the replica aims at minimizing the replication overhead that will be 

caused by the FTRA. In this step, we assume that a master node have always at least one 

available neighbor for replica selection.  

ii) Query execution & backing-up: After the replica selection step, the master node 

starts executing the query while backing up its state for fault-tolerance. In order to avoid 

synchronization issues between replicas and master nodes, the replication scheme in this 

step is chosen to be passive replication. In passive replication, the states of the master 

nodes are backed-up to their replicas periodically. The states depend on the type of tasks 

that are being executed. More precisely, build tasks generate hash tables for the join 

operators. The failure of a node during the execution of build task results in the loss of the 

hash table that is generated so far. Therefore, during the execution of the build task the 

state is composed of the hash table and the sequence number of the last tuple that is 

received. On the other hand, probe tasks receive tuples from their predecessors, check the 

hash table for occurrences and send results to their successors in a pipelined fashion. 

Execution of a probe task means that the build task is already terminated and the hash table 

is already constructed. It also implies that the hash table is already backed-up. Therefore, 

during the execution of the probe task the state is composed only of the sequence number 

of the last received tuple. The update interval of the replication period is determined 

heuristically. The states of master nodes are backed-up incrementally. In other words, 

during the execution of build task, each time the state of the master node is backed-up, 

only the additions to the hash table is transferred to the replica node since the last back-up.  

iii) Failure detection: In FTRA, the failure detection is held by both master nodes and 

replicas. Failures of nodes are detected by exploiting the periodical back-up messages. The 

replica nodes monitor failures of their master nodes and master nodes monitor failure of 

their replicas by examining delivery of back-up and their acknowledgement messages.  
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iv) Failure recovery: Whenever a replica node detects failure of its master node, it 

replaces itself with its master and notifies its predecessor and successor nodes for the 

failure recovery. Before it starts acting as a master node, it requests a replica node for itself 

by choosing its closest available neighbor. On the other hand, if a master node detects 

failure of its replica, it requests a new replica and backs-up its last state entirely once. 

The algorithm is executed successively to the MJORA algorithm that is proposed in 

chapter 4. When the MJORA algorithm is executed beforehand, the algorithm outputs a 

tree structure, query tree, which contains the tree representation of the query with the 

selected nodes included for the initial resource allocation. A sample query tree is shown in 

figure 5.1.  
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Figure 5.1 Example query tree that is used for input of the FTRA algorithm 

 

Each vertex in the query tree is composed of a data structure named treeElement. The 

treeElement data structure and its contents are shown in the figure 5.2. In this data 
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structure, type represents the type of the task as whether a scan or a join task. List field 

stores the list of selected nodes for that task at the end of the MJORA algorithm. Left and 

right fields points to the left and right children in the query tree.  

!"##$%#&#'!(

•  !"#$%$&)(!*+#(
•  '&&'()(%,-!(
•  )*!"#$&)(%#.(
•  )*!"#$&)(",/0!(  

Figure 5.2 Data structure that is used in the query tree 

  The FTRA algorithm inputs the query tree and starts processing it by using post order 

tree traversal. Each time the algorithm visits a vertex in the query tree, it sends a request 

message to the selected resources in order to inform them about the initial allocation. This 

allows selected nodes to know their successor and predecessor nodes to communicate with. 

The formal presentation of the FTRA algorithm in the queried node is shown in algorithm 

5.1.  

Algorithm 5.1. FTRA algorithm in the queried node 
Input: Root of the query tree 
Output: Query execution 
1: FTRAAlgorithm(treeNode) 
2:     if treeNode is empty then  
3:        return 
4:     else 
5:       FTRAAlgorithm(treeNode.left) 
6:       FTRAAlgorithm(treeNode.right) 
7:       if treeNode.type = SCAN then  
8:           send AllocScanReq to the each node in treeNode.list 
9:       else if treeNode.type = JOIN then 
10:           send AllocJoinReq to the each node in treeNode.list 
11:     end if 
12:   end if 
13:   return 
14: end 

 

After finishing the query tree traversal, the queried node waits for the resulting tuples 

as a pipelined fashion. The other nodes in the grid environment, which receive request 

messages, involve in the query execution by tracing the finite state machine steps that is 
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shown in Figure 5.4. Basic algorithm steps in the nodes that are assigned for different types 

of tasks are shown below. In algorithm 5.2, the execution of FTRA algorithm in a node 

that executes scan task is presented. The execution steps of the FTRA algorithm in a node 

that is assigned for a join task is shown in algorithm 5.3. Lastly, in algorithm 5.4 the 

algorithm steps for a node that is allocated for replication is presented.  

