
Western University Western University

Scholarship@Western Scholarship@Western

Electronic Thesis and Dissertation Repository

10-20-2016 12:00 AM

Computation of Real Radical Ideals by Semidefinite Programming Computation of Real Radical Ideals by Semidefinite Programming

and Iterative Methods and Iterative Methods

Fei Wang
The University of Western Ontario

Supervisor

Greg Reid

The University of Western Ontario

Graduate Program in Applied Mathematics

A thesis submitted in partial fulfillment of the requirements for the degree in Doctor of

Philosophy

© Fei Wang 2016

Follow this and additional works at: https://ir.lib.uwo.ca/etd

 Part of the Algebraic Geometry Commons, and the Other Applied Mathematics Commons

Recommended Citation Recommended Citation
Wang, Fei, "Computation of Real Radical Ideals by Semidefinite Programming and Iterative Methods"
(2016). Electronic Thesis and Dissertation Repository. 4262.
https://ir.lib.uwo.ca/etd/4262

This Dissertation/Thesis is brought to you for free and open access by Scholarship@Western. It has been accepted
for inclusion in Electronic Thesis and Dissertation Repository by an authorized administrator of
Scholarship@Western. For more information, please contact wlswadmin@uwo.ca.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Scholarship@Western

https://core.ac.uk/display/76075417?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://ir.lib.uwo.ca/
https://ir.lib.uwo.ca/etd
https://ir.lib.uwo.ca/etd?utm_source=ir.lib.uwo.ca%2Fetd%2F4262&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/176?utm_source=ir.lib.uwo.ca%2Fetd%2F4262&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/122?utm_source=ir.lib.uwo.ca%2Fetd%2F4262&utm_medium=PDF&utm_campaign=PDFCoverPages
https://ir.lib.uwo.ca/etd/4262?utm_source=ir.lib.uwo.ca%2Fetd%2F4262&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:wlswadmin@uwo.ca

Abstract
Systems of polynomial equations with approximate real coefficients arise frequently as

models in applications in science and engineering. In the case of a system with finitely many
real solutions (the 0 dimensional case), an equivalent system generates the so-called real rad-
ical ideal of the system. In this case the equivalent real radical system has only real (i.e., no
non-real) roots and no multiple roots. Such systems have obvious advantages in applications,
including not having to deal with a potentially large number of non-physical complex roots, or
with the ill-conditioning associated with roots with multiplicity. There is a corresponding, but
more involved, description of the real radical for systems with real manifolds of solutions (the
positive dimensional case) with corresponding advantages in applications.

The stable and practical computation of real radicals in the approximate case is an important
open problem. Theoretical advances and corresponding implemented algorithms are made for
this problem.

The approach of the thesis is to use semidefinite programming (SDP) methods from alge-
braic geometry and also techniques originating in the geometry of differential equations. The
problem of finding the real radical is re-formulated as an SDP problem. This approach in the 0
dimensional case was pioneered by Curto & Fialkow with breakthroughs in the 0 dimensional
case by Lasserre and collaborators. In the positive dimensional case, important contributions
have been made of Ma, Wang and Zhi. The real radical corresponds to a generic point lying on
the intersection of boundary of the convex cone of positive semidefinite matrices and a linear
affine space associated with the polynomial system.

As posed, this problem is not stable, since an arbitrarily small perturbation takes the point
to an infeasible one outside the cone. A contribution of the thesis is to show how to apply facial
reduction pioneered by Borwein and Wolkowicz to this problem. It is regularized by mapping
the point to one which is strictly on the interior of another convex region, the minimal face
of the cone. Then a strictly feasible point on the minimal face can be computed by accurate
iterative methods such as the Douglas-Rachford method. Such a point corresponds to a generic
point (max rank solution) of the SDP feasible problem. The regularization is done by solving
the auxiliary problem which can be done again by iterative methods. This process is proved
to be stable under some assumptions in this thesis as the max rank doesn’t change under suf-
ficiently small perturbations. This well-posedness is also reflected in our examples, which are
executed much more accurately than by methods based on interior point approaches.

For a given polynomial system, and an integer d > 0, results of Curto & Fialkow and
Lasserre are generalized to give an algorithm for computing the real radical up to degree d.
Using this truncated real radical as input to critical point methods can lead in many cases to
validation of the real radical.

Keywords: SDP Optimization, Numerical Algebraic Geometry, Facial Reduction

ii

Co-Authorship Statement

Chapters 2 -4 of this thesis consist of the following papers:

Chapter 2: Greg Reid, Fei Wang and Wenyuan Wu. A note on geometric involutive bases

for positive dimensional polynomial ideals and SDP methods. Proceedings of the 2014 Sym-

posium on Symbolic-Numeric Computation, Pages 41-42. ACM, 2014.

Chapter 3: Greg Reid, Fei Wang, Henry Wolkowicz and Wenyuan Wu. Semidefinite Pro-

gramming and facial reduction for Systems of Polynomial Equations. Submitted to Theoretical

Computer Science, arXiv:1504.00931, 2015.

Chapter 4: Fei Wang, Greg Reid and Henry Wolkowicz. Finding Maximum Rank Moment

Matrices by Facial Reduction and Douglas-Rachford Method. arXiv:1606.00491, 2016

The original draft for each of the above articles was prepared by the author and Greg Reid.

Subsequent revisions were performed by the author and Dr. Greg Reid. Development of soft-

ware, analytical and numerical work using MATLAB was performed by the author under su-

pervision of Dr. Greg Reid.

iii

Acknowledgements

I would like to express my sincere gratitude to my advisor Prof. Greg Reid for the continuous

support of my Ph.D study and related research, for his patience, motivation, and immense

knowledge. His guidance helped me in all the time of research and writing of this thesis. I really

enjoy working with Greg who created an wonderful atmosphere which especially stimulates

my ability to work independently. I could not have imagined having a better advisor and

mentor for my Ph.D study. I also thank Greg for supporting me to attend many conferences

and workshops where I can present my work and meet many experts in my field of study, for

example, the wonderful to the SNC Shanghai conference to present my research. There are

also many other examples and I can’t list them all here.

Besides my advisor, I also owe a lot of gratitude to my supervisory committee members

Rob Corless and David Jeffrey. Before I started working in the field of real algebraic geometry,

I worked with them on the Lambert W function. One of the work is published in ISSAC 14

Japan. Without their support, this could not be possible. Although my work on Lambert W

function is not the topic of this thesis, the experience gained by working with them has helped

me a lot in many aspects of my research. I also thank Rob Corless and David Jeffrey for

many workshops they organized to create an inspiring environment inside the department. For

example, they organised the workshop ”20 years of Lambert W function” where I presented

my work and meet with people from many diverse and interesting research fields.

My sincere thanks goes to Prof. Henry Wolkowicz who is an expert in optimization. I

learned a lot of things about optimization from Henry. Henry introduced me to the idea of

facial reduction and Douglas-Rachford iteration which is very important in this thesis. I also

thank him for his many useful comments and references he sent to me which greatly widens

and deepens my knowledge about optimzation. My sincere thanks also goes to Wenyuan Wu

who is one of the coauthors of the paper for Chapter 2 in this thesis. The discussion with him

about the real radical and critical points gave lots of inspirations to me.

Last but not least, I would like to thank my family members and my girl friend for their

support, patience and understanding throughout my PhD study which I can’t describe in words.

iv

Contents

Abstract ii

Co-Authorship Statement iii

Acknowledgements iv

List of Figures ix

List of Tables x

List of Appendices xii

1 Introduction 1

1.1 Real and complex solution sets (varieties) of systems of polynomial equations . 2

1.2 Equivalent systems of polynomials: generators of ideals and radicals of poly-

nomial systems . 5

1.3 Introductory example of computation of the real radical using Moment Matri-

ces and SDP . 9

1.4 SDP optimization . 10

1.4.1 Semidefinite Matrices . 10

1.4.2 Semidefinite Programs . 11

1.4.3 Face, minimal face and facial structure 12

1.4.4 Facial reduction . 12

1.5 Moment problem . 13

1.5.1 Linear form, positive linear form and moment matrix 13

1.5.2 Moment Problem . 15

v

1.5.3 Truncated Moment matrix and flat extension theorem 15

1.5.4 Generic linear forms . 17

1.6 Outline of the contents of the thesis . 17

1.6.1 Contents of Chapter 2 . 18

1.6.2 Contents of Chapter 3 . 18

1.6.3 Contents of Chapter 4 . 19

1.6.4 Conclusions are given in Chapter 5 . 20

1.6.5 Appendices . 20

Bibliography . 20

2 Geometric involutive bases for positive dimensional polynomial ideals and SDP

methods 24

2.1 Introduction . 24

2.2 Brief background on ideals and varieties . 26

2.2.1 Some basic objects in complex algebraic geometry 26

2.2.2 Some basic objects in real algebraic geometry 28

2.3 Geometric prolongation and projection for polynomial systems 29

2.4 Geometric involutive bases . 33

2.4.1 Symbol, class and Cartan involution test 33

2.4.2 Projected involutive form algorithm 36

2.5 Moment matrices and SDP . 38

2.5.1 Moment Matrices . 38

2.5.2 Moment matrix for univariate example 38

2.6 Combining geometric involutive bases and moment matrix methods 40

2.6.1 Geometric involutive form and moment matrix algorithms 40

2.6.2 Two variable example . 42

2.6.3 Three variable example . 44

2.7 Discussion . 46

Bibliography . 47

vi

3 Semidefinite Programming and facial reduction for Systems of Polynomial Equa-

tions 53

3.1 Introduction . 53

3.2 Real radical ideals and moment matrices . 56

3.2.1 Real polynomial systems . 56

3.2.2 Moment matrices . 58

3.3 Geometric involutive bases . 59

3.4 Combining the moment matrix and geometric involutive form algorithms 63

3.5 Facial reduction and projection methods . 65

3.5.1 Representations for linear constraints for moment problems 65

3.5.2 First step of facial reduction . 68

Potential second facial reduction . 69

Backward stability for facial reduction steps 71

3.5.3 Projection methods . 72

Method of alternating projections, MAP 72

Douglas-Rachford reflection method 73

3.6 Numerical experiments . 75

3.6.1 A class of random univariate polynomials 75

3.6.2 Examples of Ma, Wang and Zhi [37] 77

3.6.3 Intersecting higher dimensional cylinders 82

3.7 Conclusion . 83

Bibliography . 86

4 Maximum Rank Moment Matrices by Facial Reduction and Douglas-Rachford

Method 93

4.1 Introduction . 93

4.2 Moment Matrices . 95

4.3 SDP and facial reduction . 96

4.3.1 Faces . 97

4.3.2 Theorems of the alternative . 97

vii

4.3.3 Facial reduction . 98

4.3.4 Facial reduction maximum rank algorithm 100

4.3.5 Transform of the auxiliary problem 102

4.4 Projection method . 103

4.4.1 Projection to the positive semidefinite cone 103

4.4.2 Projection to an affine subspace . 104

4.4.3 Douglas-Rachford method . 104

4.5 The ill-conditioned case . 105

4.6 Well-posedness . 106

4.7 Computation of generators of the real radical up to a given degree 108

4.8 A special case for determining positive dimensional real radical 113

4.9 Comparison with Triangular decomposition of semi-algebraic sets 115

4.10 Examples . 115

4.11 Conclusion . 120

Bibliography . 121

5 Conclusion 128

Bibliography . 131

A Proof of Primal Theorem of Alternative 133

B Copyright Release 135

Curriculum Vitae 137

viii

List of Figures

2.1 Table of dimπ`DkP for (2.17) for Example 2.3.2. The (red) boxed 4 in the first

column corresponds to π4P and a geometric involutive basis for P as found by

Algorithm 2.4.1. The blue and black boxed 4’s in the fourth column correspond

to geometric involutive bases for P. 32

2.2 Table of dim π`Dk(P2) for system (2.41) The (blue) boxed 11 in the third col-

umn corresponds to π2D2(P2). 43

2.3 Table of dimπ`Dkgen(ker M) for the first GIF– M iteration in Example 2.6.2. . 44

2.4 Table of dimπ`Dk(P3) for system (2.43). 44

2.5 Table of dimπ`Dkgen(ker M) in the moment matrix calculation for gen(π2D0(P3)).

. 45

3.1 Comparison in residual and cputime of GIF-FDR vs GIF-SeDuMi for random

polynomials pd(x) = Σd
1ad, j x j at odd degrees 3 ≤ d ≤ 51 with ad, j ∼ N(0, 1). . . 76

3.2 Performance profile of GIF-FDR vs GIF-SeDuMi for random polynomials pd(x) =

Σd
1ad, j x j at each odd degrees 3 ≤ d ≤ 51 with ad, j ∼ N(0, 1). The profile func-

tion used is (3.26). 77

4.1 In the Figure, the black monomial staircase represents the leading monomials

of the generators of the real radical determined to degree d by RealRadical(F, d).

The only way these can fail to be a complete set of generators for the real rad-

ical is that there is a minimum degree d′ > d where additional generators with

leading monomials of exactly degree d′ shown in red are found outside black

monomial staircase. 113

ix

List of Tables

3.1 block partitioned bivariate moment matrix; submatrices have same degree . . . 66

3.2 Statistics for the application of GIF-FDR and GIF-SeDuMi: Ex 4.1-4.6 are 6 ex-

amples in MWZ [37]; Cyl2d-Cyl5d are cylinder examples; n number of variables; d

maximum polynomial degree; m number of polynomials; in columns 3, 4, two en-

tries (1,2) are included for the number of iterations and cpu-time if FDR is used twice

in the example; And we take the max value in the residual error columns 5 and 8;

(s(M), s(M̂)) is sizes of moment matrix M and facially reduced matrix M̂, resp.; col-

umn 7 is the SVD tolerance for GIF and the residual error for the moment matrix using

the Interior Point calculation with SeDuMi, DNC - Did Not Converge; the Maple SVD

computations in GIF-FDR were executed with tolerance := 10−10 and Digits := 15,

resp. 82

4.1 Comparison between facial reduction and SeDuMi (1) All data is obtained by

using minimal number of facial reductions; Here: min (max) # FR means minimal

(maximum) number of facial reductions in our tests; rank(FR) means the size of the

problem after each facial reduction, the first one is the size of the original problem;

Singlty degree is the singularity degree of the SDP problem after the 1st facial reduc-

tion; Res(FR) is the residual of the final moment matrix using facial reduction and

DR iterations (Algorithm 4.3.1); Res(CVX) is the residual of the final moment matrix

using CVX(SeDuMi). 119

x

4.2 Comparison between facial reduction and SeDuMi (2) All data obtained here is

by using minimal number of facial reductions; max rank is the maximum rank of the

moment matrix; res each FR is the residual of solving the corresponding SDP problem

by DR after each facial reduction; # DR each FR is the number of DR iterations to solve

the corresponding SDP problem after each facial reduction; thres FR is the tolerance

to obtain the correct maximum rank using facial reductions (Algorithm 4.3.1); thres

CVX is the tolerance to obtain the correct maximum rank using CVX(SeDuMi); . . . 119

xi

List of Appendices

Appendix . 133

Appendix . 135

xii

Chapter 1

Introduction

The thesis is aimed at developing theory and numerical algorithms for transforming a system of

polynomial equations with real coefficients into an equivalent potent system, called generating

polynomial equations for the real radical of the system. Such real radical generating systems

enjoy potent properties: they are free of multiplicities which cause ill-conditioning in numerical

solution methods; in the case of finitely many solutions they have no non-real solutions; they

are free of sums of squares of polynomials. These and other advantages mean that the problem

of finding stable and efficient algorithms for the approximation of real radicals is an important

open problem, which is the focus of much recent research [16, 20, 25, 6].

Systems of polynomial equations requiring analysis of their real solutions arise in many ap-

plications. For example, in mechanism design, the fixed distance between joints are expressed

naturally as quadratic equations in the joint coordinates [1]. In chemistry, equilibria of chemi-

cal reactions are naturally modelled as solutions of polynomial equations [26]. Biology yields

analogous systems and equilibria as real solutions of polynomial equations [22].

Historical high points in polynomial solving are the discovery of formulae for their exact

solution in terms of rational functions of the coefficients and radicals for the quadratic, cubic

and quartic polynomials. Subsequently Galois and Abel famously showed that such formulae

do not exist for univariate polynomials of degree ≥ 5. The mathematical study of such systems

and their solutions constitutes Algebraic Geometry, one of the foundation areas of Mathemat-

ics. Indeed only relatively few polynomials of higher degree are exactly solvable, with Galois

giving a criterion for such solvability. Since our focus is on general polynomial systems of

1

2 Chapter 1. Introduction

higher degree with approximate real coefficients, the methods developed in the thesis are nu-

merical methods, rather than such exact methods.

This thesis is a multidisciplinary work between the areas of Computer Science, Algebraic

Geometry, Numerical Analysis, Convex Optimization, and methods originating in the Geome-

try of Partial Differential Equations. To help the reader understand the main ideas, in Section

1.1 we will introduce some elementary material on solutions of polynomial systems over the

real numbers Rn and the complex numbers Cn. In Section 1.2, we will introduce material on

ideals of polynomial systems over R and C. The more complicated objects of radicals of these

ideals are also introduced in this section, together with simple examples. Section 1.3 will give

a simple introduction by examples to characterizing the real radical as the solution of a semi-

definite programming (SDP) problem involving a so-called moment matrix. Section 1.4 will

give some basic background about SDP problems, their primal and their dual forms, and facial

reduction. Section 1.5 gives a higher level view of the moment and moment matrix problem

and relevant results in the literature. Section 1.6 gives an outline of the contents of the thesis.

1.1 Real and complex solution sets (varieties) of systems of

polynomial equations

Throughout this thesis we consider systems of polynomial equations in variables x = (x1, x2, . . .

, xn) which are either real (x ∈ Rn) or complex (x ∈ Cn), with coefficients which are usually

real or some times complex. Since we are not developing exact methods, we don’t consider the

case of exact (e.g. integer, rational, or modular) coefficients and focus on the case that mostly

occurs in applications, that of real solutions of polynomials with real coefficients.

So we consider systems of polynomials in variables x = (x1, x2, . . . , xn):

p1(x) = 0, . . . , pk(x) = 0 (1.1)

where usually the polynomials have real coefficients, that is each polynomial belongs to the

polynomial ring R[x], or complex in which case P = {p1, . . . , pk} ⊂ C[x]. See [8], for definition

and discussion of polynomial rings. The solution sets (varieties) over C and R are naturally

defined as follows:

1.1. Real and complex solution sets (varieties) of systems of polynomial equations 3

Definition 1.1.1 (Variety) Given P = {p1, ..., pk} ⊂ R[x] where x = (x1, . . . , xn) we define

VC(P) := {x ∈ Cn : p1(x) = 0, . . . , pk(x) = 0} (1.2)

The solution set over R, or real variety, is defined as:

VR(P) := {x ∈ Rn : p1(x) = 0, . . . , pk(x) = 0} (1.3)

Note that sometimes we will write P(x) = 0 for brevity, or even p(x) = 0 instead of p1(x1, . . . , xn) =

0, . . . , pk(x1, . . . , xn) = 0. Obviously VR(P) ⊆ VC(P) and the geometry of the varieties can be

quite different as the following sum of squares example shows.

Example 1.1.1 Consider the single equation u2 + v2 = 0. Here x1 = u, x2 = v. Then

VC(u2 + v2) := {(u, v) ∈ C2 : u2 + v2 = 0} = {(+iv, v) ∈ C2} ∪ {(−iv, v) ∈ C2} (1.4)

VR(u2 + v2) := {(u, v) ∈ R2 : u2 + v2 = 0} = {(0, 0)} (1.5)

Here the complex variety is the union of two 1-dimensional manfolds (lines). The real variety

is 0-dimensional and consists of a point. To give the reader a brief taste of real radicals, the

complex radical for the above example has generator u2 + v2 and the real radical has generators

u, v corresponding to the much more pleasant equivalent system of equations u = 0, v = 0.

The main problem of this thesis, the approximation of the real radical ideal of a system

of real polynomials, is motivated by difficulties in the numerical solution of such systems due

to multiplicities and sums of squares. So we now give a brief discussion of some numerical

methods for solving such systems of equations. One of the oldest methods, Newton’s method,

is a local method, which provided it is given an initial guess sufficiently close to an isolated

solution, and the system is regular enough (e.g. has non-singular Jacobian) will converge to

that solution. Variations of such local methods are the most common in applications. The thesis

does not focus on such methods, but instead on global methods, which obtain information about

the complete set of solutions of a polynomial system.

To discuss recent methods most relevant to the thesis, we first consider polynomial systems

in C[x] in n variables x = (x1, x2, . . . , xn)

p1(x) = 0, . . . , pk(x) = 0 (1.6)

4 Chapter 1. Introduction

with finitely many solutions in C. Remarkably, this apparently special subclass forms a build-

ing block for the new methods of Complex Numerical Algebraic Geometry, that describe gen-

eral systems and their solutions. It is shown that all the finitely many solutions can be obtained

by continuously deforming the solutions of related (start) system into the target solutions. To

give the reader a brief sketch of the main ideas, consider the case, where there is a single poly-

nomial in one variable p = 0 of degree d. A suitable start system is q = αxd − β where α and β

are nonzero random constants. The homotopy function can be taken as H(x, t) = (1 − t)q + tp.

Then as the real deformation parameter t goes from t = 0 to t = 1 it deforms from the exactly

solvable start system to the target system. Numerical path tracking methods approximately

solve the related differential equation

dH
dt

= 0 =
∂H
∂x

dx
dt

+
∂H
∂t

(1.7)

subject to the initial conditions x(0) being set to the d exact solutions of the start system. The

randomness is needed to ensure that the Jacobian ∂H
∂x does not become singular along the path.

In the case of the solutions with multiplicities several paths converge to a single solution of the

target, and the system (in particular ∂H
∂x) becomes singular at t = 0. Such singularities caused

by multiplicities are one of the motivations for determining the equivalent system of equations

constituting the real radical considered in this thesis.

A breakthrough leading to the creation of Complex Numerical Algebraic Geometry, by

Sommese and Wampler (see [26, 2] and the references therein), was to reduce the general case

with positive dimensional solution manifolds to the above zero dimensional case for square

systems. The key idea is to cut the variety with a random linear space, that intersects at

so-called witness points. The method involves embedding in square systems, by appending

slack variables and extra equations, then slicing with linear spaces to cut out the witness

points. A simple example is to consider a single non-constant polynomial f (u, v) = 0 in

C[u, v]. Then slice it with a random line au + bv + c = 0. The witness points are solutions

of f (u,−au/b−c/b) = 0 which by the Fundamental Theorem of Algebra, has at least one com-

plex root. This root can be approximated by applying the homotopy solver to the 0-dimensional

system f (u, v) = 0, au + bv + c = 0 yielding a corresponding witness point on VC(f (u, v)). The

resulting implemented algorithms, in Bertini and PHCPack [2, 30] have undergone consider-

1.2. Equivalent systems of polynomials: generators of ideals and radicals of polynomial systems 5

able development, and theoretically give witness points on every component of the complex

variety of a complex system.

However the above method obviously fails when applied to real varieties. For example

consider f (u, v) = u2 + v2 − 1 = 0, au + bv + c = 0 in R[u, v]. Then a random real line

can miss the circle with high probability. There have been considerable developments in a

method to address this case. Such methods, called Critical Point methods, find critical points

of the distance function of a point to a real variety [13] or a hyperplane to a real variety [32].

This yields a 0-dimensional system for the critical points, which can be solved by homotopy

continuation. The (real) critical points result from discarding the complex solutions of the

0-dimensional system.

At present although this method in theory gives a critical point on every connected com-

ponent of a real variety, it can not be called a reliable numerical method, since it may fail due

to multiplicities, singularities and sums of squares in the system. For these reasons, it is im-

portant to find an equivalent system to the input, that is free of multiplicities, sums of squares,

and excess non-real solutions. These are aspects of the generators of the real radical ideal,

whose approximate computation is investigated in this thesis. Thus we discuss ideals and their

radicals in the next section.

1.2 Equivalent systems of polynomials: generators of ideals

and radicals of polynomial systems

It is natural and necessary in applications to manipulate systems of polynomial equations into

equivalent forms, in which they enjoy better properties (e.g. are easier to solve numerically,

lower degree, or aspects of their solutions are more transparent). Such motivations underly

polynomial ideal theory.

A polynomial system in R or C can be viewed as a linear function of its monomials. There-

fore it is natural to write it as a matrix equation, and apply linear elimination to the system.

6 Chapter 1. Introduction

Example 1.2.1 Consider the system with polynomials g1 = x8 − 3x4 + 2, g2 = x8 − x4 − 2:

P = {g1, g2} ⊆ R[x] (1.8)

Here the coefficient matrix is given by C(P) below:

C(P) · x(≤8) =

 −2 0 0 0 −1 0 0 0 1

2 0 0 0 −3 0 0 0 1




1

x1

...

x7

x8


=

 0

0

 (1.9)

Gaussian elimination on the coefficient matrix or equivalently in terms of the polynomials

yields: x8 − 3x4 + 2 − (x8 − x4 − 2) = −2x4 + 4. So we have obtained an simpler lower degree

polynomial g3 = x4−2 = 0. To check that g3 is equivalent to the original system {g1 = 0, g2 = 0}

we calculate

g1 = x8 − 3x4 + 2 = (x4 − 1)g3

g2 = x8 − x4 − 2 = (x4 + 1)g3

(1.10)

So the two original polynomials g1, g2 are multiples of g3 and can be discarded. Notice that to

discard the original polynomials we need to multiply by monomials of form x`.

The previous example naturally motivates the definition of a polynomial ideal.

Definition 1.2.1 A polynomial ideal over a fieldKwhereK = C orRwith generators {g1, g2, . . .

, gk} ⊂ K[x] is the infinite set of polynomials:

〈g1, . . . , gk〉K := { f1g1 + . . . + fkgk : f j ∈ K[x], 1 ≤ j ≤ k} (1.11)

In the above example, by elimination we identified a lower degree generator g3 ∈ 〈g1, g2〉R.

Then a further calculation showed that g1 = (x4 − 1)g3 ∈ 〈g3〉R and g2 = (x4 + 1)g3 ∈ 〈g3〉R.

So we have an equivalent and lower degree generator for the ideal, which has the same real

and complex varieties. Sophisticated elimination algorithms have been developed for the mul-

tivariate polynomial systems, for reducing the systems to an equivalent set of generators called

a Gröbner basis for the ideal. Such bases have the same complex variety as the input system.

1.2. Equivalent systems of polynomials: generators of ideals and radicals of polynomial systems 7

These methods rely on Gauss elimination in the exact case, and so are often unstable in the

approximate case. Instead, we use Geometric Involutive Bases [12], resulting from concepts

in the geometric theory of differential equations, and implemented using stable methods from

Numerical Linear Algebra (especially the Singular Value Decomposition). See [8] for modern

treatments of Gröbner Bases. For the simple example above x4 − 2 is both a Gröbner basis and

a Geometric Involutive Basis for the 〈g1, g2〉R.

This thesis is directed towards numerically computing a generating set for a special kind

of ideal targeted at real solutions of the input system: real radical ideals. There are exact

(symbolic) algorithms for finding real radicals, for example, methods developed by Becker &

Neuhause [3] and Spang [28]. Howver, they are not designed for approximate computation

when there are small numerical errors involved in the input.

Definition 1.2.2 (Real Radical Ideal) Given a system of polynomials g with generators g =

{g1, . . . , gk} ⊂ R[x] the real radical ideal of 〈g1, . . . , gk〉R is defined as

R
√
〈g1, . . . , gk〉R = { f (x) ∈ R[x] : f (x) = 0 for all x ∈ VR(g)} (1.12)

A complex radical is defined by replacing R in this definition with C.

Example 1.2.2 Consider a univariate polynomial g1 ∈ R[x]. To find a generator for R
√
〈g1〉R

we use the factorization of g1 over R: g1 = Π j(x − a j)m jΠk(x2 + bkx + ck)rk where a j, bk, ck are

all real with b2
k − 4ck < 0 and m j, rk are the respective multiplicities in the factorization. Then

VR(g1) = VR(Π j(x − a j)Πk(x2 + bkx + ck)) = VR(Π j(x − a j)) (1.13)

and the real radical of g1

R
√
〈g1〉R =

〈
Π j(x − a j)

〉
R

(1.14)

is generated by a polynomial obtained by discarding multiplicities and the factors with non-

real roots from g1. For the previous example the real variety is given by

VR(x4 − 2) = VR((x2 −
√

2)(x2 +
√

2)) = VR(x2 −
√

2) (1.15)

and so its real radical is generated by x2 −
√

2 which has no multiplicities and only real roots.

Thus R
√
〈x4 − 2〉R = 〈x2 −

√
2〉R There are various equivalent forms of the real radical, and

8 Chapter 1. Introduction

complex radical. We have only given one, to communicate the main ideas in a simplified way

in this introduction. In the later chapters some of these equivalent forms will be given, when

they are needed in proofs and other material.

Another motivation for computing the generators of the real radical ideals is to verify the

completeness of a real solution set of a given polynomial system. Given a polynomial system

g, suppose s ⊆ VR(g). The completeness of s means the Zariski closure, s̄, is equal to the real

variety VR(g). First we have s̄ ⊆ VR(g). By computing the generators of the real radical ideal,

we can verify I(s) ⊆ R
√
〈g〉R which indicates VR(g) ⊆ s̄, thus we know s̄ = VR(g).

There are symbolic methods [23] for the computation of the generators of real radical ideal.

One can also use methods involving triangular decomposition of semi-algebraic sets to com-

pute the connected components of the real variety. However, these methods are exact methods

and they are not stable for numerical computations with approximate coefficients. For a com-

parison with triangular decomposition of semi-algebraic sets, see chapter 4.

A fundamental open problem is to generalize the work of [16, 27] to positive dimensional

ideals. The algorithm of [19, 20] for a given input real polynomial system P, modulo the

successful application of SDP methods at each of its steps, computes a Pommaret basis Q:

R
√
〈P〉R ⊇ 〈Q〉R ⊇ 〈P〉R (1.16)

and would provide a solution to this open problem if it is proved that 〈Q〉R = R
√
〈P〉R. We believe

that the work [19, 20] establishes an important feature – involutivity – that will necessarily be

a main condition of any theorem and algorithm characterizing the real radical. Involutivity is

a natural condition, since any solution of the above open problem using SDP, if it establishes

radical ideal membership, will necessarily need (at least implicitly) a real radical Gröbner

basis. Our algorithm, uses geometric involutivity, and similarly gives an intermediate ideal,

which constitutes another variation on this family of conjectures.

1.3. Introductory example of computation of the real radical usingMomentMatrices and SDP 9

1.3 Introductory example of computation of the real radical

using Moment Matrices and SDP

We give an example in this section so the readers can have a preliminary outline of how to use

the moment matrix to compute the real radical ideal. For a theoretical introduction, see Section

1.5.

Suppose a degree 4 polynomial p = x4 − 2 is given and we wish to reproduce the result we

found from the complete factorization in the previous section. In matrix form, the polynomial

is represented by its coefficient matrix B = [−2, 0, 0, 0, 1]T .

The truncated moment matrix is a 5 × 5 matrix whose (α, β) entry is uα+β corresponding to

xαxβ and α, β ∈ N4 given by:

M =



u0 u1 u2 u3 u4

u1 u2 u3 u4 u5

u2 u3 u4 u5 u6

u3 u4 u5 u6 u7

u4 u5 u6 u7 u8


(1.17)

In the SDP-moment matrix approach the given polynomial system, in this case {x4 − 2}, is first

prolonged to degree 8 by multiplying x, x2, x3, x4:

{x4 − 2, x5 − 2x, x6 − 2x2, x7 − 2x3, x8 − 2x4}. (1.18)

The constraint system imposed on the moment matrix, assuming u0 = 1, is equivalent to BT ·

M = 0 or the following linear system

u4 − 2 = 0, u5 − 2u1 = 0, u6 − 2u2 = 0, u7 − 2u3 = 0, u8 − 2u4 = 0 (1.19)

Imposing these constraints the truncated moment matrix M is

M =



1 u1 u2 u3 2

u1 u2 u3 2 2u1

u2 u3 2 2u1 2u2

u3 2 2u1 2u2 2u3

2 2u1 2u2 2u3 4


(1.20)

10 Chapter 1. Introduction

We then solve an SDP optimization problem to compute a generic point (u1, u2, u3) if

possible such that M is a positive semidefinite matrix with maximum rank. A solution is

(u1, u2, u3) = (0,
√

2, 0). Its associated moment matrix and moment matrix kernel are:

M =



1 0
√

2 0 2

0
√

2 0 2 0
√

2 0 2 0 2
√

2

0 2 0 2
√

2 0

2 0 2
√

2 0 4


, ker M = spanR





−2

0

0

0

1


,



−
√

2

0

1

0

0


,



0

−
√

2

0

1

0




(1.21)

The kernel corresponds to the generating set

{
√

2 − x2, 2 − x4,
√

2x − x3}. (1.22)

The last two polynomials are consequences of
√

2 − x2 multiplying by
√

2 + x2 and x, so are

discarded, since they lie in 〈
√

2− x2〉R. By Laurent and Rostalski [18]
√

2− x2 is indeed a basis

of the real radical of 2 − x4, as we found from the complete factorization in Section 1.2.

1.4 SDP optimization

In this section, we discuss semidefinite matrices and semidefinite programs (SDP). We intro-

duce the semidefinite duality theory and facial structure theory of SDP cones [31].

1.4.1 Semidefinite Matrices

A symmetric matrix M of size n× n is called positive semidefinite, denoted as M � 0, if one of

the following two equivalent criteria is satisfied:

1. xT Mx ≥ 0 for all x ∈ Rn.

2. All eigenvalues of M are non-negative.

Similarly, a symmetric matrix M of size n × n is called positive definite, denoted as M � 0, if

one of the following two equivalent criteria is satisfied:

1.4. SDP optimization 11

1. xT Mx > 0 for all non-zero x ∈ Rn.

2. All eigenvalues of M are strictly positive.

The set of all n × n symmetric matrices is denoted as Sn. The cone of all n × n positive

semidefinite matrices is denoted as Sn
+. The cone of all n × n positive definite matrices is

denoted as Sn
++.

