730 research outputs found

    Applying machine learning to the problem of choosing a heuristic to select the variable ordering for cylindrical algebraic decomposition

    Get PDF
    Cylindrical algebraic decomposition(CAD) is a key tool in computational algebraic geometry, particularly for quantifier elimination over real-closed fields. When using CAD, there is often a choice for the ordering placed on the variables. This can be important, with some problems infeasible with one variable ordering but easy with another. Machine learning is the process of fitting a computer model to a complex function based on properties learned from measured data. In this paper we use machine learning (specifically a support vector machine) to select between heuristics for choosing a variable ordering, outperforming each of the separate heuristics.Comment: 16 page

    An Incremental Algorithm for Computing Cylindrical Algebraic Decompositions

    Full text link
    In this paper, we propose an incremental algorithm for computing cylindrical algebraic decompositions. The algorithm consists of two parts: computing a complex cylindrical tree and refining this complex tree into a cylindrical tree in real space. The incrementality comes from the first part of the algorithm, where a complex cylindrical tree is constructed by refining a previous complex cylindrical tree with a polynomial constraint. We have implemented our algorithm in Maple. The experimentation shows that the proposed algorithm outperforms existing ones for many examples taken from the literature

    Cylindrical Algebraic Sub-Decompositions

    Full text link
    Cylindrical algebraic decompositions (CADs) are a key tool in real algebraic geometry, used primarily for eliminating quantifiers over the reals and studying semi-algebraic sets. In this paper we introduce cylindrical algebraic sub-decompositions (sub-CADs), which are subsets of CADs containing all the information needed to specify a solution for a given problem. We define two new types of sub-CAD: variety sub-CADs which are those cells in a CAD lying on a designated variety; and layered sub-CADs which have only those cells of dimension higher than a specified value. We present algorithms to produce these and describe how the two approaches may be combined with each other and the recent theory of truth-table invariant CAD. We give a complexity analysis showing that these techniques can offer substantial theoretical savings, which is supported by experimentation using an implementation in Maple.Comment: 26 page

    Need Polynomial Systems Be Doubly-Exponential?

    Get PDF
    Polynomial Systems, or at least their algorithms, have the reputation of being doubly-exponential in the number of variables [Mayr and Mayer, 1982], [Davenport and Heintz, 1988]. Nevertheless, the Bezout bound tells us that that number of zeros of a zero-dimensional system is singly-exponential in the number of variables. How should this contradiction be reconciled? We first note that [Mayr and Ritscher, 2013] shows that the doubly exponential nature of Gr\"{o}bner bases is with respect to the dimension of the ideal, not the number of variables. This inspires us to consider what can be done for Cylindrical Algebraic Decomposition which produces a doubly-exponential number of polynomials of doubly-exponential degree. We review work from ISSAC 2015 which showed the number of polynomials could be restricted to doubly-exponential in the (complex) dimension using McCallum's theory of reduced projection in the presence of equational constraints. We then discuss preliminary results showing the same for the degree of those polynomials. The results are under primitivity assumptions whose importance we illustrate.Comment: Extended Abstract for ICMS 2016 Presentation. arXiv admin note: text overlap with arXiv:1605.0249

    Truth Table Invariant Cylindrical Algebraic Decomposition by Regular Chains

    Get PDF
    A new algorithm to compute cylindrical algebraic decompositions (CADs) is presented, building on two recent advances. Firstly, the output is truth table invariant (a TTICAD) meaning given formulae have constant truth value on each cell of the decomposition. Secondly, the computation uses regular chains theory to first build a cylindrical decomposition of complex space (CCD) incrementally by polynomial. Significant modification of the regular chains technology was used to achieve the more sophisticated invariance criteria. Experimental results on an implementation in the RegularChains Library for Maple verify that combining these advances gives an algorithm superior to its individual components and competitive with the state of the art