 

Algorithm 5.2. Basic steps of FTRA algorithm in a scan node 
Input: Received messages 
Output: Execution of the required steps 
1: Upon reception of AllocScanReq message: 
2:     Wait StartScan message from all successor nodes  
3:     When all successor nodes send StartScan message 
4:     Start sending tuples to the corresponding successor nodes 
5:     When the data is completely consumed 
6:       Send ScanEnd message to all successor nodes 
7:  end  

 

Algorithm 5.3. Basic steps of FTRA algorithm in a join node 
Input: Received messages 
Output: Execution of the required steps 
1: Upon reception of AllocJoinReq message: 
2:     Send ReplicaReq message to the nearest neighbor  
3:      Upon receiving ReplicaResp, send StartScan message to all 

predecessor nodes  
4:     Build the hash table using the received tuples from the scan nodes 
5:     Periodically send hash table updates to the backup node 
6:     if the backup node is failed then 
7:       Select another backup node  
8:      end if 
9:      When build task is finished, send StartScan message to the scan 

nodes that hold partitions of the relation that is used in the probe 
task 

10:   Execute probe task using the received tuples 
11:   Periodically send last received tuple information to the backup node 
12:   When probe task is finished, send ScanEnd message to the successor 

nodes 
13: end 

 

Algorithm 5.4. Basic steps of FTRA algorithm in a backup node 
Input: Received messages 
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Output: Execution of the required steps 
1: Upon reception of ReplicaReq message: 
2:     Send ReplicaResp message to the master node  
3:     Record periodical state updates  
4:     if master node is failed then 
5:        Send AllocUpdate message to all predecessors of the master node 

in order to suspend communication 
6:        Select a backup node by sending ReplicaReq message to the 

nearest neighbor 
7:       Change type of task to join  
8:        Send StartScan message to all predecessors to resume the query 

execution as a master node 
9:     end if 
10: end 

 

The finite state machine of the entire protocol for all types of tasks is shown in the 

Figure 5.3. The detailed description of the state machine with message types and states are 

described below.  
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Figure 5.3 Finite state machine of the FTRA 

 

The message types which are used in the FTRA algorithm are described below: 

• AllocScanReq: This message is sent by the queried node to the data sources in 

which partitions of base relations are stored, in order to inform them for the 

allocation of scan tasks. 

• AllocScanResp: The data sources accept allocation of scan tasks by sending this 

message to the queried node. 

• AllocJoinReq: The nodes that are selected for join tasks are allocated by the use of 

this message.  

• AllocJoinResp: The allocated nodes respond to the queried node by sending this 

message. 
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• ReplicaReq: Upon successful allocation of resources for the join tasks, each 

allocated node sends a ReplicaReq message to its closest neighbor in order to 

allocate a replica for itself. 

• ReplicaResp: The nodes that are requested to be back-up nodes respond to their 

masters by sending this message.   

• StartScan: Whenever an allocated node for a join task becomes ready for 

execution, it sends a StartScan message to its predecessor indicating that it is ready 

for receiving tuples. 

• AllocUpdate: When a back-up node detects failure of its master, it becomes a 

master node and notifies the predecessors and successors of its failed master by 

sending AllocUpdate messages. This message also includes the checkpoint 

information about the execution of the task. 

• ScanEnd: This message is sent to the successor nodes in order to notify the end of 

data production by either the scan or probe tasks. 

During the execution of the FTRA, a node may be one of the 11 states, which are described 

below: 

• IDLE: Each node starts execution of the FTRA algorithm in the IDLE state. 

• PREP_SCAN: Upon reception of AllocScanReq message, a node changes its state 

to PREP_SCAN in order to prepare execution of scan task. Such node waits at this 

state until all its successors become ready for the delivery of tuples. 

• SCAN: Whenever all successors of a scan node become ready to receive tuples, the 

node changes its state from PREP_SCAN to the SCAN. In this state, the node reads 

tuples from its storage unit and sends them to the corresponding nodes that execute 

join tasks.  