Definition 1.4.1 (Trace product) Given two symmetric matrices A, B, we define the trace in-

ner product 〈A, B〉 = trace(AT B) =
∑

i j Ai jBi j.

1.4.2 Semidefinite Programs

There are two forms of writing semidefinite programs. Given A1, A2, . . . , Am,C, X ∈ Sn and

b1, b2, . . . , bm ∈ R. Define the linear operator: A(X) = [〈A1, X〉, 〈A2, X〉, ..., 〈Am, X〉]T . Let

b = [b1, b2, . . . , bm]T .

The primal form of an SDP is written as:

min〈C, X〉 (1.23)

s.t. A(X) = b

X � 0.

The dual form of an SDP is written as:

max bT y (1.24)

s.t. Z = C −
m∑

i=1

Aiyi

Z � 0

The adjoint ofA is defined to beA∗y =
∑m

i=1 Aiyi.

Theorem 1.4.1 (Weak Duality [31]) If X is feasible for the primal SDP and (y,Z) are feasible

for the dual SDP, then 〈C, X〉 ≥ bT y.

12 Chapter 1. Introduction

1.4.3 Face, minimal face and facial structure

We give a brief introduction to faces, minimal faces, and lemmas about facial structure. The

definitions below can be found in [4, 5, 7, 11, 24].

Definition 1.4.2 Given convex cones F,K and F ⊆ K, we call F a face of K, and write F � K,

if

x, y ∈ K, x + y ∈ F =⇒ x, y ∈ F.

Given a nonempty convex subset S of K, the minimal face of K containing S is defined to be

the intersection of all faces of K containing S .

Definition 1.4.3 Suppose F is a face of Sn
+. The orthogonal complement of F, denoted as F⊥,

is defined to be F⊥ = {Z ∈ Sn : Z · X = 0,∀X ∈ F}. The dual cone of F, denoted as F∗, is

defined to be F∗ = {Z ∈ Sn : Z · X � 0,∀X ∈ F}.

The following lemmas about the facial structure of the semidefinite cone Sn
+ are well-known,

see e.g. [31].

Lemma 1.4.2 Any face F of Sn
+ is either 0, Sn

+ or

F = {X ∈ Sn : X = UMUT ,M ∈ S sr
+} (1.25)

where U is an n × r matrix and UT U = I.

Lemma 1.4.3 Suppose F is a face of Sn
+ and W ∈ Sn

+. Then F ∩ {W}⊥ are faces of Sn
+, where

{W}⊥ = {X ∈ Sn : X ·W = 0}.

1.4.4 Facial reduction

The idea of facial reduction was originally developed by Borwein and Wolkowicz [4, 5] in

the 1980s. However it has been nontrivial to develop practical algorithms implementing facial

reduction. Only recently have practical algorithms been developed. For example it was recently

applied to solve the large sensor network localization problems [15, 10].

We consider the set FP = {X ∈ Sn : A(X) = b, X � 0} which has the same form as the

feasible set of the moment matrix SDP optimization problem considered in this thesis, clearly

1.5. Moment problem 13

FP is a convex subset of Sn. The following theorem gives information on the facial structure

of FP:

Lemma 1.4.4 (Facial reduction [24]) Define Fmin to be the minimal face containing FP. Let

A∗ be the adjoint ofA defined before. For a face F � Sn
+ containing FP, the following holds : (I) A(X) = b, X ∈ F

(II) bT y = 0, Z = A∗y ∈ F∗\ F⊥

⇒ X ∈ {Z}⊥ ∩ F ⊂ F. (1.26)

In addition, F = Fmin if and only if (II) has no solution.

The matrix Z is called the exposing vector of F. Each time (II) is solved, an exposing

vector Z is obtained and can be used to update F ← {Z}⊥ ∩ F. Repeating this process until

(II) is infeasible ((II) admits no solution), we get a sequence of faces containing FP: F0 ⊃

F1 ⊃ F2 ⊃ · · · ⊃ Fmin ⊃ Fp where F0 = Sn
+ and Fi+1 = Fi ∩ {Zi}

⊥. This iteration process to

find the minimal face Fmin is called facial reduction on the primal form and is guaranteed to

terminate in at most n − 1 iterations [29]. The minimal number of facial reductions is called

the singularity degree.

1.5 Moment problem

In this section, we briefly introduce some background and results about the classical moment

problem and moment matrices. We also discuss how semidefinite moment matrices are con-

nected to real radical ideals. Most of the results are from Curto & Fialkow [9] and Lasserre,

Laurent & Rostalski [17], [18]. For the proofs of the theorems, please see the corresponding

references. For background knowledge about semidefinite programming, see Section 1.4.

1.5.1 Linear form, positive linear form and moment matrix

Definition 1.5.1 Given a linear form λ ∈ R[x]∗, λ is said to be positive written λ ≥ 0 if

λ(f 2) ≥ 0 for all f ∈ R[x]. Here x = (x1, ..., xn) and R[x]∗ is the dual space representing

functionals from R[x] to R.

Definition 1.5.2 Define the quadratic form Qλ such that Qλ(f) = λ(f 2). Define the kernel of

Qλ to be ker Qλ = { f ∈ R[x] : Qλ(f) = 0}. Qλ is said to be positive semidefinite if Qλ(f) ≥ 0.

14 Chapter 1. Introduction

The quadratic form Qλ can be extended to a bilinear form such that Qλ(f , g) = λ(f g).

Definition 1.5.1 (Moment Matrix [18]) Given a linear form λ ∈ R[x]∗, x = (x1 · · · xn) which

maps a polynomial to a real number. A symmetric infinite matrix

M(λ) = (λ(xαxβ))α,β∈Nn (1.27)

is called a moment matrix of λ where N = {0, 1, 2, · · · }. We use graded lexicographic order for

α and β throughout this thesis.

Example 1.5.1 Consider λ = R[x, y]∗ such that λ = 1
2λ1,2 + 1

2λ2,1 (λ1,2 is the evaluation at

x = 1, y = 2 and λ2,1 is the evaluation at x = 2, y = 1). Let v = [1, x, y, x2, xy, y2, . . .]T

M(λ) =


1 3

2
3
2 · · ·

3
2

5
2 2 · · ·

3
2 2 5

2 · · ·

...
...

...
. . .

 = λ(v · vT). (1.28)

Theorem 1.5.1 [18] Given a moment matrix M(λ) corresponding to λ, We have λ(f 2) =

vec(f) · M(λ) · vec(f)T . In addition, M(λ) � 0 if and only if λ is positive (Qλ is positive

semidefinite).

Theorem 1.5.2 Suppose λ ≥ 0. Then a polynomial p belongs to ker Qλ if and only if its

coefficient vector belongs to ker M(λ). That is, we have ker Qλ = ker M(λ).

Proof Given λ ≥ 0, we have M(λ) � 0. So Qλ(f) = λ(f 2) = 0 implies vec(f) ·M(λ) ·vecT (f) =

0. Since M(λ) � 0, M(λ) has a Cholesky factorization M(λ) = BBT . So vec(f)B(vec(f)B)T = 0

which means vec(f)B = 0 and M(λ) · vecT (f) = 0.

Theorem 1.5.3 Suppose λ ≥ 0. Then ker Qλ is an ideal, which is also real radical.

Proof Suppose f ∈ ker Qλ and g is an arbitrary polynomial, we need to show that f g ∈ ker Qλ

as well. Now λ(f 2) = 0 implies vec(f) · M(λ) · vecT (f) = 0 and λ ≥ 0 implies M(λ) � 0. So

we have M(λ) · vecT (f) = 0. From the structure of the moment matrix, it means λ(xα f) = 0 for

any monomial xα ∈ R[x]. So λ(f 2g2) = λ(f g2 · f) = λ((m1 + · · ·+ mn) f) = 0 where m1, · · · ,mn

are monomials of f g2. So f g ∈ ker Qλ.

The proof of the real radical property can be found in [18].

1.5. Moment problem 15

1.5.2 Moment Problem

Theorem 1.5.4 (Riesz-Haviland’s Theorem [14]) For a linear form λ ∈ R[x]∗ and closed set

K in Rn, the following two conditions are equivalent:

• λ(f) ≥ 0 for all f ∈ R[x] such that f ≥ 0 on K

• There is a (positive) Borel measure µ on K such that λ(f) =
∫

K f dµ for all f ∈ R[X].

However, a nonnegative polynomial over Rn need not to be a sum of squares of polynomials

except in the univariate case (Hilbert 17th problem). For example the Motzkin polynomial

given by T.Motzkin [21]. It is the polynomial F(x, y) = x4y2 + x2y4 + 1 − 3x2y2. (The non-

negativity of F(x, y) comes from the arithmetic-geometric mean inequality. Assume F(x, y) =∑
j f 2

j is a sum of squares of real polynomials. Then
∑

j f 2
j (x, 0) = M(x, 0) = 1, which

means f j(x, 0) are constants. Similarly f j(0, y) are constants. Hence each f j is of the form

f j = a j + b jxy + c jx2y + d jxy2. By equating the coefficients of x2y2, we have
∑

j b2
j = −3 which

is impossible.) So a natural question to ask is when does positivity of λ on sums of squares

indicate an integral representation with Borel measure?

Curto and Fialkow show the equivalence in the case that when M(λ) has finite rank, or

dim(R[x]/ ker Qλ) = rank(M(λ)) is finite.

Theorem 1.5.5 (Curto and Fialkow [9]) Assume that λ ≥ 0 and rank(Mλ) = r < +∞. Then

λ =
∑r

i=1 αiλvi for some distinct v1, . . . , vr ∈ R
n and some real numbers αi > 0. λvi are

evaluations such that λvi(f) = f (vi). Moreover, {v1, . . . , vr} = VR(ker M(λ)).

1.5.3 Truncated Moment matrix and flat extension theorem

Suppose R[x]2d = { f ∈ R[x]| deg(f) ≤ 2d}, we can define the truncated linear form λd ∈ R[X]∗2d

such that λd = λ|R[X]2d , the associated quadratic form Qλd and the truncated moment matrix

M(λd). Similarly, we define the truncated moment matrix.

Definition 1.5.2 (Truncated Moment Matrix [18]) Given a linear form λd ∈ (R[x]2d)∗, the

truncated moment matrix of λd is defined to be

M(λd) = (λd(xαxβ))α,β∈Nn
d

(1.29)

16 Chapter 1. Introduction

where Nn
d = {γ ∈ Nn : |γ| = Σn

j=1γ j ≤ d}.

Similarly, we have the following theorems for truncated linear forms and truncated moment

matrices.

Theorem 1.5.6 [18] Given a truncated moment matrix M(λd) corresponding to λd ∈ R[x]∗2d,

M(λd) � 0 (positive semidefinite) if and only if λd ∈ R[x]∗2d is positive.

Theorem 1.5.7 [18] A polynomial p ∈ R[x]d belongs to ker Qλd if and only if its coefficient

vector belongs to ker M(λd) ∈ R[x]d.

Example 1.5.2 Suppose λ1 ∈ R[x, y]∗2 and λ1(xayb) = ua,b. Then

M(λ1) =


u00 u10 u01

u10 u20 u11

u01 u11 u02

 (1.30)

Without loss, we assume u00 = 1.

The kernel of a positive semidefinite truncated moment matrix has the following “real radical-

like” property:

Lemma 1.5.8 [18] Assume M(λd) � 0 and let p, q j ∈ R[x], f := p2m +
∑

j q2
j with m ∈ N,

m ≥ 1. Then, f ∈ ker M(λd)⇒ p ∈ ker M(λd).

It also has the following ‘ideal-like” property:

Lemma 1.5.9 (Moment structure theorem, [18]) Let λd ∈ R[x]∗2d and f , g ∈ R[x], f ∈ ker M(λd).

(i)Assume M(λd) � 0. Then ker M(λd−1) ⊆ ker M(λd) and f g ∈ ker M(λd) if deg(f g) ≤ d − 1.

(ii) Assume rank M(λd) = rank M(λd−1). Then ker M(λd−1) ⊆ ker M(λd) and f g ∈ ker M(λd) if

deg(f g) ≤ d.

The ideal-like property is denoted as the RG condition in the works of Curto and Fialkow [9].

Definition 1.5.3 (ideal-like condition (RG condition))

f , g ∈ R[x], deg(f g) ≤ d, f ∈ ker M(λd)⇒ f g ∈ ker M(λd)

1.6. Outline of the contents of the thesis 17

Theorem 1.5.10 (Flat extension theorem, [9]) Assume M(λd) ≥ 0. The following statements

are equivalent:

(i) There exists an extension of M(λd) onto M(λd+1) such that M(λd+1) � 0 and rank M(λd) =

rank M(λd+1)

(ii) ker M(λd) satisfies condition RG.

Lemma 1.5.11 [18] Assume M(λ) � 0 and rank M(λd) = rank M(λd−1) = r. Then J =

〈ker M(λd)〉 is real radical and zero-dimensional. One can extend λd to λ̄ such that λ̄ ∈ R[x]∗.

Then λ is of the form λ =
∑r

i=1 αiλvi , where αi > 0 and {v1, . . . , vr} = VR(ker M(λd)). λvi are

evaluations such that λvi(f) = f (vi). λ = λd when restricted to R[x]2d.

1.5.4 Generic linear forms

Assume an ideal I = 〈h1, . . . , hm〉R. For d ∈ N, define the set

Hd(I) = {hixα | i = 1, . . . ,m, |α| ≤ 2d − deg(hi)} (1.31)

Define the set

Kd(I) = {λd ∈ R[x]∗2d | λd(1) = 1,M(λd) � 0 and λd(f) = 0 ∀ f ∈ Hd(I)} (1.32)

Theorem 1.5.12 [18] SupposeNd(I) = 〈ker M(λd)〉 and λd is a generic linear form (maximum

rank) in Kd(I). Then Nd(I) is independent of the particular choice of the generic element

λd ∈ Kd(I).

Theorem 1.5.13 [18] We have: Nd(I) ⊆ Nd+1(I) ⊆ · · · ⊆ R
√

I, with equality 〈Nd(I)〉R =
R
√

I for

d large enough.

1.6 Outline of the contents of the thesis

This section gives an outline of the contents of the thesis.

18 Chapter 1. Introduction

1.6.1 Contents of Chapter 2

Geometric involutive bases for polynomial systems of equations have their origin in the pro-

longation and projection methods of the geometers Cartan and Kuranishi for systems of PDE.

They are useful for numerical ideal membership testing and the solution of polynomial sys-

tems. In this chapter we further develop our symbolic-numeric methods for such bases. We

give methods to explicitly extract and decrease the degree of intermediate systems and the

output basis. Algorithms for the numerical computation of involutivity criteria for positive

dimensional ideals are also discussed.

We were also motivated by some remarkable recent work by Lasserre and collaborators

who employed our prolongation projection involutive criteria as a part of their semi-definite

based programming (SDP) method for identifying the real radical of zero dimensional polyno-

mial ideals. Consequently in this chapter we begin an exploration of the interaction between

geometric involutive bases and these methods particularly in the positive dimensional case.

Motivated by the extension of these methods to the positive dimensional case we explore the

interplay between geometric involutive bases and the new SDP methods.

1.6.2 Contents of Chapter 3

For a real polynomial system with finitely many complex roots, the real radical ideal, RRI, is

generated by a lower degree system that has only real roots and the roots are free of multiplic-

ities. The RRI is a central object in computational real algebraic geometry. The computation

of such RRI is of practical interest since multiplicities of roots yield singular Jacobians and

cause problems for numerical solvers. Moreover the number of real roots can be far less than

the number of complex roots and Lasserre and co-authors have shown that the RRI of a 0-

dimensional real polynomial system with finitely many real solutions can be determined by

a combination of techniques from a semidefinite programming (SDP) feasibility problem and

geometric involution. A conjectured extension of such methods to positive dimensional poly-

nomial systems has been given recently by Ma, Wang and Zhi.

In this section we show that regularity in the form of the Slater constraint qualification

(strict feasibility) fails for the moment matrix in the SDP feasibility problem. We use facial

1.6. Outline of the contents of the thesis 19

reduction and obtain a smaller regularized problem for which strict feasibility holds. We use

this framework for analyzing RRIs of 0 and positive dimensional real polynomial systems. The

SDP methods are implemented in MATLAB and our geometric involutive form is implemented

in Maple. We consider two approaches to find a feasible moment matrix. We compare the

SeDuMi interior point approach within the YALMIP package for MATLAB with the Douglas-

Rachford (DR) projection-reflection method.

Illustrative examples show the advantages of the DR approach for some problems over stan-

dard interior point methods. We also see the advantage of facial reduction both in regularizing

the problem and also in reducing the dimension of the moment matrices.

1.6.3 Contents of Chapter 4

Recent breakthroughs have been made in the use of semidefinite programming and its appli-

cation to real polynomial solving. For example, the real radical of a zero dimensional ideal,

can be determined by such approaches as shown by Lasserre and collaborators. Some progress

has been made on the determination of the real radical in positive dimension by Ma, Wang and

Zhi. Such work involves the determination of maximal rank semidefinite moment matrices.

Existing methods are computationally expensive and have poorer accuracy on larger examples.

In previous work we showed that regularity in the form of the Slater constraint qualifi-

cation (strict feasibility) fails for the moment matrix in the SDP feasibility problem. We used

facial reduction to obtain a smaller regularized problem for which strict feasibility holds. How-

ever we did not give a theoretical guarantee that our methods, based on facial reduction and

Douglas-Rachford iteration ensured the satisfaction of the maximum rank condition to possibly

approximate the real radical characterizing all real roots.

This chapter is motivated by the problems above. We discuss how to compute the moment

matrix and its kernel using facial reduction techniques where the maximum rank property can

be guaranteed by solving the dual problem. The facial reduction algorithms on the primal

form is presented. We give examples that exhibit for the first time additional facial reductions

beyond the first which can be computed in practice.

Based on these methods and results of Lasserre and collaborators, and Curto and Fialkow,

20 Chapter 1. Introduction

we give and prove an algorithm for computing the real radical up to any given finite degree.

We also prove results regarding the well-posedness of our approach.

1.6.4 Conclusions are given in Chapter 5

1.6.5 Appendices

Bibliography

[1] Teijo Arponen, Samuli Piipponen, and Jukka Tuomela. Kinematic analysis of bricards

mechanism. Nonlinear Dynamics, 56(1-2):85–99, 2009. 1

[2] Daniel J Bates, Jonathan D Hauenstein, Andrew J Sommese, and Charles W Wampler.

Numerically solving polynomial systems with Bertini, volume 25. SIAM, 2013. 4, 25

[3] Eberhard Becker and Rolf Neuhaus. Computation of real radicals of polynomial ideals.

In Computational algebraic geometry, pages 1–20. Springer, 1993. 7

[4] J.M. Borwein and H. Wolkowicz. Facial reduction for a cone-convex programming prob-

lem. J. Austral. Math. Soc. Ser. A, 30(3):369–380, 1980/81. 12, 54, 94, 98, 106

[5] J.M. Borwein and H. Wolkowicz. Regularizing the abstract convex program. J. Math.

Anal. Appl., 83(2):495–530, 1981. 12, 54, 94, 98, 106

[6] D. Brake, J. Hauenstein, and A. Liddell. Numerically validating the completeness of the

real solution set of a system of polynomial equations. Procedings of the 41th International

Symposium on Symbolic and Algebraic Computation, 2016. 1, 115, 118, 121, 130

[7] Y-L. Cheung, S. Schurr, and H. Wolkowicz. Preprocessing and regularization for degen-

erate semidefinite programs. In D.H. Bailey, H.H. Bauschke, P. Borwein, F. Garvan,

M. Thera, J. Vanderwerff, and H. Wolkowicz, editors, Computational and Analytical

Mathematics, In Honor of Jonathan Borwein’s 60th Birthday, volume 50 of Springer

Proceedings in Mathematics & Statistics, pages 225–276. Springer, 2013. 12, 70, 72, 97,

98

Bibliography 21

[8] David Cox, John Little, and Donal O’shea. Ideals, varieties, and algorithms, volume 3.

Springer, 1992. 2, 7, 113

[9] RE Curto and LA Fialkow. Solution of the truncated complex moment problem for flat

data-introduction. Memoirs of the American Mathematical Society, 119(568):1, 1996. 13,

15, 16, 17, 25, 108, 109, 110

[10] D. Drusvyatskiy, N. Krislock, Y-L. Cheung Voronin, and H. Wolkowicz. Noisy sensor

network localization: robust facial reduction and the Pareto frontier. Technical report,

University of Waterloo, Waterloo, Ontario, 2014. arXiv:1410.6852, 20 pages. 12, 54, 94

[11] D. Drusvyatskiy, G. Pataki, and H. Wolkowicz. Coordinate shadows of semi-

definite and euclidean distance matrices. Math. Programming, 25(2):1160–1178, 2015.

ArXiv:1405.2037.v1. 12, 98

[12] V.P. Gerdt and Y.A. Blinkov. Involutive bases of polynomial ideals. Mathematics and

Computers in Simulation, 45(5):519–541, 1998. 7, 24, 29, 59, 112

[13] Jonathan D Hauenstein. Numerically computing real points on algebraic sets. Acta ap-

plicandae mathematicae, 125(1):105–119, 2013. 5, 26, 83, 85, 121

[14] E. K. Haviland. On the momentum problem for distribution functions in more than one

dimension. ii. American Journal of Mathematics, 58(1):164–168, 1936. 15

[15] N. Krislock and H. Wolkowicz. Explicit sensor network localization using semidefinite

representations and facial reductions. SIAM Journal on Optimization, 20(5):2679–2708,

2010. 12, 54, 94

[16] J.B. Lasserre, M. Laurent, and P. Rostalski. A prolongation–projection algorithm for com-

puting the finite real variety of an ideal. Theoretical Computer Science, 410(27):2685–

2700, 2009. 1, 8, 25, 47, 53, 54, 55, 64, 84, 93, 94, 120

[17] Jean Bernard Lasserre, Monique Laurent, and Philipp Rostalski. Semidefinite character-

ization and computation of zero-dimensional real radical ideals. Foundations of Compu-

tational Mathematics, 8(5):607–647, 2008. 13, 108, 110, 128

22 Chapter 1. Introduction

[18] M. Laurent and P. Rostalski. The approach of moments for polynomial equations. In

Miguel F. Anjos and Jean B. Lasserre, editors, Handbook on semidefinite, conic and

polynomial optimization, International Series in Operations Research & Management

Science, 166, pages 25–60. Springer, New York, 2012. 10, 13, 14, 15, 16, 17, 36, 38,

40, 46, 47, 58, 95, 96, 128, 129

[19] Y. Ma. Polynomial Optimization via Low-rank Matrix Completion and Semidefinite

Programming. PhD thesis, Academy of Mathematics and Systems Science, Chinese

Academy of Science, 2012. 8, 53, 55, 62, 77, 84, 93, 120, 121

[20] Y. Ma, C. Wang, and L. Zhi. A certificate for semidefinite relaxations in computing

positive dimensional real varieties. Journal of Symbolic Computation, 72:1 – 20, 2016.

vii, x, 1, 8, 53, 55, 62, 77, 78, 79, 80, 81, 82, 84, 93, 120, 121, 128, 129

[21] Theodore Samuel Motzkin. The arithmetic-geometric inequality. In: Proc. Symposium

on Inequalities, edited by O. Shisha, pages 205–224, 1967. 15

[22] James D Murray. Mathematical Biology. II Spatial Models and Biomedical Applications

{Interdisciplinary Applied Mathematics V. 18}. Springer-Verlag New York Incorporated,

2001. 1

[23] Rolf Neuhaus. Computation of real radicals of polynomial idealsii. Journal of Pure and

Applied Algebra, 124(1):261–280, 1998. 8

[24] G. Pataki. Strong duality in conic linear programming: facial reduction and extended

duals. In David Bailey, Heinz H. Bauschke, Frank Garvan, Michel Thera, Jon D. Vander-

werff, and Henry Wolkowicz, editors, Computational and analytical mathematics, vol-

ume 50 of Springer Proc. Math. Stat., pages 613–634. Springer, New York, 2013. 12,

13

[25] G. Reid, F. Wang, H. Wolkowicz, and W. Wu. Semidefinite Programming and facial

reduction for Systems of Polynomial Equations. Preprint arXiv:1504.00931v1, 2015. 1,

93, 95, 96, 108, 112, 120

Bibliography 23

[26] A.J. Sommese and C.W. Wampler. The Numerical solution of systems of polynomials

arising in engineering and science, volume 99. World Scientific, 2005. 1, 4, 25, 53, 93

[27] F. Sottile. Real solutions to equations from geometry, volume 57 of University Lecture

Series. American Mathematical Society, Providence, RI, 2011. 8, 53, 54, 55, 56, 84, 93,

94, 120

[28] Silke J Spang. On the computation of the real radical. PhD thesis, Thesis, Technische

Universität Kaiserslautern, 2007. 7

[29] Levent Tunçel. Polyhedral and semidefinite programming methods in combinatorial op-

timization, volume 27 of Fields Institute Monographs. American Mathematical Society,

Providence, RI, 2010. 13

[30] Jan Verschelde. Algorithm 795: Phcpack: A general-purpose solver for polynomial sys-

tems by homotopy continuation. ACM Transactions on Mathematical Software (TOMS),

25(2):251–276, 1999. 4

[31] H. Wolkowicz, R. Saigal, and L. Vandenberghe, editors. Handbook of semidefinite pro-

gramming. International Series in Operations Research & Management Science, 27.

Kluwer Academic Publishers, Boston, MA, 2000. Theory, algorithms, and applications.

10, 11, 12, 68

[32] W. Wu and G.J. Reid. Finding points on real solution components and applications to

differential polynomial systems. In Proceedings of the 38th international symposium on

International symposium on symbolic and algebraic computation, pages 339–346. ACM,

2013. 5, 26, 83, 85, 121

Chapter 2

Geometric involutive bases for positive

dimensional polynomial ideals and SDP

methods

2.1 Introduction

This paper is part of a stream devoted to developing symbolic-numeric prolongation projection

algorithms for general systems of partial and differential algebraic equations. Such algorithms

prolong (differentiate) such systems and project the prolonged systems to determine obstruc-

tions or missing constraints to their integrability. See Kuranishi [18] for proof of termination

of such methods using Cartan’s geometric involutivity criteria. A by-product of these meth-

ods has been their implementation for linear homogeneous partial differential equations with

constant coefficients, and consequently for polynomial algebraic systems. See [13] for appli-

cations and symbolic algorithms for polynomial systems. The symbolic-numeric version of a

geometric involutive form was first described and implemented in Wittkopf and Reid [41]. It

was applied to approximate symmetries of differential equations in [6] and to polynomial solv-

ing in [32, 31, 35]. See [43] where it is applied to the deflation of multiplicities in multivariate

polynomial solving.

The current paper is focused on further development of our geometric involutive basis al-

24

2.1. Introduction 25

gorithm particularly in the positive dimensional case, and also in relation to real solving. It

is especially motivated by remarkable recent developments concerning real solution of such

systems by Lasserre, Laurent and Rostalski [19] and their use of aspects of our prolongation

projection algorithm in the paper “A prolongation-projection algorithm for computing the fi-

nite real variety of an ideal”. They developed a new approach for computing the real radical of

zero dimensional polynomial systems using semi-definite programming (SDP) techniques. See

[10] for early fundamental work on such problems. Zero dimensional systems are those having

finitely many real solutions, and the real radical is the set of polynomials which vanish on these

solutions. In contrast to the input systems the output radical systems from their approach are

multiplicity free and so are better conditioned for numerical solution techniques. The output

radical systems only have real roots and no complex roots. This leads to possibility of lower

complexity methods, since current methods for finding real solutions, mostly explicitly, or im-

plicitly pass through complex root formulations. Given the widespread popularity of linear

programming (and by implication) SDP methods, the surprising links between this area also

open interesting research possibilities. See [4] for a recent book on the connections between

semi-definite optimization and convex algebraic geometry.

We briefly list some background references. There have been considerable recent advances

in numerical complex geometry. See especially the books [38, 2] and the references therein.

In approaches based on homotopy continuation, positive dimensional components characterize

the variety over C by certain witness points cut out by intersections of the components with

random linear spaces. For a modern text with many references on computational real algebraic

geometry see [1]. Real algebraic geometry is a vast subject with many applications. Sturm’s

ancient method on counting real roots of a polynomial in an interval is central to Tarski’s

real quantifier elimination [40] and was further developed by Seidenberg [36]. One of the

most important algorithms of real algebraic geometry is cylindrical algebraic decomposition.

CAD was introduced by Collins [9] and improved by Hong [17] who made Tarski’s quantifier

elimination algorithmic. This algorithm decomposes Rn into cells on which each polynomial

of a given system has constant sign. The projections of two cells in Rn to Rk with k < n

either don’t intersect or are equal. The computational cost of this algorithm, which is doubly

exponential [11], is a major barrier to its application. See [8] and [7] for modern improvements

26Chapter 2. Geometric involutive bases for positive dimensional polynomial ideals and SDP methods

using triangular decompositions. For approaches based on obtaining witness points for the real

positive dimensional case see [34, 15, 16, 42]. Homotopy methods are used in [21] and [3] for

real algebraic geometry. Recently such moment matrix completion techniques are explored by

Zhi et al in [22] for finding at least one real root of a given semi-algebraic system. Furthermore,

based on critical point technique and moment matrix completion, they studied the computation

of verified real solutions on positive dimensional system in [44].

As part of our initial exploration of this area, in this paper, we make some improvements

in our geometric involutive bases, by enabling the explicit extraction of projected systems and

hence reducing the size of matrices that can appear in intermediate computations. Similarly

motivated by the extension of these methods to the positive dimensional case we explore the

interplay between geometric involutive bases and the new SDP methods. The symbol space

of a polynomial system or kernel of the matrix of its highest coefficients is the geometric

generalization of the highest coefficient of a polynomial. Certain projections within the symbol

space encode a geometric test - an analogue of the S-polynomials in Gröbner basis approaches

- for new members of the polynomial ideal. We provide details and example of this in the

numerical case. An attempt in this paper is made to minimize use of terminology from the jet

geometry of partial differential equations, in order to make this accessible to a wider audience.

2.2 Brief background on ideals and varieties

In this section we briefly sketch some basic objects from real and complex algebraic geometry

and introduce some notation for our paper.

2.2.1 Some basic objects in complex algebraic geometry

Consider the set C[x1, x2, ..., xn] of multivariate polynomials with complex coefficients in the

complex variables x = (x1, x2, ..., xn) ∈ Cn. Then C[x1, x2, ..., xn] is a ring. Given P =

{p1(x), p2(x), ..., pm(x)} ⊆ C[x1, x2, ..., xn] = C[x] its solution set or variety is:

VC(p1, p2, ..., pm) =
{

x ∈ Cn : p j(x) = 0, 1 ≤ j ≤ m
}

(2.1)

2.2. Brief background on ideals and varieties 27

For brevity we sometimes write VC(P) = {x ∈ Cn : P(x) = 0}. Upper case letters P, Q,

R, etc will denote sets of polynomials and lower case letters p, q etc will denote individual

polynomials.

The ideal over C generated by P = {p1, ..., pk} is:

〈P〉C = 〈p1, ..., pk〉C = { f1 p1 + ... + fk pk : f j ∈ C[x], 1 ≤ j ≤ k} (2.2)

and its associated radical ideal over C is

C
√
〈P〉C = { f ∈ C[x] : f (x) = 0 for all x ∈ VC(P)}

= { f ∈ C[x] : f m ∈ 〈P〉C for some m ∈ N} (2.3)

where N is the set of non-negative integers.

Example 2.2.1 To make this paper accessible to a wide audience we illustrate first some of

the main ideas on the simple and well-known case of systems of univariate polynomials. Given

a system of k univariate polynomials P = {p1, ..., pk} with coefficients from some computable

field (e.g. Q), a Gröbner basis (or gcd) computation returns a single polynomial q(x):

〈q〉C = 〈p1, ..., pk〉C (2.4)

The factorization of q(x) over C has form:

q(x) = a(x − a1)n1 ...(x − a`)n` (2.5)

where the roots a j ∈ C of q(x) are distinct. Though the a j can’t be found in general by finitely

many rational operations the so-called square-free factorization can be found by such opera-

tions yielding:

q̃(x) =
q(x)

gcd(q(x), q′(x))
= a(x − a1)...(x − a`) (2.6)

For this example the ideal, variety and radical ideal over C are:

〈P〉C = {g(x) · (x − a1)n1 ...(x − a`)n` : g(x) ∈ C[x]}

VC(P) = {a1, a2, ..., a`} (2.7)

C
√
〈P〉C = {g(x) · (x − a1)...(x − a`) : g(x) ∈ C[x]}

For sophisticated generalizations to primary decomposition for multivariate systems see Gi-

anni et al. [14].

28Chapter 2. Geometric involutive bases for positive dimensional polynomial ideals and SDP methods

2.2.2 Some basic objects in real algebraic geometry

Suppose that x = (x1, x2, ..., xn) ∈ Rn and consider a system of k multivariate polynomials

P = {p1(x), p2(x), ..., pk(x)} ⊆ R[x1, x2, ..., xn] with real coefficients. Its solution set or variety

is

VR(p1, ..., pk) = {x ∈ Rn : p j(x) = 0, 1 ≤ j ≤ k} (2.8)

The ideal generated by P = {p1, ..., pk} ⊆ R is:

〈P〉R = 〈p1, ..., pk〉R = { f1 p1 + ... + fk pk : f j ∈ R[x], 1 ≤ j ≤ k} (2.9)

and its associated radical ideal over R is defined as

R
√
〈P〉R = { f ∈ R[x] : f 2m + Σs

j=1q2
j ∈ 〈P〉R for some q j ∈ R[x],m ∈ N\{0}} (2.10)

A fundmental result [5] (originally proved in [33]) is:

Theorem 2.2.1 [Real Nullstellensatz] For any ideal I ⊆ R[x] we have R
√

I = I(VR(I)).

Consequently

R
√
〈P〉R = { f (x) ∈ R[x] : f (x) = 0 for all x ∈ VR(P)} (2.11)

Remark An ideal I ⊆ R[x] is real radical if and only if for all p1, · · · , pk ∈ R[x]:

p2
1 + · · · + p2

k ∈ I =⇒ p1, · · · , pk ∈ I. (2.12)

For these and many other results see [1] and the references cited therein.

