

The Complexity of Cylindrical
Algebraic Decomposition with Respect
to Polynomial Degree

England, M. & Davenport, J. H.

Author post-print (accepted) deposited by Coventry University’s Repository

Original citation & hyperlink:

England, M & Davenport, JH 2016, The Complexity of Cylindrical Algebraic
Decomposition with Respect to Polynomial Degree. in VP Gerdt, W Koepf, WM Seiler
& EV Vorozhtsov (eds), Computer Algebra in Scientific Computing. Lecture Notes in
Computer Science , vol. 9890, Springer Verlag, Switzerland, pp. 172-192.
https://dx.doi.org/10.1007/978-3-319-45641-6_12

DOI 10.1007/978-3-319-45641-6_12
ISSN 0302-9743

Publisher: Springer

The final publication is available at Springer via http://dx.doi.org/10.1007/978-3-
319-45641-6_12

Copyright © and Moral Rights are retained by the author(s) and/ or other copyright
owners. A copy can be downloaded for personal non-commercial research or study,
without prior permission or charge. This item cannot be reproduced or quoted extensively
from without first obtaining permission in writing from the copyright holder(s). The
content must not be changed in any way or sold commercially in any format or medium
without the formal permission of the copyright holders.

This document is the author’s post-print version, incorporating any revisions agreed during
the peer-review process. Some differences between the published version and this version
may remain and you are advised to consult the published version if you wish to cite from
it.

CORE Metadata, citation and similar papers at core.ac.uk

Provided by CURVE/open

https://core.ac.uk/display/228158644?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

The complexity of cylindrical algebraic
decomposition with respect to polynomial degree

Matthew England1 and James H. Davenport2

1 School of Computing, Electronics & Maths,
Faculty of Engineering, Environment & Computing,

Coventry University, Coventry, CV1 5FB, UK
Matthew.England@coventry.ac.uk,

WWW home page: http://computing.coventry.ac.uk/∼mengland/
2 Department of Computer Science,

University of Bath, Bath, BA2 7AY, UK
J.H.Davenport@bath.ac.uk,

WWW home page: http://people.bath.ac.uk/masjhd/

Abstract. Cylindrical algebraic decomposition (CAD) is an important
tool for working with polynomial systems, particularly quantifier elim-
ination. However, it has complexity doubly exponential in the number
of variables. The base algorithm can be improved by adapting to take
advantage of any equational constraints (ECs): equations logically im-
plied by the input. Intuitively, we expect the double exponent in the
complexity to decrease by one for each EC. In ISSAC 2015 the present
authors proved this for the factor in the complexity bound dependent on
the number of polynomials in the input. However, the other term, that
dependent on the degree of the input polynomials, remained unchanged.
In the present paper the authors investigate how CAD in the presence
of ECs could be further refined using the technology of Gröbner Bases
to move towards the intuitive bound for polynomial degree.

Keywords: computer algebra, cylindrical algebraic decomposition,
equational constraint, Gröbner bases, quantifier elimination

1 Introduction

A cylindrical algebraic decomposition (CAD) is a decomposition of Rn (under a
given variable ordering, so that the projections considered are (x1, . . . , xk) →
(x1, . . . , xj) for j < k) into cells. The cells are arranged cylindrically, meaning
the projections of any pair with respect to the given ordering are either equal
or disjoint. In this definition algebraic is short for semi-algebraic meaning each
CAD cell can be described with a finite sequence of polynomial constraints. A
CAD is produced to be invariant for input; originally sign-invariant for a set of
input polynomials (so on each cell each polynomial is positive, zero or negative),
and more recently truth-invariant for input Boolean-valued formulae built from
the polynomials (so on each cell each formula is either true or false).

Introduced by Collins for real quantifier elimination (QE) [1], applications of
CAD included parametric optimisation [26], epidemic modelling [10] and even
motion planning [42]. Recent applications include theorem proving [41], deriving
optimal numerical schemes [24] and reasoning with multi-valued functions [18].

CAD has worst case complexity doubly exponential [9, 20], due to the nature
of the information to be recorded rather than the algorithm used [9]. Let n be the
number of variables, m the number of input polynomials, and d the maximum
degree (in any one variable) of the input. Then a complexity analysis in Section
5 of [22] shows that the best known variant of Collins’ algorithm to produce a
sign-invariant CAD for the polynomials [37] has an upper bound on the size of
the CAD (i.e. number of cells) with dominant term

(2d)2
n−1m2n−122

n−1−1, (1)

i.e. the CAD grows doubly exponentially with the number of variables n.
In fact, at the end of the projection stage, when we are considering R1, this

analysis shows that we have M polynomials, each of degree D, where D = d2
O(n)

and M = m2O(n)

. Of course, by replacing {f, g} with {fg} we can reduce M at
the cost of increasing D, but since it is much easier to find the roots of {f, g} than

{fg}, we do not want to. The lower bound in [20] shows that D = d2
Ω(n)

, and in

[9] that, without artificial combination, M = m2Ω(n)

. Both rely on the technique
from [28], and the formulae demonstrating this growth are not straightforward:
in particular needing O(n) quantifier alternations. But the underlying polyno-
mials are simple: all linear for [9] and all bar two linear for [20]. Furthermore,
each polynomial only involves a bounded number of variables (generally two)
independent of n, showing that the doubly-exponential difficulty of CAD resides
in the complicated number of ways simple polynomials can interact.

To improve the CAD performance and this bound we now build CADs which
are not sign-invariant for polynomials but truth-invariant for formulae. This can
be achieved by identifying equational constraints (ECs): polynomial equations
logically implied by formulae. The presence of an EC restricts the dimension of
the solution space and if exploited properly by the algorithm we may expect a
reduction in complexity accordingly. Intuitively, we expect the double exponent
to decrease by 1 for each independent (to be made precise later) EC available.

In [22] the present authors described how to adapt CAD to make use of
multiple (primitive) ECs. Suppose that our input formula consists of polynomials
(as described above) and that ` suitable ECs can be identified. The algorithm
in [22] was shown to have corresponding upper bound dominant term

(2d)2
n−1m2n−`−22`2

n−`−3`. (2)

So while the bound is still doubly exponential with respect to n, some of the
double exponents have been reduced by `. To be precise, the double exponent of
m (and its corresponding constant factor) is reduced while the double exponent
with respect to d (actually 2d) has not. This is due to the focus of [22] being on
reducing the number of polynomials created during the intermediate calculations
with no attempt made to control degree growth.

Contribution And Plan

The present paper is concerned with how to gain the corresponding improvement
to the factor dependent on d to achieve the intuitive complexity bound. The
hypothesis is that this should be possible by making use of the theory of Gröbner
bases in place of iterated resultants. We start in Sections 2.1−2.2 by reviewing
background material on CAD, and then focus on CAD in the presence of ECs in
Sections 2.3−2.4. In Section 3 we consider how the growth of degree in iterated
resultants grows compared to that of the true multivariate resultant (which
encodes what is needed for CAD). In Section 3.3 we propose controlling this
using Gröbner Bases and in Section 4 we give a worked example of how these
can precondition CAD. In Section 5 we sketch how this improves upon the bound
(2) and then we finish in Section 6 by discussing some outstanding issues.