• SUSPEND_SCAN: When failure of a node that executes join tasks occurs, the node 

which produces data for that failed node suspends producing tuples temporarily 

until the failed node is recovered.  
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• PREP_BUILD: Any node that is selected for a join task changes its state upon 

receiving AllocJoinReq message. Such node waits at this state until it determines a 

replica node before start its execution. 

• BUILD: A node, which is at PREP_BUILD state, changes its state to BUILD 

whenever it receives accept response from its replica. During this state, the node 

receives tuples from its precedent node and generates hash table for the related 

partition of the relation. 

• PROBE: When a node finishes generation of the hash table at BUILD state, it 

switches to the PROBE state and sends StartScan message to the precedents that 

are responsible from the partitions of probe relation. During this state, the node 

receives tuples from its precedents processes the join by using the hash table. The 

results are passed to successor nodes in a pipelined fashion.  

• REPLICA_FAIL_BUILD and REPLICA_FAIL_PROBE: If the replica of a master 

node failed at the BUILD or PROBE states, the node changes its state to these states 

and stays there until it finds a new replica. Upon finding the new replica, the node 

backs-up its state on the new replica and continues its operation. 

• REPLICA: Any node in the grid may receive requests for becoming a replica of a 

master node upon receiving ReplicaReq message. Such node replies the request if it 

is at the IDLE state. A node, which is at other states, does not reply to this request. 

For simplicity, we do not show such cases in the state machine. We assume that 

there always exist some nodes at the IDLE state within a node’s neighborhood. 

During the REPLICA state, the node backs-up the state of its master node in 

periodical intervals. 

• PREP_PROBE: When a replica detects failure of its master while the master node 

is in the PROBE state, it changes its state to PREP_PROBE and searches a replica 

node for itself. Upon finding a replica, such node changes its state to PROBE and 

continues the join task. 
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• END: Every node that executes FTRA finishes the algorithm at this state. 

 

5.2.2 Analysis 

In this section, we present time and message complexity analyses of the FTRA 

algorithm.  

Theorem 1. The overhead of the FTRA algorithm to the standard query execution in 

terms of time complexity is O(j), where j is the number of join operators in the query.  

Proof. The standard execution of a query in a grid environment consists of execution of 

scan, build and probe tasks. In FTRA algorithm, additionally to the standard execution, 

replica selection is required for each join operator before starting the execution. For each 

join operator, selection of a replica node involves 4 steps. Since there are j join operators in 

the query, the total time overhead of the FTRA algorithm is (4j) which can be defined as 

O(j) in the big o notation. 

Theorem 1. The overhead of the FTRA algorithm to the standard query execution in 

terms of message complexity is O(jnm), where j is the number of join operators in the 

query, n is the number of scan nodes and m is the number of allocated nodes for the join 

tasks.  

Proof. In FTRA algorithm, since allocated nodes become ready to receive tuples from 

their precedent nodes only after they set their backup nodes, beginning of scan tasks are 

subject to synchronization with their successors. This synchronization requires each 

allocated node to send a message to its scan nodes. Therefore, for each join operator, the 

FTRA algorithm requires nm message exchanges. Therefore, the total message overhead of 

the FTRA algorithm is O(jnm). 

5.2.3 Simulations  

In this section we present the simulation results and quantitative evaluations for the 

Fault-tolerant Resource Allocation (FTRA) algorithm. We compare our algorithm to the 

MJORA algorithm and examine the overhead that is caused by the replication.  
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For the simulation scenario, we used the same simulation setting that is used in the 

section 4.3.3. We measured the cost of the resource allocation process.  

The figure 5.4 shows the costs of MJORA and FTRA algorithms. As it can be seen in 

the figure, there is a slight difference between the MJORA and the FTRA. In all different 

simulation scenarios, the FTRA requires a constant amount of time in order to provide 

fault tolerance. This overhead is caused by the selection of the replica nodes. In FTRA, 

after completion of the initial resource allocation, the algorithm executes the finite state 

machine steps that are shown in the figure 5.3. In our scenarios, since the number of join 

operators and number of scan nodes are constant, the overhead of the FTRA algorithm is 

bound by the number of allocated nodes in the initial resource allocation. During our 

simulations, we observed that the number of allocated nodes by the MJORA algorithm 

does not alter significantly. Therefore, the overhead of the FTRA algorithm remains nearly 

constant as the number of nodes increase. 
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Figure 5.4 Cost of the FTRA Algorithm 

 

5.3 Overall Conclusions 

Resource allocation for query processing in grid systems is a very important step that 

directly affects the performance of query execution. Since grid environments are 

differentiated from other distributed environments by their large-scale, dynamic and 

heterogeneous nature, the resource allocation algorithm should address all problems that 

are caused by these characteristics. In previous chapter, chapter 4, we have proposed 

resource allocation algorithms aiming at addressing scalability and heterogeneity problems. 