Example 2.2.2 Consider the simplest case of a system of k univariate polynomials in some

computable subfield of R (e.g. Q). Then as in the complex case a Gröbner basis of such a

system yields a single polynomial q(x) having the same roots. Discarding the factors with

complex roots with nonzero imaginary parts yields a polynomial of form:

q̃(x) = b(x − b1)m1 ...(x − b j)m j (2.13)

where b1, b2, ... , b j are the real roots and m1, ... , m j their corresponding multiplicities. Then

〈P〉R = { f (x) · (x − b1)m1 ...(x − b j)m j : f (x) ∈ R[x]}

VR(P) = {b1, b2, ..., b j} (2.14)

R
√
〈P〉R = {g(x) · (x − b1)...(x − b j) : g(x) ∈ R[x]}

2.3. Geometric prolongation and projection for polynomial systems 29

2.3 Geometric prolongation and projection for polynomial

systems

In this section we give a brief description of the well-known presentation of polynomial sys-

tems as linear functions of their monomials and the related coefficient matrix and its kernel and

rowspace [39, 25, 26, 24] and historical work by Macaulay [23]. We describe a type of elim-

ination called geometric projection and then describe geometric prolongation resulting from

multiplying polynomials by monomials.

We exploit the well-known correspondence between polynomial systems and systems of

constant coefficient linear homogeneous PDE. This equivalence has been extensively stud-

ied and exploited in the exact case by Gerdt [13] and his co-workers in their development of

involutive bases. Our geometric involutive bases are involutive by the geometric criteria in

[18, 29, 37] and more distantly related to that of [13] which are closer relatives of Gröbner

bases.

Consider a system of ` polynomials P ⊆ K[x] of degree d in the variables x = (x1, ..., xn)

where K = R or C. Monomials are denoted by xα := xα1
1 ...x

αn
n where α ∈ Nn and the degree of

xα is |α| = α1 + ... + αn. Then the system P can be written as:

P =

{∑
|α|≤d

ak,α xα : k = 1, ..., `

}
(2.15)

To apply the methods of numerical linear algebra the system is converted into matrix form

[39, 25, 26, 24].

Definition 2.3.1 (Coefficient Matrix C(P), Jd and vector of monomials) Denote the coefficient

matrix of P in (2.15) by C(P). Let x(≤d) be the column vector of monomials xα with 0 ≤ α ≤ d

sorted by graded reverse lexicographic order. We suppose that the columns of C(P) are sorted

in the same order. Then P = C(P)x(≤d) where C(P) ∈ R`×N(n,d) and N(n, d) :=

 d + n

d

 is the

number of monomials in x(≤d). Polynomials can be equivalently represented by the row vectors

of C(P), that is as vectors in Jd := RN(n,d).

Prolonging polynomials by multiplying them by monomials is an essential geometric operation

in this paper.

30Chapter 2. Geometric involutive bases for positive dimensional polynomial ideals and SDP methods

Definition 2.3.2 (prolongations D̂ and D̃) Consider a system of polynomials P of degree d.

Let p ∈ P have degree d̄. Then the prolongation of p written D̂(p) is defined as D̂(p) =

{p} ∪ {x j p : 1 ≤ j ≤ n}. The prolongation of the system P is defined as D̂
k
(P) = {xαp :

0 ≤ deg(xαp) ≤ d + k, α ∈ Nn, p ∈ P}. Equivalently we can represent the prolongation

geometrically as the span of the corresponding row vectors of C(D̂
k
P), which we denote by

D̃
k
(P) := rowsp(C(D̂

k
P)) which is a subspace of Jd+k.

Example 2.3.1 Suppose x = (y, z) and P = {2, 2y + z}. Then D̂(P) = {2, 2y, 2z, 2y2, 2yz, 2z2,

2y2 + yz, 2yz + z2}.

Definition 2.3.3 (projections π̂ and π̃) Consider a polynomial system of degree d ≥ 1 written

in the form P = C(P)x(≤d) with the columns of C(P) sorted in descending order by degree. The

rows in the Gauss echelon form of C(P) with pivots of degree less than d span a subspace of Jd−1

which we denote by π̃(P). We denote the set of polynomials of degree ≤ d − 1 corresponding to

the row vectors by π̂(P). Iterations of projections π̂`(P) ⊂ R[x] and equivalently π̃`(P) ⊂ Jd−`

are defined similarly.

We have adopted an abbreviated notation for prolongation and projection here to avoid cumber-

some indices indicating the spaces on which these operators act. We will also need to prolong

and project kernels of the coefficient matrices of polynomial systems.

Definition 2.3.4 (prolongation D and projection π on the kernel) Consider a polynomial sys-

tem P ⊂ R[x] of degree d. Given a subspace V of Jd and ` ≤ d define π`(V) as the vectors

of V with the components of degree ≥ d − ` discarded. To abbreviate notation we will write

π`(P) := π` ker C(P). The k-th prolongation of the kernel is Dk(P) := ker C(D̂
k
P).

In summary we have presented three (!) notations for prolongation and projection since we

need to work directly with them sometimes as polynomial systems, and sometimes row spaces

or kernels. The row space and kernel are orthogonal to each other in Jd. Projection in the

kernel is the usual projection operator π`. Geometrically the corresponding projection in the

row space can be obtained as the orthogonal complement of π`(P). Alternatively it can be

obtained by first considering Jd−` as a subspace in Jd and then intersecting the subspace Jd−`

with rowsp(P).

2.3. Geometric prolongation and projection for polynomial systems 31

Suppose that A = C(P) is the coefficient matrix of a system of polynomials P. To numeri-

cally implement an approximate involutive form method, we proposed in [6, 41, 31] a numeric

version of the projection operator based on singular value decomposition (SVD). We first find

the SVD of A given by A = U · Σ · V where U and V are unitary matrices and Σ is a diago-

nal matrix whose diagonal entries are real decreasing non-negative numbers. The approximate

rank r is the number of singular values bigger than a fixed tolerance. Deleting the first r rows

of V yields an approximate basis for ker A and an estimate for dim ker A. Deleting highest

degree components of the vectors in this basis, yields an approximate spanning set for π ker A

and an estimate for dim π ker A. If desired further computation yields bases for π ker A. Then

we compute the kernel of the spanning set of π ker A. Similarly we can compute approximate

spanning sets and if desired bases of the prolongations and projections of the system.

Remark 2.3.1 (Alternative representations and extraction of intermediate systems) In sum-

mary prolongation and projection can equivalently be computed in either the kernel or the

rowspace, and at any time polynomial generators can be extracted. Underlying this is a 1 to

1 correspondence between vector spaces (not elements): in particular between the row spaces

and its orthogonal complement, the kernel.

Example 2.3.2 Consider

P = {x8 − x4 − 2, x8 − 3x4 + 2} ⊆ R[x] (2.16)

Here the coefficient matrix is given by C(P) below:

C(P) · x(≤8) =

 −2 0 0 0 −1 0 0 0 1

2 0 0 0 −3 0 0 0 1




1

x1

...

x7

x8


=

 0

0

 (2.17)

The most familiar computation for most readers is to eliminate the polynomials as in a Gröbner

basis calculation: x8− x4−2− (x8−3x4 +2) = 2x4−4. This can also be done as a computation

on the row space of C(P), yielding the result as the generator of π̃4P. Equivalently by Remark

2.3.1 we can compute the result by projecting basis vectors of the kernel of C(P) obtaining π4P

32Chapter 2. Geometric involutive bases for positive dimensional polynomial ideals and SDP methods

k = 0 k = 1 k = 2 k=3

` = 0 7 6 5 4

` = 1 7 6 5 4

` = 2 6 6 5 4

` = 3 5 5 5 4

` = 4 4 4 4 4

` = 5 4 4 4 4

` = 6 3 4 4 4

` = 7 2 3 4 4

` = 8 1 2 3 4

` = 9 1 2 3

` = 10 1 2

` = 11 1

Figure 2.1: Table of dimπ`DkP for (2.17) for Example 2.3.2. The (red) boxed 4 in the first

column corresponds to π4P and a geometric involutive basis for P as found by Algorithm 2.4.1.

The blue and black boxed 4’s in the fourth column correspond to geometric involutive bases

for P.

and then recover the generator 2x4 − 4. The original 8 degree polynomials can be discarded

since they are multiples of 2x4 − 4. In particular a Gröbner basis for the ideal generated by P

is

x4 − 2 (2.18)

The kernel of C(P) is easily calculated numerically by the SVD. We obtain the table of

dimensions for the projections of ker C(P) in Figure 2.1. We use singular value decomposition

to compute its kernel and then project its vectors to π4P. The generator corresponding to this

projection is:

0.4472136 x4 − 0.8944272. (2.19)

where the coefficients here and elsewhere in the paper have been truncated from 15 digits to 7

digits. After normalization, we get the generator x4 − 2.

2.4. Geometric involutive bases 33

2.4 Geometric involutive bases

In this section we describe the geometric involutive form of a polynomial system. For a more

detailed description see [6, 30, 41, 31].

Exact elimination methods for exactly given polynomial systems (e.g. Gröbner Bases), usu-

ally employ Gaussian Elimination (e.g. linear elimination of monomials). Such exact methods

usually depend on the ordering of input (e.g. term ordering in the case of Gröbner Bases),

and so are coordinate dependent. Since the order of elimination can force division by small

leading entries, such methods are generally unstable, when used on approximate systems. In

contrast, exact elimination methods from the geometric theory of PDE are coordinate inde-

pendent [18, 29] and this motivated our study of numerical versions of such methods which is

continued in this paper.

2.4.1 Symbol, class and Cartan involution test

Definition 2.4.1 (Symbol matrix and class of a monomial) Given a polynomial system of de-

gree d, its symbol matrix, denoted S(P) is the submatrix of C(P) corresponding to its degree d

monomials. Consider a monomial xα where α = (α1, ..., αn) ∈ Nn. Then the class of xα is the

least j such that α j , 0.

For Example 2.3.2 the symbol matrix is the submatrix

 1

1

 of C(P) given in (2.17). Con-

sider the system

P = {x2
2 − 1, 2x1x2 − 3x1} (2.20)

For what follows we sort the columns of the symbol matrix in descending order according to

class. The degree two monomials are x(0,2) = x2
2, x(1,1) = x1x2, x(2,0) = x2

1. Here x2
2 is class 2.

Monomials x1x2 and x2
1 are class 1. Then the symbol matrix is:

S(P) =

 1 0 0

0 2 0

 (2.21)

Definition 2.4.2 (Cartan test for involutivity of the Symbol) Suppose that the columns of the

symbol matrix for a system of degree d are sorted in descending order by class and that it is

34Chapter 2. Geometric involutive bases for positive dimensional polynomial ideals and SDP methods

reduced to Gauss echelon form. For k = 1, 2, ..., n define the quantities β(k)
d as the number of

pivots in this reduced matrix of class k. Then in a generic system of coordinates the symbol is

involutive if:
k=n∑
k=1

kβ(k)
d = rank S(D̂P) (2.22)

The following combinatorial quantities will be useful in our numerical determination of

involutivity of symbol matrices. Consider systems in n variables of degree d.

Denote:

N(n, d) =

 n + d

d

 = Number of monomials of degree ≤ d

Ndeg(n, d) =

 n + d − 1

d

 = Number of monomials of degree d

Nc(n, d, k) =

 n + d − k − 1

d − 1

 = Number of class k monomials of degree d

(2.23)

Example 2.4.1 For system P given in (2.20):

N(2, 2) = 6,Ndeg(2, 2) = 3,Nc(2, 2, 1) = 2,Nc(2, 2, 2) = 1 (2.24)

The symbol matrix (2.21) is already in Gauss echelon form with respect to class. There is one

pivot of class 2 so β(2)
2 = 1 and one pivot of class 1 so β(1)

2 = 1. Also an easy calculation gives

rank S(D̂P) = 3. So
k=2∑
k=1

kβ(k)
d = 3 = rank S(D̂P) (2.25)

and the symbol is involutive. In all cases
∑k=n

k=1 kβ(k)
d ≤ rank S(D̂P). Indeed in our example if

we reverse the order of the coordinates and recalculate we get S(P) =

 0 2 0

0 0 1

. Then

β(2)
2 = 0, β(1)

2 = 2 and
∑k=2

k=1 kβ(k)
d = 2 < rank S(D̂P) so the test indicates a non-involutive

symbol however the result may be due to the coordinates being nongeneric which is indeed the

case here. A generic linear change of coordinates by a random 2 × 2 matrix then shows the

symbol is involutive.

2.4. Geometric involutive bases 35

To extract a matrix for the symbol space of the variables of degree d we proceed as follows

for a system P of degree d′ ≥ d. Suppose that vectors that are a basis for the kernel of C(P) form

the rows of a matrix B. First numerically project the kernel of the system P onto the subspace

Jd via πd′−dP by deleting the coordinates in the basis of degree > d to obtain for πd′−dP a

spanning set B̃ given by the remaining rows of B. Then delete the columns in B̃ corresponding

to variables of degree < d to obtain a matrix Ad corresponding to the orthogonal complement

of the symbol for degree d. Let A(k)
d be the submatrix of B̃ with columns corresponding to class

k or less deleted. In generic coordinates

β(k)
d = Nc(n, d, k) −

(
rank A(k−1)

d − rank A(k)
d

)
, k = 1 . . . n. (2.26)

Then the SVD can approximate the ranks in this equation for carrying out the Cartan Test

(2.22).

Definition 2.4.3 (Involutive System) A system of polynomials P ∈ R[x] is involutive if dimπDP =

dim P and the symbol of P is involutive.

Definition 2.4.4 (Projected Involutive System) Consider a system of polynomials P ∈ R[x]

of degree d. Suppose that k, ` are integers with k ≥ 0 and 0 ≤ ` ≤ k + d. Then π`DkP

is projectively involutive at prolongation order k and projected order `, if π`DkP satisfies the

projected elimination test

dim π`DkP = dim π`+1Dk+1P (2.27)

and the symbol of π`DkP is involutive.

In [6] it is proved:

Theorem 2.4.1 A system is projectively involutive if and only if it is involutive.

Theorem 2.4.2 (Criterion for zero dimensional involutive system) A zero dimensional sys-

tem of polynomials P ∈ R[x] is projectively involutive at order k and projected order ` if and

only if π`DkP satisfies the projected elimination test (2.27) and

dim π`DkP = dim π`+1DkP (2.28)

36Chapter 2. Geometric involutive bases for positive dimensional polynomial ideals and SDP methods

This criterion is used by Lasserre et al [20] in their prolongation projection algorithm to deter-

mine the finite real radical. When there are 2 variables then it is easily shown that:

S π`DkP is involutive⇐⇒ dim S π`Dk+1P = dim S π`DkP (2.29)

and this gives a computationally easy characterization by using

dim S π`DkP = dim π`DkP − dim π`+1DkP (2.30)

The criterion in (2.27) applies to both zero and positive dimensional bivariate systems.

2.4.2 Projected involutive form algorithm

The following method completes systems to approximate involutive form. We seek the smallest

k such that there exists an ` with π`DkP approximately involutive, and generates the same ideal

as the input system. We choose the system corresponding to the largest such ` ≤ k if there are

several such values for the given k.

2.4. Geometric involutive bases 37

Algorithm 2.4.1: Projected involutive basis
Input: Q ⊆ R[x1, . . . , xn]. A tolerance ε.

Set k := 0, d := deg(Q) and P := ker C(Q)

repeat

Compute Dk(P)

Initialize set of involutive systems I := {}

for ` = 0 · · · (d + k) do

Compute R := π`Dk(P)

if R involutive then I := I ∪ {R} end if

end do

Remove systems R̄ from I not satisfying Dd+k−d̄R̄ ⊆ Dk(P) where d̄ is the degree of

R̄.

k := k + 1

until I , {}

Output: Return the polynomial generators of the involutive system R̄ in I

of lowest degree d̄.

Note that this algorithm works on kernels, but could by Remark 2.3.1 equivalently work on

their orthogonal complements – the associated row spaces. The condition Dd+k−d̄R̄ ⊆ Dk(P) is

a standard subspace inclusion test for the prolonged kernels. It ensures that the output system

generates the same ideal as the input system and has the same solutions.

Decreasing degrees by extracting involutive projections

We note that a simple illustration of Algorithm 2.4.1 is Example 2.3.2 where all univariate

polynomials are involutive. This algorithm is an improvement on that published in [35] where

to ensure the inclusion conditions for positive dimensional ideals, the number of projections

was limited to 0 ≤ ` ≤ k. So Algorithm 2.4.1 can return generators of lower degree than the

algorithm published in [35].

38Chapter 2. Geometric involutive bases for positive dimensional polynomial ideals and SDP methods

2.5 Moment matrices and SDP

2.5.1 Moment Matrices

Here we focus just on the construction of moment matrices. For the theoretical background the

reader is directed to [20].

A moment matrix is a symmetric matrix M = (Mα,β) indexed by Nn (α, β ∈ Nn). Here α is

the index for rows, β is the index for columns. Without loss M0,0 = 1.

Given a multivariate polynomial system P ⊆ R[x1, ..., xn]. Let d = deg(P) and M ∈

RN(n,d)×N(n,d) be the truncated moment matrix. The linear constraints imposed by P are con-

structed as

M · AT = 0; A = C(D̂
d
(P)), (2.31)

where C is the coefficient matrix function given in Definition 3.2.1.

2.5.2 Moment matrix for univariate example

In Example 2.3.2 a degree 8 input system was reduced to a degree 4 output polynomial p =

x4 − 2. Then in matrix form the polynomial is

Bv =
(
−2 0 0 0 1

)


u0

u1

u2

u3

u4


= 0, ker B = spanR




1

0

0

0

2

 ,


0

0

0

1

0

 ,


0

0

1

0

0

 ,


0

1

0

0

0




(2.32)

The moment matrix is the infinite matrix whose (α, β) entry is uα+β and α, β ∈ Nn given by:

2.5. Moment matrices and SDP 39

M =



u0 u1 u2 u3 u4 · · ·

u1 u2 u3 u4 u5 · · ·

u2 u3 u4 u5 u6 · · ·

u3 u4 u5 u6 u7 · · ·

u4 u5 u6 u7 u8 · · ·

...
...

...
...

...
. . .


(2.33)

In the SDP-moment matrix approach the given polynomial system, in this case {x4 − 2}, is first

prolonged to twice its degree:

D̂
4
{x4 − 2} = {x4 − 2, x5 − 2x, x6 − 2x2, x7 − 2x3, x8 − 2x4} (2.34)

From (2.31) the constraint system when we impose u0 = 1 is equivalent to the linear system

u4 − 2 = 0, u5 − 2u1 = 0, u6 − 2u2 = 0, u7 − 2u3 = 0, u8 − 2u4 = 0 (2.35)

which can be regarded as the rewrite rules: u4 → 2, u5 → 2u1, u6 → 2u2, u7 → 2u3, u8 →

2u4 → 4. Imposing these constraints the truncated moment matrix to degree 8 is

M =



1 u1 u2 u3 2

u1 u2 u3 2 2u1

u2 u3 2 2u1 2u2

u3 2 2u1 2u2 2u3

2 2u1 2u2 2u3 4


(2.36)

The moment matrix (2.36) is then sent to the SDP solver Yalmip in Matlab to numerically

compute a generic point (u1, u2, u3) if possible such that M is a positive semidefinite matrix with

maximum rank. This solver returns an approximation which can be recognized for illustrative

convenience as (u1, u2, u3) = (0,
√

2, 0). Its associated moment matrix and moment matrix

40Chapter 2. Geometric involutive bases for positive dimensional polynomial ideals and SDP methods

kernel are:

M =



1 0
√

2 0 2

0
√

2 0 2 0
√

2 0 2 0 2
√

2

0 2 0 2
√

2 0

2 0 2
√

2 0 4


, ker M = spanR





−2

0

0

0

1


,



−
√

2

0

1

0

0


,



0

−
√

2

0

1

0




(2.37)

The kernel corresponds to the generating set

{
√

2 − x2, 2 − x4,
√

2x − x3} (2.38)

Applying geometric involutive form algorithm yields a geometric involutive basis

{
√

2 − x2} (2.39)

The last two polynomials are a consequence of
√

2− x2 by our inclusion test, so are discarded.

By Laurent and Rostalski [20], this is a basis of the real radical.

2.6 Combining geometric involutive bases and moment ma-

trix methods

2.6.1 Geometric involutive form and moment matrix algorithms

In this section we outline algorithms for combining geometric involutive form and moment

matrix methods.

Proof of the termination of Algorithm 2.6.1: We prove termination of the GIF– M Method

under the assumption that suitable generic points, if available, are determined at each iteration

of the method.

Rank-Dim-Involutive Stopping Criterion: A natural termination criterion used in Algorithm

2.6.1 is that the generators stabilize at some iteration and the system is involutive:

gen(GIF(Q)) = gen(ker M(Q)) and Q involutive (2.40)

2.6. Combining geometric involutive bases and moment matrix methods 41

Algorithm 2.6.1: GIF– M Method
Input: P = {p1, ..., pk} ⊆ R[x1, . . . , xn]

Q0 := P

j := 0

do

d := dim ker GIF(Q j)

Q j+1 := gen(GIF(Q j))

r := rank(M(Q j+1))

Q j+2 := gen(ker M(Q j+1))

j := j + 2

until r = d

Output: Q = {q1, ..., q`} ⊆ R[x1, . . . , xn]

Q is in geometric involutive form
R
√
〈P〉R ⊇ 〈Q〉R ⊇ 〈P〉R.

Since different representations of the rings are involved we will focus on one, that of poly-

nomial generators during the proof.

In terms of generators our termination criterion rank(M(Q j+1)) = dim ker GIF(Q j) is ex-

pressed as gen(GIF(Q j)) = gen(ker M(Q j+1)).

Then gen(ker M(Q j+1)) and gen(GIF(Q j)) are both ideals of the system P. Since a generator

of the geometric involutive form will also be a generator of the ideal in the moment matrix

at each iteration we have gen(GIF(Q j)) ⊆ gen(ker M(Q j+1)) in our algorithm. Suppose the

algorithm never stops, then we will get a infinite ascending chain of ideals with a strict inclusion

at each iteration of the form Q j ⊂ Q j+1 where Q j = gen(GIF(Q j−1)) and Q j+1 = gen(ker M(Q j)).

This is a violation of the ascending chain condition since R[x1, ..., xn] is a Noetherian Ring.

Therefore, the generators must stabilize in the end and when stabilized, Q is also involutive. �

The algorithm above uses the following subroutines.

Note the algorithm 2.4.1 is an explicit implementation of GIF.

42Chapter 2. Geometric involutive bases for positive dimensional polynomial ideals and SDP methods

Algorithm 2.6.2: GIF

1

Input: Q ⊆ R[x1, . . . , xn]

Output: Return a geometric involutive form GIF(Q).

Algorithm 2.6.3: M

1

Input: Q ⊆ R[x1, . . . , xn]. Set d := deg(Q).

1. Construct the general N(n, d) × N(n, d) moment matrix.

2. Construct the involutive prolongation DdQ.

3. Use SDP methods to numerically solve for a generic point that maximizes the rank

of the moment matrix subject to the constraints DdQ.

Output: Return M(Q) � 0 the moment matrix evaluated at this generic point.

Algorithm 2.6.4: gen

1

Input: GIF(Q) or ker M(Q)

Output: Polynomial generators corresponding to GIF(Q) or ker M(Q)

2.6.2 Two variable example

Consider the polynomial system with two variables x and y.

P2 = {(y2 − 1)2, (y2 − 1)(x2 − 1)} (2.41)

First we apply GIF to P2 to compute the involutive form of it. The dimension table is in

Figure 2.2.

Now dim π2D2(P2) = dimπ3D3(P2) so π2D2(P2) satisfies one of the conditions for an invo-

lutive system. The second condition is that the symbol of π2D2(P2) is involutive. Applying the

2.6. Combining geometric involutive bases and moment matrix methods 43

k = 0 k = 1 k = 2 k=3

` = 0 13 15 17 19

` = 1 10 12 14 16

` = 2 6 9 11 13

` = 3 3 6 9 11

` = 4 1 3 6 9

Figure 2.2: Table of dim π`Dk(P2) for system (2.41) The (blue) boxed 11 in the third column

corresponds to π2D2(P2).

symbol test (2.29) and we find that dimS π2D3(P2) = dimS π2D2(P2) = 2, so the symbol of it

turns out to be involutive as well. Therefore π2D2(P2) is involutive.

Now we apply the subroutine M to gen(π2D2(P2)) to compute the moment matrix M. We

convert ker M into polynomial generators by subroutine gen. The dimension of ker M is 6

which means there are 6 generators in gen(ker M), which are moderately complicated numeri-

cal polynomials.

We again apply GIF to gen(ker M) to compute the involutive form. The dimension table is

shown in Figure 2.3. The input system corresponding to the (red) boxed 9 is already involutive.

As mentioned in Remark 2.4.2 in algorithm 2.4.1 and more generally in GIF algorithm, we can

extract projected systems of lower degree than input system. This improves on our previous

algorithm [35]. We demonstrate this procedure here. In Figure 2.3, the system corresponding

to the red boxed 9 is involutive and has degree 4. Since N(2, 4) = 15 there are 15 − 9 = 6

polynomials in the system. However descending further down the column of the table, we find

the system corresponding to the blue boxed 5 is also involutive. In that case N(2, 2) = 6 so

there is only 1 corresponding generator.

We apply gen to compute the generator set:

{0.7071067y2 − 0.7071067 + small terms less than 10−11} (2.42)

If we apply GIF to equation (2.42), the dimension table is exactly the same as the one in

Figure 2.3. Therefore the projected system is equivalent to the input system. After normaliza-

tion and ignoring small terms, we get y2 − 1 which is a geometric involutive basis for the real

44Chapter 2. Geometric involutive bases for positive dimensional polynomial ideals and SDP methods

k = 0 k = 1 k = 2 k=3

` = 0 9 11 13 15

` = 1 7 9 11 13

` = 2 5 7 9 11

` = 3 3 5 7 9

` = 4 1 3 5 7

Figure 2.3: Table of dimπ`Dkgen(ker M) for the first GIF– M iteration in Example 2.6.2.

radical for P2.

2.6.3 Three variable example

In this section we apply the GIF– M method to the following trivariate system with GIF explicitly

implemented by Algorithm 2.4.1:

P3 =



x2y2 − y4 + y2z2 − x2 − z2 + 1

x2y2 − y4 + y2z2 + x2 − 2y2 + z2 − 1

x4z + x2z3 − 2x2y2 − x2z − z3 − 2x2 + 2y2 + 2

x4z + x2z3 − 2x2y2 + x2z + z3 − 2x2 − 2y2 − 2

(2.43)

We first apply subroutine GIF to P3. The dimension table is shown in Figure 2.4.

k = 0 k = 1 k = 2 k = 3 k=4

` = 0 46 57 66 73 79

` = 1 29 38 46 53 59

` = 2 15 21 27 33 39

` = 3 9 15 21 27 33

` = 4 4 9 15 21 27

Figure 2.4: Table of dimπ`Dk(P3) for system (2.43).

At prolongation zero of Algorithm 2.4.1 we determine if there are any projected involutive

systems whose prolongations yield the same ideal as the system (so that the prolongations can

2.6. Combining geometric involutive bases and moment matrix methods 45

be discarded). We find such an involutive system π2D0(P3) which corresponds to the red boxed

15 in column 1 of Figure 2.4. From the dimension information we can deduce that since the

number of monomials of degree ≤ 3 is N(3, 3) = 20 there will be 20 − 15 = 5 polynomials

generators corresponding to π2D0(P3). System π3D0(P3) = R̄ is of lower degree and also easily

found to be involutive. However it does not satisfy the inclusion test of Algorithm 2.4.1 given

by Dd+k−d̄R̄ ⊆ Dk(P3) which shows that it is not equivalent to the original system. We find

that π2D0(P3) does satisfy the inclusion output condition, so we exit GIF and apply subrou-

tine M to gen(π2D0(P3)). In our previously published method we would have first identified

the blue boxed 27 corresponding to the involutive system π2D2(P3). Our approach is a clear

improvement, and avoids creating the large degree 5 moment matrix of the previous approach.

We compute the generator set of the moment matrix M using the subroutine gen(ker M).

The rank of moment matrix is 7 which means gen(ker M) has dimension 13. We apply GIF

to gen(ker M) and the dimension table is given in Figure 2.5

k = 0 k = 1 k = 2 k=3

` = 0 7 9 11 13

` = 1 5 7 9 11

` = 2 3 5 7 9

` = 3 1 3 5 7

Figure 2.5: Table of dimπ`Dkgen(ker M) in the moment matrix calculation for gen(π2D0(P3)).

In this iteration of GIF three systems are involutive and correspond to the ` = 0, 1, 2 entries

of column 1 of Figure 2.5. Corresponding to the elimination of higher order systems by the

inclusion test in Algorithm 2.4.1, we can discard 2 of the 3 systems, which correspond to ` = 0

and ` = 2 entries in the first column. The output lower degree geometric involutive basis

therefore corresponds to the blue boxed entry in the figure.

At the next iteration the generators corresponding to ` = 1 are sent to the moment matrix.

We find that the termination condition is satisfied, that is d = 5 = r. The algorithm then

terminates with an output of 10 − 5 = 5 generators.

To get more insight into the output we now analyze it further. From the Figure 2.5 we see

that there is a projected system corresponding to ` = 2 of dimension 3 and degree 1. When it

46Chapter 2. Geometric involutive bases for positive dimensional polynomial ideals and SDP methods

is extracted we find a single nice generator:

0.8944271 − 0.4472135z + 5.5511151 × 10−17y (2.44)

After dropping off the small term and normalization, we get z − 2. Now we consider the

other generators of degree 2. We can simplify them by substituting z = 2 from the projected

generator and find

− 0.3015113x2 + 0.3015113y2 − 0.9045340 + small terms less than 10−15. (2.45)

which is approximately x2 − y2 + 3. Thus our output geometric involutive basis is

{z − 2, x(z − 2), y(z − 2), z(z − 2), x2 − y2 + 3} (2.46)

A hand calculation checks that this is a geometric involutive basis for the real radical of the

input system.

2.7 Discussion

In this paper we present improvements of our numerical geometric involutive bases for poly-

nomial systems of equations. We also began an exploration of the interaction of these methods

with SPD programming methods and computation of such bases for positive dimensional real

radical ideals.

We give methods to extract and decrease the degree of immediate systems and the output

basis. One such tool is an inclusion test whereby higher degree redundant systems can be dis-

carded. Prompted by a number of requests we have given more details of our implementation

of Cartan’s involutivity test for positive dimensional ideals. Reduction of degree techniques are

critical and have been extensively developed in the symbolic case for Gröbner bases [12] and

triangular decompositions [7, 8]. Significant progress has also been made in symbolic-numeric

methods such as border bases [25, 26, 27, 28] in removing higher degree polynomials. Perhaps

the closest objects to geometric involutive bases in the zero dimensional case are H-Bases [24].

Moreover, we were motivated by remarkable recent work by Lasserre and collaborators

[20] using SDP methods for identifying the real radical of zero dimensional polynomial ideals.

Bibliography 47

The work [20] motivated us to combine SDP – moment matrix methods with our geomet-

ric involutive bases to approximate positive dimensional real radical ideals. In particular, the

termination criterion rank(M(Q)) = dim ker GIF(Q) in Algorithm 2.4.1 is equivalent to the rank

stabilization condition in Lasserre [20] for zero dimensional systems. Moreover in our initial

explorative experiments we obtained generators for the real radical of positive dimensional

ideals for a small set of examples and deserves further study.

In our preliminary study in order to study the interaction between these two methods we

focused on an algorithm that cleanly separates the step of taking a geometric involutive basis

at each iteration of the algorithm. An alterative strategy that we will pursue in future work

is motivated by the approach of Lasserre et al in the zero dimensional case [19]. Instead of

demanding a (projected) involutive form at each iteration, they allowed the iteration and pro-

longation of moment matrices until the projected criteria for involution were obtained (that is

a zero dimensional symbol in that case). This has the advantage that geometric involutive form

calculations whose complexity implicitly depends on the total number of complex solutions

are avoided until later, when such complex solutions have been discarded as a result of new

generators being found in the kernel of the moment matrix.

Bibliography

[1] S. Basu, R. Pollack, and M.-F. Roy. Algorithms in Real Algebraic Geometry, volume 10

of Algorithms and Computation in Math. Springer-Verlag, 2 edition, 2006. 25, 28, 55, 56

[2] Daniel J Bates, Jonathan D Hauenstein, Andrew J Sommese, and Charles W Wampler.

Numerically solving polynomial systems with Bertini, volume 25. SIAM, 2013. 4, 25

[3] Gian Mario Besana, Sandra Di Rocco, Jonathan D Hauenstein, Andrew J Sommese, and

Charles W Wampler. Cell decomposition of almost smooth real algebraic surfaces. Nu-

merical Algorithms, 63(4):645–678, 2013. 26

[4] G. Blekherman, P.A. Parrilo, and R.R. Thomas, editors. Semidefinite optimization and

convex algebraic geometry, volume 13 of MOS-SIAM Series on Optimization. Society

48Chapter 2. Geometric involutive bases for positive dimensional polynomial ideals and SDP methods

for Industrial and Applied Mathematics (SIAM), Philadelphia, PA; Mathematical Opti-

mization Society, Philadelphia, PA, 2013. 25, 55, 56, 68, 94

[5] J. Bochnak, M. Coste, and M.F. Roy. Real Algebraic Geometry. Ergebnisse der Math-

ematik und ihrer Grenzgebiete. 3. Folge A Series of Modern Surveys in Mathematics.

Springer, 1998. 28, 63

[6] J. Bonasia, F. Lemaire, G.J. Reid, and L. Zhi. Determination of approximate symmetries

of differential equations. Group Theory and Numerical Analysis, 39:249, 2005. 24, 31,

33, 35, 59, 61, 112

[7] Changbo Chen, James H Davenport, John P May, Marc Moreno Maza, Bican Xia, and

Rong Xiao. Triangular decomposition of semi-algebraic systems. In Proceedings of the

2010 International Symposium on Symbolic and Algebraic Computation, pages 187–194.

ACM, 2010. 25, 46, 129

[8] Changbo Chen, Marc Moreno Maza, Bican Xia, and Lu Yang. Computing cylindrical

algebraic decomposition via triangular decomposition. In Proceedings of the 2009 inter-

national symposium on Symbolic and algebraic computation, pages 95–102. ACM, 2009.