2 CAD With Respect To Equational Constraints

2.1 CAD Computation Scheme And Terminology

We describe the computation scheme and terminology that CAD algorithms
derived from Collins share. We assume a set of input polynomials (possibly
derived from input formulae) in ordered variables x = x1 ≺ . . . ≺ xn. The main
variable of a polynomial (mvar) is the highest ordered variable present.

The first phase of CAD, projection, applies projection operators recursively
on the input polynomials, each time producing another set of polynomials with
one less variable. Together these define the projection polynomials used in the
second phase, lifting, to build CADs incrementally by dimension. First a CAD
of the real line is built with cells (points and intervals) determined by the real
roots of the univariate polynomials (those in x1 only). Next, a CAD of R2 is built
by repeating the process over each cell in R1 with the bivariate polynomials in
(x1, x2) evaluated at a sample point of the cell in R1. This produces sections
(where a polynomial vanishes) and sectors (the regions between) which together
form the stack over the cell. Taking the union of these stacks gives the CAD of
R2. The process is repeated until a CAD of Rn is produced.

All cells are represented by (at least) a sample point and an index. The
latter is a list of integers, with the kth integer fixing variable xk according to the
ordered real roots of the projection polynomials in (x1, . . . , xk). If the integer
is 2i the cell is over the ith root (counting low to high) and if 2i + 1 over the
interval between the ith and (i+1)th (or the unbounded intervals at either end).

In each lift we extrapolate the conclusions drawn from working at a sample
point to the whole cell. The validity of this approach follows from the correct
choice of projection operator. For sign-invariance to be maintained the operator
must produce polynomials: delineable in a cell, meaning the portion of their zero
set in the cell consists of disjoint sections; and, delineable as a set, meaning the
sections of different polynomials are identical or disjoint. One of the projection
operators used in this paper is

P (B) := coeff(B) ∪ disc(B) ∪ res(B). (3)

Here disc and coeff denote respectively the set of discriminants and coefficients of
a set of polynomials; and res denotes either the resultant of a pair of polynomials
or, when applied to a set, the set of polynomials

res(A) = {res(fi, fj) | fi ∈ A, fj ∈ A, fj 6= fi} .

We assume B is an irreducible basis for a set of polynomials in which every
element has mvar xn. For a general set of polynomials A we would proceed by
letting B be an irreducible basis of the primitive part of A; apply the operators
above; and take the union of the output with the content of A. The operator P
was introduced in [37] along with proofs of related delineability results.

2.2 Brief Summary Of Improvements To CAD

As discussed in the introduction, CAD has worst case complexity doubly expo-
nential in the number of variables. For some problems there exist algorithms with
better complexity [2], however, CAD implementations remain the best general
purpose approach for many. This is due in large part to the numerous techniques
developed to improve the efficiency of CAD since Collins’ original work including:
refinements to the projection operator [29], [37] [7], [27]; the early termination
of lifting, such as when sufficient for QE [17] or for building a sub-CAD [45]; and
symbolic-numeric lifting schemes [43], [32]. Some recent advances include further
refinements to the projection operator when dealing with multiple formulae as
input [4], [5]; local projection approaches [8], [44]; decompositions via complex
space [14], [3]; and the development of heuristics for CAD problem formulation
[6], [21], [46] including machine learning approaches [31].

2.3 Equational Constraints

As discussed in the Introduction, identifying equational constraints can improve
the performance of CAD.

Definition. A QFF is a quantifier free Tarski formula: a Boolean combination
(∧,∨,¬) of statements about the signs (= 0, > 0, < 0) of integral polynomials.

An equational constraint (EC) is a polynomial equation logically implied by
a QFF. An EC is explicit if an atom of the QFF, and implicit otherwise.

Collins first suggested that the projection phase of CAD could be simplified
in the presence of an EC [16]. The insight is that a CAD sign-invariant for the
defining polynomial of an EC, and sign-invariant for any others only on sections
of that polynomial, would be sufficient. The intuitive restriction of (3) is to use
only those coefficients, discriminants and resultants which are derived from the
EC polynomial, as in (4) below where F ⊆ B is a basis for the EC polynomial.

PF (B) := P (F) ∪ {res(f, g) | f ∈ F, g ∈ B \ F} (4)

The validity of using this operator for the first projection was verified in [39],
with subsequent projections returning to (3). The operator could only be used

for a single EC in the main variable of the system as the delineability result for
(4) could not be applied recursively, excluding its use at a subsequent projection
to take advantage of any EC with corresponding main variable. This led to the
development of the operator (5) in [40] which suffered no such reduction at the
cost of including the discriminants that had been removed from (3) by (4).

P ∗F (B) := PF (B) ∪ disc(B \ F) (5)

See Section 2 of [22] for examples demonstrating these operators.
A system to derive implicit ECs was also introduced by [40], based on the

observation that the resultant of the polynomials defining two ECs itself defines
an EC. This is essential for maximising the savings from ECs since the reduced
operators (4), (5) are for use with a single EC; meaning the savings gained are
dependent not on the number of ECs, but the number identified with different
main variables. Note that such iterated resultants are already produced during
CAD projection. So using them as ECs requires us only to identify them as such
(rather than introducing new polynomials for consideration) and hence does not
mean an increase in m. Also, while they may have higher degree than the initial
input polynomials, their degree is no higher than the other polynomials at the
stage they are used (rather than just passed as content) by a projection operator.

In [22] the present authors reviewed the theory of reduced projection oper-
ators and deduced how it could also yield savings in the lifting phase; reducing
both the number of cells we must lift over with respect to polynomials; and the
number of such polynomials we lift with. These approaches meant that the pro-
jection polynomials are no longer a fixed set (key to some CAD implementations)
and that the invariance structure of the final CAD can no longer be expressed in
terms of sign-invariance of polynomials. For the worked example in [22, Section
4] combining the advances in this subsection allowed a sign-invariant CAD with
1,118,205 cells to be replaced by a truth invariant CAD with 93 cells.

2.4 CAD With ECs

Algorithm 1 describes the CAD projection phase in the presence of multiple ECs
described in the previous subsection. Note that (as with the previous theory of
multiple ECs this is based on) we assume the ECs are primitive. Algorithm 1
applies the best possible (smallest validated) projection operator at each stage.
The word suitable in the output declaration means a CAD lifting phase that
makes well-orientedness checks in line with the theory of McCallum’s projection
operators (see [37], [39], [40] for details). Algorithm 2 is one such suitable lifting
algorithm. It uses the Fi (knowledge of which projection steps made use of an
EC) to tailor its lifts: lifting only with respect to EC polynomials (steps 7−10)
and only over cells where an EC was satisfied (steps 11−15) (lifting trivially to
the cylinder otherwise). The correctness of these algorithms was proven in [22].

Table 1 is recreated from [22] and shows the growth in the number and degree
of the projection polynomials when following Algorithm 1 under the assumption
that we have declared ECs for the first ` projections (so 0 < ` ≤ min(m,n)).

Algorithm 1: CAD Projection using multiple stated ECs

Input : A formula φ in variables x1, . . . , xn, and a sequence of sets {Ek}nk=1;
each either empty or containing a single primitive polynomial with
mvar xk which defines an EC for φ.

Output: A sequence of sets of polynomials ready for a suitable CAD lifting
algorithm.