In this chapter, aiming at addressing the dynamicity problems, we proposed a fault-tolerant 

resource allocation (FTRA) algorithm for query processing in grid environments that 
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tolerates node failures during the execution of the query. Although there can be found 

many studies in the current literature, to the best of our knowledge, we cannot find a study 

which focuses on the dynamicity of nodes in the grid environment in terms of node 

failures. For that reason, we aim at contributing the query-processing domain by proposing 

fault-tolerance in resource allocation. 

In this chapter, we proposed the Fault-tolerant Resource Allocation algorithm, which 

ensures fault-tolerance during the execution of the query. We presented our algorithm in 

detail and proposed complexity analyses. Then, we strengthened our perspectives by the 

use of quantitative analyses and simulations. The simulation results show that the FTRA 

algorithm is a very favorable algorithm with little overhead to the MJORA algorithm. 

Since it provides fault-tolerance, it can be preferred in situations in which the queries are 

long running and in environments in which node failures are likely. 
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CHAPTER 6: CONCLUSIONS 

Résumé 

Dans ce chapitre final, tout en résumant les études présentées dans cette thèse, nous 

soulignons nos contributions et les études proposées. Ensuite, nous discutons de nouveaux 

problèmes qui sont soulevés par les algorithmes proposés et nous présentons nos 

orientations futures. 

 

Abstract 

In this chapter, we summarize studies that are presented in this thesis by highlighting our 

contributions and proposed studies. Then we discuss new problems that are raised by the 

proposed algorithms and present our future directions. Lastly, we conclude our thesis by 

presenting our findings and conclusions briefly. 
 
6.1 Summary of Studies 

Resource discovery and resource allocation are two of the most important research 

topics in distributed query processing domain, considering characteristics of grid 

environments. This thesis addresses these two problems by proposing new algorithms 

which take grid systems’ characteristics into consideration. We provide these algorithms, 

present their analyses and consolidate the theoretical analyses with simulations. We 

compared the proposed algorithms with selected existing studies and highlighted our 

algorithms’ strengths and weaknesses. The overall contributions of this thesis are listed 

below. 

i) State-of-the-Art: We first proposed a detailed literature survey in chapter 2. We 

proposed evaluation criteria that we find important. Then we classified the existing 

studies by considering these evaluation criteria. We analyzed the literature and 

determined the common deficiencies of existing studies. By considering these 

deficiencies, we discussed the potential contributing points for each research domain, 
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resource discovery and resource allocation. The proposed state-of-the-art studies, 

which constitute the contents of chapter 2, are published in [COKUSLU09, 

COKUSLU10_iji, COKUSLU12, HAMEURLAIN10]. 

ii)  Resource Discovery: After examining the current state-of-the-art on the resource 

discovery subject, we concluded that the resource discovery process should exploit 

existence of an underlying topology control mechanism. For this purpose, we 

proposed a suitable topology control mechanism first. Regarding the common 

communication requirements of resource discovery, we proposed three new self-

stabilizing spanning tree construction algorithms. The constructed spanning trees are 

aimed to be rooted near the center of the graph in order to decrease the complexities of 

the resource discovery process. For this purpose, we use the degrees of nodes when 

determining the root of the constructed spanning tree. Then, we proposed a resource 

discovery algorithm by exploiting the generated topology. The proposed algorithm is 

scalable and prone to dynamicity of nodes in the system. Therefore, we contribute the 

resource discovery domain by addressing problems caused by the large scale, 

heterogeneity and dynamicity of the grid environments. We have designed, 

implemented, simulated and compared the proposed algorithms with similar existing 

studies in the current literature. We showed that the proposed spanning tree 

construction algorithms construct spanning trees with smaller diameters. We also 

showed that they outperform similar studies in terms of runtime durations. For the 

Spanning Tree Based Resource Discovery algorithm, we compared the proposed 

algorithm with the algorithms that use flooding during the resource discovery phase. 