25, 46, 129

[9] George E Collins. Quantifier elimination for real closed fields by cylindrical algebraic

decompostion. In Automata Theory and Formal Languages 2nd GI Conference Kaiser-

slautern, May 20–23, 1975, pages 134–183. Springer, 1975. 25

[10] RE Curto and LA Fialkow. Solution of the truncated complex moment problem for flat

data-introduction. Memoirs of the American Mathematical Society, 119(568):1, 1996. 13,

15, 16, 17, 25, 108, 109, 110

[11] James H Davenport and Joos Heintz. Real quantifier elimination is doubly exponential.

Journal of Symbolic Computation, 5(1):29–35, 1988. 25

[12] Jean-Charles Faugere. A new efficient algorithm for computing gröbner bases. Journal

of pure and applied algebra, 139(1):61–88, 1999. 46, 129

Bibliography 49

[13] V.P. Gerdt and Y.A. Blinkov. Involutive bases of polynomial ideals. Mathematics and

Computers in Simulation, 45(5):519–541, 1998. 7, 24, 29, 59, 112

[14] Patrizia Gianni, Barry Trager, and Gail Zacharias. Grbner bases and primary decompo-

sition of polynomial ideals. Journal of Symbolic Computation, 6(23):149 – 167, 1988.

27

[15] D Yu Grigor’ev and NN Vorobjov Jr. Counting connected components of a semialgebraic

set in subexponential time. Computational Complexity, 2(2):133–186, 1992. 26

[16] Jonathan D Hauenstein. Numerically computing real points on algebraic sets. Acta ap-

plicandae mathematicae, 125(1):105–119, 2013. 5, 26, 83, 85, 121

[17] Hoon Hong. Improvements in Cad-based Quantifier Elimination. PhD thesis, The Ohio

State University, 1990. AAI9111716. 25

[18] M. Kuranishi. On e. cartan’s prolongation theorem of exterior differential systems. Amer-

ican Journal of Mathematics, pages 1–47, 1957. 24, 29, 33, 59, 112

[19] J.B. Lasserre, M. Laurent, and P. Rostalski. A prolongation–projection algorithm for com-

puting the finite real variety of an ideal. Theoretical Computer Science, 410(27):2685–

2700, 2009. 1, 8, 25, 47, 53, 54, 55, 64, 84, 93, 94, 120

[20] M. Laurent and P. Rostalski. The approach of moments for polynomial equations. In

Miguel F. Anjos and Jean B. Lasserre, editors, Handbook on semidefinite, conic and

polynomial optimization, International Series in Operations Research & Management

Science, 166, pages 25–60. Springer, New York, 2012. 10, 13, 14, 15, 16, 17, 36, 38,

40, 46, 47, 58, 95, 96, 128, 129

[21] Ye Lu. Finding all real solutions of polynomial systems. PhD thesis, University of Notre

Dame, 2006. 26

[22] Y. Ma and L. Zhi. Computing real solutions of polynomial systems via low-rank moment

matrix completion. In Proceedings of the 37th International Symposium on Symbolic and

Algebraic Computation, pages 249–256. ACM, 2012. 26, 83

50Chapter 2. Geometric involutive bases for positive dimensional polynomial ideals and SDP methods

[23] F.S. Macaulay and P. Roberts. The algebraic theory of modular systems. University press

Cambridge, 1916. 29, 57

[24] H.M. Möller and T. Sauer. H-bases for polynomial interpolation and system solving.

Advances in Computational Mathematics, 12(4):335–362, 2000. 29, 46, 57, 83

[25] B. Mourrain. Isolated points, duality and residues. Journal of Pure and Applied Algebra,

117:469–493, 1997. 29, 46, 57

[26] B. Mourrain. A new criterion for normal form algorithms. In Applied algebra, algebraic

algorithms and error-correcting codes, pages 430–442. Springer, 1999. 29, 46, 57

[27] B. Mourrain and P. Trebuchet. Solving projective complete intersection faster. In Pro-

ceedings of the 2000 international symposium on Symbolic and algebraic computation,

pages 234–241. ACM, 2000. 46

[28] B. Mourrain and P. Trébuchet. Algebraic methods for numerical solving. In Proc. of the

3rd International Workshop on Symbolic and Numeric Algorithms for Scientific Comput-

ing, volume 1, pages 42–57, 2002. 46

[29] Jean-François Pommaret. Systems of partial differential equations and Lie pseudogroups,

volume 14. CRC Press, 1978. 29, 33

[30] G.J. Reid, C. Smith, and J. Verschelde. Geometric completion of differential systems

using numeric-symbolic continuation. ACM SIGSAM Bulletin, 36(2):1–17, 2002. 33

[31] G.J. Reid, J. Tang, and L. Zhi. A complete symbolic-numeric linear method for camera

pose determination. In Proceedings of the 2003 international symposium on Symbolic

and algebraic computation, pages 215–223. ACM, 2003. 24, 31, 33, 59, 112

[32] G.J. Reid and L. Zhi. Solving polynomial systems via symbolic-numeric reduction to

geometric involutive form. Journal of Symbolic Computation, 44(3):280–291, 2009. 24,

59, 112

[33] Jean-Jacques Risler. Une caractérisation des idéaux des variétés algébriques réelles. CR

Acad. Sci. Paris, 271:1171–1173, 1970. 28, 63

Bibliography 51

[34] Fabrice Rouillier, M-F Roy, and M Safey El Din. Finding at least one point in each

connected component of a real algebraic set defined by a single equation. Journal of

Complexity, 16(4):716–750, 2000. 26

[35] R. Scott, G.J. Reid, W. Wu, and L. Zhi. Geometric involutive bases and applications

to approximate commutative algebra. In Lorenzo Robbiano and John Abbott, editors,

Approximate Commutative Algebra, pages 99–124. Springer, 2010. 24, 37, 43, 55, 59,

60, 95, 112

[36] Abraham Seidenberg. A new decision method for elementary algebra. Annals of Mathe-

matics, pages 365–374, 1954. 25

[37] Werner M Seiler. Involution: The formal theory of differential equations and its applica-

tions in computer algebra, volume 24 of Algorithms and Computation in Mathematics.

Springer, 2010. 29, 112

[38] A.J. Sommese and C.W. Wampler. The Numerical solution of systems of polynomials

arising in engineering and science, volume 99. World Scientific, 2005. 1, 4, 25, 53, 93

[39] Hans J. Stetter. Numerical polynomial algebra. Society for Industrial and Applied Math-

ematics (SIAM), Philadelphia, PA, 2004. 29, 57, 84, 85, 120, 129

[40] Alfred Tarski. A decision method for elementary algebra and geometry. In Quantifier

elimination and cylindrical algebraic decomposition, pages 24–84. Springer, 1998. 25

[41] A.D. Wittkopf and G.J. Reid. Fast differential elimination in c: The cdiffelim environ-

ment. Computer Physics Communications, 139(2):192–217, 2001. 24, 31, 33, 59, 112,

128

[42] W. Wu and G.J. Reid. Finding points on real solution components and applications to

differential polynomial systems. In Proceedings of the 38th international symposium on

International symposium on symbolic and algebraic computation, pages 339–346. ACM,

2013. 5, 26, 83, 85, 121

52Chapter 2. Geometric involutive bases for positive dimensional polynomial ideals and SDP methods

[43] X. Wu and L. Zhi. Determining singular solutions of polynomial systems via symbolic–

numeric reduction to geometric involutive forms. Journal of Symbolic Computation,

47(3):227–238, 2012. 24, 59, 112

[44] Z. Yang, L. Zhi, and Y. Zhu. Verified error bounds for real solutions of positive-

dimensional polynomial systems. In Proceedings of the 38th international symposium on

International symposium on symbolic and algebraic computation, pages 371–378. ACM,

2013. 26

Chapter 3

Semidefinite Programming and facial

reduction for Systems of Polynomial

Equations

3.1 Introduction

The breakthrough work of Lasserre and collaborators [32, 49] shows that the real radical ideal,

RRI, of a real polynomial system with finitely many solutions can be determined by a combi-

nation of a semidefinite programming, SDP, feasibility problem and the geometric involutive

form, GIF. This RRI is generated by a system of real polynomials having only real roots that

are free of multiplicities. Global numerical solvers, such as homotopy continuation solvers

typically compute all real roots by first computing all complex (including real) roots. And if

the roots have multiplicity, then elaborate strategies are needed to avoid difficulties that arise

as the paths from the homotopy solvers approach these (singular Jacobian) roots [48]. Fur-

thermore, random polynomial systems of k real polynomials of degree d in n variables can

have dn roots, and if the coefficients follow a certain probability distribution have only dn/2 real

roots on average, see [23] and the references therein. Therefore, consideration of only the real

roots simplifies the problem. A conjectured extension of such methods to positive dimensional

polynomial systems has been given recently by Ma, Wang and Zhi [37, 36]. These extensions

53

54Chapter 3. Semidefinite Programming and facial reduction for Systems of Polynomial Equations

depend on the method of moments within a SDP formulation.

Our SDP feasibility formulation is a moment problem equivalent to finding X for a linear

system of the following type (also Problem 3.1.1 below)

AX = b, X ∈ Sk
+ , (3.1)

where Sk
+ denotes the convex cone of k×k real symmetric positive semi-definite matrices, and

A : Sk
+ → R

m is a linear transformation. The standard regularity assumption for (3.1) is the

Slater constraint qualification or strict feasibility assumption:

there exists X̂ withAX̂ = b, X̂ ∈ intSk
+ . (3.2)

We let X � 0,� 0 denote X ∈ Sk
+ , ∈ intSk

+ , respectively. It is well known that the Slater

condition for SDP holds generically, e.g., [21]. Surprisingly, many SDP problems arising from

particular applications, and in particular our polynomial system applications, are marginally

infeasible, i.e., fail to satisfy strict feasibility. This means that the feasible set lies within the

boundary of the cone, and even the slightest perturbation of the data can make the problem

infeasible. This creates difficulties with the optimality and duality conditions as well as with

numerical algorithms. To help regularize such SDP problems so that strong duality holds,

facial reduction was introduced in 1982 by Borwein and Wolkowicz [13, 14]. However it

was only much later that the power of facial reduction was exhibited in many applications,

e.g., [56, 53, 1]. Developing algorithmic implementations of facial reduction that work for

large classes of SDP problems and the connections with perturbation and convergence analysis

has recently been achieved in e.g., [30, 19, 16, 20].

A polynomial system of maximum degree d equations in n variables can be viewed as the

equation Cx = 0, a function of its monomials [32, 49]. Here x is a vector of the N(n, d) =

(d+n)!
d!n! =

 d + n

d

 monomials up to the degree d of the polynomial system. This equation

yields part of the system of linear constraints in the SDP formulation of polynomial systems.

The convex cone for polynomials are semi-definite moment matrices encoding the real so-

lutions of the polynomial equations and certain generalized Hankel-Macaulay structure pos-

sessed by the polynomial systems. Remarkable advances have been recently made in this area

3.1. Introduction 55

[32, 49, 9] which is an intersection between optimization and algebraic geometry. In this arti-

cle we establish a framework for using facial reduction for such systems and then solving the

systems using the regularized smaller SDP. We note that familiar methods for linear systems

of equations when d = 1 are Gaussian elimination, GE, for exact solutions and singular value

decompositions, SVD, for least squares solutions. For polynomial systems, the corresponding

method in the exact case uses Gröbner Bases [4]. A major difference for Gröbner Bases to

the case d = 1 is that generalized row operations involving multiplication by monomials and

not just scalars is permitted. The operation of multiplying a polynomial by such a monomial

raises its degree and is called prolongation. Eliminating between prolonged equations, is called

projection. In the approximate case, as in our paper, we use geometric involutive bases [47]

which use the SVD.

In particular a polynomial system can possess constraints resulting from this process that

are higher than the degree of the system. So in this paper, as in [32, 49] and in Ma, Wang

and Zhi [37, 36], higher degree systems can result. This continual extension of the underlying

space is a significant practical and theoretical challenge in algorithm development.

The RRI of our system P is the set of all polynomials with the same zero set as P. To

give the reader an informal introduction to RRIs and their interpretation, consider the simple

case of univariate polynomials with real coefficients, n = 1. In this case, the factors of the

coefficients are either complex or real. The RRI discards the complex factors and also the

multiplicities from the polynomial, to obtain a new polynomial. This reduced polynomial is

the generating polynomial for the RRI of the original polynomial, and has the same real roots,

no multiplicities and no complex roots.

Combining SDP methods and applying them to a polynomial system P with coefficient

matrix C(P) and associated moment matrix M(u) ∈ RN(n,d)×N(n,d) yields the following problem

central to our paper:

Problem 3.1.1 (Moment Matrix Feasibility Problem) Find u ∈ RN(n,2d) where N(n, d) =

 d + n

d


so that

C(P)M(u) = 0, M11(u) = 1, M(u) � 0.

Also see Problem 3.5.1 in Section 3.5.

56Chapter 3. Semidefinite Programming and facial reduction for Systems of Polynomial Equations

We continue in Section 3.2 with material on real polynomial systems, their RRIs and the

coefficient matrix representations. In Section 3.3 we give a condensed and more formal descrip-

tion of geometric involutive bases and the related algorithms. In Section 3.4 we combine the

moment matrix and geometric involutive form algorithms to yield our fundamental Algorithm

3.4.1 for polynomial systems. In particular Algorithm 3.4.1 proceeds by putting the polyno-

mials into GIF using Algorithm 3.3.1; we then solve the related moment matrix problem using

Algorithm 3.2.1. These two steps are iterated until satisfaction of the Rank-Dim-Involutive

Stopping Criterion 3.10.

In Section 3.5 we describe the facial reduction and projection methods for finding feasible

solutions for the moment matrix feasibility problem 3.1.1. We also describe the Douglas-

Rachford (DR) projection/reflection method that we use. We also present our implementation

of facial reduction. Section 3.6 gives the numerical experiments. Our concluding remarks are

in Section 3.7.

3.2 Real radical ideals and moment matrices

We now present some material on real polynomial systems, their RRIs and the coefficient

matrix representation needed for our paper. For background and references to real algebraic

geometry see e.g., [4, 9, 49, 2].

3.2.1 Real polynomial systems

We consider a (finite) system of m polynomials in n variables

P := {p1, ..., pm} ⊂ R[x1, . . . , xn] =: R[x],

whereR[x] is the set of all polynomials with real coefficients in the n variables x =
(

x1, x2, . . . , xn

)T
.

We let d = deg(P) denote the degree of the polynomial system, i.e., the maximum of the degrees

of the polynomials p j in P. The solution set or variety of P is

VK(p1, ..., pm) = {x ∈ Kn : p j(x) = 0, ∀1 ≤ j ≤ m}. (3.3)

3.2. Real radical ideals and moment matrices 57

This is the real variety of P if K = R and the complex variety of P if K = C. The real ideal

generated by P = {p1, . . . , pm} ⊂ R[x] is:

〈P〉R = 〈p1, . . . , pm〉R = { f1 p1 + . . . + fm pm : f j ∈ R[x],∀1 ≤ j ≤ m}. (3.4)

We denote a monomial by xα := xα1
1 · · · x

αn
n , where α ∈ Nn, N is the set of nonnegative integers.

The degree of the monomial is |α| := ‖α‖1 = α1 + · · · + αn. It is clear that the degree of each

monomial satisfies |α| ≤ d, the degree of the polynomial. Throughout this paper we use graded

reverse lexicographic order, grevlex, to order the set of monomials.1

We can rewrite the system of m polynomials, P, as

P =

{∑
|α|≤d

ak,α xα : k = 1, . . . ,m

}
. (3.5)

This order respects the Cartan class of variables, which is important in our numerical deter-

mination of the geometric features of the polynomial systems such as those in Definition 3.3.3

below.

Definition 3.2.1 (Coefficient matrix of P, C(P)) Let x(≤d) = (xα) be the column vector of mono-

mials xα with 0 ≤ |α| ≤ d ordered as in grevlex above. Suppose that the coefficients ak,α in (3.5)

are similarly ordered. Then define the coefficient matrix of P by C(P) = (ak,α).

The following lemma follows immediately.

Lemma 3.2.1 With C(P), x(≤d) defined in Definition 3.2.1, we have

P = C(P)x(≤d), (3.6)

with C(P) ∈ Rm×N(n,d) and N(n, d) :=

 d + n

d

 is the number of monomials in x(≤d).

The well known presentation of polynomial systems as linear functions of their monomials

along with the related coefficient matrix and its kernel and rowspace has been exploited in

[50, 41, 42, 40] and in the historical work by Macaulay [39]. For an introductory example see

[44].
1This is often called grevlex in the literature. It compares the total degree first and then compares exponents

of the last indeterminate but while reversing the outcome so that the monomial with smaller exponent is larger in

the ordering.

58Chapter 3. Semidefinite Programming and facial reduction for Systems of Polynomial Equations

3.2.2 Moment matrices

Moment matrices M(µ) arise as a means of representing real polynomial systems. We outline

the procedure for finding M(µ) in Algorithm 3.2.1. For theoretical background the reader is

directed to e.g., [2, 33].

A moment matrix is an infinite real symmetric matrix M = (Mα,β) with indices correspond-

ing to the indices of the monomials α, β ∈ Nn. Here α is the index for rows and β is the index

for columns. Without loss of generality, we assume that M0,0 = 1. The matrix arises from con-

sidering the product of monomials xαxβ = xα+β and then the correspondence uα ↔ xα extends

to the formal correspondence xαxβ ↔ uα+β.

Definition 3.2.2 (Moment matrix) Let u = {uα : α ∈ Nn, |α| ≤ d} ∈ RN(n,d) be a vector of inde-

terminates where the entries are indexed corresponding to the exponent vectors of the mono-

mials in n variables of degree at most d. The degree d moment matrix of u is a N(n, d)×N(n, d)

symmetric matrix with rows and columns corresponding to monomials in n variables of degree

at most d, and defined as

M(u) =
[
uα+β

]
|α|,|β|≤d

.

Given a multivariate polynomial system P ⊂ R[x] with d = deg(P) we let M denote the

truncated moment matrix.

Lemma 3.2.2 The truncated moment matrix M ∈ SN(n,d)
+ . The linear constraints imposed by

P from (3.6) are C(P)M = 0, where C(P) is the coefficient matrix function given in Definition

3.2.1.

Example 3.2.1 (Moment matrix for univariate example x = (x1)) The moment matrix in the

univariate (n = 1) case is the infinite matrix whose (α, β) entry is uα+β and α, β ∈ N given by:

M(u) =



u0 u1 u2 u3 u4 · · ·

u1 u2 u3 u4 u5 · · ·

u2 u3 u4 u5 u6 · · ·

u3 u4 u5 u6 u7 · · ·

u4 u5 u6 u7 u8 · · ·

...
...

...
...

...
. . .


, u0 = 1. (3.7)

3.3. Geometric involutive bases 59

Note that (3.7) is a Hankel matrix. Let us associate uα ↔ xα. Then we recover the polynomial

equation using the coefficient matrix as C(P)x(≤d). This implies that in terms of the moment

matrix, we get C(P)M(u) = 0.

Algorithm 3.2.1: M - Moment Matrix

1 Input(P ⊂ R[x1, . . . , xn]. Set d := deg(P));

2 Use an SDP method to find a maximum rank moment matrix M(µ∗) with the additional

coefficient constraint C(P) M(u∗) = 0;

3 Output(M(u∗) � 0, the maximum rank moment matrix)

3.3 Geometric involutive bases

In this section we introduce the basic objects for geometric involutive bases. Algorithm 3.3.1

finds the GIF. For more details and examples see [44, 11].

Involutivity originates in the geometry of differential equations. See Kuranishi [31] for a fa-

mous proof of termination of Cartan’s prolongation algorithm for nonlinear partial differential

equations. A by-product of these methods has been their implementation for linear homoge-

neous partial differential equations with constant coefficients, and consequently for polynomial

algebraic systems. See [26] for applications and symbolic algorithms for polynomial systems.

The symbolic-numeric version of a geometric involutive form, GIF, was first described and im-

plemented in Wittkopf and Reid [51]. It was applied to approximate symmetries of differential

equations in [11] and to polynomial solving in [45, 43, 47]. See [55] where it is applied to the

deflation of multiplicities in multivariate polynomial solving.

Definition 3.3.1 Let P be a finite subset of R[x] of degree d. The k-th prolongation of system

P is

D̂
k
(P) := {xαp : 0 ≤ deg(xαp) ≤ d + k, α ∈ Nn, p ∈ P}.

60Chapter 3. Semidefinite Programming and facial reduction for Systems of Polynomial Equations

For example D̂
1
(P) for P = {x2− x−1, xy−y−1} consists of P together with the 4 polynomials

in
x(x2 − x − 1) = x3 − x2 − x

x(xy − y − 1) = x2y − xy − x

y(x2 − x − 1) = x2y − xy − y

y(xy − y − 1) = xy2 − y2 − y.

(3.8)

We can project by eliminating higher degree monomials in favour of lower degree ones. In

the prolonged system we can project the system from degree 3 to degree 2 by eliminating the

highest degree term x2y as well as xy that occurs in the second and third equations of (3.8) to

obtain the new projected equation y − x = 0.

Definition 3.3.2 Given a subspace V of Jd := RN(n,d) and m ≤ d, define πm(V) as the vectors

of V with the components of degree ≥ d − m discarded. Given P ⊂ R[x] of degree d define

πm(P) := πm ker C(P). The k-th prolongation of the kernel is Dk(P) := ker C(D̂
k
P).

See for example [47] and the references in [44] for the stable numerical implementations

of this paper’s operations using SVD methods. In Remark 3.5 of [44] we discuss how pro-

longation and projection can equivalently be computed in the kernel or rowspace, and how

polynomial generators can always be extracted. Underlying this is a 1 − 1 correspondence

between the relevant vector spaces (not elements).

Definition 3.3.3 (Symbol, class and Cartan involution test) Suppose P ⊂ R[x] of degree d.

The symbol matrix S(P) of P is the submatrix of C(P) corresponding to its degree d monomials.

Then the class of a monomial xα is the least j such that α j , 0.

Suppose that the columns of S(P) are sorted in descending order by class and that it is

reduced to Gauss echelon form. For k = 1, 2, ..., n define the quantities β(k)
d as the number

of pivots in this reduced matrix of class k. In a generic system of coordinates the symbol is

involutive if

k=n∑
k=1

kβ(k)
d = rank S(D̂P) (3.9)

3.3. Geometric involutive bases 61

Suppose Q ⊂ R[x] has degree d′ and a basis for ker C(Q) is given by the rows of the matrix

B. To extract the β(k)
q in (3.9) at projected degree d ≤ d′ we first numerically project ker C(Q)

onto the subspace Jd by deleting the coordinates in B of degree > d to give a spanning set B̃

for πd′−dQ. Then delete the columns in B̃ corresponding to variables of degree < d to obtain a

matrix Ad corresponding to the orthogonal complement of the degree d symbol. Let A(k)
d be the

submatrix of B̃ with columns corresponding to variables of class ≤ k. In generic coordinates

for k = 1 . . . n:

β(k)
d =

 n + d − k − 1

d − 1

 − (rank A(k−1)
d − rank A(k)

d

)
.

Then the SVD can approximate the ranks in this equation for carrying out the Cartan Test (3.9).

Definition 3.3.4 (Involutive System) A system of polynomials P ⊂ R[x] is involutive if dimπDP =

dim P and the symbol of P is involutive.

Definition 3.3.5 Let P ∈ R[x] with d = deg P and k, m be integers with k ≥ 0 and 0 ≤ m ≤

k + d. Then πmDkP is projectively involutive if dim πmDkP = dim πm+1Dk+1P and the symbol

of πmDkP is involutive.

In [11] it is proved that a system is projectively involutive if and only if it is involutive. In

Algorithm 3.3.1 we seek the smallest k such that there exists an m with πmDkP approximately

involutive, and generates the same ideal as the input system. We choose the system correspond-

ing to the largest such m ≤ k if there are several such values for the given k.

62Chapter 3. Semidefinite Programming and facial reduction for Systems of Polynomial Equations

Algorithm 3.3.1: GIF: Geometric involutive form

1 Input(P ⊂ R[x1, . . . , xn]; tolerance ε.);

2 Set k := 0, d := deg(P) and B for ker C(P), J = {} ;

3 repeat

4 Compute Dk(P); initialize set of involutive systems I := {} ;

5 for j from 0 to (d + k) do

6 Compute R := π jDk(P);

7 if R involutive then

8 I := I ∪ {R}

9 end if

10 end for

11 Select all R̄ from I: Dd+k−d̄R̄ ⊆ Dk(P) where d̄ = deg(R̄) ;

12 Place the selected involutive R̄ from I in the set J ;

13 k := k + 1

14 until J , ∅;

15 Output(Return R = GIF(P) the polynomial generators of the involutive system in J of

lowest degree.)

The degree of the geometric involutive basis in our method can be lower than that given

in [37, 36] since Algorithm 3.3.1 updates the generators with projections. However, in the

absence of a proof of determination of the real radical, we conclude that the larger moment

matrices of [37] can capture new members of the real radical in situations where our method

has already terminated.

Additional discussion and examples are given in the long version of our work [44].

3.4. Combining the moment matrix and geometric involutive form algorithms 63

3.4 Combining the moment matrix and geometric involutive

form algorithms

The complete method that combines the moment matrix and geometric involution techniques

is given in Algorithm 3.4.1.

Recall that M = M(u) = (Mα,β) denotes the moment matrix indexed by α, β for rows and

columns, respectively. And, d = deg(P), M ∈ SN(n,d), and the linear constraints imposed by

our system of polynomials P ⊂ R[x] are given using the coefficient matrix C(P)M = 0. We let

〈P〉R denote the associated polynomial ideal and let

R
√
〈P〉R = { f ∈ R[x] : f 2m +

s∑
j=1

q2
j ∈ 〈P〉R , q j ∈ R[x],m ∈ N+}

denote the RRI generated by polynomials P over R. A fundamental result [10] (originally

proved in [46]) called the Real Nullstellensatz is

R
√
〈P〉R = { f (x) ∈ R[x] : f (x) = 0,∀x ∈ VR(P)}.

Algorithm 3.4.1 proceeds by putting the polynomials into GIF using Algorithm 3.3.1; we

then solve the related moment matrix problem using Algorithm 3.2.1. These two steps are

iterated until satisfaction of the Rank-Dim-Involutive Stopping Criterion 3.10, that is r = d. If

the ideal generated by the output system is zero dimensional then the output is a GIF for the

real radical which is proved later in Chapter 4 by Theorem 4.7.5 and Theorem 4.7.6. If the

input system is positive dimensional, then the output is a GIF for an intermediate idea between

the input ideal and the real radical.

64Chapter 3. Semidefinite Programming and facial reduction for Systems of Polynomial Equations

Algorithm 3.4.1: GIF – SDPMethod

1 Input(P = {p1, ..., pk} ⊂ R[x1, . . . , xn]);

2 Set P0 := P, j := 0;

3 repeat

4 d := dim ker GIF(P j), P j+1 := GIF(P j);

5 Find u∗ ∈ RN(n,2d): M(u∗) � 0,C(P j+1)M(u∗) = 0 (Described in Algorithm 3.2.1);

6 r := rank(M(u∗)), P j+2 := gen(ker M(u∗));

7 j := j + 2

8 until r = d;

9 Output(P j+1 ⊂ R[x1, . . . , xn]; P j+1 is in geometric involutive form ;
R
√
〈P〉R ⊇

〈
P j+1

〉
R
⊇ 〈P〉R.)

The Algorithms 3.2.1, 3.3.1, and 3.4.2 are subroutines for our principal Algorithm 3.4.1.

Algorithm 3.4.2: gen

1 Input(ker M(u∗) where M(u∗) is the optimal max-rank moment matrix.);

2 Output(Polynomial generators corresponding to ker M(u∗))

Rank-Dim-Involutive Stopping Criterion The natural termination criterion used in Algo-

rithm 3.4.1 is that:

dim ker GIF(P j) = d = r = rank(M(u∗)) and P j involutive, (3.10)

where u∗ corresponds to the optimal moment matrix M(u∗). From results in [32], 〈gen(ker M(P j+1))〉

is a sequence of ideals contained in R
√
〈P〉 . We get an ascending chain of ideals in a Noethe-

rian ring R[x1, ..., xn]. Hence, together with the finiteness of the Cartan-Kuranishi geometric

involutive form algorithm, Algorithm 3.4.1 terminates in a finite number of steps.

3.5. Facial reduction and projection methods 65

3.5 Facial reduction and projection methods

In this section we describe the facial reduction and projection methods for finding feasible

solutions for the moment matrix feasibility problem. Our moment problem is given in Problem

3.5.1, where M(u) implicitly denotes the moment matrix constraints, i.e., the intersection of

the space of generalized Hankel matrices with the semidefinite cone.

Problem 3.5.1 (Moment Matrix Feasibility Problem) Let C = C(P) be a given N(n, d) × m

(coefficient) matrix of full column rank. Find u ∈ RN(n,2d) so that

CT M(u) = 0, M(u)11 = 1, M(u) � 0.

3.5.1 Representations for linear constraints for moment problems

An important initial step for our methods is building an efficient (onto) matrix representation for

the linear constraints on the moment matrices resulting from the polynomial systems. Recall

that we introduced moment matrices informally by a simple example in Section 3.2.2; see also

Definition 3.2.2. Let uα := u(α1,...,αn) where α ∈ Nn and the degree of uα is |α| = α1 + . . . + αn.

Let
(
u(α≤d)

)
be an array of the uα’s with 0 ≤ |α| ≤ d and sorted in grevlex order as described

above.

Consider a truncated moment matrix M(u) = (uα+β)α,β∈Nn,|α|,|β|≤d. The generalized truncated

moment matrix can be represented as follows, where

〈 fi(u), f j(u)〉∗ = u(i) + u(j).

We assume the length of 〈u(α≤d)〉 is k + 1. (We provide a formula for k in Algorithm 3.5.1

below.)

M(u) =



〈 f0(u), f0(u)〉∗ 〈 f0(u), f1(u)〉∗ 〈 f0(u), f2(u)〉∗ . . . 〈 f0(u), fk(u)〉∗

〈 f1(u), f0(u)〉∗ 〈 f1(u), f1(u)〉∗ 〈 f1(u), f2(u)〉∗ . . . 〈 f1(u), fk(u)〉∗

〈 f2(u), f0(u)〉∗ 〈 f2(u), f1(u)〉∗ 〈 f2(u), f2(u)〉∗ . . . 〈 f2(u), fk(u)〉∗
...

...
...

. . .
...

〈 fk(u), f0(u)〉∗ 〈 fk(u), f1(u)〉∗ 〈 fk(u), f2(u)〉∗ . . . 〈 fk(u), fk(u)〉∗


In the univariate case the moment matrices have Hankel structure as shown in (3.7). In

Table 3.1 we display a truncated bivariate moment matrix partitioned into block submatrices

66Chapter 3. Semidefinite Programming and facial reduction for Systems of Polynomial Equations

having the same degree. Notice that the matrix in Table 3.1 is not Hankel. However each

M(u) =



u00 u10 u01 u20 u11 u02 u30 u21 u12 u03

u10

u01

u20 u11

u11 u02

u30 u21 u12

u21 u12 u03

u40 u31 u22 u13

u31 u22 u13 u04

u20

u11

u02

u30 u21

u21 u12

u12 u03

u40 u31 u22

u31 u22 u13

u22 u13 u04

u50 u41 u32 u23

u41 u32 u23 u14

u32 u23 u14 u05

u30

u21

u12

u03

u40 u31

u31 u22

u22 u13

u13 u04

u50 u41 u32

u41 u32 u23

u32 u23 u14

u23 u14 u05

u60 u51 u42 u33

u51 u42 u33 u24

u42 u33 u24 u15

u33 u24 u15 u06


Table 3.1: block partitioned bivariate moment matrix; submatrices have same degree

of its block matrices is rectangular Hankel; though even this feature is lost for multivariate

moment matrices in more than two variables. As mentioned above, without loss of generality

we assume that u00 = 1.

Besides being a symmetric matrix, the moment matrix also has other linear constraints

among its entries. One can easily see these constraints in the truncated univariate matrix (3.7)

and bivariate matrix in Table 3.1. An important requirement of our projection methods is

to maintain these constraints. For example, in the bivariate case above, the matrix elements

M(u)14 = M(u)22 are both equal to u20. We now outline a simple algorithm to find a non-

redundant matrix representation of these constraints in the general n variable case. To list these

constraints we start from the first row and traverse the matrix from left to right across the rows

and then traverse the rows from top to bottom. Note also that we only need to examine entries

above the main diagonal since the matrix is symmetric.

For M(u) in Table 3.1 the first linear constraint traversing from the first row is M(u)14 =

M(u)22. We denote ei as the i-th unit vector and Ei j = 1
2 (eT

i e j + eT
j ei) as the i j-th unit matrix.

To impose this first constraint on a matrix M ∈ Sk+1
+ , we construct matrix A2 = E22 − E14. The

constraint is then given by

〈A2,M〉 = trace((E22 − E14)M) = 0.

3.5. Facial reduction and projection methods 67

Since we always assume M(u)1,1 = 1, we need to set A1 = E11. We can similarly construct

A3, A4, · · · , Ar, where r is the number of the total linear constraints. We denote At the matrix

representative of the t-th linear constraint.

Algorithm 3.5.1: Matrix representation of moment matrix constraints

1 Input(d, n) (d is the degree, n is the number of the variables) ;

2 Compute k := N(n, d) − 1 =

 d + n

d

 − 1.

3 Initialize an array T = 〈α(≤d)〉 of length k + 1, T (i) is the i-th element of T .

4 Initialize an array S = 〈s〉 of length k + 1 with the i-th element S (i) = [(1, i); T (i)].

5 Let t = 2 and A1 = E11. for i from 2 to k + 1, do

6 for j from i to k + 1, do

7 if ∃g, h, α with s = [(g, h);α] ∈ S such that T (i) + T (j) = α then

8 At = Ei j − Egh, t = t + 1

9 else

10 Adjoin a new element s = [(i, j);α] to S where α = T (i) + T (j)

11 end if

12 end for

13 end for

14 Output(Return an array of (k + 1) × (k + 1) matrix representatives {At} where t ∈ E,

E = {1, 2, . . . , r} and r is the total number of the linear constraints.);

Algorithm 3.5.1 determines all the (non-redundant) matrix representatives of the linear

constraints of the multivariate moment matrix. For example, if the input is (d, n) = (2, 2), then

T = [(0, 0), (1, 0), (0, 1), (2, 0), (1, 1), (0, 2)] and

S = [[(1, 1); (0, 0)], [(1, 2); (1, 0)], · · · , [(1, 6); (0, 2)]]

There are no redundant constraints produced by this algorithm. This avoids having an

overdetermined linear system.