1 Extract from φ the set of defining polynomials An;
2 for k = n, . . . , 2 do
3 Set Bk to the finest squarefree basis for prim(Ak);
4 Set C to cont(Ak);
5 Set Fk to the finest squarefree basis for Ek;
6 if Fk is empty then
7 Set Ak−1 := C ∪ P (Bk);
8 else
9 Set Ak−1 := C ∪ P ∗

Fi
(Bi);

10 return A1, . . . , An;F1, . . . , Fn.

Rather than the actual polynomials created the table keeps track of sets of
polynomials known to have the (M,D)-property : the ability to be partitioned
into M subsets, each with maximum combined degree D.

The (M,D)-property was introduced in McCallum’s thesis and was used
(along with tables like Table 1) to give a detailed comparison of the complexity
of several different projection operators in [5, Section 2.3]. The key observation
is that the number of real roots in a set with the (M,D)-property is at most MD
(although in practice many will be in C \ R). Hence the number of cells in the
CAD of R1 is bounded by twice the product of the final entries, plus 1.

Define di and mi as the entries in the Number and Degree columns of Table
1 from the row with i Variables. Then the number of cells in the final CAD of
Rn is bounded by ∏n

i=1 [2midi + 1] . (6)

Omitting the +1s from each term will usually allow for a closed form expression
of the dominant term in the bound.

The derivation of bound (2) from Table 1 was given in [22, Section 5]. It
involved considering the two improvements to the lifting phase. The first was
lifting only with respect to EC polynomials; meaning that for the purposes of
the bound we could set mi to 1 for i = n, . . . , n − `. The second was to lift
trivially (to a cylinder) over those cells where an EC was false.

Denote by (†) the bound on the CAD of Rn−(`+1) given by (6) but with the
product terminating at n− (`+ 1), as there can be no reduced lifting until this
point. The lift to Rn−` will involve stack generation over all cells, but only with
respect to the EC which has at most dn−` real roots and thus the CAD of Rn−`
at most [2dn−` + 1](†) cells. The next lift, to Rn−`−1, will lift the sections with
respect to the EC, and the sectors only trivially. Hence the cell count bound is
[2dn−(`−1) + 1]dn−`(†) + (dn−` + 1)(†) with dominant term 2dn−(`−1)dn−`(†).

Algorithm 2: CAD Lifting using multiple stated ECs

Input : The output of Algorithm 1: two sequences of polynomials sets
A1, . . . , An;F1, . . . , Fn, the latter subsets of the former.

Output: Either: D, a truth-invariant CAD of Rn for φ (described by lists I and
S of cell indices and sample points); or FAIL, if not well-oriented.

1 If F1 is not empty then set p to be its element; otherwise set p to the product of
polynomials in A1;

2 Build D1 := (I1, S1) according to the real roots of p;
3 if n = 1 then
4 return D1;

5 for k = 2, . . . , n do
6 Initialise Dk = (Ik, Sk) with Ik and Sk empty sets;
7 if Fk is empty then
8 Set L := Bk;
9 else

10 Set L := Fk;

11 if Fk−1 is empty then
12 Set Ca := Dk−1 and Cb empty;
13 else
14 Set Ca to be cells in Dk−1 with Ik−1[−1] even;
15 Set Cb := Dk−1 \ Ca;

16 for each cell c ∈ Ca do
17 if An element of L is nullified over c then
18 return FAIL;

19 Generate a stack over c with respect to the polynomials in L, adding
cell indices and sample points to Ik and Sk;

20 for each cell c ∈ Cb do

21 Extend to a single cell in Rk (cylinder over c), adding index and sample
point to Ik and Sk;

22 return Dn = (In, Sn).

Subsequent lifts follow the same pattern and so the dominant term (omitting
the +1s) in the cell count bound for Rn is

2dndn−1 . . . dn−(`−1)dn−`
∏n−(`+1)
i=1

[
2midi + 1

]
. (7)

As shown in [22] using Table 1 (7) evaluates to (2).

3 Controlling Degree Growth

3.1 Iterated Resultant Calculations

As discussed in the Introduction, [22] showed that building truth-invariant CADs
by taking advantage of ECs reduced the CAD complexity bound from (1) to (2).

Table 1. Projection in CAD with projection operator (5) ` times and then (3).

Variables Number Degree

n m d
n− 1 2m 2d2

n− 2 4m 8d4

...
...

...

n− ` 2`m 22`−1d2
`

n− (`+ 1) 22`m2 22`+1−1d2
`+1

n− (`+ 2) 24`m4 22`+2−1d2
`+2

...
...

...

n− (`+ r) 22r`m2r 22`+r−1d2
`+r

...
...

...

1 22(n−1−`)`m2n−1−`
22n−1−1d2

n−1

Most notably, the double exponent of the term with base m (number of in-
put polynomials) decreased by ` (the number of projections made with respect
to an EC). However, the term with base d (degree of input polynomials) was
unchanged. This term is doubly exponential due to the iterated resultant cal-
culations during projection: the resultant of two degree d polynomials is the
determinant of a 2d × 2d matrix whose entries all have degree at most d, and
thus a polynomial of degree at most 2d2. This increase in degree compounded
by (n− 1) projections gives the first term of the bound (1).

When building CAD in the presence of ECs many of these iterated resultants
are avoided (thus reducing the number of polynomials, but not their degree).
Indeed, the derivation of ECs via propagation is itself an iterated resultant cal-
culation. The purpose of the resultant in CAD construction is to ensure that the
points in lower dimensional space where polynomials vanish together are iden-
tified, and thus that the behaviour over a sample point in a lower dimensional
cell is indicative of the behaviour over the cell as a whole.

The iterated resultant (and discriminant) calculations involved in CAD have
been studied previously, for example in [38] [34]. We will follow the work of Busé
and Mourrain in [13] who consider the iterative application of the univariate
resultant to multivariate polynomials, demonstrating decompositions into irre-
ducible factors involving the multivariate resultants (following the formalisation
of Jouanolou [33]). They show that the approach will identify polynomials of
higher degree than the true multivariate resultant and thus more than required
for the purpose of identifying implicit equational constraints. For example, given
3 polynomials in 3 variables of degree d the true multivariate resultant has degree
O(d3) rather than O(d4).

The key result of [13] for our purposes follows. Note that this, using the
formalisation of resultants in [33] [13, §2], considers polynomials of a given to-
tal degree. However, the CAD complexity analysis discussed above and later is

(following previous work on the topic) with regards to polynomials of degree at
most d in a given variable. For clarity we use the Fraktur font when discussing
total degree and Roman fonts when the maximum degree.

Corollary ([13, Cor. 3.4]). Given three polynomials fk(x, y, z) of the form

fk(x, y, z) =
∑

|α|+i+j≤dk

a
(k)
α,i,jx

αyizj ∈ S[x][y, z],

where S is any commutative ring, then the iterated univariate resultant

Resy
(

Resz(f1, f2),Resz(f1, f3)
)
∈ S[x]

is of total degree at most d21d2d3 in x, and we may express it in multivariate
resultants (following the formalism of Jouanolou [33]) as

Resy
(

Resz(f1, f2),Resz(f1, f3)
)

= (−1)d1d2d3 Resy,z(f1, f2, f3)
×Resy,z,z′

(
f1(x, y, z), f2(x, y, z), f3(x, y, z′), δz,z′(f1)

)
.