We showed that the proposed algorithm outperforms these studies especially in large-

scale environments. We also demonstrated that the proposed algorithms are scalable as 

the number of nodes in the grid environment increases. The contents of this chapter 

are partially published in [COKUSLU10].  

iii) Resource allocation: After completing the resource discovery step, we have directed 

our attention to the resource allocation problem in chapter 4. Regarding our analyses 
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on the existing resource allocation studies, we provided resource allocation algorithms 

that consider proximities of candidate nodes to the data sources. For this, we first 

proposed an algorithm that allocates resources for a query that consists of a single join 

operator by taking the nodes’ proximities to the data sources into consideration. Then 

we extended this algorithm to allocate resources for queries consisting of multi-join 

operators. We have designed, analyzed, simulated and compared our algorithms with 

similar algorithms in the current literature. We showed that the proposed algorithm 

results in better query execution performances in the simulated scenarios. We also 

discussed the causes of higher costs in the proposed resource allocation algorithm and 

examined the situations in which our algorithms are favorable. The contents of this 

chapter are partially published in [COKUSLU12_b]. 

iv) Fault-tolerant resource allocation: The algorithms that are proposed in chapter 4 

address heterogeneity and large-scale characteristics of grid environments in allocating 

resources. In chapter 5, we addressed dynamicity problem by considering node 

failures during the execution of the queries. Considering our literature survey analyses 

for the fault-tolerant resource allocation, we have directed our attention to proposing a 

fault-tolerant resource allocation algorithm based on passive replication of stateful 

query operators in queries. We have designed, analyzed, simulated and compared our 

algorithm with our previously proposed resource allocation algorithm in order to 

evaluate fault-tolerance overhead. We showed advantages and disadvantages of the 

proposed algorithm and analyzed the situations in which our algorithm is favorable.  

 

6.2 Future Directions 
In this section, we present our future directions and discuss some of the challenges and 

open issues that we have encountered throughout the preparation of this thesis. 

i) Challenges in resource discovery for query processing in grid environments: In section 

3.2 we have proposed self-stabilizing spanning tree construction algorithms for 

topology control for resource discovery.  During the proposition of the algorithms, we 
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showed that constructing the spanning tree with smaller diameters increases 

performance of the resource discovery process. We believe that constructing the 

spanning tree rooted at the center of the graph will further decrease the diameter of the 

resulting spanning tree. However, there are only few center finding algorithms that are 

directly focused on finding centers of arbitrary graphs. Therefore we believe that more 

studies can be conducted on this subject to further improve the performance of the 

resource discovery method.   

ii) Challenges in resource allocation for query processing in grid environments: In section 

4.2, we aimed at finding candidate nodes that are closest to the data sources for the 

resource allocation. However, there is not a study, to the best of our knowledge, which 

finds an arbitrary node in a graph G that is located at the center of a subset S of the 

graph G. This may allow finding better candidate resources for the resource allocation, 

since the proposed nodes will be the closest ones to all data sources. Moreover, finding 

weighted centers is more interesting subject, which is not yet examined in detail. By 

finding weighted centers, candidate nodes can be selected by considering weights of 

tasks that are waiting to be allocated. A larger task may be allocated closer to the data 

sources, whereas a smaller task, which will be executed in parallel to the larger tasks, 

may be allocated at farther candidates.  

iii) Challenges in fault tolerant resource allocation for query processing in grid 

environments: In chapter 5 we proposed the Fault-tolerant Resource Allocation 

(FTRA) Algorithm, assuming that the queried node and data sources are stable during 

the execution of the query. Since in grid environments there is no such guarantee, 

fault-tolerance of these nodes should be studied explicitly. We also assumed that the 

master nodes have always at least one available node for replication within its 

neighborhood. Since this assumption may not always hold, it must be relaxed in the 

future studies.  

We believe that starting from these open issues, more refined resource discovery and 

resource allocation techniques can be proposed.  
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6.3 Overall Conclusions 
In this thesis, we first determined the distinguishing characteristics of the grid systems. 