68Chapter 3. Semidefinite Programming and facial reduction for Systems of Polynomial Equations

3.5.2 First step of facial reduction

Semidefinite programming has become an important tool in many areas of optimization and

algebraic geometry, e.g., [52, 9, 2]. The semidefinite cone St
+ has been extensively studied and

the facial structure is well understood. If X ∈ St
+ , then we let face (X,St

+) denote the smallest

face of St
+ containing X. And if f is a face of St

+ , denoted f � St
+ , then the conjugate face

is f c := f ⊥ ∩St
+ . Let X =

[
U V

]D 0

0 0

[U V
]T

be the spectral decomposition of X with[
U V

]
orthogonal and both D ∈ Sr

++ and diagonal. Then

face (X,St
+) = USr

+UT

= {Y ∈ St
+ : VT Y = 0}

= {Y ∈ St
+ : trace(VVT)Y = 0}.

Similarly,

face (X,St
+)c = VSt−r

+ VT

= {Z ∈ St
+ : UT Z = 0}

= {Z ∈ St
+ : trace(UUT)Z = 0}.

Problem 3.5.2 (Moment Matrix Feasibility Problem) Our main problem is the following fea-

sibility problem for the moment matrix M:

A(M) = b = e1, BT M = 0, M ∈ Sk+1
+ , (3.11)

Here k and the linear transformationA is obtained from Algorithm 3.5.1. A(M) =
(
〈At,M〉

)
∀t∈E
∈

Rr×1. The full column rank matrix B is obtained from the coefficient matrix in Definition 3.2.1

and equation (3.6).

The following Theorem 3.5.1 provides the details of the system after 1 step of facial reduc-

tion obtained by applying the coefficient matrix constraint to the moment matrix, i.e., BT M =

0. Recall from Algorithm 3.5.1, we get an array of representing matrix At ’s where t ∈ E,

E = {1, 2, . . . , r}.

3.5. Facial reduction and projection methods 69

Theorem 3.5.1 (First step facial reduction) Let B ∈ RN(n,d)×m be as above and of full column

rank. Let V ∈ RN(n,d)×(N(n,d)−m) satisfy VT B = 0 and
[

B V
]

nonsingular. Let

Āt := VT AtV, ∀t ∈ E = {1, 2, . . . , r}

and define the linear transformation Ā : SN(n,d)−m → Rr×1 by

Ā(P) :=
(
〈Āt, P〉

)
t∈E
. (3.12)

Then Problem 3.5.2 is equivalent to

Ā(P) = b, P ∈ SN(n,d)−m
+ , (3.13)

where we can recover the moment matrix using M = VPVT .

Proof It can be proved easily using the property of the trace product.

Note that for stability, we need to process the linear constraint (3.12) further to obtain an

equivalent linear system Â(P̂) = b̂ where Â is an onto map.

Potential second facial reduction

Our initial semidefinite moment problem is a feasibility problem of the form

BT M(u) = 0, M(u) � 0, (3.14)

where B is a given coefficient matrix and the moment matrix M(u) is a linear function of the

variables u. Constraints on M(u) are described in Section 3.5.1. In Section 3.5.3 the problem

is changed to equality form and then uses facial reduction to get the form

Ā(P) = b, P � 0. (3.15)

This form includes the first step of facial reduction using the matrix B, see Theorem 3.5.1 and

(3.12).

The projection methods behave poorly, converge slowly, when the Slater condition fails,

e.g., [20]. We therefore attempt to apply further steps of facial reduction and reduce system

70Chapter 3. Semidefinite Programming and facial reduction for Systems of Polynomial Equations

(3.15) until a strictly feasible point exists. We use the following theorem of the alternative or

characterization of a strictly feasible point. (See e.g., [15].)

∃P, Ā(P) = b, P � 0

⇐⇒

Z = Ā∗y � 0, bT y = 0 =⇒ Z = 0.

(3.16)

Note that if a Z , 0 can be found satisfying the left part of the bottom half of (3.16) and for the

top half P � 0, Ā(P) = b, then

0 = bT y = 〈Ā(P), y〉 = 〈P,Z〉 =⇒ PZ = 0 =⇒ range P ⊆ null Z.

Therefore, if the full column rank matrix W satisfies range W = null Z, then we can facially

reduce the problem to a lower matrix P̄ using the substitution P = WP̄WT , i.e., we can restrict

the feasibility problem in (3.15) to the face WS̄+WT .

We can implement the test in (3.16) in several ways. One way is to solve the following

minimization problem 2

p∗ := min 1
2 (b̄T y)2

s.t. Z = Ā∗y � 0

trace Ā∗y = 1

where

Ā∗y =

r∑
t=1

(Āty).

If the objective p∗ is 0, then it implies we may need a second facial reduction. A stable

approach, in the sense that strict feasibility holds, to solving this auxiliary problem is given

in [15] as

max δ

s.t. Z = Ā∗y � δI

trace Z = 1

b̄T y = 0

(3.17)

2 This can be implemented in e.g., CVX using the norm function or absolute value function for the objective,

i.e., we minimize |b̄T y| rather than using the squared term.

3.5. Facial reduction and projection methods 71

Backward stability for facial reduction steps

We now see that we can find the equivalent facial reduced problem efficiently and accurately.

We start with the Moment Matrix Feasibility Problem in (3.11).

A(M) = b = e1, BT M = 0, M ∈ SN(n,d)
+ .

As above, B ∈ R(k+1)×m and is full column rank. We apply the QR factorization and numerically

obtain the output B ≈ Q̃R̃, where Q =
[
Ũ Ṽ

]
is orthogonal, and R̃ upper triangular with the

last m rows being zero, see e.g., [27]. The QR factorization is backwards stable, i.e., we get the

exact equation

Q̃R̃ = B + δB,
‖δB‖
‖B‖

= O(εmachine), (3.18)

Thus we have exactly found the QR factorization of a nearby matrix. We then use Theorem

3.5.1 to obtain the facially reduced problem in (3.13) i.e., we form the matrices Ãt. The matrix

V has orthonormal columns. Therefore the congruence is a backward stable operation and we

have

Ãt = ṼT (At + δAt)Ṽ ,
‖δAt‖

‖At‖
= O(εmachine),∀t ∈ E = {1, 2, . . . , r}. (3.19)

Therefore, we can combine the above two steps and conclude that the first step of facial reduc-

tion is a stable operation, i.e.,

Ã(P) = b, P ∈ SN(n,d)−m
+ , (3.20)

is obtained efficiently and accurately; we have found the exact facial reduction of a nearby

problem.

Note that we then use a singular value decomposition to remove the redundant linear con-

straints so that the linear map Ã in the resulting linear constraints can be assumed to be onto.

This can be done using the SVD factorization, again a backwards stable algorithm. We have

shown the following.

Theorem 3.5.2 (Backward stability of first FR) The first step of facial reduction is backward

stable. More precisely, we find a linear system (3.20) with Ã onto and equivalent to a nearby

system to the original moment matrix feasibility problem in the sense of (3.18) and (3.19).

72Chapter 3. Semidefinite Programming and facial reduction for Systems of Polynomial Equations

We do not include the analysis for a second step of facial reduction. This is more difficult

as we need to include the accuracy in solving the auxiliary problem for the theorem of the

alternative discussed in Section 3.5.2. Such an analysis can be found in [15, Theorem 1.38].

3.5.3 Projection methods

We now consider two projection methods. We first consider the method of alternating pro-

jection, MAP and use the defined projections to introduce the Douglas-Rachford reflection-

projection method. It is the latter method that we implement as it displayed better convergence

properties in our tests.

Method of alternating projections, MAP

The method of alternating projections, MAP, is particularly simple, see e.g., the recent book

[24]. Let s2vec denote the mapping (isometry) from a matrix to a column vector taken colum-

nwise with the off-diagonal elements multiplied by
√

2. Let s2Mat = s2vec∗ = s2vec−1 be

the inverse mapping from a column vector to a matrix. The inverse here is identical to the

adjoint map. Let L = (s2vec(Āt)T)t∈E denote the matrix representation for Ā in Theorem 3.5.1

(s2vec(Āt)T is the t-th row of L).

We begin with an initial estimate, e.g., Pc = αI ∈ SN(n,d)−m
+ for a large α > 0. There are

two projections we use to update the current point Pc. First, we look at PL, the linear manifold

projection. We map Pc to a column vector pc = s2vec(Pc), then for the linear system Lp = b =

e1 where L has full row rank, we solve the nearest point problem min
{

1
2‖p − pc‖

2
2 : Lp = b

}
,

i.e., we find the projection onto the linear manifold for the linear constraints. We use L†, the

Moore-Penrose generalized inverse of L. The residual and the pl satisfying the minimization

problem are then

rc = b − Lpc; pl = pc + L†rc. (3.21)

Second, we project the updated symmetric matrix PL = PL(Pc) = s2Mat(pl) onto the semidef-

inite cone using the Eckart-Young Theorem [22], i.e., we diagonalize and zero out the negative

eigenvalues. We denote PS+
, the positive semidefinite projection and get the new positive

semidefinite approximation PS+
(PL).

3.5. Facial reduction and projection methods 73

We repeat the projection steps in Items 1, 2, 3 described below till a sufficiently small

desired tolerance is obtained in the norm of the residual.

1. Evaluate the residual rc = b − Lpc. Use the residual to evaluate the linear projection and

obtain the update

PL = PL(Pc).

2. Evaluate the positive semidefinite projection using the Eckart-Young Theorem and up-

date the current approximation

PPS D = PS+
(PL).

3. Update the cosine value in (3.22). Then update Pc = PPS D.

The (linear) convergence rate is measured using cosines of angles from three consecutive iter-

ates

cos(θ) =

(
trace ((PL − Pc)∗(PPS D − PL))
‖PL − Pc‖ ‖PPS D − PL)‖

)
. (3.22)

Douglas-Rachford reflection method

Recall the projections defined above PL,PS+
, PPS D. We want to find, see (3.13),

P ∈ G ∩ SN(n,d)−m
+ , where G :=

{
P : Ā(P) = b = R

}
.

We now apply the Douglas-Rachford (DR) projection/reflection method [18]. (See also e.g., [3,

12, 34, 6].)

Using the QR algorithm applied to B to find V and Ā, we start with an initial estimate

P0 = αI ∈ SN(n,d)−m
+ for some α . (3.23)

Define the reflections RL,RPS D : SN(n,d)−m
+ → S

N(n,d)−m
+ using the corresponding projections,

i.e.,

RL(P) := 2PL(P) − P, RPS D(P) := 2PS+
(P) − P.

• Initialization: We set our current estimate Pc = P0. We calculate the residual ResL =

R − Ā(Pc), set normres = ‖ResL‖, denote the reflected residual Resre f lL = ResL and

reflected point RPS D = Pc.

74Chapter 3. Semidefinite Programming and facial reduction for Systems of Polynomial Equations

• Iterate: We continue iterating from this point while normres > toler, our desired toler-

ance.

• 1. We use Resre f lL to project the current reflected PSD point RPS D onto the linear

manifold to get the projected point PL = RPS D + s2Mat(L†Resre f lL). Then we

reflect to get our second reflection point RL = 2PL − RPS D.

2. At this time we set our new/current estimate for convergence to be Pc = Pnew =

(Pc + RL)/2.

3. We now project Pc to get PPS D = PS+
(Pc). We check the residual here for the

stopping criteria normres = ‖ResL‖ = ‖R − Ā(PPS D)‖.

4. We now calculate the first reflection point RPS D = 2PPS D − Pc and update the

reflected residual Resre f lL = R − Ā(RPS D).

Also according to the basic theorem on the convergence of the sequence, [12, Thm 3.3,

Page 11], the residuals of the projections of the iterates on one of the sets have to be used for

the stopping criteria. We use the residual after the projection onto the SDP cone since we want

our final matrix to be semidefinite.

Algorithm 3.5.2 summarizes our Facial reduction & Douglas-Rachford method.

Algorithm 3.5.2: FDR method

1 Input(Degree of system d, number of variables n, a N(n, d) × m coefficient matrix B) ;

2 Compute the matrix representation A using Algorithm 3.5.1.;

3 Use QR to find V s.t. VT B = 0 and
[

B V
]

nonsingular; compute the matrix

representation L of the linear transformation Ā described in Theorem 3.5.1.;

4 Start at an initial point P0 satisfying (3.23).;

5 Iterate: P j+1 = 1
2 (P j + RPS D(RL(P j)), for all j = 0, 1,;

6 Stop if normres ≤ toler.;

7 Output(A PSD N(n, d) × N(n, d) moment matrix M = VP j+1VT .)

Our empirical studies showed that the Douglas-Rachford approach outperformed MAP and

3.6. Numerical experiments 75

also outperformed the SeDuMi interior point method within the YALMIP toolbox. Though the

Douglas-Rachford iteration has only a linear convergence rate, the method converged robustly

to the intersection of the linear constraints and the semidefinite cone. We note that for two

subspaces, the linear rate for the method is given by the cosine of the Friedrichs angle between

them, see e.g., [5, 7]. Details on the numerical tests follow.

3.6 Numerical experiments

In this section we present the numerical tests for the GIF-Moment Matrix Algorithm 3.4.1

that combines the Geometric Involutive Form with an SDP solver. We consider the two SDP

feasibility solving algorithms: the FDR Algorithm 3.5.2 with facial reduction and the standard

interior point solver SeDuMi but without facial reduction. GIF is combined with the two SDP

approaches to yield GIF-FDR and GIF-SeDuMi, respectively.

In Section 3.6.1 we consider a class of random univariate polynomials with varying degree

d. The results are displayed in Figure 3.1 on page 76, and Figure 3.2 on page 77. Results for

the examples given in Sections 3.6.2 and 3.6.3 are summarized in Table 3.2 page 82.

We used MATLAB version 2014a and Maple version 18. The computations were carried

out on a desktop with ubuntu 12.04 LTS, Intel CoreTM2 Quad CPU Q9550 @ 2.83 GHz × 4,

8GB RAM, 64-bit OS, x64-based processor.

3.6.1 A class of random univariate polynomials

We first consider root finding for polynomials of the form

pd(x) = ad,0 + ad,1 x + ad,2 x2 + · · · + ad,d xd, d = 1, 3, 5, · · · (3.24)

where ad, j ∼ N(0, 1). A famous early work on random polynomials such as (3.24) is given by

Kac in [29] who derived an integral formula for the average number of real roots of pd(x):

Ed =
4
π

∫ 1

0

√√√√ 1(
1 − t2

)2 −
(d + 1)2 t2 d(
1 − t2 d+2

)2 dt. (3.25)

An asymptotic form for large d was determined to be Ed ≈
2
π

log (d) + 0.6257358072... + 2
πd +

O
(

1
d2

)
, e.g., [23] and the references therein.

76Chapter 3. Semidefinite Programming and facial reduction for Systems of Polynomial Equations

We applied GIF-FDR and GIF-SeDuMi to the random polynomials pd(x) for odd degrees

d with 3 ≤ d ≤ 51. For each odd degree j, 10 sample random polynomials were generated

by selecting their coefficients as independent samples from N(0, 1). Algorithms GIF-FDR and

GIF-SeDuMi were then applied to approximate the minimal polynomial generating their real

radical. The residual error for each polynomial at odd degree j was computed by substituting

that roots of the minimal polynomial into the original input polynomial |p j|. The average of the

log10 of all these 10 residual errors was computed for each degree j. We also checked that the

mean number of the real roots of these samples was approximately given by (3.25).

We report on the comparison of the average residual errors versus degree in Figure 3.1.

It is clear that GIF-FDR consistently obtains significantly better accuracy than GIF-SeDuMi.

Figure 3.1 also contains comparison for cpu-time. Each instance was solved by GIF-SeDuMi

first and the residual error recorded. This error was then used for the desired residual error

when applying GIF-FDR. The average cpu-times per degree are plotted. Again we see that

GIF-FDR performed consistently better even though it has a theoretical linear convergence

time whereas interior point methods have a theoretical superlinear convergence time. In Figure

Figure 3.1: Comparison in residual and cputime of GIF-FDR vs GIF-SeDuMi for random

polynomials pd(x) = Σd
1ad, j x j at odd degrees 3 ≤ d ≤ 51 with ad, j ∼ N(0, 1).

3.2 we used the popular performance profile approach [17] with the following performance

profile function

ρs(τ) =
size{p ∈ P : rp,s ≤ τ}

size(P)
, s = 1, 2 (3.26)

3.6. Numerical experiments 77

where P is the set of problems and rp,s is the ratio of the performance of solver s to the best per-

formance by any solver on this problem p. These figures show FDR (s = 2) has outperformed

SeDuMi (s = 1) in residual and cputime.

Figure 3.2: Performance profile of GIF-FDR vs GIF-SeDuMi for random polynomials pd(x) =

Σd
1ad, j x j at each odd degrees 3 ≤ d ≤ 51 with ad, j ∼ N(0, 1). The profile function used is

(3.26).

3.6.2 Examples of Ma, Wang and Zhi [37]

Ma, Wang and Zhi [37, 36] present an approach using Pommaret Bases coupled with moment

matrix completion to approximate the real radical ideal of a polynomial variety. We applied

our approach to [37, Examples 4.1-4.6], with the results shown in Table 3.2. In each of the

examples we first applied GIF-FDR and then GIF-SeDuMi (i.e., FDR replaced with SeDuMi

SDP solver). In each case we obtained a geometric involutive basis which can be indepen-

dently verified as a geometric involutive basis for the real radical. In [37] Pommaret bases are

successfully obtained for the real radical for these examples. For an additional verification,

we took the polynomials resulting from the final moment matrix from GIF-FDR, and summed

their squares. Then we found an approximation to the roots by finding the minimum of this

polynomial using the MATLAB optimization toolbox. Finally, we substituted these approxi-

mate roots into the original input polynomials and evaluated the residual error. The results in

the final column in Table 3.2 show a small residual error.

78Chapter 3. Semidefinite Programming and facial reduction for Systems of Polynomial Equations

Here are the 6 systems of polynomials corresponding to the examples in [37]:

{x2
1 + x1x2 − x1x3 − x1 − x2 + x3, x1x2 + x2

2 − x2x3 − x1 − x2 + x3,

x1x3 + x2x3 − x2
3 − x1 − x2 + x3} (3.27a)

{x2
1 − x2, x1x2 − x3} (3.27b)

{x2
1 + x2

2 + x2
3 − 2, x2

1 + x2
2 − x3} (3.27c)

{x2
3 + x2x3 − x2

1, x1x3 + x1x2 − x3, x2x3 + x2
2 + x2

1 − x1} (3.27d)

{(x1 − x2)(x1 + x2)2(x1 + x2
2 + x2), (x1 − x2)(x1 + x2)2(x2

1 + x2
2)} (3.27e)

{(x1 − x2)(x1 + x2)(x1 + x2
2 + x2), (x1 − x2)(x1 + x2)(x2

1 + x2
2),

x1 ≥ 1, x2 ≥ 1} (3.27f)

System (3.27a) for [37, Example 4.1]: The first step of applying Algorithm 3.4.1 is to use

Maple and apply the GIF Algorithm 3.3.1, page 62, with input tolerance 10−10 to (3.27a). This

shows that the system is already in geometric involutive form. The corresponding Pommaret

basis is given in [37, Example 4.1]. The Pommaret basis looks different from the system,

but is just a linear combination of the system’s polynomials to accomplish the Gröbner-like

requirement for its highest terms under the term ordering prescribed in the problem. The

resulting coefficient matrix of this GIF form, is a full rank m = 3, 3 × 10 matrix which is input

to the FDR algorithm. The dimension of the kernel for GIF form is d = 7. Since the coefficient

matrix has rank m = 3, one facial reduction yields a reduced (10 − m) × (10 − m) = 7 × 7

moment matrix. Application of the FDR algorithm yields convergence in 2 iterations and 0.02

secs, with a projected residual error of 10−15. These statistics are shown in Table 3.2. The

output of FDR is a full 10 × 10 moment matrix of rank r = 7. Since d = 7 = r, Algorithm

3.4.1 terminates with the input system as its output. It can be checked that the ideal generated

by this system is real radical.

For comparison, application of GIF-SeDuMi to (3.27a) using a tolerance of 10−10 in Maple

resulted in a residual error of 10−10, as listed in the last column of Table 3.2, and an approxi-

mation of the generators of the real radical.

System (3.27d) for [37, Example 4.4]: This is very similar to the previous system (3.27a). As

[37] notes the coordinates for this example are not delta-regular, which they and we remedy by

3.6. Numerical experiments 79

a linear change of coordinates. We show that the original system is geometrically involutive,

which is equivalent to the determination of a Pommaret basis by [37]. Just as in the previous

example, we form a 10 × 10 moment matrix from the GIF form, which is transformed by

one facial reduction to a 7 × 7 matrix. There are no additional facial reductions, and the full

moment matrix and its rank r are determined. We find that dimension of the kernel for GIF

form is d = 7 = r, so Algorithm 3.4.1 terminates with the input system as its output. It can be

verified the the output is a GIF form for the real radical of the ideal.

Application of GIF-SeDuMi to (3.27d) using a tolerance of 10−8 in Maple resulted in a

residual error of 10−8 and an approximation of the generators of the real radical.

System (3.27b) for [37, Example 4.2]: This is quite similar to the systems (3.27b) and (3.27d).

Our methods are similarly efficiently applied to this system. Our GIF algorithm first applied

one prolongation to the second system (3.27b) to yield a degree 3 system. After projecting from

this degree 3 system it shows that the resulting degree 2 system is involutive and consists of

3 polynomials. This degree 2 system is geometrically equivalent to the Pommaret basis found

by [37]. This system is simply the original 2 polynomials, together with their compatibility

condition or S-polynomial x2(x2
1 − x2) − x1(x1x2 − x3) = x1x3 − x2

2. Thus the input system R is

replaced with πDR represented by its 3 × 10 coefficient matrix. The resulting 10 × 10 moment

matrix is facially reduced to a 7 × 7 moment matrix. As in the previous examples, no new

relations are detected in the kernel of the output matrix of the FDR method, d = r = 7 and the

algorithm terminates. It can be verified that the GIF form is a basis for the real radical ideal of

the input system.

Application of GIF-SeDuMi to (3.27b) using a tolerance of 10−9 in Maple resulted in a

residual error of 10−9 and an approximation of the generators of the real radical.

Unlike the systems (3.27a),(3.27b),(3.27d), the remaining three systems (3.27c),(3.27e),(3.27f)

of [37] lead to new members in the kernel of their moment matrices.

System (3.27c) for [37, Example 4.3]: Our initial application of FDR showed slow conver-

gence. However a random linear change of coordinates applied to the input system R dramat-

ically improved the convergence. Applying the GIF algorithm we found that D̂R is involutive

and has a 8 × 20 coefficient matrix. The dimension of its kernel is d = 12. Applying the

FDR algorithm, we obtain a PSD moment matrix with rank r = 7 , d so the algorithm

80Chapter 3. Semidefinite Programming and facial reduction for Systems of Polynomial Equations

has not terminated. The new member of the real radical arising in the moment matrix ker-

nel can be alternatively derived by hand by elimination of two of the systems polynomials:

x2
1 + x2

2 + x2
3 − 2 − (x2

1 + x2
2 − x3) = x2

3 + x3 − 2 = (x3 + 2)(x3 − 1). Then noting, as explained in

[37], that only the root x3 = 1 leads to real solutions. The GIF form of the new system from the

kernel of the moment matrix is computed which has degree 2. Its coefficient matrix is 5 × 10

and has kernel of dimension d = 5. After applying FDR algorithm, the second PSD moment

matrix then was computed quickly and accurately as a 10 × 10 matrix. The rank of the second

moment matrix is r = 5 = d, so our algorithm has terminated. It can be checked that the output

is equivalent to that found by [37] and that the resulting GIF form is a basis for the real radical.

Application of GIF-SeDuMi to (3.27c) using a tolerance of 10−8 in Maple resulted in a

residual error of 10−9 and an approximation of the generators of the real radical.

System (3.27e) for [37, Example 4.5]: Direct application of Algorithm 3.4.1 to (3.27e) is

relatively inefficient. Instead of this approach we consider an alternative subsystem approach

which has the potential to be applied to larger systems. Exploiting subsystem structure is a

long established approach in system solving.

We apply Algorithm 3.4.1 to the subsystem consisting of the first polynomial of P1 =

(x1 − x2)(x1 + x2)2(x1 + x2
2 + x2) of (3.27e). The GIF form of P1 is just P1, and its coefficient

matrix is 1 × 21 matrix with a kernel of dimension d = 20. The corresponding moment

matrix is 21 × 21, which is reduced to a 20 × 20 matrix after one facial reduction. It has

rank r = 18 , d. So the algorithm has not terminated, and new members of the real radical

are identified from the kernel of the moment matrix. The new system is degree 5 and has 3

polynomials. Algorithm GIF shows that the first projection of this system is involutive and is

a single fourth degree polynomial. Its coefficient matrix is 1 × 15 and its kernel has dimension

d = 14. The FDR algorithm produces a 15 × 15 positive semidefinite moment matrix with the

rank being r = 14 = d. The algorithm terminates to coefficient errors within 10−10 with output

as a single polynomial which is approximately:

(x1 − x2)(x1 + x2)(x1 + x2
2 + x2) (3.28)

It can be checked that (3.28) is a geometric involutive basis for the real radical for the ideal

generated by P1.

3.6. Numerical experiments 81

Similarly we apply Algorithm 3.4.1 to the second polynomial of (3.27e) which is given

by P2 = (x1 − x2)(x1 + x2)2(x2
1 + x2

2). The algorithm now terminates with output as a single

polynomial which is approximately:

(x1 − x2)(x1 + x2) (3.29)

This can be verified to be a geometric involutive basis for the real radical of the ideal generated

by P2.

Then we consider the system

(x1 − x2)(x1 + x2)(x1 + x2
2 + x2), (x1 − x2)(x1 + x2) (3.30)

Application of GIF to (3.30) reduces it to a geometric involutive basis which is approximately

(x2
1 − x2

2) (3.31)

A further application of FDR reveals that (3.31) is a GIF form for the real radical of the ideal

of (3.27e).

Application of GIF-SeDuMi to (3.27e) also yields an approximation of the generators of

the real radical. The most notable feature of this calculation was the its requirement of fairly

large tolerances (10−4 and 10−5). Reference [37, Example 4.5] also notes a similarly large

tolerance in their calculations, to correctly compute the real radical for this example.

System (3.27f) for [37, Example 4.6]: Let Q1 = {(x1− x2)(x1 + x2)(x1 + x2
2 + x2), (x1− x2)(x1 +

x2)(x2
1 + x2

2)} then (3.27f) is Q1 subject to the constraints x1 ≥ 1, x2 ≥ 1.

Applying Algorithm 3.4.1 to Q1 yields a geometric involutive basis which is approximately

x2
1 − x2

2. This can be independently verified to be a geometric basis for the real radical of Q1.

The statistics of this reduction are given in Table 3.2 in the row labeled as Ex 4.6 Q1.

To impose x1 ≥ 1, x2 ≥ 1 we substitute x1 = x2
3 + 1, x2 = x2

4 + 1 into the geometric

involutive basis of the real radical of Q1, that is into x2
1−x2

2, and reduce the resulting polynomial

Q2 = (x2
3 + 1)2 − (x2

4 + 1)2 = (x2
3 − x2

4)(x2
3 + x2

4 + 2) with Algorithm 3.4.1 to yield a basis for its

real radical which is x2
3 − x2

4 or equivalently x1 − x2 in agreement with [37, Example 4.6]. The

statistics of this reduction are given in Table 3.2 in the row labeled as Ex 4.6 Q2.

82Chapter 3. Semidefinite Programming and facial reduction for Systems of Polynomial Equations

Input FDR FDR FDR Mom Mtx GIF-SeDuMi

Polyn. data # its cpu-sec res-err redn factor Int Pt

System (n,d,m) (1,2) (1,2) max(1,2) s(M)/s(M̂) tol, res-err

Ex 4.1 (3,2,3) 2 0.02 10−15 10
7 10−10 , 10−10

Ex 4.2 (3,2,2) 156 0.23 10−14 10
7 10−9 , 10−9

Ex 4.3 (3,2,2) 256, 2 2.4, 0.08 10−13 20
12 ,

10
5 10−8 , 10−9 —

Ex 4.4 (3,2,3) 106 0.06 10−15 10
7 10−8 , 10−8

Ex 4.5 P1 (2,5,1) 9582, 29 7.0, 0.17 10−13 21
20 ,

15
14 10−4 , 10−8

Ex 4.5 P2 (2,5,1) 148, 1 0.3,0.06 10−14 21
20 ,

6
5 10−5 , 10−8

Ex 4.6 Q1 (2,4,2) 34, 2 0.11,0.08 10−13 21
15 ,

6
5 10−6 , 10−8

Ex 4.6 Q2 (2,4,1) 86, 1 0.28, 0.03 10−14 15
14 ,

6
5 10−8 , 10−9

Cyl2d (2,2,1) 1 0.06 10−15 6
5 10−10 , 10−13

Cyl3d (3,2,2) 2 0.09 10−15 20
12 10−8 , 10−9

Cyl4d (4,2,3) 7 0.31 10−14 70
28 10−7 , 10−8

Cyl5d (5,2,4) 10 0.52 10−14 252
64 DNC

Table 3.2: Statistics for the application of GIF-FDR and GIF-SeDuMi: Ex 4.1-4.6 are 6 examples

in MWZ [37]; Cyl2d-Cyl5d are cylinder examples; n number of variables; d maximum polynomial

degree; m number of polynomials; in columns 3, 4, two entries (1,2) are included for the number of

iterations and cpu-time if FDR is used twice in the example; And we take the max value in the residual

error columns 5 and 8; (s(M), s(M̂)) is sizes of moment matrix M and facially reduced matrix M̂, resp.;

column 7 is the SVD tolerance for GIF and the residual error for the moment matrix using the Interior

Point calculation with SeDuMi, DNC - Did Not Converge; the Maple SVD computations in GIF-FDR

were executed with tolerance := 10−10 and Digits := 15, resp.

Application of GIF-SeDuMi to (3.27f) also yields an approximation of the real radical. The

most notable feature of this calculation was the large tolerance 10−6 and residual error for the

reduction of Q1.

3.6.3 Intersecting higher dimensional cylinders

Consider the systems of polynomials defining the intersection of n − 1 cylinders in Rn

Cylnd := x2
1 + x2

2 − 1, x2
1 + x2

3 − 1, · · · , x2
1 + x2

n − 1. (3.32)

3.7. Conclusion 83

Application of the GIF algorithm to the systems Cylnd for n = 2, 3, 4, 5 show that the systems

become geometrically involutive after 0, 1, 2, 3 prolongations respectively. The GIF-FDR algo-

rithm converges quickly and accurately (see Table 3.2). It can be independently determined that

in each case it yields an geometric involutive basis for the real radical. However SeDuMi-GIF

crashes after several hours on the largest system Cyl5d .

Further it can be determined that the cylinders form a complete intersection and the length

of the prolongation to make them involutive, can be determined from the symbol of the initial

system [40]. The lower degree input systems (3.32) are geometrically formally integrable, and

it would be interesting to develop methods based on such lower degree systems, to determine,

whether one can rule out new members in the kernel of the moment matrix of the prolonged

involutive system from such lower degree systems.

Recently certain critical point methods have been developed for determining witness points

[54, 28] on real components of real polynomial systems. Indeed the method developed in

[54] is successful in finding a point on every component, if the ideal is both real radical, and

forms a regular sequence. Consequently for systems such as those above, the real radical is

an important property for such solvers. The regular sequence requirement can be checked by

dimension computation and can exploit a formally integrable system which has lower degree

than the involutive system. Interesting related results are given in [38]. By experiment we

found that the 0 dimensional systems for the critical points of (3.32) are also real radical and

remarkably have no non-real roots. The number of real critical points corresponding to n =

2, 3, 4, 5 can be determined to be 2, 4, 8, 16.

3.7 Conclusion

SDP feasibility problems typically involve the intersection of the convex cone of semidefinite

matrices with a linear manifold. Their importance in applications has led to the development of

many specific algorithms. However these feasibility problems are often marginally infeasible,

i.e., they do not satisfy strict feasibility as is the case for our polynomial applications. Such

problems are ill-posed and ill-conditioned.

The main contribution of this paper is to introduce facial reduction, for the class of SDP

84Chapter 3. Semidefinite Programming and facial reduction for Systems of Polynomial Equations

problems arising from analysis and solution of systems of real polynomial equations for real

solutions. Facial reduction yields an equivalent problem for which there are strictly feasible

points and which, in addition, are smaller. Facial reduction also reduces the size of the mo-

ment matrices occurring in the application of SDP methods. For example the determination

of a k × k moment matrix for a problem with m linearly independent constraints is reduced

to a (k − m) × (k − m) moment matrix by one facial reduction. We use facial reduction with

our MATLAB implementation of Douglas-Rachford iteration (our FDR method). In the case

of only one constraint, say as in the case of univariate polynomials, one might expect that the

improvement in convergence due to that facial reduction would be minor. However we present

a class of random univariate polynomials, where one such facial reduction combined with DR

iteration, yields the real radical much more efficiently than the standard interior point method

in SeDuMi. The high accuracy required by facial reduction and also the ill-conditioning com-

monly encountered in numerical polynomial algebra [50] motivated us to implement Douglas-

Rachford iteration.