(8)

Moreover, if the polynomials f1, f2, f3 are sufficiently generic and n > 1, then
this iterated resultant has exactly total degree d21d2d3 in x and both resultants
on the right hand side of the above equality are distinct and irreducible.

[Although not stated as part of the result in in [13], under these genericity
assumptions, Resy,z(f1, f2, f3) has total degree d1d2d3 and the second resultant
on the right hand side of (8) has total degree d1(d1−1)d2d3 (see [13, Proposition
3.3] and [38, Theorem 2.6]).]

In [13] the authors interpret this result as follows3.

The resultant R12 := Resz(f1, f2) defines the projection of the inter-
section curve between the two surfaces {f1 = 0} and {f2 = 0}. Simi-
larly, R13 := Resz(f1, f3) defines the projection of the intersection curve
between the two surfaces {f1 = 0} and {f3 = 0}. Then the roots of
Resy(R12, R13) can be decomposed into two distinct sets: the set of roots
x0 such that there exists y0 and z0 such that

f1(x0, y0, z0) = f2(x0, y0, z0) = f3(x0, y0, z0),

and the set of roots x1 such that there exist two distinct points (x1, y1, z1)
and (x1, y1, z

′
1) such that

f1(x1, y1, z1) = f2(x1, y1, z1) and f1(x1, y1, z
′
1) = f3(x1, y1, z

′
1).

The first set gives rise to the term Resy,z(f1, f2, f3) in the factorization
of the iterated resultant Resy(Res12,Res13), and the second set of roots
corresponds to the second factor.

Only the first set are of interest to us if the fi are all ECs. However, for a general
CAD construction, the second set of roots may also be necessary as they indicate
points where the geometry of the sectors changes.

3 We note that in this quote we made a small correction to the description of the
second set of roots (removing a dash from y1 in the second distinct point). We thank
the anonymous referee of the present paper for identifying this correction.

3.2 How Large Are These Resultants?

Suppose we are considering three ECs defined by f1, f2 and f3; that we wish to
eliminate two variables z = xn and y = xn−1; and that the fi have degree at
most d in each variable separately. Then we may näıvely set each di = nd to
bound the total degree.

The following approach does better. Let K = S[x1, . . . , xn−2, y, z] and L =
S[ξ1, . . . , ξN , y, z]. Only a finite number of monomials in x1, . . . , xn−2 occur as
coefficients of the powers of y, z in f1, f2 and f3. Map each such monomial
xα =

∏n−2
i=1 x

αi
i to m̃j := ξmaxαi

j (using a different ξj for each monomial4) and

let f̃i ∈ L be the result of applying this map to the monomials in fi. Note that
the operation ˜ commutes with taking resultants in y and z (though not in the
xi of course).

The total degree in the ξj of f̃i is the same as the maximum degree in all the

x1, . . . , xn−2 of fi, i.e. bounded by d, and hence the total degree of the f̃i in all
variables is bounded by 3d (d for the ξi, d for y and d for z). If we apply (8) to

the f̃i, we see that
Resy

(
Resz(f̃1, f̃2),Resz(f̃1, f̃3)

)
has a factor Resy,z(f̃1, f̃2, f̃3) of total degree (in the ξj) (3d)3. Hence, by inverting
,̃ we may conclude Resy,z(f1, f2, f3) has maximum degree, in each xi, of (3d)3.

The results of [33] [13] apply to any number of eliminations. In particu-
lar, if we have eliminated not 2 but ` − 1 variables we will have a polynomial
Resxn−`+1...xn(fn−`, . . . , fn) of maximum degree ``d` in the remaining variables
x1, . . . , xn−` as the last implicit EC.

These resultants Resxn−`+1...xn therefore only have singly-exponential growth,
rather than the doubly-exponential growth of the iterated resultants: can we
compute them?

3.3 Gröbner Bases In Place Of Iterated Resultants

A Gröbner Basis G is a particular generating set of an ideal I defined with
respect to a monomial ordering. One definition is that the ideal generated by
the leading terms of I is generated by the leading terms of G. Gröbner Bases
(GB) allow properties of the ideal to be deduced such as dimension and number
of zeros and so are one of the main practical tools for working with polynomial
systems. Their properties and an algorithm to derive a GB for any ideal were
introduced by Buchberger in his PhD thesis of 1965 [11]. There has been much
research to improve and optimise GB calculation, with the F5 algorithm [25]
perhaps the most used approach currently.

Like CAD the calculation of GB is necessarily doubly exponential in the
worst case [35] (when using a lexicographic order), although recent work in [36]

4 It would be possible to economise: if x1x
2
2 7→ ξ21 , then we could map x21x

4
2 to ξ41

rather than a new ξ42 . Since this trick is used purely for the analysis and not in
implementation, we ignore such possibilities.

showed that rather than being doubly exponential with respect to the number of
variables present the dependency is in fact on the dimension of the ideal. Despite
this worst case bound GB computation can often be done very quickly usually
to the point of instantaneous for any problem tractable by CAD.

A reasonably common CAD technique is to precondition systems with mul-
tiple ECs by replacing the ECs by their GB. I.e. let E = {e1, e2, . . . } be a set
of polynomials; G = {g1, g2, . . . } a GB for E; and B any Boolean combination
of constraints, fi σi 0, where σi ∈ {<,>,≤,≥, 6=,=}) and F = {f1, f2, . . . } is
another set of polynomials. Then

Φ = (e1 = 0 ∧ e2 = 0 ∧ . . .) ∧B
Ψ = (g1 = 0 ∧ g2 = 0 ∧ . . .) ∧B

are equivalent and a CAD truth-invariant for either could be used to solve prob-
lems involving Φ.

As discussed, the cost of computing the GB itself is minimal so the question
is whether it is beneficial to CAD. The first attempt to answer this question
was given by Buchberger and Hong in 1991 [12] (using GB and CAD implemen-
tations in the SAC-2 system [15]). These experiments were carried out before
the development of reduced projection operators and so the CADs computed
were sign-invariant (and thus also truth-invariant for the formulae involved). Of
the 10 problems studied: 6 were improved by the GB preconditioning, (speed-up
from 2-fold to 1700-fold); 1 problem resulted in a 10-fold slow-down; 1 timed out
after GB but completed without; and the other 2 were intractable both for CAD
and GB. The problem was recently revisited by Wilson et al. [47] who studied
the same problem set using Qepcad-B for the CAD and Maple 16 for the GB.
There had been a huge improvement to the time taken by GB computation but
it was still the case that two of the problems were hindered by GB precondi-
tioning. A recent machine learning experiment to decide when GB precondition
should be applied [30] found that 75% of a data set of 1200 randomly generated
CAD problems benefited from GB preconditioning.

If we consider GB preconditioning of CAD in the knowledge of the improved
projection schemes for ECs (Subsection 2.4) then we see an additional benefit
from the GB. It provides ECs which are not in the main variable of the sys-
tem removing the need for iterated resultants to find implicit ECs to use in
subsequent projections.