Then we have listed the challenges for resource discovery and resource allocation domains 

caused by the characteristics of grid environments. We proposed resource discovery and 

resource allocation algorithms aiming at addressing these challenges. We believe that the 

algorithms, which are proposed in this thesis, contribute to the existing literature in many 

aspects and are useful for the query-processing domain in grid environments. We also 

believe that this thesis opens new issues and challenges for the query-processing domain, 

which may lead other researchers to search solutions to the aforementioned problems. 
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Resource Discovery and Allocation for Query Processing in Grid Systems 

Abstract 
Grid systems are today’s one of the most interesting computing environments because of their large computing and storage 

capabilities and their availability. Many different domains profit the facilities of grid environments. Distributed query processing is one 
of these domains in which there exists large amounts of ongoing research to port the underlying environment from distributed and 
parallel systems to the grid environment.  

In this thesis, we focus on resource discovery and resource allocation algorithms for query processing in grid environments. For 
this, we propose resource discovery algorithm for query processing in grid systems by introducing self-stabilizing topology control and 
converge-cast based resource discovery algorithms. Then, we propose a resource allocation algorithm, which realizes allocation of 
resources for single join operator queries by generating a reduced search space for the candidate nodes and by considering proximities of 
candidates to the data sources. We also propose another resource allocation algorithm for queries with multiple join operators. Lastly, we 
propose a fault-tolerant resource allocation algorithm, which provides fault-tolerance during the execution of the query by the use of 
passive replication of stateful operators.  

The general contribution of this thesis is twofold. First, we propose a new resource discovery algorithm by considering the 
characteristics of the grid environments. We address scalability and dynamicity problems by constructing an efficient topology over the 
grid environment using the self-stabilization concept; and we deal with the heterogeneity problem by proposing the converge-cast based 
resource discovery algorithm. The second main contribution of this thesis is the proposition of a new resource allocation algorithm 
considering the characteristics of the grid environment. We tackle the scalability problem by reducing the search space for candidate 
resources. We decrease the communication costs during the query execution by allocating nodes closer to the data sources. And finally 
we deal with the dynamicity of nodes, in terms of their existence in the system, by proposing the fault-tolerant resource allocation 
algorithm. 

 
Keywords: Query processing, resource discovery, self-stabilization, topology control, spanning tree, resource allocation, fault-tolerance. 
 

Découverte et allocation des ressources pour le traitement de requêtes dans les systèmes grilles 

Résumé 
 

De nos jours, les systèmes Grille, grâce à leur importante capacité de calcul et de stockage ainsi que leur disponibilité, constituent 
l’un des plus intéressants  environnements informatiques.  Dans beaucoup de différents domaines, on constate l’utilisation fréquente des 
facilités que les environnements Grille procurent.  

Le traitement des requêtes distribuées est l'un de ces domaines où il existe de grandes activités de recherche en cours, pour 
transférer l'environnement sous-jacent des systèmes distribués et parallèles à l'environnement Grille. 

 Dans le cadre de cette thèse, nous nous concentrons sur la découverte des ressources et des algorithmes d'allocation de ressources 
pour le traitement des requêtes dans les environnements Grille. Pour ce faire, nous proposons un algorithme de découverte des 
ressources pour le traitement des requêtes dans les systèmes Grille en introduisant le contrôle de topologie auto-stabilisant et 
l’algorithme de découverte des ressources dirigé par l’élection convergente.  Ensuite, nous présentons un algorithme d'allocation des 
ressources, qui réalise l'allocation des ressources pour les requêtes d’opérateur de jointure simple par la génération d’un espace de 
recherche réduit pour les nœuds candidats et en tenant compte des proximités des candidats aux sources de données. Nous présentons 
également un autre algorithme d'allocation des ressources pour les requêtes d’opérateurs de jointure multiple. Enfin, on propose un 
algorithme  d'allocation de ressources, qui apporte une tolérance aux pannes lors de l'exécution de la requête par l'utilisation de la 
réplication passive d'opérateurs à état. 

La contribution générale de cette thèse est double.  Premièrement, nous proposons un nouvel algorithme de découverte de 
ressource en tenant compte des caractéristiques des environnements Grille. Nous nous adressons également aux problèmes d'extensibilité 
et de dynamicité en construisant une topologie efficace sur l'environnement Grille et en utilisant le concept d'auto-stabilisation, et par la 
suite nous adressons le problème de l'hétérogénéité en proposant l’algorithme de découverte de ressources dirigé par l’élection 
convergente. La deuxième contribution de cette thèse est la proposition d'un nouvel algorithme d'allocation des ressources en tenant 
compte des caractéristiques de l'environnement Grille. 