A fundamental open problem is to generalize the work of [32, 49] to positive dimensional

ideals. The algorithm of [37, 36] for a given input real polynomial system P, modulo the

successful application of SDP methods at each of its steps, computes a Pommaret basis Q:

R
√
〈P〉R ⊇ 〈Q〉R ⊇ 〈P〉R (3.33)

and would provide a solution to this open problem if it is proved that 〈Q〉R = R
√
〈P〉R. We believe

that the work [37, 36] establishes an important feature – involutivity – that will necessarily be

a main condition of any theorem and algorithm characterizing the real radical. Involutivity is

a natural condition, since any solution of the above open problem using SDP, if it establishes

radical ideal membership, will necessarily need (at least implicitly) a real radical Gröbner

basis. Our algorithm, uses geometric involutivity, and similarly gives an intermediate ideal,

which constitutes another variation on this family of conjectures.

In addition to implementing an algorithm to determine a first facial reduction. We also

implemented a test for the existence of additional facial reductions beyond the first (e.g., in

the cases of Examples 4.3 and 4.5 of [37]). By using the CVX package or Douglas-Rachford

iteration to solve for the auxiliary problem (3.17), we can determine if we need a second facial

3.7. Conclusion 85

reduction by checking whether the optimal value of the auxiliary problem is close to 0. Our

implementation of auxiliary facial reductions, as still preliminary and needs improvement. So

a more detailed study of this aspect is worthwhile.

Numerical polynomial algebra has been a rapidly expanding and popular area [50]. Its

problems are typically very demanding, motivating the implementation of methods to improve

accuracy. For example Bertini, the homotopy package developed for numerical polynomial

algebra, uses variable precision arithmetic, with particularly demanding problems requiring

thousands of digits of precision. Consequently this is also a motivation to develop higher

accuracy methods, such as the FDR method of this paper. Manipulations with radical ideals

would be a by-product from such work. An important open problem is the following: Give a

numerical algorithm, capable in principle of determining an approximate real witness point

on each component of a real variety. We note that the methods of Wu and Reid [54] and

Hauenstein [28] only answer this question under certain conditions, say that the ideal is real

radical and defined by a regular sequence. Also see [35], which gives an alternative extension

of complex numerical algebraic geometry to the reals, in the complex curve case.

We provided a small set of examples, that illustrate some aspects of our algorithms. In

Maple all of our examples were executed with Maple’s Digits := 15 and the input tolerance :=

10−10 for the GIF algorithm which intensively uses LAPack’s SVD. Accuracy in the projected

residual error for our tests were between 10−14 and 10−12. The normalized generators obtained

for our experiments had coefficients differing less than 10−10 from the exact coefficients.

In addition we prove that our facial reduction steps are backwards stable. See Theorem

3.5.2 and Section 3.5.2. The advantage for the use of Douglas-Rachford iterations in our SDP

solution techniques and its linear convergence is discussed at the end of Section 3.5.3. We

note that the simplest structured matrices from polynomial systems are Hankel matrices and

are notoriously ill-conditioned, see e.g., [8, 25]. In particular such matrices all lie close to the

boundary of the semidefinite cone. Therefore, even after successful facial reduction guarantees

a strictly feasible solution, the set of Hankel matrices are all nearly singular. This makes the

related feasibility problems particularly difficult. Despite this we were successful in finding

feasible solutions. Such conditioning issues warrant further study. Indeed consider p(x, y) =

x2 + y2 + ε = 0. Even though (x, y) = (0, 0) is the unique solution for ε = 0, with associated real

86Chapter 3. Semidefinite Programming and facial reduction for Systems of Polynomial Equations

radical ideal 〈x, y〉R, the solution is not a real continuous function of ε as ε passes through 0. So

the problem in terms of the variety is not well-posed. An interesting challenge is to formulate

appropriate well-posed nearby problems in an appropriate space. The backwards stable tools,

of facial reduction and auxiliary reduction, and associated spaces are interesting possibilities

for such approaches.

Bibliography

[1] A. Alfakih and H. Wolkowicz. Matrix completion problems. In Handbook of semidefinite

programming, volume 27 of Internat. Ser. Oper. Res. Management Sci., pages 533–545.

Kluwer Acad. Publ., Boston, MA, 2000. 54, 94

[2] A.F. Anjos and J.B. Lasserre, editors. Handbook on Semidefinite, Conic and Polyno-

mial Optimization. International Series in Operations Research & Management Science.

Springer-Verlag, 2011. 56, 58, 68

[3] F.J.A. Artacho, J.M. Borwein, and M.K. Tam. Recent results on Douglas-Rachford meth-

ods. Serdica Mathematical Journal, 39:313–330, 2013. 73, 105

[4] S. Basu, R. Pollack, and M.-F. Roy. Algorithms in Real Algebraic Geometry, volume 10

of Algorithms and Computation in Math. Springer-Verlag, 2 edition, 2006. 25, 28, 55, 56

[5] H.H. Bauschke, J.Y. Bello Cruz, T.T.A. Nghia, H.M. Phan, and X. Wang. The rate of

linear convergence of the Douglas-Rachford algorithm for subspaces is the cosine of the

Friedrichs angle. J. Approx. Theory, 185:63–79, 2014. 75, 105

[6] H.H. Bauschke, P.L. Combettes, and D.R. Luke. Phase retrieval, error reduction algo-

rithm, and Fienup variants: a view from convex optimization. J. Opt. Soc. Amer. A,

19(7):1334–1345, 2002. 73

[7] H.H. Bauschke and D. Noll. On the local convergence of the Douglas-Rachford algo-

rithm. Arch. Math. (Basel), 102(6):589–600, 2014. 75, 105

Bibliography 87

[8] B. Beckermann. The condition number of real Vandermonde, Krylov and positive definite

Hankel matrices. Numer. Math., 85(4):553–577, 2000. 85

[9] G. Blekherman, P.A. Parrilo, and R.R. Thomas, editors. Semidefinite optimization and

convex algebraic geometry, volume 13 of MOS-SIAM Series on Optimization. Society

for Industrial and Applied Mathematics (SIAM), Philadelphia, PA; Mathematical Opti-

mization Society, Philadelphia, PA, 2013. 25, 55, 56, 68, 94

[10] J. Bochnak, M. Coste, and M.F. Roy. Real Algebraic Geometry. Ergebnisse der Math-

ematik und ihrer Grenzgebiete. 3. Folge A Series of Modern Surveys in Mathematics.

Springer, 1998. 28, 63

[11] J. Bonasia, F. Lemaire, G.J. Reid, and L. Zhi. Determination of approximate symmetries

of differential equations. Group Theory and Numerical Analysis, 39:249, 2005. 24, 31,

33, 35, 59, 61, 112

[12] J.M. Borwein and M.K. Tam. A Cyclic Douglas–Rachford Iteration Scheme. J. Optim.

Theory Appl., 160(1):1–29, 2014. 73, 74, 105

[13] J.M. Borwein and H. Wolkowicz. Facial reduction for a cone-convex programming prob-

lem. J. Austral. Math. Soc. Ser. A, 30(3):369–380, 1980/81. 12, 54, 94, 98, 106

[14] J.M. Borwein and H. Wolkowicz. Regularizing the abstract convex program. J. Math.

Anal. Appl., 83(2):495–530, 1981. 12, 54, 94, 98, 106

[15] Y-L. Cheung, S. Schurr, and H. Wolkowicz. Preprocessing and regularization for degen-

erate semidefinite programs. In D.H. Bailey, H.H. Bauschke, P. Borwein, F. Garvan,

M. Thera, J. Vanderwerff, and H. Wolkowicz, editors, Computational and Analytical

Mathematics, In Honor of Jonathan Borwein’s 60th Birthday, volume 50 of Springer

Proceedings in Mathematics & Statistics, pages 225–276. Springer, 2013. 12, 70, 72, 97,

98

[16] Y.-L. Cheung and H. Wolkowicz. Sensitivity analysis of semidefinite programs with-

out strong duality. Technical report, University of Waterloo, Waterloo, Ontario, 2014.

submitted June 2014, 37 pages. 54, 94

88Chapter 3. Semidefinite Programming and facial reduction for Systems of Polynomial Equations

[17] E.D. Dolan and J.J. Moré. Benchmarking optimization software with performance pro-

files. Math. Program., 91(2, Ser. A):201–213, 2002. 76

[18] Jim Douglas, JR and H.H. Rachford, JR. On the numerical solution of heat conduction

problems in two and three space variables. Trans. Amer. Math. Soc., 82:421–439, 1956.

73, 105

[19] D. Drusvyatskiy, N. Krislock, Y-L. Cheung Voronin, and H. Wolkowicz. Noisy sensor

network localization: robust facial reduction and the Pareto frontier. Technical report,

University of Waterloo, Waterloo, Ontario, 2014. arXiv:1410.6852, 20 pages. 12, 54, 94

[20] D. Drusvyatskiy, G. Li, and H. Wolkowicz. Alternating projections for ill-posed semi-

denite feasibility problems. Technical report, University of Waterloo, Waterloo, Ontario,

2014. submitted Sept. 2014, 12 pages. 54, 69, 94, 102

[21] M. Dür, B. Jargalsaikhan, and G. Still. The Slater condition is generic in linear conic

programming. Technical report, University of Trier, Trier, Germany, 2012. 54, 94

[22] C. Eckart and G. Young. A principal axis transformation for non-Hermitian matrices.

Bull. Amer. Math. Soc., 45:118–121, 1939. 72

[23] A. Edelman and E. Kostlan. How many zeros of a random polynomial are real? Bull.

Amer. Math. Soc. (N.S.), 32(1):1–37, 1995. 53, 75

[24] R. Escalante and M. Raydan. Alternating projection methods, volume 8 of Fundamentals

of Algorithms. Society for Industrial and Applied Mathematics (SIAM), Philadelphia,

PA, 2011. 72, 103

[25] W. Gautschi and G. Inglese. Lower bounds for the condition number of Vandermonde

matrices. Numer. Math., 52(3):241–250, 1988. 85

[26] V.P. Gerdt and Y.A. Blinkov. Involutive bases of polynomial ideals. Mathematics and

Computers in Simulation, 45(5):519–541, 1998. 7, 24, 29, 59, 112

[27] G.H. Golub and C.F. Van Loan. Matrix Computations. Johns Hopkins University Press,

Baltimore, Maryland, 3nd edition, 1996. 71

Bibliography 89

[28] Jonathan D Hauenstein. Numerically computing real points on algebraic sets. Acta ap-

plicandae mathematicae, 125(1):105–119, 2013. 5, 26, 83, 85, 121

[29] M. Kac. On the average number of real roots of a random algebraic equation. Bull. Amer.

Math. Soc., 49:314–320, 1943. 75

[30] N. Krislock and H. Wolkowicz. Explicit sensor network localization using semidefinite

representations and facial reductions. SIAM Journal on Optimization, 20(5):2679–2708,

2010. 12, 54, 94

[31] M. Kuranishi. On e. cartan’s prolongation theorem of exterior differential systems. Amer-

ican Journal of Mathematics, pages 1–47, 1957. 24, 29, 33, 59, 112

[32] J.B. Lasserre, M. Laurent, and P. Rostalski. A prolongation–projection algorithm for com-

puting the finite real variety of an ideal. Theoretical Computer Science, 410(27):2685–

2700, 2009. 1, 8, 25, 47, 53, 54, 55, 64, 84, 93, 94, 120

[33] M. Laurent and P. Rostalski. The approach of moments for polynomial equations. In

Miguel F. Anjos and Jean B. Lasserre, editors, Handbook on semidefinite, conic and

polynomial optimization, International Series in Operations Research & Management

Science, 166, pages 25–60. Springer, New York, 2012. 10, 13, 14, 15, 16, 17, 36, 38,

40, 46, 47, 58, 95, 96, 128, 129

[34] P. Lions and B. Mercier. Splitting algorithms for the sum of two nonlinear operators.

SIAM Journal on Numerical Analysis, 16(6):964–979, 1979. 73, 105

[35] Y. Lu, D.J. Bates, A.J. Sommese, and C.W. Wampler. Finding all real points of a complex

curve. In Algebra, geometry and their interactions, volume 448 of Contemp. Math., pages

183–205. Amer. Math. Soc., Providence, RI, 2007. 85, 121

[36] Y. Ma. Polynomial Optimization via Low-rank Matrix Completion and Semidefinite

Programming. PhD thesis, Academy of Mathematics and Systems Science, Chinese

Academy of Science, 2012. 8, 53, 55, 62, 77, 84, 93, 120, 121

90Chapter 3. Semidefinite Programming and facial reduction for Systems of Polynomial Equations

[37] Y. Ma, C. Wang, and L. Zhi. A certificate for semidefinite relaxations in computing

positive dimensional real varieties. Journal of Symbolic Computation, 72:1 – 20, 2016.

vii, x, 1, 8, 53, 55, 62, 77, 78, 79, 80, 81, 82, 84, 93, 120, 121, 128, 129

[38] Y. Ma and L. Zhi. Computing real solutions of polynomial systems via low-rank moment

matrix completion. In Proceedings of the 37th International Symposium on Symbolic and

Algebraic Computation, pages 249–256. ACM, 2012. 26, 83

[39] F.S. Macaulay and P. Roberts. The algebraic theory of modular systems. University press

Cambridge, 1916. 29, 57

[40] H.M. Möller and T. Sauer. H-bases for polynomial interpolation and system solving.

Advances in Computational Mathematics, 12(4):335–362, 2000. 29, 46, 57, 83

[41] B. Mourrain. Isolated points, duality and residues. Journal of Pure and Applied Algebra,

117:469–493, 1997. 29, 46, 57

[42] B. Mourrain. A new criterion for normal form algorithms. In Applied algebra, algebraic

algorithms and error-correcting codes, pages 430–442. Springer, 1999. 29, 46, 57

[43] G.J. Reid, J. Tang, and L. Zhi. A complete symbolic-numeric linear method for camera

pose determination. In Proceedings of the 2003 international symposium on Symbolic

and algebraic computation, pages 215–223. ACM, 2003. 24, 31, 33, 59, 112

[44] G.J. Reid, F. Wang, and W. Wu. Geometric involutive bases for positive dimensional poly-

nomial ideals and sdp methods. Technical report, Department of Appl. Math., University

of Western Ontario, 2014. 57, 59, 60, 62, 112

[45] G.J. Reid and L. Zhi. Solving polynomial systems via symbolic-numeric reduction to

geometric involutive form. Journal of Symbolic Computation, 44(3):280–291, 2009. 24,

59, 112

[46] Jean-Jacques Risler. Une caractérisation des idéaux des variétés algébriques réelles. CR

Acad. Sci. Paris, 271:1171–1173, 1970. 28, 63

Bibliography 91

[47] R. Scott, G.J. Reid, W. Wu, and L. Zhi. Geometric involutive bases and applications

to approximate commutative algebra. In Lorenzo Robbiano and John Abbott, editors,

Approximate Commutative Algebra, pages 99–124. Springer, 2010. 24, 37, 43, 55, 59,

60, 95, 112

[48] A.J. Sommese and C.W. Wampler. The Numerical solution of systems of polynomials

arising in engineering and science, volume 99. World Scientific, 2005. 1, 4, 25, 53, 93

[49] F. Sottile. Real solutions to equations from geometry, volume 57 of University Lecture

Series. American Mathematical Society, Providence, RI, 2011. 8, 53, 54, 55, 56, 84, 93,

94, 120

[50] Hans J. Stetter. Numerical polynomial algebra. Society for Industrial and Applied Math-

ematics (SIAM), Philadelphia, PA, 2004. 29, 57, 84, 85, 120, 129

[51] A.D. Wittkopf and G.J. Reid. Fast differential elimination in c: The cdiffelim environ-

ment. Computer Physics Communications, 139(2):192–217, 2001. 24, 31, 33, 59, 112,

128

[52] H. Wolkowicz, R. Saigal, and L. Vandenberghe, editors. Handbook of semidefinite pro-

gramming. International Series in Operations Research & Management Science, 27.

Kluwer Academic Publishers, Boston, MA, 2000. Theory, algorithms, and applications.

10, 11, 12, 68

[53] H. Wolkowicz and Q. Zhao. Semidefinite programming relaxations for the graph parti-

tioning problem. Discrete Appl. Math., 96/97:461–479, 1999. Selected for the special

Editors’ Choice, Edition 1999. 54, 94

[54] W. Wu and G.J. Reid. Finding points on real solution components and applications to

differential polynomial systems. In Proceedings of the 38th international symposium on

International symposium on symbolic and algebraic computation, pages 339–346. ACM,

2013. 5, 26, 83, 85, 121

92Chapter 3. Semidefinite Programming and facial reduction for Systems of Polynomial Equations

[55] X. Wu and L. Zhi. Determining singular solutions of polynomial systems via symbolic–

numeric reduction to geometric involutive forms. Journal of Symbolic Computation,

47(3):227–238, 2012. 24, 59, 112

[56] Q. Zhao, S.E. Karisch, F. Rendl, and H. Wolkowicz. Semidefinite programming re-

laxations for the quadratic assignment problem. J. Comb. Optim., 2(1):71–109, 1998.

Semidefinite programming and interior-point approaches for combinatorial optimization

problems (Fields Institute, Toronto, ON, 1996). 54, 94

Chapter 4

Maximum Rank Moment Matrices by

Facial Reduction and Douglas-Rachford

Method

4.1 Introduction

The breakthrough work of Lasserre and collaborators [26, 42] shows that the real radical ideal,

RRI, of a real polynomial system with finitely many solutions can be determined by maximiz-

ing the rank of so-called moment matrices arising from a semidefinite programming (SDP)

feasibility problem. This RRI is generated by a system of real polynomials having only real

roots that are free of multiplicities. The number of such real roots may be considerably less

than the number of complex roots (see the paper [34] for examples and references). Global

numerical solvers, such as homotopy continuation solvers typically compute all real roots by

first computing all complex (including real) roots. And if the roots have multiplicity, then

elaborate strategies are needed to avoid difficulties that arise as the paths from the homotopy

solvers approach these singular roots [41]. A conjectured extension of such methods to positive

dimensional polynomial systems has been given recently by Ma, Wang and Zhi [32, 31]. These

extensions depend on the method of moments within a SDP formulation.

Our SDP feasibility formulation is a moment problem equivalent to finding a maximum

93

94Chapter 4. MaximumRankMomentMatrices by FacialReduction andDouglas-RachfordMethod

rank matrix X for a linear system of the following type

AX = b, X ∈ Sk
+ , (4.1)

where Sk
+ denotes the convex cone of k × k real symmetric positive semidefinite matrices, and

A : Sk
+ → R

m is a linear transformation. Also see Problem 4.2.1 below.

The standard regularity assumption for (4.1) is the Slater constraint qualification or strict

feasibility assumption:

there exists X withAX = b, X ∈ intSk
+ . (4.2)

We let X � 0,� 0 denote X ∈ Sk
+ , ∈ intSk

+ , respectively. It is well known that the Slater

condition for SDP holds generically, e.g., [19]. Surprisingly, many SDP problems arising from

particular applications, and in particular our polynomial system applications, are marginally

infeasible, i.e., fail to satisfy strict feasibility. This means that the feasible set lies within the

boundary of the cone, and even the slightest perturbation of the data can make the problem

infeasible. This creates difficulties with the optimality and duality conditions as well as with

numerical algorithms. To help regularize such SDP problems so that strong duality holds, facial

reduction was introduced in 1982 by Borwein and Wolkowicz [8, 9]. However it was only much

later that the power of facial reduction was exhibited in many applications, e.g., [50, 47, 1].

Developing algorithmic implementations of facial reduction that work for large classes of SDP

problems and the connections with perturbation and convergence analysis has recently been

achieved in e.g., [24, 16, 12, 17].

A polynomial system of maximum degree d equations in n variables can be viewed as a

linear function of its vector x of monomials [26, 42]. The vector x of monomials contains

N(n, d) = (d+n)!
d!n! =

 d + n

d

 monomials up to the degree d of the polynomial system. The

convex cone for polynomials are semi-definite moment matrices encoding the real solutions of

the polynomial equations and have a generalized Hankel-Macaulay structure which depends

only on the number of variables. Remarkable advances have been recently made in this area

[26, 42, 5] which is an intersection between optimization and algebraic geometry. In Chapter

3 we established a framework for using facial reduction for such systems and then solving

4.2. MomentMatrices 95

the regularized smaller SDP problem to determine the RRI. In the approximate case, as in the

paper [34] we apply geometric involutive bases [38] to the constraints.

In this chapter, we use facial reduction approach to effectively reduce the size of the moment

matrix and then solve the reduced problem using the Douglas-Rachford reflection method. Fi-

nally we recover the positive semidefinite solution satisfying the constraints with maximum

rank. We perform facial reductions on the primal form. We compare the performance of our

techniques with the popular SDP solver SeDuMi(CVX) which uses an interior point method.

On our illustrative examples, our approach has better accuracy, and the maximum rank con-

dition can be guaranteed without misleading small eigenvalues. We showed that under some

assumptions our algorithm is well-posed, i.e., the maximum rank is unchanged under small

perturbations and the computed approximate solution converge to the exact solution as the

perturbation approaches to zero. We also give a method to compute the generators of real rad-

icals up to a given degree which gives an if and only if condition for checking the real radical

membership (checking if a polynomial belongs to the real radical ideal).

4.2 Moment Matrices

Definition 4.2.1 (Moment Matrix [28]) Given a linear form λ ∈ R[x]∗, x = (x1 · · · xn) which

maps a polynomial to a real number. A symmetric matrix

M(λ) = (λ(xαxβ))α,β∈Nn (4.3)

is called a moment matrix of λ where N = {0, 1, 2, · · · }.

Similarly, we define the truncated moment matrix.

Definition 4.2.2 (Truncated Moment Matrix [28]) Given a linear form λd ∈ (R[x]2d)∗, the

truncated moment matrix of λd is defined to be

M(λd) = (λd(xαxβ))α,β∈Nn
d

(4.4)

where Nn
d = {γ ∈ Nn : |γ| = Σn

j=1γ j ≤ d}.

96Chapter 4. MaximumRankMomentMatrices by FacialReduction andDouglas-RachfordMethod

Example 4.2.1 Suppose λ1 ∈ R[x, y]∗2d for d = 1. Then

M(λ1) =


u00 u10 u01

u10 u20 u11

u01 u11 u02

 (4.5)

Without loss of generality, we assume u00 = 1 throughout this chapter.

In recent years, the moment matrix has found applications in the field of real algebraic geome-

try. A very important application is to compute the real radical ideal of a polynomial system by

computing its kernel provided the rank of the moment matrix is maximum and the moment ma-

trix is positive-semidefinite [28]. Existing methods to compute such maximum rank matrices

are not accurate. So our main problem in this chapter is the following:

Problem 4.2.1 (Primal Form Feasibility Problem) Given A : Sk → Rm as a linear trans-

formation, B ∈ Rk×l , our main problem is the following feasibility problem for the moment

matrix M:

Find a max (rank M) ∈ Sk
+ : A(M) = b, BT M = 0. (4.6)

Here A(M) =
(
〈At,M〉

)
∀t∈E
∈ Rm, E = {1, 2, . . . , r} and r is the total number of the linear

constraints of A, the inner product is trace inner product. The full column rank matrix B is

the coefficient matrix of a polynomial system. In this chapter we are particularly interested

in the case of real polynomials; and At can be derived for our application by Algorithm 5.1

described in [34] such that A(M) = b enforces the moment matrix structure of M defined in

(4.2.2). b ∈ Rm such that the first entry of b is 1 and the others are zero. For more details, see

[34].

4.3 SDP and facial reduction

Consider the semidefinite programming primal feasibility problem in its standard form:

FP := {X : A(X) = b, X ∈ Sk
+ }, (4.7)

where Sk
+ denotes the convex cone of k × k real symmetric positive semidefinite matrices,

A : Sk → Rm is a linear transformation and Sk denotes k × k symmetric real matrices.

4.3. SDP and facial reduction 97

The semidefinite dual feasibility problem is

FD := {Z : Z = C −A∗y,Z ∈ Sk
+ }, (4.8)

whereA∗ is the adjoint ofA defined asA∗y =
∑m

i=1 yiAi and C is a constant matrix.

The linear transformA can be represented as a matrix form such thatA(X) = A · s2vec(X)

where s2vec(X) is the vectorization of X. We denote A as the matrix form ofA. When we say

A is linearly independent, we mean A has linearly independent rows.

4.3.1 Faces

Definition 4.3.1 Given convex cones F,K and F ⊆ K, we call F a face, F � K if

x, y ∈ K, x + y ∈ F =⇒ x, y ∈ F.

The conjugate face of F � K, Fc is

Fc = F⊥ ∩ K.

Given a nonempty covex subset S of K, the minimal face of K containing S , denoted as

face (S ,K), is defined to be the intersection of all faces of K containing S .

The following properties of minimal face in the convex cone Sn
+ are well known [11].

Proposition 4.3.1 Let X ∈ Sn
+ have rank r and let

X =
[
P Q

]Dr 0

0 0

[P Q
]T
, Dr ∈ S

r
++

be its spectral decomposition and Sr
++ denotes the convex cone of r × r real symmetric positive

definite matrices. Then the minimal face, face (X,Sn
+) , and its conjugate face satisfy

face (X,Sn
+) = PSr

+PT , face (X,Sn
+)c = QSn−r

+ QT .

4.3.2 Theorems of the alternative

The following two theorems introduce key concepts for facial reduction.

98Chapter 4. MaximumRankMomentMatrices by FacialReduction andDouglas-RachfordMethod

Theorem 4.3.1 (Primal Theorem of alternative [11, 18]) SupposeA : Sk
+ → R

m is a linear

transformation, b ∈ Rm, P ∈ Sk and Z ∈ Sk . Then exactly one of the following alternative

systems is consistent:

(I) 0 ≺ P ∈ F := {P ∈ Sk : A(P) = b, P � 0} (Slater) (4.9a)

(II) 0 , Z ∈ D := {Z ∈ Sk : Z = A∗y � 0, bT y = 0}. (Auxiliary) (4.9b)

Proof Note that if (II) is consistent, then Z exposes a face of Sn
+ that contains the minimal face

(F,Sn
+). That is, for P ∈ F we have

trace ZP = trace(A∗y)P = yT b = 0.

The remainder of the proof can be found in [11, 18] or Appendix A.

Equation (4.9a) is called the primal problem and equation (4.9b) is called the auxiliary problem.

The theorem of alternative for the dual form follows.

Theorem 4.3.2 (Theorem of alternative for dual form [8, 9]) Suppose A : Sk
+ → R

m is a

linear transformation, P ∈ Sk,Z ∈ Sk. Then exactly one of the following alternative systems is

consistent:

(I) Z = C −A∗y � 0 (4.10a)

(II) A(X) = 0, 〈C, X〉 = 0, X � 0 =⇒ X = 0. (4.10b)

See [11] for a detailed proof.

4.3.3 Facial reduction

Recall Theorem 4.3.1, that when (4.9a) is true, the Slater condition holds. The Slater condition

is an important concept in optimization. The failure of the Slater condition usually results

in poor performance of algorithms such as interior point methods and the Douglas-Rachford

method. Facial reduction aims to regularize an SDP problem so that the Slater condition holds

on a minimal face.

4.3. SDP and facial reduction 99

Lemma 4.3.3 (Facial reduction on the primal form) Suppose FP is non-empty. Then A(P) = b, P ∈ Sk
+

0 , Z = A∗y ∈ Sk
+ , b

T y = 0

⇒ P ∈ {Z}⊥ ∩ Sk
+ (4.11)

Such a Z is called an exposing vector of Sk
+ . By solving the second problem in the bracket,

we can get an exposing vector which reduces the primal problem (4.9a) to a smaller face, i.e.,

{Z}⊥ ∩ Sk
+ which is reformulated as a primal feasibility problem on a smaller cone Sk̄

+, k̄ < k

described in Theorem 4.3.4. The process is repeated until we get face (Fp,S
k
+), the minimal

face of Sk
+ containing Fp, and the Slater condition (4.9a) holds.

Based on the two statements of the theorems of alternative, we can always apply facial

reduction to the dual or primal form to reduce the dimension of the problem. In this chapter,

we express our moment matrix problem in the primal form yielding greater accuracy in our

examples when solved using facial reductions and the Douglas-Rachford (DR) method. Details

of DR are given later in Section 4.4.

Suppose an exposing vector is found. The following theorems shows how to use the ex-

posing vector to get an equivalent problem on a smaller positive semidefinite cone so that an

additional facial reduction can be done.

Theorem 4.3.4 SupposeA : Sk → Rm is a linear transformation as in Problem 4.2.1, P ∈ Sk ,

Z ∈ Sk
+ is an exposing vector, Z =

[
U V

]Dl 0

0 0

[U V
]T

is the spectral decomposition.

Suppose Āt := VT AtV and Ā : Sd → Rm is the linear transformation induced by Āt where

d + l = k. Then

∃P ∈ Sk ,A(P) = b,ZT P = 0, P � 0 (4.12a)

⇐⇒

∃P̄ ∈ Sd, Ā(P̄) = b̄, P̄ � 0. (4.12b)

Proof First, we assume b̄ = b.

To show (4.12a) implies (4.12b). Suppose there exists P � 0 satisfying (4.12a). Apply

the spectral decomposition to P. Then we have P = U1P1UT
1 where UT

1 U1 = I,ZT U1 = 0,

P1 � 0 (choosing only the positive eigenvalues) and rank(U1) ≤ rank(V) . Let Q be a linear

100Chapter 4. MaximumRankMomentMatrices by FacialReduction andDouglas-RachfordMethod

transformation such that VQ = U1. Then trace(AtVQP1QT VT) = trace(AtU1P1UT
1) = A(P) =

b. Hence we conclude ∃P̄ = QP1QT , Ā(P̄) = b, P̄ � 0.

To show (4.12b) implies (4.12a), note that the existence of P̄ satisfying (4.12b) implies that

P = VP̄VT satisfies (4.12a).

We assume A is linearly independent, however, Ā is not necessarily linearly independent.

We can remove the redundant linear constraints in Ā and the corresponding elements in b to

obtain b̄. So without loss of generality, we have Ā(P̄) = b̄, P̄ � 0, Ā is linearly independent.

4.3.4 Facial reduction maximum rank algorithm

Recall from the Primal Form Feasibility Problem 4.2.1, we can just set Z = BBT as the exposing

vector to do the first facial reduction as described in Theorem 4.3.4.

To do more facial reductions, after the first facial reduction, the problem is considered in

the form of (4.9a). Then according to Theorem 4.3.1, we need to determine if (4.9a) is strictly

feasible, i.e. to determine if there exists a P � 0. We need to solve the following auxiliary

problem: 1

p∗(A, b) := min
y

1
2 (bT y)2

s.t. Z = A∗y � 0

traceA∗y = 1.

(4.13)

We set traceA∗y = 1 because we need to rule out y being the zero solution. If we solve this

problem successfully with |bT y| = 0 with a non-zero y, we have Z = A∗y , 0. By Theo-

rem 4.3.1, (4.9a) only admits a positive semidefinite but no positive definite solution which

indicates Slater condition fails and a second facial reduction is needed. We then use this Z

as the exposing vector to do the second facial reduction as described in Theorem 4.3.4. We

repeat this process until p∗(A, b) is strictly positive which means there exists a positive definite

solution of (4.12b) and that the slater condition holds.

The algorithm to use facial reduction to find maximum rank solutions is summarized as

1 This can be implemented in e.g., CVX using the norm function or absolute value function for the objective,

i.e., we minimize |b̄T y| rather than using the squared term.

4.3. SDP and facial reduction 101

follows:
Algorithm 4.3.1: Facial reduction on the primal.

1 Input(A : Sn → Rm, b ∈ Rm,B ∈ Rk×l as in Problem 4.2.1, set p∗(A, b) = 0, W = I);

2 repeat

3 Find the exposing vector Z by setting Z = BBT (first facial reduction) or solving the

auxiliary problem (4.13) for p∗(A, b).

4 if p∗(A, b) > 0 then

5 STOP, facial reduction finished, Slater condition holds

6 else

7 Apply eigenvalue decomposition to Z to obtain V such that V is the nullspace of

Z and VT V = I.

8 UpdateA such that Ai ← VT AiV,∀i ∈ E, then updateA, b by removing

redundant relations.

9 Update W by W ← W · V .

10 end if

11 until p∗(A, b) > 0;

12 SolveA(P) = b, P � 0. Recover the moment matrix M = WPWT .

13 Output(M which is maximum rank)

Theorem 4.3.5 (Maximum rank) No further facial reductions can be done if and only if

p∗(A, b) > 0. Algorithm 4.3.1 returns a maximum rank solution of Problem 4.2.1.

Proof After the first facial reduction, Problem 4.2.1 is transformed into (4.12a). By the proof

of Theorem 4.3.1, each time when we find a solution Z � 0 from (4.9b), we can find the feasible

solutions of (4.9a) lie in the nullspace of Z. By Theorem 4.3.4, we can reduce the problem to

an equivalent smaller problem without loss of information. By Theorem 4.3.1 when we have

p∗(A, b) > 0, we have reduced the problem to a minimal face where (4.9a) admits a positive

semidefinite solution, which is equivalent to saying no further facial reductions can be done.

So if p∗(A, b) > 0, there exists P � 0 such that A(P) = b. Since the minimal face contains

all the feasible solutions of Problem 4.2.1 and P is the maximum rank solution on the minimal

face, M is also the maximum rank solution of Problem 4.2.1.

102Chapter 4. MaximumRankMomentMatrices by FacialReduction andDouglas-RachfordMethod

Singularity degree The minimal number of facial reduction steps is called singularity degree.

The examples in Section 4.10 show that some examples with singularity more than 1 can be

accurately solved by Facial reduction heuristics. For more details, see [45, 17].

4.3.5 Transform of the auxiliary problem

The auxiliary problem (4.13) can be solved by CVX or other SDP solvers, but in order to get

higher accuracy, we use Douglas-Rachford iteration. To do that, we need to reformulate the

auxiliary problem.

Definition 4.3.1 Given a matrix A = (ai j)1≤i, j≤n ∈ S
n
+, define vec(A) to be the vectorization of

A, i.e.,

vec(A) = [a11, a12, . . . , a1n, a21, a22, . . . , an1, . . . , ann]T

Suppose A is the matrix form of A, i.e., A = [vec(A1), ..., vec(Am)]T , then problem (4.13) can

be converted to:

Find y ∈ Rm : bT y = 0, AT y − vec(Z) = 0,

Z � 0, trace(Z) = 1. (4.14)

Problem (4.14) is equivalent to

K ·W = R,Z � 0, (4.15)

where K = [bT , 0T ; AT ,−I; 0, vec(I)], W = (y; vec(Z)) and R = [0; 0; 1].