Since our aim is to produce one EC in each of the last ` variables, we need
to choose an ordering on monomials which is lexicographic with respect to xn �
xn−1 � · · · � xn−`+1: it does not actually matter (from the point of view of the
theory: general theory suggests that ‘total degree reverse lexicographic in the
rest’ would be most efficient in practice) how we tie-break after that.

Let us suppose (in line with [22]) that we have ` ECs f1, . . . , f` (at least
one of them, say f1 must include xn, and similarly we can assume f2 includes
xn−1 and so on), such that these imply (even over C) that the last ` variables
are determined (not necessarily uniquely) by the values of x1, . . . , xn−`. Then
the polynomials f1, Resxn(f1, f2), Resxn,xn−1(f1, f2, f3) etc. are all implied by

the fi. Hence either they are in the GB, or they are reduced to 0 by the GB,
which implies that smaller polynomials are in the GB. Hence our GB will contain
polynomials (which are ECs) of degree (in each variable separately) at most

d, 4d2, 27d3, . . . , ((`+ 1)d)`+1.

Note that we are not making, and in the light of [36] cannot make, any similar
claim about the polynomials in fewer variables. Note also that it is vital that
the equations be in the last variables for this use of [33, 13] to work. That is, our
results do not directly extend from the case we study, of first applying ` reduced
CAD projections in the presence of ECs (before reverting to the standard ones),
to the more general case of having any ` of the projections be reduced.

4 Worked Example

We will work with the polynomials

f1 := xy − z2 − w2 + 2z, f2 := x2 + y2 + z2 + w + z,

f3 := −w2 − y2 − z2 + x+ z h := z + w,

and the semi-algebraic system

φ := f1 = 0 ∧ f2 = 0 ∧ f3 = 0 ∧ h > 0.

We assume a variable ordering z � y � x � w (meaning we will first project
with respect to z) and seek a CAD truth-invariant for φ.

In theory, we could analyse this system with a sign-invariant CAD for the
four polynomials {f1, f2, f3, h}. However in Maple neither our own CAD im-
plementation [23] nor the CAD command within the RegularChains Library5

detailed in [14], [3] finished within 30 minutes.
Instead, we should take advantage of the ECs available. There are 3 explicit

ECs within the input formula. However, they all have main variable z and so
only one of them may be a designated EC for projection purposes (and trying
to do this still results in a time-out after 30min). The existing theory [40], [22]
would suggest propagating the ECs by calculating:

r1 := res(f1, f2, z) = y4 + 2xy3 + (3x2 − 2w2 + 2w + 6)y2 + (2x3 − 2w2x

+ 2wx− 3x)y + x4 − 2w2x2 + 2wx2 + 6x2 + w4 − 2w3 + 4w2 + 6w,

r2 := res(f1, f3, z) = y4 + 2xy3 + (x2 − 2x+ 2)y2 + (x− 2x2)y + w2 + x2 − 2x,

r3 := res(f2, f3, z) = 4y2 + x4 + 2x3 − 2w2x2 + 2wx2 + 3x2 − 2w2x+ 2wx− 2x

+ w4 − 2w3 + 3w2 + 2w;

three implicit ECs with main variable y. We may continue to calculate ECs with
main variable x as:

R1 := res(r1, r2, y), R2 := res(r1, r3, y), R3 := res(r2, r3, y);

5 as downloaded from www.regularchains.org on 11th March 2016

which evaluate to three different degree 16 polynomials in x available in the
Appendix. All possible resultants of these to eliminate x evaluate to 0 (and a
numerical plot of the Ri shows them all to have overlapping real part).

We now have multiple choices for running Algorithm 1 since we can only
declare one polynomial as an EC with a set main variable. There are hence
3 × 3 × 3 = 27 possible configurations. We attempt to build the CAD for each
choice (lifting using the improved procedure developed in [22]) and found that
6 configurations complete within 30 minutes. Of these there was an average of
152 cells calculated in 65 seconds. The optimal configuration gave 111 cells in
23 seconds using a designation of f2, r3 and R2.

Now consider taking a GB of {f1, f2, f3}. We use a plex monomial ordering
on the same variable ordering as the CAD to achieve a basis defined by

g1 = 2z + x2 + x− w2 + w,

g2 = 4y2 + x4 + 2x3 + (−2w2 + 2w + 3)x2 + (2w2 + 2w − 2)x

+ w4 − 2w3 + 3w2 + 2w,

g3 = 4yx− x4 − 2x3 + (2w2 − 2w − 5)x2 + (2w2 − 2w − 4)x

− w4 + 2w3 − w2 − 4w,

g4 = (4w4 − 8w3 + 4w2 + 16w)y + x7 + 4x6 + (−4w2 + 4w + 18)x5

+ (−12w2 + 12w + 36)x4 + (5w4 − 10w3 − 31w2 + 40w + 53)x3

+ (10w4 − 20w3 − 34w2 + 52w + 32)x2 + (−2w6 + 6w5 + 7w4 − 32w3

+ 13w2 + 44w + 16)x− 2w6 + 6w5 − 2w4 − 14w3 + 12w2 + 16w,

g5 = x8 + 4x7 + (−4w2 + 4w + 18)x6 + (−12w2 + 12w + 36)x5 + (6w4 − 12w3

− 30w2 + 44w + 53)x4 + (12w4 − 24w3 − 32w2 + 60w + 32)x3

+ (−4w6 + 12w5 + 6w4 − 48w3 + 26w2 + 64w + 16)x2

+ (−4w6 + 12w5 − 4w4 − 28w3 + 24w2 + 32w)x

+ w8 − 4w7 + 6w6 + 4w5 − 15w4 + 8w3 + 16w2.

This is an alternative generating set for the ideal defined by the explicit ECs and
thus all the gi = 0 are also ECs for φ. Hence we may consider using these as the
designated ECs when building the CAD instead of the iterated resultants. Note
that the degrees of the GB polynomials (with respect to any one variable) are
on average lower (and never greater) than those of the (corresponding) iterated
resultants.

There is no longer any choice regarding the EC with mvar z or x but there
are 3 possibilities for the designation with mvar y. Designating g2 yields 83 cells
while either g3 or g4 result in 55 cells. All 3 configurations took less than 10
seconds to compute (with designating g4 the quickest).

5 Sketch Of The Effect On Complexity

Following Section 3 we see that when building a lexicographical basis the de-
gree of the polynomials in the GB is restricted and thus this will be a better
method for the identification of implicit ECs to use in subsequent projections
than iterated resultants. Let us sketch how this will effect the complexity of CAD
following the techniques set out in [5], [22] and summarised in Section 2.4.

The designated ECs will have lower degrees d, 4d2, 27d3 and in general (sd)s

for the EC with mvar xn−s. We use the word sketch in the section title partly
because we will ignore the constant factors and focus on the exponents of d
generated in what follows. This is both for simplicity in the analysis, and because
we have not found a closed form solution for the product of the constant factors in
the new analysis. But we do note that when using GB the constant factors grow
exponentially in ` while with iterated resultants they grow doubly exponentially
in ` (as in Table 1). Further, the constant term can be shown to be strictly lower
for all but the first few projections, with the issue there a laxness of the analysis
not the algorithm (as in Section 3.1 we saw that the multivariate resultants was
itself a factor of the iterated resultant). The other issues which prompted us to
use the word sketch are discussed in the next section.