Nous abordons les problèmes causés par la grande échelle caractéristique en réduisant l'espace de recherche pour les ressources 
candidats. De ce fait nous réduisons les coûts de communication au cours de l'exécution de la requête en allouant des nœuds au plus près 
des sources de données. Et enfin nous traitons la dynamicité des nœuds, du point de vue de leur existence dans le système, en proposant 
un algorithme d'affectation des ressources avec une tolérance aux pannes. 

 
Mots-clés: Traitement des requêtes, découverte de ressources, contrôle de topologie auto-stabilisant, arbres couvrants, allocation 

des ressources, tolérance aux pannes. 


	Résumé
	CHAPTER 1: INTRODUCTION
	1.1 Context, Motivations and Problems
	1.2 Resource Discovery (RD) for Query Processing in Grid Environments
	1.3 Resource Allocation (RA) for Query Processing in Grid Environments
	1.4 Experimental Validation
	1.5 Contributions
	1.6 Thesis Organization

	CHAPTER 2: STATE OF THE ART
	2.1 Introduction
	2.2 Resource Discovery (RD) for Query Processing in Grid Environments
	2.2.1 Grid Resource Discovery Based on Centralized and Hierarchical Architectures
	2.2.2 Grid Resource Discovery Based on Peer to Peer (P2P) Systems
	2.2.3 Grid Resource Discovery Based on Agent Technologies
	2.2.4 Global Evaluation of Resource Discovery Methods
	2.2.5 Self-stabilizing Spanning Tree Construction Algorithms
	2.2.6 Conclusions for Resource Discovery Algorithms

	2.3 Resource Allocation (RA) for Query Processing in Grid Environments
	2.3.1 Existing Survey Studies and Motivations
	2.3.2 Recent Resource Allocation Methods
	2.3.3 Fault-tolerance in Query Processing in Grid Environments
	2.3.4 Conclusions for Resource Allocation Algorithms

	2.4 Overall Conclusions

	CHAPTER 3: RESOURCE DISCOVERY FOR QUERY PROCESSING IN GRID ENVIRONMENTS
	3.1 Introduction
	3.2 Topology Control for Resource Discovery in Grid Environments
	3.2.1 Selected Algorithms for Comparison
	3.2.2 Proposed Algorithms
	3.2.3 Analysis
	3.2.4 Simulations
	3.2.5 Conclusion

	3.3 Spanning Tree Based Resource Discovery for Query Processing in Grid Environments
	3.3.1 The Spanning Tree Based Resource Discovery (STRD) Algorithm
	3.3.2 Analysis
	3.3.3 Simulations
	3.3.4 Conclusion

	3.4 Overall Conclusions

	CHAPTER 4: RESOURCE ALLOCATION FOR QUERY PROCESSING IN GRID ENVIRONMENTS
	4.1 Introduction
	4.2 Single Join Operator Resource Allocation (SJORA) Algorithm
	4.2.1 Proximity Based Candidate List Generation (PBCG) Algorithm
	4.2.2 Join Task Resource Allocation (JTRA) Algorithm
	4.2.3 Analysis
	4.2.4 Simulations
	4.2.5 Conclusion

	4.3 Resource Allocation for a Multi Join Query
	4.3.1 Multi Join Resource Allocation (MJORA) Algorithm
	4.3.2 Analysis
	4.3.3 Simulations
	4.3.4 Conclusion

	4.4 Overall Conclusions

	CHAPTER 5: FAULT TOLERANT RESOURCE ALLOCATION FOR QUERY PROCESSING IN GRID ENVIRONMENTS
	5.1 Introduction
	5.2 Fault-Tolerant Resource Allocation (FTRA) Algorithm
	5.2.1 The Algorithm
	5.2.2 Analysis
	5.2.3 Simulations

	5.3 Overall Conclusions

	CHAPTER 6: CONCLUSIONS
	6.1 Summary of Studies
	6.2 Future Directions
	6.3 Overall Conclusions

	REFERENCES
	Résumé