In addition, we could lower the dimension of W using the following theorem:

Theorem 4.3.6 Suppose K,W,R, AT are defined as above in (4.15), (AT)† is the Moore-Penrose

pseudoinverse of AT . Suppose L = [bT · (AT)†; I − AT · (AT)†; vec(I)] and R = [0; 0; 1]. Then

K ·W = R,Z � 0, (4.16)

⇐⇒

L · vec(Z) = R,Z � 0, (4.17)

4.4. Projection method 103

Proof Let’s assume vec(Z) = AT y, then we have AT (AT)†vec(Z) = AT (AT)†AT y = AT y =

vec(Z) since (AT)†AT = I. Also (AT)†vec(Z) = (AT)†AT y = y.

It is easy to verify the other direction, by making the substitution y = (AT)†vec(Z).

By our experiments, we found this formulation has the best performance when coupled with

Douglas-Rachford methods. So we use (4.17) to solve the auxiliary problem (4.9b).

4.4 Projection method

In Algorithm 4.3.1, we need to solve two problems: the auxiliary problem to solve is (4.17) and

the primal problem after facial reduction to solve is A(P) = b, P � 0. Essentially, we need to

find the intersection between an affine subspace (linear constraints) and a positive semidefinite

cone. We consider the Douglas-Rachford reflection-projection (DR) method which involves

projections and reflections between two convex sets. These two convex sets are the affine sub-

space and the positive semidefinite cone in our case. There are also other projection-based

methods, such as method of alternating projection [20]. We prefer the DR method as it dis-

plays better convergence properties in our tests. Also, unlike the alternating projection method,

which is likely to converge to the boundary of cone, the DR method is likely to converge to the

interior of the cone, since we need to solveA(P) = b, P � 0.

4.4.1 Projection to the positive semidefinite cone

Given X ∈ Sk, denote PSk
+
(X, r) as the projection of X to Sk

+ such that the projected matrix has

rank r, we have the following theorem:

Theorem 4.4.1 [23] Suppose X ∈ Sk, the projection of PSk
+
(X, r) with r ≤ d is: PSk

+
(X, r) =

VPSk
+
(D, r)VT and X = VDVT is the eigenvalue decomposition of X and D is a diagonal

matrix with all the eigenvalues of X. PSk
+
(D, r) is obtained by keeping the first r largest positive

eigenvalues unchanged while setting all the other eigenvalues to zero.

104Chapter 4. MaximumRankMomentMatrices by FacialReduction andDouglas-RachfordMethod

4.4.2 Projection to an affine subspace

Suppose an affine subspace is given as follows:

{
X ∈ Sk, A(X) = b

}
(4.18)

or equivalently {
X ∈ Sk, A · s2vec(X) = b

}
(4.19)

where A is the the matrix form ofA and s2vec(X) is the vectorization of Z. To project X from

Sk onto the affine subspace (4.19), we have the following well-known theorem:

Theorem 4.4.2 [33] Given X̄ ∈ Sk, A, b defined in (4.19), assume the rows of A are linearly

independent. Let A† be the Moore-Penrose pseudoinverse of A so A† = AT (AAT)−1.

Suppose X∗ := argmin{||X − X̄|| : AX = b}

Then X∗ = X̄ + A†(b − AX̄).
(4.20)

We denote X∗ = PA(X).

Proof Denote R = b− AX̄. First, we need to check X∗ = X̄ + A†R is on the linear subspace. So

AX∗ = A(X̄ + A†R) = AX̄ + AA†R = AX̄ + b − AX̄ = b.

We also need to check X∗ is the optimal one. Suppose Y∗ = X̄ + Y is on the linear subspace,

so AY∗ = b, and A(Y∗ − X∗) = A(Y − A†R) = 0.

Then (Y − A†R)T A†R = (Y − A†R)T AT (AAT)−1R = (A(Y − A†R))T

(AAT)−1R = 0. Hence ||Y∗− X̄||2 = ||Y ||2 = ||Y −A†R+ A†R||2 = ||Y −A†R||2 + ||A†R||2 ≥ ||A†R||2 =

||X∗ − X̄||2.

4.4.3 Douglas-Rachford method

In Sections 4.4.1 and 4.4.2 we showed how to project a matrix to a positive semidefinite cone

and a affine subspace. Briefly speaking, the DR methods first project a matrix X to the positive

semidefinite cone, then reflect it by multiplying the projected matrix by 2 and subtracting X

from it. Similarly, the resulting matrix is projected and reflected over an affine subspace as well.

Finally the average of the original matrix and the reflected matrix is taken to update X to Xnew.

4.5. The ill-conditioned case 105

The convergence rate of DR method is studied by Bauschke et al [3, 4]. The original idea about

the Douglas-Rachford method came from solving partial differential equations [15]. Then later

Lions and Mercier brought the Douglas-Rachford method to light using by connecting it to

convex analysis [29]. (More details about the DR method can be found in e.g., [2, 7].) We

apply Douglas-Rachford to solve both the primal problem and the auxiliary problem. One step

of Douglas-Rachford method is the following:

Y = 2PSk
+
(X, r) − X,

Z = 2PA(Y) − Y,

Xnew = (X + Z)/2.

(4.21)

At each step, we calculate the residual Res := ‖A(Y)−b‖, which is the residual after projecting

onto the positive semidefinite cone. If the residual is less than the given tolerance, we stop and

return Y . According to the basic theorem on the convergence of the sequence, [7, Thm 3.3,

Page 11], the residuals of the projections of the iterates on one of the sets have to be used for

the stopping criteria. We use the residual after the projection onto the SDP cone since we want

our final matrix to be positive semidefinite.

4.5 The ill-conditioned case

In practice, some problems appear to be very ill-conditioned. One example is the geometric

polynomial in Section 4.10. Those examples have eigenvalue decomposition of the solutions

from the auxiliary problem with some eigenvalues that are very small compared to the others,

and the DR iterations converge very slowly. This indicates the rank r used in the projection

PSk
+
(X, r) can not be maximum.

To deal with such problems, we would have to project the matrix to a good rank r matrix

using PSk
+
(X, r) as described in Theorem 4.4.1 when solving the auxiliary problem (4.9b) or

(4.10b). In other words, at each step of facial reduction, we are not computing the smallest

possible face. Instead, we try to find a bigger but much more accurate face. So we may need

more facial reductions but we can obtain more accurate results.

The strategy we used to get this good matrix is to look at the eigenvalues of Z in (4.9b). We

drop the eigenvalues which are significantly smaller than the other eigenvalues and r is chosen

106Chapter 4. MaximumRankMomentMatrices by FacialReduction andDouglas-RachfordMethod

to be the number of eigenvalues which are well conditioned. For example, if the eigenvalues

are 0.7, 0.2, 0.00002, 0, 0, 0, we will set r = 2 instead of 3 or 6. After this, we will resolve

(4.9b) with the updated r and PSk
+
(X, r) to obtain a more accurate face.

4.6 Well-posedness

In this section, we study the well-posedness of our facial reduction maximum rank Algorithm

4.3.1. We want to show for sufficiently small perturbations of the input, the rank of the minimal

face doesn’t change. Also, as the perturbation converges to zero, the solution itself converges

to the exact solution. The existence of the exact solution of maximum rank is due to Borwein

and Wolkowicz [8, 9].

First we introduce the following theorem about the continuity of the Moore-Penrose Pseu-

doinverse by G.W. Stewart.

Theorem 4.6.1 [44] Suppose A is a matrix. Then

lim
δA→0

(A + δA)† = A† if and only if ∃ε > 0 : rank(A + δA) = rank(A) for all δA : ‖δA‖ < ε.

(4.22)

Next we introduce a theorem about the perturbation of the primal SDP problem from [40].

Theorem 4.6.2 [40] Suppose A = [vec(A1), ..., vec(Am)]T . Let Ã = A+δA and rank Ã = rank A.

Suppose A · vec(X) = b, X � 0 a, then there exists X̃ such that Ã · vec(X̃) = b + δb, X̃ � 0 for

sufficiently small δA and δb.

Proof Suppose X � 0, A·vec(X) = b. Let vec(X̃) = vec(X)−Ã†Ãvec(X)+Ã†(b+δb) where Ã† is

the Moore-Penrose pseudoinverse of Ã. Then Ãvec(X̃) = Ã(vec(X)− Ã†Ãvec(X)+ Ã†(b+δb)) =

Ãvec(X) − Ãvec(X) + b + δb = b + δb.

Now ‖X̃ − X‖ = ‖Ã†Ãvec(X)− Ã†b− Ã†δb‖ = ‖Ã†Ãvec(X)− Ã†Āvec(X)− Ã†δb‖ = ‖Ã†(Ã−

A)vec(X) − Ã†δb‖ ≤ ‖Ã†‖‖Ã − A‖‖X‖ + ‖Ã†‖‖δb‖. Since A is linearly independent, we have

rank(Ã) = rank(A) for small δA, which means Ã† → A† as Ã→ A by Theorem 4.6.1. Therefore

‖X̃ − X‖ → 0 as Ã → A and δb → 0. Since X is in the interior of the cone Sn
+, X̃ is also in the

interior of Sn
+ if X̃ is close enough to X.

4.6. Well-posedness 107

Theorem 4.6.3 Assume rank(A + δA) = rank A, then for sufficiently small enough (δA, δb), the

existence of X̃ such that (A + δA) · vec(X̃) = b + δb, X̃ � 0 implies that there exits X such that

A · vec(X) = b, X � 0 for small δA, δb

Proof Consequence of Theorem 4.6.1.

Theorem 4.6.4 Suppose Ã→ A, rank Ã = rank A, L is defined as 4.17, then L̃→ L.

Proof Since L = [bT ·(AT)†; I−AT ·(AT)†; vec(I)], we have L̃ = [bT ·(ÃT)†; I−ÃT ·(ÃT)†; vec(I)].

By Theorem 4.6.1, Ã† → A†, so we have L̃→ L.

Theorem 4.6.5 Denote L from 4.17 as L = [vec(L1), · · · , vec(Lm)]T and L̃ = L + δL =

[vec(L̃1), · · · , vec(L̃m)]T . Suppose L̃ · vec(X̃) = E + δE, X̃ � 0, X̃ = UPUT where P �

0 is an r × r diagonal matrix. Denote H = [vec(UT L1U), . . . , vec(UT LmU)]T and H̃ =

[vec(UT L̃1U), . . . , vec(UT L̃mU)]T . Assume in addition rank H = rank H̃, then there exists

X � 0, L · vec(X) = E such that X → X̃ as δE, δL → 0 and rank X̃ = rank X = r for suf-

ficiently small δL, δE.

Proof First, one can verify that H̃ · vec(P) = E + δE. We need to prove that there exits P̄ such

that H · vec(P̄) = E, P̄ � 0 for sufficiently small δE, δL.

Since L̃ → L, we have H̃ → H. Also rank H = rank H̃ by assumption, according to

Theorem 4.6.3, there exits P̄ such that H · vec(P̄) = E, P̄ � 0 for sufficiently small δE, δL.

Now let X = UP̄UT , then X � 0, L · vec(X) = E such that X → X̃ as δE, δL → 0 and

rank X̃ = rank X = r for sufficiently small δE, δL.

Now, recall Algorithm 4.3.1 for doing facial reductions. At each step, we solve the auxiliary

problem (4.14) which is equivalent to solving (4.17) to obtain an exposing vector Z. Then we

compute Q = null(Z) to do the next step of facial reduction. That is we update A by setting

A ← [vec(QT A1Q), ..., vec(QT AmQ)]T . At the end of the algorithm, we obtain a sequence of

exposing vectors Z(1),Z(2), ... and decreasing faces Q(1),Q(2), Due to numerical error, the

108Chapter 4. MaximumRankMomentMatrices by FacialReduction andDouglas-RachfordMethod

auxiliary problem (4.17) can not be solved exactly. Instead we solved an approximate problem

with a small residual δR, that is we solved L̃ · vec(Z) = R + δR,Z � 0 exactly. By Theorem

4.6.5, there exists Z̄ such that L · vec(Z̄) = R, Z̄ � 0, rank(Z) = rank(Z̄) and Z̄ → Z as

δR, δL → 0. The assumption of Theorem 4.6.5 is satisfied if H̃ has the full column rank

and the singular values are greater than a threshold (much larger than the residual) since H

and H̃ has more rows than columns. So the approximate face Q = null(Z) converges to the

exact face Q̄ = null(Z̄) and rank Q = rank Q̄. This step can be repeated so the approximate

minimal face Qmin converges the exact minimal face Q̄min and rank Qmin = rank Q̄min for small

perturbations. Finally, by Theorem 4.6.3, the maximum rank of the solutions doesn’t change

under sufficiently small perturbations and the approximation solution converges to the exact

solutions if the perturbation converges to 0.

So we have proved the following well-posedness theorem.

Theorem 4.6.6 The maximum rank of the output from Algorithm 4.3.1 doesn’t change if the

residual at each facial reduction is small enough. The output approximate matrix from Algo-

rithm 4.3.1 converges to the exact solution if the residual at each facial reduction converges to

zero.

We also direct the readers to the very interesting related work [40] where well-posedness is

considered under stronger assumptions.

4.7 Computation of generators of the real radical up to a

given degree

Based on the maximum rank moment matrix, the geometric involutive form [34], the results of

Curto and Fialkow [14] and Lasserre et al. [27] we give an algorithm for computing the real

radical up to a given degree d.

Throughout this section we consider a system of multivariate polynomials { f1, · · · , fm} ⊆

R[x1, x2, ..., xn] of degree d = maxi(deg(fi)). The associated real ideal is denoted

I := 〈 f1, f2, ..., fm〉R (4.23)

4.7. Computation of generators of the real radical up to a given degree 109

and its associated real radical ideal is denoted by R
√

I.

In particular we solve the following problem:

Problem 4.7.1 Given a system of polynomials { f1, · · · , fm} ⊆ R[x1, x2, ..., xn] with associated

ideal I and an integer d we give an algorithm to compute:(
R
√

I
)

(≤d)
:= { f ∈

R
√

I : deg(f) ≤ d} (4.24)

We will represent
(
R
√

I
)

(≤d)
by polynomials corresponding to vectors in ker M(λd) where M(λd)

is the truncated moment matrix to degree d as defined in Definition 4.2.2.

In order to obtain our main result we will require that ker M(λd) is ideal-like as defined

by Curto and Fialkow [14]. We note that there is a bijective correspondence between vectors

v ∈ ker M(λd) and polynomials given by v 7→ P(v) = vT (xα)α∈Nn where (xα)α∈Nn is the vector

of all monomials of degree ≤ d ordered in the same way as the rows of the moment matrix.

Conversely each polynomial g used to form the coefficient matrix B, is mapped to a vector

vec(g) in ker M(λd).

Definition 4.7.1 (Ideal-Like truncated moment matrix [14]) The kernel of a truncated mo-

ment matrix M(λd) is ideal-like of degree d if the following two conditions are satisfied:

• If f1, f2 ∈ P ker M(λd) then f1 + f2 ∈ P ker M(λd).

• If f ∈ P ker M(λd) and g ∈ R[x] has deg(f g) ≤ d, then f g ∈ P ker M(λd).

The ideal-like property is denoted as RG in [14].

Our main result is:

Theorem 4.7.1 Suppose that I = 〈 f1, . . . fm〉R with maxi(deg(fi)) = d and let B be the co-

efficient matrix of { f1, . . . fm} ⊆ R[x]. Let M(λd) be a truncated moment matrix such that

B ·M(λd) = 0 and M(λd) � 0. If the rank of M(λd) is maximum and ker M(λd) is ideal-like then

P ker M(λd) =
(
R
√

I
)

(≤d)
(4.25)

To prove the above theorem, we will need Theorem 4.7.2, Theorem 4.7.3 and Lemma 4.7.4

below.

110Chapter 4. MaximumRankMomentMatrices by FacialReduction andDouglas-RachfordMethod

Theorem 4.7.2 [27, Lemma 3.1] Suppose that the ideal I = 〈 f1, . . . fm〉R with maxi(deg(fi)) =

d and let B be the coefficient matrix of { f1, . . . fm} ⊆ R[x]. Let M(λd) be a truncated moment

matrix such that B · M(λd) = 0 and M(λd) � 0. If the rank of M(λd) is maximum then

P ker M(λd) ⊆
R
√

I (4.26)

Theorem 4.7.3 (Flat extension theorem [14]) Assume M(λd) � 0. The following statements

are equivalent:

(i) There exists an extension M(λd+1) � 0 and rank M(λd) = rank M(λd+1)

(ii) ker M(λd) is ideal-like.

Lemma 4.7.4 [27, Theorem 3.4, Corollary 3.8] Assume M(λ) � 0 and rank M(λd) = rank M(λd−1) =

r. Then J = 〈P ker M(λd)〉R is real radical and zero-dimensional. One can extend λd to

λ =
∑r

i=1 αiλvi ∈ R[x]∗ where αi > 0 and {v1, . . . , vr} = VR(P ker M(λd)). Furthermore λ = λd

when λ is restricted to R[x]2d.

We now prove Theorem 4.7.1.

Proof Suppose ker M(λd) is ideal-like, M(λd) � 0 and M(λd) has maximum rank together with

the other assumptions in Theorem 4.7.1.

Our goal is to show that

P ker M(λd) =
(
R
√

I
)

(≤d)
.

First by Theorem 4.7.2, the following direction is obvious:

P ker M(λd) ⊆
(
R
√

I
)

(≤d)
.

So we only need to show

P ker M(λd) ⊇
(
R
√

I
)

(≤d)

By Theorems 4.7.3 and 4.7.4, λd can be extended to λd+1 such that J = 〈P ker M(λd+1)〉R is

real radical and zero-dimensional. Since I ⊆ J, we have R
√

I ⊆ J. By Theorem 4.7.4, one can

extend λd to λ =
∑r

i=1 αiλvi ∈ R[x]∗ where αi > 0 and {v1, . . . , vr} = VR(P ker M(λd+1)) = VR(J)

4.7. Computation of generators of the real radical up to a given degree 111

and λvi is an evaluation mapping at vi such that λvi(f) = f (vi). Thus λd =
∑r

i=1 αiλ
(d)
vi

where

λ(d)
vi

is the truncated linear form of λvi . Since R
√

I ⊆ J, we have {v1, . . . , vr} ⊆ VR(R
√

I).

Now we can prove the other inclusion:

P ker M(λd) ⊇
(
R
√

I
)

(≤d)

So we let g ∈
(
R
√

I
)

(≤d)
and we want to show that g ∈ P ker M(λd), that is to show that

vec(g)T M(λd) = 0.

Since g ∈ R
√

I with deg(g) ≤ d, we have g(vi) = 0, i = 1, . . . , r. Therefore g2(vi) =

vec(g)T M(λ(d)
vi

)vec(g) = 0. Since M(λ(d)
vi

) � 0 , we have vec(g)T M(λvi) = 0 for i = 1, . . . , r.

Hence
∑r

i=1 αivec(g)T M(λ(d)
vi

) = 0, so vec(g)T M(λd) = 0 and g ∈ P ker M(λd) which is what we

wanted to show.

By Theorem 4.7.1, we now have a complete algorithm to Problem 4.7.1

Algorithm 4.7.1: RealRadical(F, d)

1 Input(F = { f1, . . . , fm} ⊆ R[x], x ∈ Rn, an integer d ≥ deg(F).);

2 Set F′ to the prolongation of F to degree d

3 repeat

4 B := CoeffMtx(F′)

5 Solve Problem 4.2.1 for maximum rank moment matrix M(λd) by Algorithm 4.3.1.

6 F′′ := P(ker M(Λd))

7 Compute GIF(F′′)

8 Project/ Prolong GIF(F′′) to degree d: F′ := GIF(F′′)(≤d).

9 until dim F′ = dim F′′;

10 Output(F′, a basis for { f ∈ R
√

I : deg(f) ≤ d})

In Algorithm 4.7.1, CoeffMtx computes the coefficients in the monomial basis, although

potentially other bases could be used. It exploits the property that the the GIF algorithm ob-

tains polynomials in a form that satisfies the ideal-like property. In particular note that for a

given f in Definition 4.7.1, f g =
∑

α aαxα f is expanded in term of so-called prolongations

by monomials xα. The invariance of geometric involutive bases under prolongation-projection

112Chapter 4. MaximumRankMomentMatrices by FacialReduction andDouglas-RachfordMethod

implies that each xα f is in the basis, and by superposition f g is also in the basis. We note that

Pommaret involutive bases don’t necessarily satisfy the ideal-like property but can be extended

easily by an explicit algorithm to such basis [21, 39]. Groebner bases can also be extended, by

essentially reformulating them as involutive basis [21].

Involutivity originates in the geometry of differential equations. See Kuranishi [25] for a fa-

mous proof of termination of Cartan’s prolongation algorithm for nonlinear partial differential

equations. A by-product of these methods has been their implementation for linear homoge-

neous partial differential equations with constant coefficients, and consequently for polynomial

algebraic systems. See [21] for applications and symbolic algorithms for polynomial systems.

The symbolic-numeric version of a geometric involutive form, GIF, was first described and im-

plemented in Wittkopf and Reid [46]. It was applied to approximate symmetries of differential

equations in [6] and to polynomial solving in [37, 35, 38]. See [49] where it is applied to the

deflation of multiplicities in multivariate polynomial solving. For more details and examples

see [36, 6]. The details of the GIF algorithm, including, prolongations and projections, can be

found in our earlier work [34] and in chapter 2.

An easy consequence is that the result also applies to the output of our GIF-FDR algorithm.

Theorem 4.7.5 Let F = { f1, ..., fm} ⊂ R[x]. Let G = {g1, ..., gk} ⊂ R[x] be the output of the

GIF-FDR algorithm applied to F. Then(
R
√
〈F〉R

)
(≤d)

= spanRG, d = deg(G) (4.27)

In the 0-dimensional case, we also have the following theorem:

Theorem 4.7.6 Let F = { f1, ..., fm} ⊂ R[x]. Let G = {g1, ..., gk} ⊂ R[x] be the output of the

GIF-FDR algorithm applied to F and the Hilbert dimension of 〈G〉R is 0, i.e., the system G has

finitely many complex solutions. Then

R
√
〈F〉R = 〈G〉R (4.28)

Proof From the Algorithm GIF-FDR, we know that G is already involutive. Also because the

Hilbert dimension of 〈G〉R is zero, any monomial of degree not less than d = deg(G) is one

4.8. A special case for determining positive dimensional real radical 113

of leading terms of 〈G〉R. Suppose there is a polynomial f in R[x] such that f ∈ R
√
〈F〉R but

f < 〈G〉R. Then we have deg(f) > d, since by Theorem 4.7.5
(
R
√
〈F〉R

)
(≤d) = spanRG. So

f = f1 + f2 where f1 ∈ 〈G〉R and deg(f2) < d. Since both f and f1 are in R
√
〈F〉R, we have

f2 ∈
R
√
〈F〉R. Since deg(f2) < d, we have f2 ∈ spanRG. Hence f ∈ 〈G〉R, a contradiction with

the assumption.

4.8 A special case for determining positive dimensional real

radical

Figure 4.1: In the Figure, the black monomial staircase represents the leading monomials of

the generators of the real radical determined to degree d by RealRadical(F, d). The only way

these can fail to be a complete set of generators for the real radical is that there is a minimum

degree d′ > d where additional generators with leading monomials of exactly degree d′ shown

in red are found outside black monomial staircase.

Our theorem on the determination of the real radical up to finite degree is illustrated

graphically in Figure 4.1. Here suppose F = { f1, ..., fm} ⊂ R[x] and we applied Algorithm

RealRadical(F, d) for a given d, and that the resulting system has leading monomials shown

as the corners of the black monomial staircase. See [13] for the description of such diagrams.

Then the system is prolonged and the kernel of its moment matrix is examined for new gen-

erators at degrees d + 1, d + 2, The only way that this is not a complete generating set for

114Chapter 4. MaximumRankMomentMatrices by FacialReduction andDouglas-RachfordMethod

the real radical (and that our conjecture fails), is that there is a minimum degree d′ > d where

after prolongation to d′ new generators are determined that lie outside simple prolongations of

the black leading generators. These have leading monomials shown in red. Some times the

completeness of the generating set at degree d can be checked by a critical point calculation.

For example, if the critical point method shows that the variety is real positive dimensional,

then this could rule out the existence of the red staircase predicting a 0-dimensional real va-

riety. In particular, if the number of red circles in Figure 4.1 is 1 and the variety of F is real

positive dimensional, then RealRadical(F, d) returns the generators of R
√
〈F〉R. So we have the

following theorem:

Theorem 4.8.1 Given a system of polynomials F = { f1, · · · , fm} ⊆ R[x1, x2, ..., xn] with associ-

ated ideal I and an integer d. Let G = {g1, ..., gk} ⊂ R[x] be the output of the RealRadical(F, d)

algorithm applied to F and s is the number of different polynomials of degree d in G. If

s =
(d+n−1

n−1

)
− 1 and the variety of F is real positive dimensional. Then

R
√
〈F〉R = 〈G〉R. (4.29)

Proof By Theorem 4.7.1,
(
R
√
〈F〉R

)
(≤d) = spanRG. Suppose in contradiction R

√
〈F〉R ⊃ 〈G〉R,

then there exists a d′ > d such that (〈H〉R)(≤d′) ⊂
(
R
√
〈F〉R

)
(≤d′) where H is the prolongation

of G to degree d′. Therefore there exists a polynomial g̃ ∈ spanR Ḡ but g < spanR H with

deg(g̃) = d′ > d where Ḡ = {ḡ1, ..., ḡl} spans
(
R
√
〈F〉R

)
(≤d′).

Now assume the number of different polynomials of degree d′ in H is t and the number

of different polynomials of degree d′ in Ḡ is t̄, then t < t̄ because the existence of g̃. From

combinatorics, the number of different monomials of degree d in n variables is
(d+n−1

n−1

)
. Since

G is already involutive and s =
(d+n−1

n−1

)
− 1, we have t =

(d′+n−1
n−1

)
− 1 as well. Also clearly

t̄ ≤
(d′+n−1

n−1

)
, so we have t̄ =

(d′+n−1
n−1

)
which means R

√
〈F〉R is a 0-dimensional real variety, a

contradiction with the assumption that the variety of F is real positive dimensional. So the

theorem is proved.

4.9. Comparison with Triangular decomposition of semi-algebraic sets 115

4.9 Comparison with Triangular decomposition of semi-algebraic

sets

In this section, we compare our method with the triangular decomposition of semi-algebraic

sets.

One of the motivations for computing the real radical ideal is to remove the multiplicities

and sum of squares of a given polynomial system. Our method in this thesis is a “global”

method, i.e., we don’t compute each connected component of the real variety. The triangular

decomposition of semi-algebraic sets is a local method, i.e., it computes an intersection of

primal ideals in the real fields while each primal ideal represents a connected component of the

real variety.

Example 4.9.1 [10]

f = {2yz − y, 2y2 + y, xy, 4x2z + 4z3 + y} (4.30)

By using real triangular decomposition, we obtained an intersection of three primary ideals:

{x, y, z} ∩ {y, z} ∩ {x, 2y + 1, 2z− 1}. By our approach, we obtained the generators {z2 + y/2, yz−

y/2, y2 + y/2, xz, xy, y + z}

Also, our method is stable under small perturbations. If we add a small perturbation to the

above polynomial system,

Example 4.9.2

f = {2yz − y, 2y2 + y + 10−13, xy, 4x2z + 4z3 + y} (4.31)

By using real triangular decomposition, we obtained only one primary ideals: {x, y + 0.5 +

ε, 2z − 1}. By our approach, we obtained perturbed generators {z2 + y/2 + ε, yz − y/2 + ε, y2 +

y/2 + ε, xz + ε, xy + ε, y + z + ε}

4.10 Examples

In this section, we give some examples. We used MATLAB version 2015a. The computations

were carried out on a desktop with ubuntu 12.04 LTS, Intel CoreTM2 Quad CPU Q9550 @ 2.83

GHz × 4, 8GB RAM, 64-bit OS, x64-based processor.

116Chapter 4. MaximumRankMomentMatrices by FacialReduction andDouglas-RachfordMethod

We give the first examples (Ex.4.33 and Ex.4.34) showing additional facial reductions for

polynomials, that can be accurately approximated in practice.

Example 4.10.1 (Reducible cubic)

(x + y)(x2 + y2 + 2) (4.32)

Note that the second factor has no real roots, so it is discarded and the real radical is generated

by (x+y). The moment matrix corresponding to (4.32) is a 10×10 matrix. The coefficient matrix

B is [0, 2, 2, 0, 0, 0, 1, 1, 1, 1]T . Using Algorithm 4.7.1, after two facial reductions, we obtained

a maximum rank 4 moment matrix with residual less than 10−14 in less than 200 DR iterations

and the generators of real radical is computed to degree 3. The GIF-FDR algorithm correctly

yields to high accuracy the generator (x + y) of the real radical to degree 1 as predicted by

Theorem 4.7.5.

We compare it with SeDuMi(CVX), SeDuMi(CVX) obtains a rank 4 moment matrix with 9

decimal accuracy without maximizing the rank. However if we maximize the rank (by maxi-

mizing the trace which is used in other examples as well) in CVX, the accuracy is only to 2

decimal places.

Example 4.10.2 (Reducible quintic)

(1 + x + y)(x4 + y4 + 2) (4.33)

The moment matrix corresponding to (4.33) is a 21 × 21 matrix. We solve this problem using

Algorithm 4.7.1. Algorithm 4.7.1 can get 14 decimal accuracy and a maximum rank moment

matrix of rank 6 in about 1300 DR iterations with 2 facial reductions. The output approximates

the real radical ideal generated by 〈1 + x + y〉 and its prolongations to degree 5. The GIF-FDR

algorithm obtains the correct real radical generator (1 + x + y) to degree 1 as predicted by

Theorem 4.7.5.

We compare it with SeDuMi(CVX). SeDuMi(CVX) can get a rank 6 moment matrix with 13

decimal accuracy without maximizing the rank. However if we maximize the rank in CVX, we

only get 9 decimal accuracy.

4.10. Examples 117

Example 4.10.3 (Two variable geometric polynomial with 3 facial reductions)

1 + (x + y) + (x + y)2 + (x + y)3 (4.34)

The moment matrix corresponding to (4.34) is a 10 × 10 matrix. The coefficient matrix B is

[2, 2, 2, 1, 0, 1, 1, 1, 1, 1]T .

This example is a demonstration of the ill-conditioned case discussed in Section 4.5. We

first solve it using Algorithm 4.3.1 with rank r to be maximum in PSk
+
(X, r), which returns

solution of rank 5 with residual 10−7 after 2 facial reductions. However, the DR method for

solving the auxiliary problem (4.9b) converges very slowly. So we check the eigenvalues of

solution of the auxiliary problem (4.9b). After the first facial reduction, the eigenvalues are

0.5, 0.2, 0.18, 0.08, 0, 0, 0, 0, 0. So we drop the fourth one and set r = 3. We resolve (4.9b)

using the DR method, which again is quite slow. So we check the eigenvalues and they are now

0.709, 0.29, 0.00002, 0, 0, 0, 0, 0, 0, 0. The third one is very small so we drop it and set r = 2.

Then we resolve (4.9b) with r = 2. This time the auxiliary problem is solved with residual

10−15. Then a third facial reduction is done by setting r = 3 and the residual is 10−14.

After 3 facial reductions, the face is reduced to dimension 4 and the moment matrix is ob-

tained with residual 10−13. The eigenvalues of the final moment matrix are 4.70, 3.48, 0.89, 0.59,

0, 0, 0, 0, 0, 0 which gives the correct maximum rank of 4.

We compare it with SeDuMi(CVX) SDP solver. If we maximize the rank in CVX, we can

obtain a moment matrix with residual about 10−9, the moment matrix has 8 positive eigenvalues

and the 5th eigenvalue is 3 × 10−5. So in order to get the correct maximum rank, the threshold

has to be set to 10−4 which is not accurate. If we do not maximize the rank, the residual is

similar only the threshold is slightly better which is 10−5.

This example involves 3 facial reductions, the size of the problem after each facial reduction

is 10, 9, 7, 4. Actually, this example has singularity degree 2 if we don’t count the first “trivial”

facial reduction. If we set the rank to be 5 when solving the auxiliary problem, it only returns

a solution of rank 4 meaning we can’t reduce the problem to the minimal face by solving the

auxiliary problem only once. We tried the DR method to maximize the rank of the auxiliary

problem with random initial values 100 times, all yielding solutions of rank 4.

Actually we can prove the singularity is more than 1. We know the real radical of this

118Chapter 4. MaximumRankMomentMatrices by FacialReduction andDouglas-RachfordMethod

polynomial system is {1+ x+y, x+ x2 + xy, y+ xy+y2, x2 + x3 + x2y, xy+ x2y+ xy2, y2 + xy2 +y3} to

degree 3. Let N be the coefficient matrix of this polynomial system. Then Q = VT NNT V will be

the orthogonal complement of the primal problem Ā(X) = b̄, X � 0 with rank 5 where VT B = 0.

If the singularity degree is 1, then Q =
∑m

i=1 Āiyi must be consistent (b̄T y = 0 =⇒ y0 = 0).

By checking the rank of [Ā, s2vec(Q)] and Ā, we found the linear system is inconsistent so the

singularity degree is 2.

Application of Algorithm 4.7.1 yields the correct generators of the real radical up to degree

3. Application of GIF-FDR algorithm yields the generators of real radical to degree 1 which

is 1 + x + y.

Example 4.10.4 [10]

f = {2yz − y, 2y2 + y, xy, 4x2z + 4z3 + y} (4.35)

The real radical of this polynomial system is [10]:

{z2 + y/2, yz − y/2, y2 + y/2, xz, xy, y + z}

The moment matrix of this problem is 20 × 20. We use Algorithm 4.3.1 to solve for maximum

rank moment matrix. The sizes of the SDP problem are [20, 16, 14, 8] after 3 facial reductions.

The residual of the auxiliary problem at each facial reduction is 10−15, 10−14. (The first facial

reduction is done by Matlab eigenvalue decomposition so we don’t put its residual here.) The

moment matrix is solved with residual 10−13 and the maximum rank is 8.