We keep track of both the degree of the designated EC and the degree of the
entire set of polynomials. The reduced projection operator PF (B) will still take
discriminants and coefficients of these; and resultants of them with the other
projection polynomials. Thus the highest degree polynomial produced grows
with the exponent of d being the sum of the exponent from the designated
EC and that from the other polynomials. This generates the top half of Table
2 and we see that the exponents form the so called Lazy Caterer’s sequence6

otherwise known as the Central Polygonal Numbers. The remaining projections
use the sign-invariant projection operator and so the degree is squared each time,
leading to the bottom half of Table 2.

We can now consider the generic bound (7) using the degrees from Table 2
as the di. The term with base d may be computed by∏`

s=0

(
ds+1

)∏n−`−1
r=1

(
d2
r−1`(`+1)+2r

)
.

The exponent of d evaluates to

2(n−`) 12 (`2 + `+ 2)− 1
2 (`2 + `)− 2. (9)

Let us compare this with the term with base m from (2). As with the im-
provements in [22], the improvements here have allowed the reduction of the
double exponent from by `, the number of ECs used. However, the reduction is
not quite as clean as the exponential term in the single exponent is multiplied
by a quadratic in `. This is to be expected as the singly exponential dependency
on ` in the Number column of Table 1 was only in the term with constant base
while for Table 2 the term with base d is itself single exponential in `.

6 The On-Line Encyclopedia of Integer Sequences, 2010, Sequence A000124,
https://oeis.org/A000124

Table 2. Maximum degree of projection polynomials produced for CAD when using
projection operator (5) ` times and then (3).

Variables
Maximum Degree
EC Others

n d d
n− 1 d2 d2

n− 2 d3 d4

n− 3 d4 d7

...
...

...

n− ` d`+1 d`(`+1)(1/2)+1

n− (`+ 1) d`(`+1)+2

n− (`+ 2) d2`(`+1)+22

n− (`+ 3) d2
2`(`+1)+23

...
...

n− (`+ r) d2
r−1`(`+1)+2r

...
...

1 d2
n−`−2`(`+1)+2n−`−1

6 Discussion

We have considered the issue of CAD in the presence of multiple ECs. We fol-
lowed our recent work in [22] which reduced the complexity with respect to the
number of polynomials m, and showed that similar improvements can be ob-
tained with the respect to polynomial degree d by using Gröbner Bases in place
of iterated resultants. We have sketched the complexity results but defer the full
analysis until a number of issues can be cleared up. These include:

– Will using GB not risk increasing the base number of polynomials in m?

On one level this seems unlikely (since we are starting with a generating set all
in the main variable and deriving another which would mostly not be) but we
have yet to rule it out. Of course, the number of polynomials in the input can
bear little relation to the number generated by projection.

We note that there is an alternative way to use GB for CAD than that
outlined in Section 3.3 (replacing a set of ECs by another). We could instead
use the GB purely as an implicit EC generation tool; and just add selected
polynomials from it to our input without replacing anything. For example, the
GB in the worked example of Section 4 had 3 polynomials with main variable y
only one of which can be the designated EC. Rather than replacing all the fi by
all the gi we could instead just add 2 of the gi (one in main variable y and one
in x) to the input set to act as designated ECs at lower levels. This approach
would cap the increase in m to the number of designated ECs we can identify.

– Will the GB always produce as many ECs with different main variables as
the iterated resultant method?

– How to proceed in the case where we have non-primitive ECs?

As with most previous work on ECs, we have assumed primitive designated ECs.
We refer the reader to: the final section of [22] where we sketch approaches that
could be adapted to deal with this (including the theory of TTICAD [4], [5]);
and the final section of [19] where we demonstrate the importance of this issue
by showing the examples from [20] and [9] to involve imprimitive ECs.

– How is the complexity affected when the projections using ECs are not in
strict succession?

– Can we mix the orderings in the CAD and the GB?

Finally, we return to the fact acknowledged in Section 3.3 that previous work
on using GB to precondition CAD [12], [47], [30] has found that it is not always
beneficial and how that interacts with the claims of this paper. The simple answer
is that the analysis offered here is of the worst case and makes no claim to the
average complexity. However, we actually hypothesise that it was it was the fact
that the CAD computations involved in those paper did not take advantage of
the new multiple EC technology which will account for many of the cases were
GB hindered CAD. We plan future experiments to test this hypothesis.

Acknowledgements This work was originally supported by EPSRC grant:
EP/J003247/1 and is now supported by EU H2020-FETOPEN-2016-2017-CSA
project SC2 (712689). Thanks to the the referees for their helpful comments, and
Prof. Buchberger for reminding JHD that Gröbner bases were applicable here.