    Cylindrical algebraic decomposition with equational constraints

    Get PDF
    Cylindrical Algebraic Decomposition (CAD) has long been one of the most important algorithms within Symbolic Computation, as a tool to perform quantifier elimination in first order logic over the reals. More recently it is finding prominence in the Satisfiability Checking community as a tool to identify satisfying solutions of problems in nonlinear real arithmetic. The original algorithm produces decompositions according to the signs of polynomials, when what is usually required is a decomposition according to the truth of a formula containing those polynomials. One approach to achieve that coarser (but hopefully cheaper) decomposition is to reduce the polynomials identified in the CAD to reflect a logical structure which reduces the solution space dimension: the presence of Equational Constraints (ECs). This paper may act as a tutorial for the use of CAD with ECs: we describe all necessary background and the current state of the art. In particular, we present recent work on how McCallum's theory of reduced projection may be leveraged to make further savings in the lifting phase: both to the polynomials we lift with and the cells lifted over. We give a new complexity analysis to demonstrate that the double exponent in the worst case complexity bound for CAD reduces in line with the number of ECs. We show that the reduction can apply to both the number of polynomials produced and their degree.Comment: Accepted into the Journal of Symbolic Computation. arXiv admin note: text overlap with arXiv:1501.0446

    Prediction based task scheduling in distributed computing

    Full text link

    The Complexity of Cylindrical Algebraic Decomposition with Respect to Polynomial Degree

    Get PDF
    Cylindrical algebraic decomposition (CAD) is an important tool for working with polynomial systems, particularly quantifier elimination. However, it has complexity doubly exponential in the number of variables. The base algorithm can be improved by adapting to take advantage of any equational constraints (ECs): equations logically implied by the input. Intuitively, we expect the double exponent in the complexity to decrease by one for each EC. In ISSAC 2015 the present authors proved this for the factor in the complexity bound dependent on the number of polynomials in the input. However, the other term, that dependent on the degree of the input polynomials, remained unchanged. In the present paper the authors investigate how CAD in the presence of ECs could be further refined using the technology of Groebner Bases to move towards the intuitive bound for polynomial degree

    Computation of Real Radical Ideals by Semidefinite Programming and Iterative Methods

    Get PDF
    Systems of polynomial equations with approximate real coefficients arise frequently as models in applications in science and engineering. In the case of a system with finitely many real solutions (the 00 dimensional case), an equivalent system generates the so-called real radical ideal of the system. In this case the equivalent real radical system has only real (i.e., no non-real) roots and no multiple roots. Such systems have obvious advantages in applications, including not having to deal with a potentially large number of non-physical complex roots, or with the ill-conditioning associated with roots with multiplicity. There is a corresponding, but more involved, description of the real radical for systems with real manifolds of solutions (the positive dimensional case) with corresponding advantages in applications. The stable and practical computation of real radicals in the approximate case is an important open problem. Theoretical advances and corresponding implemented algorithms are made for this problem. The approach of the thesis, is to use semidefinite programming (SDP) methods from algebraic geometry, and also techniques originating in the geometry of differential equations. The problem of finding the real radical is re-formulated as solving an SDP problem. This approach in the 00 dimensional case, was pioneered by Curto \& Fialkow with breakthroughs in the 00 dimensional case by Lasserre and collaborators. In the positive dimensional case, important contributions have been made of Ma, Wang and Zhi. The real radical corresponds to a generic point lying on the intersection of boundary of the convex cone of semidefinite matrices and a linear affine space associated with the polynomial system. As posed, this problem is not stable, since an arbitrarily small perturbation takes the point to an infeasible one outside the cone. A contribution of the thesis, is to show how to apply facial reduction pioneered by Borwein and Wolkowicz, to this problem. It is regularized by mapping the point to one which is strictly on the interior of another convex region, the minimal face of the cone. Then a strictly feasible point on the minimal face can be computed by accurate iterative methods such as the Douglas-Rachford method. Such a point corresponds to a generic point (max rank solution) of the SDP feasible problem. The regularization is done by solving the auxiliary problem which can be done again by iterative methods. This process is proved to be stable under some assumptions in this thesis as the max rank doesn\u27t change under sufficiently small perturbations. This well-posedness is also reflected in our examples, which are executed much more accurately than by methods based on interior point approaches. For a given polynomial system, and an integer d3˘e0d \u3e 0, Results of Curto \& Fialkow and Lasserre are generalized to give an algorithm for computing the real radical up to degree dd. Using this truncated real radical as input to critical point methods, can lead in many cases to validation of the real radical
    corecore