A The iterated Resultants From Section 4

R1 := res(r1, r2, y) = x16 + 8x15 + (−8w2 + 8w + 64)x14 + (−56w2 + 56w

+ 288)x13 + (28w4 − 56w3 − 332w2 + 400w + 1138)x12 + (168w4

− 336w3 − 1144w2 + 1552w + 2912)x11 + (−56w6 + 168w5 + 648w4

− 1816w3 − 2664w2 + 5328w + 6336)x10 + (−280w6 + 840w5

+ 1400w4 − 5400w3 − 2616w2 + 11368w + 7808)x9 + (70w8

− 280w7 − 500w6 + 3080w5 − 270w4 − 11576w3 + 4860w2

+ 20816w + 7381)x8 + (280w8 − 1120w7 + 80w6 + 6080w5 − 8480w4

− 11792w3 + 22840w2 + 20192w + 920)x7 + (−56w10 + 280w9

− 80w8 − 2160w7 + 4960w6 + 3200w5 − 22608w4 + 2584w3

+ 40840w2 + 16040w + 2024)x6 + (−168w10 + 840w9 − 1520w8

− 1360w7 + 12016w6 − 11296w5 − 23368w4 + 30136w3 + 22032w2

+ 624w + 736)x5 + (28w12 − 168w11 + 396w10 + 160w9 − 3690w8

+ 6576w7 + 4520w6 − 24712w5 + 13154w4 + 37456w3 + 1464w2

− 1568w + 5968)x4 + (56w12 − 336w11 + 1192w10 − 1680w9

− 2688w8 + 12496w7 − 13464w6 − 16912w5 + 37240w4 + 13472w3

− 16384w2 + 1984w + 3072)x3 + (−8w14 + 56w13 − 248w12 + 520w11

+ 72w10 − 3088w9 + 7664w8 − 2040w7 − 16176w6 + 20424w5

+ 20056w4 − 15360w3 − 8544w2 + 4608w + 2304)x2 + (−8w14

+ 56w13 − 296w12 + 808w11 − 1144w10 − 776w9 + 6184w8 − 7048w7

− 6944w6 + 19696w5 + 3872w4 − 16832w3 − 1152w2 + 4608w)x+ w16

− 8w15 + 52w14 − 184w13 + 454w12 − 440w11 − 772w10 + 3352w9

− 2447w8 − 4288w7 + 8200w6 + 2080w5 − 7664w4 − 384w3 + 2304w2

R2 := res(r1, r3, y) = x16 + 8x15 + (−8w2 + 8w + 28)x14 + (−56w2 + 56w

+ 48)x13 + (28w4 − 56w3 − 116w2 + 160w − 2)x12 + (168w4

− 336w3 + 80w2 + 184w − 256)x11 + (−56w6 + 168w5 + 108w4

− 592w3 + 852w2 − 240w − 12)x10 + (−280w6 + 840w5 − 1120w4

+ 360w3 + 1872w2 − 1448w + 2000)x9 + (70w8 − 280w7 + 220w6

+ 560w5 − 2742w4 + 3232w3 − 1428w2 + 224w + 4537)x8 + (280w8

− 1120w7 + 2720w6 − 3280w5 − 1280w4 + 6016w3 − 11696w2 + 7496w

+ 2552)x7 + (−56w10 + 280w9 − 620w8 + 480w7 + 2488w6 − 6880w5

+ 9384w4 − 5744w3 − 9404w2 + 12008w − 4120)x6 + (−168w10

+ 840w9 − 2960w8 + 5840w7 − 4832w6 − 3088w5 + 21104w4

− 27128w3 + 12552w2 + 3888w − 5888)x5 + (28w12 − 168w11 + 612w10

− 1280w9 + 498w8 + 3648w7 − 12424w6 + 17360w5 − 4546w4

− 13928w3 + 19032w2 − 9344w − 176)x4 + (56w12 − 336w11 + 1552w10

− 4200w9 + 7296w8 − 6080w7 − 7440w6 + 25880w5 − 31352w4

+ 13472w3 + 1856w2 − 10304w + 1536)x3 + (−8w14 + 56w13 − 284w12

+ 880w11 − 1740w10 + 1616w9 + 2468w8 − 10704w7 + 15828w6

− 8040w5 − 1064w4 + 9792w3 − 3168w2 + 2304)x2 + (−8w14 + 56w13

− 320w12 + 1096w11 − 2800w10 + 4600w9 − 3968w8 − 2152w7

+ 9592w6 − 10832w5 + 5312w4 + 4672w3 − 5760w2 + 4608w)x+ w16

− 8w15 + 52w14 − 208w13 + 646w12 − 1376w11 + 2012w10 − 1136w9

− 1295w8 + 4328w7 − 3992w6 + 2368w5 + 2320w4 − 1920w3 + 2304w2

R3 := res(r3, r3, y) = x16 + 8x15 + (−8w2 + 8w + 44)x14 + (−56w2 + 56w

+ 160)x13 + (28w4 − 56w3 − 228w2 + 272w + 430)x12 + (168w4

− 336w3 − 592w2 + 856w + 816)x11 + (−56w6 + 168w5 + 444w4

− 1264w3 − 812w2 + 1952w + 1092)x10 + (−280w6 + 840w5 + 560w4

− 3000w3 + 32w2 + 3032w + 736)x9 + (70w8 − 280w7 − 340w6

+ 2240w5 − 902w4 − 4208w3 + 2716w2 + 3120w − 183)x8 + (280w8

− 1120w7 + 480w6 + 3440w5 − 4640w4 − 2304w3 + 5840w2 + 1128w

− 1144)x7 + (−56w10 + 280w9 − 60w8 − 1760w7 + 3128w6 + 960w5

− 7352w4 + 3216w3 + 5860w2 − 1320w − 824)x6 + (−168w10 + 840w9

− 1280w8 − 880w7 + 5568w6 − 5008w5 − 4464w4 + 7848w3 + 984w2

− 2576w − 64)x5 + (28w12 − 168w11 + 276w10 + 400w9 − 2302w8

+ 2848w7 + 1880w6 − 7440w5 + 3582w4 + 5704w3 − 3208w2 − 1216w

+ 720)x4 + (56w12 − 336w11 + 880w10 − 840w9 − 1424w8 + 4800w7

− 3856w6 − 3464w5 + 6968w4 + 32w3 − 3392w2 + 448w + 512)x3

+ (−8w14 + 56w13 − 172w12 + 208w11 + 308w10 − 1504w9 + 1972w8

+ 432w7 − 3788w6 + 2920w5 + 2552w4 − 3136w3 − 864w2 + 1024w

+ 256)x2 + (−8w14 + 56w13 − 208w12 + 424w11 − 352w10 − 520w9

+ 1744w8 − 1416w7 − 1176w6 + 2928w5 − 384w4 − 1984w3 + 384w2

+ 512w)x+ w16 − 8w15 + 36w14 − 96w13 + 150w12 − 48w11 − 308w10

+ 672w9 − 351w8 − 648w7 + 1096w6 − 880w4 + 128w3 + 256w2

References

1. Arnon, D., Collins, G.E., McCallum, S: Cylindrical algebraic decomposition I: The
basic algorithm. SIAM Journal of Computing, 13, 865–877 (1984).

2. Basu, S., Pollack, R. Roy, M.F.: Algorithms in Real Algebraic Geometry. Volume
10 of Algorithms and Computations in Mathematics. Springer-Verlag (2006).

3. Bradford, R., Chen, C., Davenport, J.H., England M., Moreno Maza, M., Wil-
son, D.: Truth table invariant cylindrical algebraic decomposition by regular chains.
In: Gerdt, V.P., et al. (eds.) Proc. CASC ’14, LNCS, vol. 8660, pp. 44–58. Springer
(2014).

4. Bradford, R., Davenport J.H., England, M., McCallum, S., Wilson, D.: Cylindrical
algebraic decompositions for boolean combinations. In: Proc. ISSAC ’13, pp. 125–
132. ACM (2013).

5. Bradford, R., Davenport, J.H., England, M., McCallum, S., Wilson, D.: Truth table
invariant cylindrical algebraic decomposition. Journal of Symbolic Computation,
76, 1–35 (2015).

6. Bradford, R., Davenport, J.H., England, M., Wilson, D.: Optimising problem
formulations for cylindrical algebraic decomposition. In: Carette, J., et al. (eds)
Intelligent Computer Mathematics, LNCS, vol. 7961, pp. 19–34. Springer Berlin
Heidelberg (2013).

7. Brown, C.W.: Improved projection for cylindrical algebraic decomposition. Journal
of Symbolic Computation, 32(5), 447–465 (2001).

8. Brown, C.W.: Constructing a single open cell in a cylindrical algebraic decompo-
sition. In: Proc. ISSAC ’13, pp. 133–140. ACM (2013).

9. Brown, C.W., Davenport, J.H.: The complexity of quantifier elimination and cylin-
drical algebraic decomposition. In: Proc. ISSAC ’07, pp. 54–60. ACM (2007).

10. Brown, C.W., El Kahoui, M., Novotni, D., Weber, A.: Algorithmic methods for
investigating equilibria in epidemic modelling. Journal of Symbolic Computation,
41, 1157–1173 (2006).

11. Buchberger, B.: Bruno Buchberger’s PhD thesis (1965): An algorithm for finding
the basis elements of the residue class ring of a zero dimensional polynomial ideal.
Journal of Symbolic Computation, 41(3-4), 475–511 (2006).

12. Buchberger, B., Hong, H.: Speeding up quantifier elimination by Gröbner bases.
Technical Report, 91-06. RISC, Johannes Kepler University (1991).

13. Busé, L., Mourrain, B.: Explicit factors of some iterated resultants and discrimi-
nants. Mathematics of Computation, 78, 345–386 (2009).

14. Chen, C., Moreno Maza M., Xia, B., Yang, L.: Computing cylindrical algebraic
decomposition via triangular decomposition. In: Proc. ISSAC ’09, pp. 95–102.
ACM (2009).

15. Collins, G.E.: The SAC-2 computer algebra system. In Caviness, B.F. (eds.) Proc.
EUROCAL ’85, LNCS, vol. 204, pp. 34–35. Springer Berlin Heidelberg (1985).

16. Collins, G.E.: Quantifier elimination by cylindrical algebraic decomposition – 20
years of progress. In: Quantifier Elimination and Cylindrical Algebraic Decompo-
sition, Texts & Mono. in Symbolic Computation, pp. 8–23. Springer-Verlag (1998).

17. Collins, G.E., Hong, H.: Partial cylindrical algebraic decomposition for quantifier
elimination. Journal of Symbolic Computation, 12, 299–328 (1991).

18. Davenport, J.H., Bradford, R., England, M., Wilson, D.: Program verification
in the presence of complex numbers, functions with branch cuts etc. In: Proc.
SYNASC ’12, pp. 83–88. IEEE (2012).

19. Davenport, J.H., England, M.: Need polynomial systems be doubly-exponential?.
To appear In: Greuel, G.M., et al. (eds.) Mathematical Software - ICMS 2016,
LNCS, vol. 9725. Springer (2016)

20. Davenport, J.H., Heintz, J.: Real quantifier elimination is doubly exponential.
Journal of Symbolic Computation, 5(1-2), 29–35 (1988).

21. England, M., Bradford, R., Chen, C., Davenport J.H., Moreno Maza M., Wil-
son, D.: Problem formulation for truth-table invariant cylindrical algebraic de-
composition by incremental triangular decomposition. In: Intelligent Computer
Mathematics, LNAI 8543, pp. 45–60. Springer International (2014).

22. England, M., Bradford, R., Davenport, J.H.: Improving the use of equational
constraints in cylindrical algebraic decomposition. In: Proc. ISSAC ’15, pp. 165–
172. ACM (2015).

23. England, M., Wilson, D., Bradford, R., Davenport, J.H.: Using the Regular Chains
Library to build cylindrical algebraic decompositions by projecting and lifting. In:
Hong, H., Yap, C. (eds.) Mathematical Software – ICMS 2014, LNCS, vol. 8592,
pp. 458–465. Springer Heidelberg (2014).

24. Erascu, M., Hong H.: Synthesis of optimal numerical algorithms using real quan-
tifier elimination (Case Study: Square root computation). In: Proc. ISSAC ’14,
pp. 162–169. ACM (2014).

25. Faugère, J.C.: A new efficient algorithm for computing groebner bases without
reduction to zero (F5). In: Proc. ISSAC ’02, pp. 75–83. ACM (2002).

26. Fotiou, I.A., Parrilo, P.A., Morari, M.: Nonlinear parametric optimization using
cylindrical algebraic decomposition. In: Decision and Control, 2005 European Con-
trol Conference. CDC-ECC ’05., pp. 3735–3740 (2005).

27. Han, J., Dai, L., Xia, B.: Constructing fewer open cells by gcd computation in
CAD projection. In: Proc. ISSAC ’14, pp. 240–247. ACM (2014).

28. Heintz, J.: Definability and fast quantifier elimination in algebraically closed fields.
Theoretical Computer Science, 24(3), 239–277 (1983).

29. Hong, H.: An improvement of the projection operator in cylindrical algebraic
decomposition. In: Proc. ISSAC ’90, pp. 261–264. ACM (1990).

30. Huang, Z., England, M., Davenport, J.H., Paulson, L.: Using machine learning
to decide when to precondition cylindrical algebraic decomposition with Groebner
bases. Submitted for Publication (2016).

31. Huang, Z., England, M., Wilson, D., Davenport, J.H., Paulson, L., Bridge, J.:
Applying machine learning to the problem of choosing a heuristic to select the
variable ordering for cylindrical algebraic decomposition. In: Intelligent Computer
Mathematics, LNAI 8543, pp. 92–107. Springer International (2014).

32. Iwane, H., Yanami, H., Anai, H., Yokoyama, K.: An effective implementation of
a symbolic-numeric cylindrical algebraic decomposition for quantifier elimination.
In: Proc. SNC ’09, pp. 55–64 (2009).

33. Jouanolou, J.P.: Le formalisme du résultant. Advances in Mathematics, 90(2),
117–263 (1991).

34. Lazard, D., McCallum, S.: Iterated discriminants. Journal of Symbolic Computa-
tion, 44(9), 1176–1193 (2009)

35. Mayr, E.W., Meyer, A.R.: The complexity of the word problems for commuta-
tive semigroups and polynomial ideals. Advances in Mathematics, 46(3), 305–329
(1982).

36. Mayr, E.W., Ritscher, S.: Dimension-dependent bounds for gröbner bases of poly-
nomial ideals. Journal of Symbolic Computation, 49, 78–94 (2013).

37. McCallum, S.: An improved projection operation for cylindrical algebraic decompo-
sition. In: Quantifier Elimination and Cylindrical Algebraic Decomposition, Texts
& Mono. in Symbolic Computation, pp. 242–268. Springer-Verlag (1998).

38. McCallum, S.: Factors of iterated resultants and discriminants. Journal of Symbolic
Computation, 27(4), 367–385 (1999).

39. McCallum, S.: On projection in CAD-based quantifier elimination with equational
constraint. In: Proc. ISSAC ’99, pp. 145–149. ACM (1999).

40. McCallum, S.: On propagation of equational constraints in CAD-based quantifier
elimination. In: Proc. ISSAC ’01, pp. 223–231. ACM (2001).

41. Paulson, L.C.: Metitarski: Past and future. In: Beringer, L., Felty, A. (eds.)
Interactive Theorem Proving, LNCS, vol. 7406, pp. 1–10. Springer (2012).

42. Schwartz, J.T., Sharir, M.: On the “Piano-Movers” Problem: I. The case of a
two-dimensional rigid polygonal body moving amidst polygonal barriers. Commu-
nications on Pure and Applied Mathematics, 36(3), 345–398 (1983).

43. Strzeboński, A.: Cylindrical algebraic decomposition using validated numerics.
Journal of Symbolic Computation, 41(9), 1021–1038 (2006).

44. Strzeboński, A.: Cylindrical algebraic decomposition using local projections. In:
Proc. ISSAC ’14, pp. 389–396. ACM (2014).

45. Wilson, D., Bradford, R., Davenport, J.H., England, M.: Cylindrical algebraic
sub-decompositions. Mathematics in Computer Science, 8, 263–288 (2014).

46. Wilson, D., England, M., Davenport, J.H., Bradford, R.: Using the distribution
of cells by dimension in a cylindrical algebraic decomposition. In: Proc. SYNASC
’14, pp. 53–60. IEEE (2014).

47. Wilson, D.J., Bradford, R.J., Davenport, J.H.: Speeding up cylindrical algebraic
decomposition by Gröbner bases. In: Jeuring, J., et al. (eds.) Intelligent Computer
Mathematics, LNCS, vol. 7362, pp. 280–294. Springer (2012).

	Post-Print Coversheet - Springer
	ED16