We compare it with SeDuMi(CVX) which shows very poor performance. If we maximize

the rank in CVX, the residual of the moment matrix solved by SeDuMi(CVX) is 8.5 × 10−11

with 9 positive eigenvalues, of which 6 eigenvalues are greater than 0.1 and the other three

eigenvalues are around 5 × 10−7. If we do not maximize the rank in CVX, then the residual is

8×10−10. But to get the correct rank, the threshold for the eigenvalues has to be set to 1×10−7.

So in general, it is very difficult to use SeDuMi(CVX) to get the correct maximum rank.

As the computations in the above examples and Table 4.1,4.2 demonstrate, the traditional

interior point SDP solver SeDuMi(CVX) is not the right choice for computing the maximum

rank moment matrices as it usually yields poorer performance when it is trying to maximize

4.10. Examples 119

min # FR max # FR rank (FR) Singlty deg Res(FR) Res(CVX)

Ex 4.32 2 3 10, 9, 4 1 10−14 10−9

Ex 4.33 2 unknown 21, 20, 6 1 10−14 10−9

Ex 4.34 3 4 10, 9, 7, 4 2 10−13 10−9

Ex 4.10.4 3 4 20, 16, 14, 8 2 10−13 10−9

Table 4.1: Comparison between facial reduction and SeDuMi (1) All data is obtained by using

minimal number of facial reductions; Here: min (max) # FR means minimal (maximum) number of

facial reductions in our tests; rank(FR) means the size of the problem after each facial reduction, the first

one is the size of the original problem; Singlty degree is the singularity degree of the SDP problem after

the 1st facial reduction; Res(FR) is the residual of the final moment matrix using facial reduction and DR

iterations (Algorithm 4.3.1); Res(CVX) is the residual of the final moment matrix using CVX(SeDuMi).

max rank res each FR # DR each FR thres FR thres CVX

Ex 4.32 4 10−15, 10−15 120, 7 10−16 10−12

Ex 4.33 6 10−15, 10−14 267, 6 10−16 10−9

Ex 4.34 4 10−15, 10−14, 10−15 260, 143, 1 10−16 10−5

Ex 4.10.4 8 10−15, 10−14, 10−14 625, 192, 29 10−16 10−7

Table 4.2: Comparison between facial reduction and SeDuMi (2) All data obtained here is by using

minimal number of facial reductions; max rank is the maximum rank of the moment matrix; res each FR

is the residual of solving the corresponding SDP problem by DR after each facial reduction; # DR each

FR is the number of DR iterations to solve the corresponding SDP problem after each facial reduction;

thres FR is the tolerance to obtain the correct maximum rank using facial reductions (Algorithm 4.3.1);

thres CVX is the tolerance to obtain the correct maximum rank using CVX(SeDuMi);

120Chapter 4. MaximumRankMomentMatrices by FacialReduction andDouglas-RachfordMethod

rank. It even gets better performance without maximizing the rank! With facial reductions and

the DR method, we can get much better accuracy and also the correct maximum rank.

In the above examples, Algorithm 4.7.1 and GIF-FDR follow the same path except that

GIF-FDR executes an extra step which reduces the degree of the output. Generally, however,

the paths of these two algorithms can be quite different.

4.11 Conclusion

SDP feasibility problems typically involve the intersection of the convex cone of semi-definite

matrices with a linear manifold. Their importance in applications has led to the development of

many specific algorithms. However these feasibility problems are often marginally infeasible,

i.e., they do not satisfy strict feasibility as is the case for our polynomial applications. Such

problems are ill-posed and ill-conditioned.

This chapter is part of a series in which we exploit facial reduction and its application

systems of real polynomial and differential equations for real solutions. The current work is

directed at guaranteeing the maximal rank property and the ideal-like condition to ensure all

the generators of the real radical up to a given degree are captured. It also establishes the first

examples of additional facial reduction that are effective in practice for polynomial systems.

This builds on our work in [34] in which we introduced facial reduction, for the class of

SDP problems arising from analysis and solution of systems of real polynomial equations for

real solutions. Facial reduction yields an equivalent smaller problem for which there are strictly

feasible generic points. Facial reduction also reduces the size of the moment matrices occurring

in the application of SDP methods. For example the determination of a k × k moment matrix

for a problem with m linearly independent constraints is reduced to a (k−m)× (k−m) moment

matrix by one facial reduction. The high accuracy required by facial reduction and also the

ill-conditioning commonly encountered in numerical polynomial algebra [43] motivated us to

implement Douglas-Rachford iteration in [34].

A fundamental open problem is to generalize the work of [26, 42] to positive dimensional

ideals. The algorithm of [32, 31] for a given input real polynomial system P, modulo the

Bibliography 121

successful application of SDP methods at each of its steps, computes a Pommaret basis Q:

R
√
〈P〉R ⊇ 〈Q〉R ⊇ 〈P〉R (4.36)

and would provide a solution to this open problem if it is proved that 〈Q〉R = R
√
〈P〉R. We believe

that the work [32, 31] establishes an important feature – involutivity – that will necessarily be

a main condition of any theorem and algorithm characterizing the real radical. Involutivity is

a natural condition, since any solution of the above open problem using SDP, if it establishes

radical ideal membership, will necessarily need (at least implicitly) a real radical Gröbner

basis. Our algorithm, uses geometric involutivity, and similarly gives an intermediate ideal,

which constitutes another variation on this family of conjectures.

An important open problem is the following: Give an numerical algorithm, capable in

principle of determining an approximate real point on each component of a real variety. We

note that the methods of Wu and Reid [48] and Hauenstein [22] only answer this question

under certain conditions, say that the ideal is real radical and defined by a regular sequence.

Also see [30], which gives an alternative extension of complex numerical algebraic geometry

to the reals, in the complex curve case.

Recently, Hauenstein et al [10] have made progress on this problem by using sample points

determined by Hauenstein’s critical point algorithm which is able to certify the generators of

the real radical ideal in some cases. Our results Theorem 4.7.1 and Theorem 4.7.5 enables the

determination of the generators up to a given degree. Thus gives an answer to the open problem

of real radical ideal membership test left in [10]. Potentially, the efficiency for computing the

sample points can also be improved which will be described in a subsequent work.

Bibliography

[1] A. Alfakih and H. Wolkowicz. Matrix completion problems. In Handbook of semidefinite

programming, volume 27 of Internat. Ser. Oper. Res. Management Sci., pages 533–545.

Kluwer Acad. Publ., Boston, MA, 2000. 54, 94

[2] F.J.A. Artacho, J.M. Borwein, and M.K. Tam. Recent results on Douglas-Rachford meth-

ods. Serdica Mathematical Journal, 39:313–330, 2013. 73, 105

122Chapter 4. MaximumRankMomentMatrices by FacialReduction andDouglas-RachfordMethod

[3] H.H. Bauschke, J.Y. Bello Cruz, T.T.A. Nghia, H.M. Phan, and X. Wang. The rate of

linear convergence of the Douglas-Rachford algorithm for subspaces is the cosine of the

Friedrichs angle. J. Approx. Theory, 185:63–79, 2014. 75, 105

[4] H.H. Bauschke and D. Noll. On the local convergence of the Douglas-Rachford algo-

rithm. Arch. Math. (Basel), 102(6):589–600, 2014. 75, 105

[5] G. Blekherman, P.A. Parrilo, and R.R. Thomas, editors. Semidefinite optimization and

convex algebraic geometry, volume 13 of MOS-SIAM Series on Optimization. Society

for Industrial and Applied Mathematics (SIAM), Philadelphia, PA; Mathematical Opti-

mization Society, Philadelphia, PA, 2013. 25, 55, 56, 68, 94

[6] J. Bonasia, F. Lemaire, G.J. Reid, and L. Zhi. Determination of approximate symmetries

of differential equations. Group Theory and Numerical Analysis, 39:249, 2005. 24, 31,

33, 35, 59, 61, 112

[7] J.M. Borwein and M.K. Tam. A Cyclic Douglas–Rachford Iteration Scheme. J. Optim.

Theory Appl., 160(1):1–29, 2014. 73, 74, 105

[8] J.M. Borwein and H. Wolkowicz. Facial reduction for a cone-convex programming prob-

lem. J. Austral. Math. Soc. Ser. A, 30(3):369–380, 1980/81. 12, 54, 94, 98, 106

[9] J.M. Borwein and H. Wolkowicz. Regularizing the abstract convex program. J. Math.

Anal. Appl., 83(2):495–530, 1981. 12, 54, 94, 98, 106

[10] D. Brake, J. Hauenstein, and A. Liddell. Numerically validating the completeness of the

real solution set of a system of polynomial equations. Procedings of the 41th International

Symposium on Symbolic and Algebraic Computation, 2016. 1, 115, 118, 121, 130

[11] Y-L. Cheung, S. Schurr, and H. Wolkowicz. Preprocessing and regularization for degen-

erate semidefinite programs. In D.H. Bailey, H.H. Bauschke, P. Borwein, F. Garvan,

M. Thera, J. Vanderwerff, and H. Wolkowicz, editors, Computational and Analytical

Mathematics, In Honor of Jonathan Borwein’s 60th Birthday, volume 50 of Springer

Proceedings in Mathematics & Statistics, pages 225–276. Springer, 2013. 12, 70, 72, 97,

98

Bibliography 123

[12] Y.-L. Cheung and H. Wolkowicz. Sensitivity analysis of semidefinite programs with-

out strong duality. Technical report, University of Waterloo, Waterloo, Ontario, 2014.

submitted June 2014, 37 pages. 54, 94

[13] David Cox, John Little, and Donal O’shea. Ideals, varieties, and algorithms, volume 3.

Springer, 1992. 2, 7, 113

[14] RE Curto and LA Fialkow. Solution of the truncated complex moment problem for flat

data-introduction. Memoirs of the American Mathematical Society, 119(568):1, 1996. 13,

15, 16, 17, 25, 108, 109, 110

[15] Jim Douglas, JR and H.H. Rachford, JR. On the numerical solution of heat conduction

problems in two and three space variables. Trans. Amer. Math. Soc., 82:421–439, 1956.

73, 105

[16] D. Drusvyatskiy, N. Krislock, Y-L. Cheung Voronin, and H. Wolkowicz. Noisy sensor

network localization: robust facial reduction and the Pareto frontier. Technical report,

University of Waterloo, Waterloo, Ontario, 2014. arXiv:1410.6852, 20 pages. 12, 54, 94

[17] D. Drusvyatskiy, G. Li, and H. Wolkowicz. Alternating projections for ill-posed semi-

denite feasibility problems. Technical report, University of Waterloo, Waterloo, Ontario,

2014. submitted Sept. 2014, 12 pages. 54, 69, 94, 102

[18] D. Drusvyatskiy, G. Pataki, and H. Wolkowicz. Coordinate shadows of semi-

definite and euclidean distance matrices. Math. Programming, 25(2):1160–1178, 2015.

ArXiv:1405.2037.v1. 12, 98

[19] M. Dür, B. Jargalsaikhan, and G. Still. The Slater condition is generic in linear conic

programming. Technical report, University of Trier, Trier, Germany, 2012. 54, 94

[20] R. Escalante and M. Raydan. Alternating projection methods, volume 8 of Fundamentals

of Algorithms. Society for Industrial and Applied Mathematics (SIAM), Philadelphia,

PA, 2011. 72, 103

124Chapter 4. MaximumRankMomentMatrices by FacialReduction andDouglas-RachfordMethod

[21] V.P. Gerdt and Y.A. Blinkov. Involutive bases of polynomial ideals. Mathematics and

Computers in Simulation, 45(5):519–541, 1998. 7, 24, 29, 59, 112

[22] Jonathan D Hauenstein. Numerically computing real points on algebraic sets. Acta ap-

plicandae mathematicae, 125(1):105–119, 2013. 5, 26, 83, 85, 121

[23] Nicholas J. Higham. Computing a nearest symmetric positive semidefinite matrix. Linear

Algebra and its Applications, 103:103 – 118, 1988. 103

[24] N. Krislock and H. Wolkowicz. Explicit sensor network localization using semidefinite

representations and facial reductions. SIAM Journal on Optimization, 20(5):2679–2708,

2010. 12, 54, 94

[25] M. Kuranishi. On e. cartan’s prolongation theorem of exterior differential systems. Amer-

ican Journal of Mathematics, pages 1–47, 1957. 24, 29, 33, 59, 112

[26] J.B. Lasserre, M. Laurent, and P. Rostalski. A prolongation–projection algorithm for com-

puting the finite real variety of an ideal. Theoretical Computer Science, 410(27):2685–

2700, 2009. 1, 8, 25, 47, 53, 54, 55, 64, 84, 93, 94, 120

[27] Jean Bernard Lasserre, Monique Laurent, and Philipp Rostalski. Semidefinite character-

ization and computation of zero-dimensional real radical ideals. Foundations of Compu-

tational Mathematics, 8(5):607–647, 2008. 13, 108, 110, 128

[28] M. Laurent and P. Rostalski. The approach of moments for polynomial equations. In

Miguel F. Anjos and Jean B. Lasserre, editors, Handbook on semidefinite, conic and

polynomial optimization, International Series in Operations Research & Management

Science, 166, pages 25–60. Springer, New York, 2012. 10, 13, 14, 15, 16, 17, 36, 38,

40, 46, 47, 58, 95, 96, 128, 129

[29] P. Lions and B. Mercier. Splitting algorithms for the sum of two nonlinear operators.

SIAM Journal on Numerical Analysis, 16(6):964–979, 1979. 73, 105

[30] Y. Lu, D.J. Bates, A.J. Sommese, and C.W. Wampler. Finding all real points of a complex

curve. In Algebra, geometry and their interactions, volume 448 of Contemp. Math., pages

183–205. Amer. Math. Soc., Providence, RI, 2007. 85, 121

Bibliography 125

[31] Y. Ma. Polynomial Optimization via Low-rank Matrix Completion and Semidefinite

Programming. PhD thesis, Academy of Mathematics and Systems Science, Chinese

Academy of Science, 2012. 8, 53, 55, 62, 77, 84, 93, 120, 121

[32] Y. Ma, C. Wang, and L. Zhi. A certificate for semidefinite relaxations in computing

positive dimensional real varieties. Journal of Symbolic Computation, 72:1 – 20, 2016.

vii, x, 1, 8, 53, 55, 62, 77, 78, 79, 80, 81, 82, 84, 93, 120, 121, 128, 129

[33] Carl D Meyer. Matrix analysis and applied linear algebra, volume 2. Siam, 2000. 104

[34] G. Reid, F. Wang, H. Wolkowicz, and W. Wu. Semidefinite Programming and facial

reduction for Systems of Polynomial Equations. Preprint arXiv:1504.00931v1, 2015. 1,

93, 95, 96, 108, 112, 120

[35] G.J. Reid, J. Tang, and L. Zhi. A complete symbolic-numeric linear method for camera

pose determination. In Proceedings of the 2003 international symposium on Symbolic

and algebraic computation, pages 215–223. ACM, 2003. 24, 31, 33, 59, 112

[36] G.J. Reid, F. Wang, and W. Wu. Geometric involutive bases for positive dimensional poly-

nomial ideals and sdp methods. Technical report, Department of Appl. Math., University

of Western Ontario, 2014. 57, 59, 60, 62, 112

[37] G.J. Reid and L. Zhi. Solving polynomial systems via symbolic-numeric reduction to

geometric involutive form. Journal of Symbolic Computation, 44(3):280–291, 2009. 24,

59, 112

[38] R. Scott, G.J. Reid, W. Wu, and L. Zhi. Geometric involutive bases and applications

to approximate commutative algebra. In Lorenzo Robbiano and John Abbott, editors,

Approximate Commutative Algebra, pages 99–124. Springer, 2010. 24, 37, 43, 55, 59,

60, 95, 112

[39] Werner M Seiler. Involution: The formal theory of differential equations and its applica-

tions in computer algebra, volume 24 of Algorithms and Computation in Mathematics.

Springer, 2010. 29, 112

126Chapter 4. MaximumRankMomentMatrices by FacialReduction andDouglas-RachfordMethod

[40] Yoshiyuki Sekiguchi and Hayato Waki. Perturbation analysis of singular semidefinite and

its application to a control problem. Preprint arXiv:1607.055681, 2016. 106, 108

[41] A.J. Sommese and C.W. Wampler. The Numerical solution of systems of polynomials

arising in engineering and science, volume 99. World Scientific, 2005. 1, 4, 25, 53, 93

[42] F. Sottile. Real solutions to equations from geometry, volume 57 of University Lecture

Series. American Mathematical Society, Providence, RI, 2011. 8, 53, 54, 55, 56, 84, 93,

94, 120

[43] Hans J. Stetter. Numerical polynomial algebra. Society for Industrial and Applied Math-

ematics (SIAM), Philadelphia, PA, 2004. 29, 57, 84, 85, 120, 129

[44] G.W. Stewart. On the continuity of the generalized inverse. SIAM J. Appl. Math., 17:33–

45, 1969. 106

[45] J.F. Sturm. Error bounds for linear matrix inequalities. SIAM J. Optim., 10(4):1228–1248

(electronic), 2000. 102

[46] A.D. Wittkopf and G.J. Reid. Fast differential elimination in c: The cdiffelim environ-

ment. Computer Physics Communications, 139(2):192–217, 2001. 24, 31, 33, 59, 112,

128

[47] H. Wolkowicz and Q. Zhao. Semidefinite programming relaxations for the graph parti-

tioning problem. Discrete Appl. Math., 96/97:461–479, 1999. Selected for the special

Editors’ Choice, Edition 1999. 54, 94

[48] W. Wu and G.J. Reid. Finding points on real solution components and applications to

differential polynomial systems. In Proceedings of the 38th international symposium on

International symposium on symbolic and algebraic computation, pages 339–346. ACM,

2013. 5, 26, 83, 85, 121

[49] X. Wu and L. Zhi. Determining singular solutions of polynomial systems via symbolic–

numeric reduction to geometric involutive forms. Journal of Symbolic Computation,

47(3):227–238, 2012. 24, 59, 112

Bibliography 127

[50] Q. Zhao, S.E. Karisch, F. Rendl, and H. Wolkowicz. Semidefinite programming re-

laxations for the quadratic assignment problem. J. Comb. Optim., 2(1):71–109, 1998.

Semidefinite programming and interior-point approaches for combinatorial optimization

problems (Fields Institute, Toronto, ON, 1996). 54, 94

Chapter 5

Conclusion

Polynomial systems and the need to analyze their real solutions occur frequently in applica-

tions. Many methods exist for finding some approximate solutions based on initial guesses suf-

ficiently close to a desired solution. Much less is available for numerically describing aspects

of all solutions, especially in the case of real manifolds of solutions. Currently the most promis-

ing methods, critical point methods, theoretically find at least one point on each connected real

solution component. However, these methods suffer from serious numerical difficulties due

to multiplicities, singularities and sums of squares. The main goal of this thesis is to find an

equivalent form of the polynomial system, the real radical, which is free of multiplicities and

sums of squares.

Our work to numerically determine the real radical was also motivated by the break-

throughs by Lasserre et al [5, 6]. They showed that the real radical could be numerically

determined by reformulation as a maximum-rank SDP problem, with a rank stabilization crite-

rion in the 0-dimensional case. Further they improved their 0-dimensional approach by using a

prolongation-projection method based on the approach by using the geometric involutive form

(GIF) of Wittkopf and Reid [9]. Ma, Wang and Zhi [7] conjectured an extension to positive

dimension of determination of real radical by using Pommaret-involutive bases, coupled with

an interior point solver.

In chapter 2, an initial exploration is made of an extension to positive dimension using the

GIF coupled with the interior point solver SeDuMi. A method is given for extracting lower

degree GIF. Reduction of degree techniques are critical and have been extensively developed

128

129

in the symbolic case for Gröbner bases [4] and triangular decompositions [2, 3]. GIF are

orthogonal bases, found using stable SVD techniques, unlike non-orthogonal Pommoret Bases

used in Ma, Wang and Zhi [7]. In chapter 2, we gave a stopping criterion for computing an

intermediate basis between a polynomial system and its real radical.

The work [6] motivated us to combine SDP – moment matrix methods with our geomet-

ric involutive bases to approximate positive dimensional real radical ideals. In particular, the

termination criterion rank(M(Q)) = dim ker GIF(Q) in Algorithm 2.6.1 is equivalent to the rank

stabilization condition in Lasserre [6] for zero dimensional systems.

The approach of chapter 3 is motivated by geometrical and accuracy issues. In particular,

geometrically the generic point that is computed in our SDP Moment matrix approach lies

at the intersection of a cone of semi-definite matrix and an affine space tangent to the cone,

i.e., at a face of the cone. Arbitrarily small perturbations move the generic point to infeasible

region with associated numerical difficulties. To address the difficulty Borwein and Wolkowicz

introduced “facial reduction”. Working with Wolkowicz, in Chapter 3, we introduced facial

reduction for our SDP problems. Facial reduction yields an equivalent problem for which there

are strictly feasible points on the interior of a face. Facial reduction also reduces the size of the

moment matrices occurring in the application of SDP methods. For example the determination

of a k × k moment matrix for a problem with m linearly independent constraints is reduced to

a (k − m) × (k − m) moment matrix by one facial reduction. The high accuracy required by

facial reduction and also the ill-conditioning commonly encountered in numerical polynomial

algebra [8] motivated us to implement Douglas-Rachford iteration. We use facial reduction

with our MATLAB implementation of Douglas-Rachford iteration (our FDR method). In the

case of only one constraint, say as in the case of univariate polynomials, one might expect that

the improvement in convergence due to that facial reduction would be minor. However we

present a class of random univariate polynomials, where one such facial reduction combined

with DR iteration, yields the real radical much more efficiently than the standard interior point

method in SeDuMi.

In chapter 4, we studied cases with more than 1 facial reduction and proved the maximum

rank property is attained by our method. We gave an algorithm to compute the generators of

real radical ideal up to a given degree.

130 Chapter 5. Conclusion

We established an algorithm which can compute the maximum rank solution using primal

and dual form. We gave the first examples which involve more than 1 facial reductions (singu-

larity degree more than 1). We showed in the examples that the maximum rank solution can be

computed accurately even if the singularity degree is more than 1. Our algorithm based on DR

iteration was much more accurate than the interior point solver SeDuMi on our test examples.

In addition we discussed the well-posedness of facial reduction. We showed the maximum

rank doesn’t change under sufficiently small perturbations.

Highlights of this thesis:

(0) In comparison to previous work, the thesis gives a much deeper exploration of the

underlying numerics and geometry of SDP-Moment matrix techniques for polynomial systems.

(1) We gave an improved geometric involutive bases algorithm (GIF) which involves pro-

jection to lower degree equivalent systems reducing the cost.

(2) Combining with facial reduction and powerful Douglas-Rachford projection-reflection

method, we are able to compute the maximum rank moment matrix with much higher accuracy

and in a more stable way than the classical interior point solver SeDuMi. Our examples show

that facial reduction is essential in order to get accurate and reliable results especially for

examples with singularity degree more than 1.

(3) Compared with the ”local” method to compute the real radical ideal, we give a stable

global method to compute the generators of real radical ideal up to any given degree. This also

yields a solution of the real radical membership problem. Previous approximate real radical

membership algorithms don’t have a degree bound, so no guarantee for termination in finite

many steps. Combined with the recent work by Hauenstein et all [1], one can have a complete

algorithm for computing the real radical ideal in positive dimension which terminates in finitely

many steps.

(4) This thesis further contributes to recent remarkable connections between Algebraic Ge-

ometry (an area with relatively few researchers), and convex optimization (a vast area with

many practitioners).

Future work:

(1) We are planning to do a more thorough analysis for the perturbation of facial reduction

algorithm.

Bibliography 131

(2) We are also planning to develop a better critical point method approach to be combined

with the approach described in this thesis to compute the real radical ideal in positive dimension

case.

(3) The widespread applications of real radicals in Science, Engineering and Mathemat-

ics motivate the development of user-friendly implementations of the algorithms of the the-

sis.

Bibliography

[1] D. Brake, J. Hauenstein, and A. Liddell. Numerically validating the completeness of the

real solution set of a system of polynomial equations. Procedings of the 41th International

Symposium on Symbolic and Algebraic Computation, 2016. 1, 115, 118, 121, 130

[2] Changbo Chen, James H Davenport, John P May, Marc Moreno Maza, Bican Xia, and

Rong Xiao. Triangular decomposition of semi-algebraic systems. In Proceedings of the

2010 International Symposium on Symbolic and Algebraic Computation, pages 187–194.

ACM, 2010. 25, 46, 129

[3] Changbo Chen, Marc Moreno Maza, Bican Xia, and Lu Yang. Computing cylindrical

algebraic decomposition via triangular decomposition. In Proceedings of the 2009 inter-

national symposium on Symbolic and algebraic computation, pages 95–102. ACM, 2009.

25, 46, 129

[4] Jean-Charles Faugere. A new efficient algorithm for computing gröbner bases. Journal of

pure and applied algebra, 139(1):61–88, 1999. 46, 129

[5] Jean Bernard Lasserre, Monique Laurent, and Philipp Rostalski. Semidefinite characteri-

zation and computation of zero-dimensional real radical ideals. Foundations of Computa-

tional Mathematics, 8(5):607–647, 2008. 13, 108, 110, 128

[6] M. Laurent and P. Rostalski. The approach of moments for polynomial equations. In

Miguel F. Anjos and Jean B. Lasserre, editors, Handbook on semidefinite, conic and poly-

nomial optimization, International Series in Operations Research & Management Science,

132 Chapter 5. Conclusion

166, pages 25–60. Springer, New York, 2012. 10, 13, 14, 15, 16, 17, 36, 38, 40, 46, 47,

58, 95, 96, 128, 129

[7] Y. Ma, C. Wang, and L. Zhi. A certificate for semidefinite relaxations in computing positive

dimensional real varieties. Journal of Symbolic Computation, 72:1 – 20, 2016. vii, x, 1, 8,

53, 55, 62, 77, 78, 79, 80, 81, 82, 84, 93, 120, 121, 128, 129

[8] Hans J. Stetter. Numerical polynomial algebra. Society for Industrial and Applied Mathe-

matics (SIAM), Philadelphia, PA, 2004. 29, 57, 84, 85, 120, 129

[9] A.D. Wittkopf and G.J. Reid. Fast differential elimination in c: The cdiffelim environment.

Computer Physics Communications, 139(2):192–217, 2001. 24, 31, 33, 59, 112, 128

Appendix A

Proof of Primal Theorem of Alternative

Theorem A.0.1 (Primal Theorem of alternative) Suppose A : Sk
+ → R

m is a linear trans-

formation, b ∈ Rm, P ∈ Sk and Z ∈ Sk . Then exactly one of the following alternative systems

is consistent.

(I) 0 ≺ P ∈ F := {P ∈ Sk : A(P) = b, P � 0} (A.1a)

(II) 0 , Z = A∗y � 0, bT y = 0. (A.1b)

Proof =⇒: Assume (A.1a) holds and the left hand side of (A.1b) holds, then

0 = bT y = 〈A(P), y〉 (A.2)

=

n∑
i=1

trace(AiP)yi =

n∑
i=1

trace(AiyiP) (A.3)

= trace(
n∑

i=1

(Aiyi)P) = trace(ZP) (A.4)

= 〈P,Z〉. (A.5)

Then 〈P,Z〉 = 0 implies PZ = 0. So range P ⊆ null Z. Therefore, if P � 0, then range P = Rn

and null Z = Rn, so Z = 0.

⇐=: To show (A.1b) implies (A.1a), we define:

Āi =

 −bi 0

0 Ai

 , X̄ ∈ Sk+1, Ȳ ∈ Sk+1.

133

134 Chapter A. Proof of Primal Theorem of Alternative

Then (A.1b) is equivalent to saying Z̄ = Ā∗y � 0 =⇒ Z̄ = 0. To see this, suppose Z̄ = Ā∗y �

0, then it implies −bT y ≥ 0. But weak duality also implies −bT y ≤ 0, so bT y = 0.

So suppose Z̄ = Ā∗y � 0 only has zero solution, we want to prove that (A.1a) holds, or

equivalently, to prove that ∃X̄ ∈ Sk+1, Ā(X̄) = 0, X̄ � 0.

Suppose y1Ā1 + · · · + ynĀn � 0 only has zero solution, then the linear subspace L = y1Ā1 +

· · · + ynĀn is disjoint from the interior of the cone Sk+1
+ . By the hyperplane separation theorem,

there exists a hyperplane containing this linear subspace that is disjoint from the interior of

Sk+1
+ . So there exists X̄ such that Ȳ · X̄ = 0 for Ȳ ∈ L and Ȳ · X̄ > 0 for Ȳ , 0 ∈ Sk+1

+ . Note

that the top left element of X̄ can’t be zero, otherwise Ȳ can be chosen in this way such that

only the top left element is one while all the others are zero. So Ȳ · X̄ = 0, Ȳ � 0, Ȳ , 0,

a contradiction. Therefore, we can infer X̄ � 0. Because X is a principal submatrix of X̄, we

conclude X � 0. Also Ā(X̄) = 0 since Āi ∈ L which impliesA(X) = b.

Appendix B

Copyright Release

• A version of Chapter 2 has been published by Proceedings of the 2014 Symposium on

Symbolic-Numeric Computation, Pages 41-42. ACM, 2014. In the publisher’s website

for ACM Author Rights and Publishing Policy under section 2.5, they state:

The original Owner/Author permanently holds these rights:

– Post the Accepted Version of the Work on (1) the Author’s home page, (2) the

Owner’s institutional repository, (3) any repository legally mandated by an agency

funding the research on which the Work is based, and (4) any non-commercial

repository or aggregation that does not duplicate ACM tables of contents, i.e.,

whose patterns of links do not substantially duplicate an ACM-copyrighted vol-

ume or issue. Non-commercial repositories are here understood as repositories

owned by non-profit organizations that do not charge a fee for accessing deposited

articles and that do not sell advertising or otherwise profit from serving articles.

– Post an ”Author-Izer” link enabling free downloads of the Version of Record in the

ACM Digital Library on (1) the Author’s home page or (2) the Owner’s institutional

repository;

• A version of Chapter 3 has been submitted to Theoretical Computer Science, Elsevier.

In the publisher’s website, under “AUTHOR AND USER RIGHTS”, they state:

As a journal author, you have rights for a large range of use of your article, including

135

136 Chapter B. Copyright Release

use by your employing institute or company. These rights can be exercised without the

need to obtain specific permission.

• A preprint of Chapter 4 has been submitted to arXiv:1606.00491. The author can post

this preprint on the owner’s institution for free download without any permission from

arXiv.

Curriculum Vitae

Name: Fei Wang

Post-Secondary University of Western Ontario

Education and London, Ontario, Canada

Degrees: 20012 - 2016 Ph.D.

University of Waterloo

Waterloo, Canada

2010- 2011 M.S.

University of Science & Technology

Beijing, China

2006 - 2011 B.A.

Related Work Teaching Assistant

Experience: The University of Western Ontario

2012 - 2016

Publications:

• Greg Reid, Fei Wang and Wenyuan Wu. A note on geometric involutive bases for positive

dimensional polynomial ideals and SDP methods. Proceedings of the 2014 Symposium

on Symbolic-Numeric Computation, Pages 41-42. ACM, 2014.

137

138 Chapter B. Copyright Release

• Robert M. Corless, David J. Jeffrey and Fei Wang. The asymptotic analysis of some

interpolated nonlinear recurrence relations. Proceedings of the 39th International Sym-

posium on Symbolic and Algebraic Computation, Pages 115-121, ACM, 2014.

• Ming-Wen Chen, Xin-Feng Wang, Fei Wang and Guo-Biao Lin and Zi-Zong Wang. The

effect of interfacial kinetics on the morphological stability of a spherical particle. Journal

of Crystal Growth, Pages 20-23, Elsevier, 2013.

• Fei Wang. Proof of a series solution for Euler’s trinomial equation , submitted to ACM

Communications in Computer Algebra, 2016.

• Greg Reid, Fei Wang, Henry Wolkowicz and Wenyuan Wu. Facial Reduction and SDP

Methods for Systems of Polynomial Equations. submitted to Theoretical Computer Sci-

ence, arXiv:1504.00931, 2015.

	Computation of Real Radical Ideals by Semidefinite Programming and Iterative Methods
	Recommended Citation

	Introduction
	Real and complex solution sets (varieties) of systems of polynomial equations
	Equivalent systems of polynomials: generators of ideals and radicals of polynomial systems
	Introductory example of computation of the real radical using Moment Matrices and SDP
	SDP optimization
	Semidefinite Matrices
	Semidefinite Programs
	Face, minimal face and facial structure
	Facial reduction

	Moment problem
	Linear form, positive linear form and moment matrix
	Moment Problem
	Truncated Moment matrix and flat extension theorem
	Generic linear forms

	Outline of the contents of the thesis
	Contents of Chapter 2
	Contents of Chapter 3
	Contents of Chapter 4
	Conclusions are given in Chapter 5
	Appendices

	Bibliography

	Geometric involutive bases for positive dimensional polynomial ideals and SDP methods
	Introduction
	Brief background on ideals and varieties
	Some basic objects in complex algebraic geometry
	Some basic objects in real algebraic geometry

	Geometric prolongation and projection for polynomial systems
	Geometric involutive bases
	Symbol, class and Cartan involution test
	Projected involutive form algorithm

	Moment matrices and SDP
	Moment Matrices
	Moment matrix for univariate example

	Combining geometric involutive bases and moment matrix methods
	Geometric involutive form and moment matrix algorithms
	Two variable example
	Three variable example

	Discussion
	Bibliography

	Semidefinite Programming and facial reduction for Systems of Polynomial Equations
	Introduction
	Real radical ideals and moment matrices
	Real polynomial systems
	Moment matrices

	Geometric involutive bases
	Combining the moment matrix and geometric involutive form algorithms
	Facial reduction and projection methods
	Representations for linear constraints for moment problems
	First step of facial reduction
	Potential second facial reduction
	Backward stability for facial reduction steps

	Projection methods
	Method of alternating projections, MAP
	Douglas-Rachford reflection method

	Numerical experiments
	A class of random univariate polynomials
	Examples of Ma, Wang and Zhi MWZ:2012
	Intersecting higher dimensional cylinders

	Conclusion
	Bibliography

	Maximum Rank Moment Matrices by Facial Reduction and Douglas-Rachford Method
	Introduction
	Moment Matrices
	SDP and facial reduction
	Faces
	Theorems of the alternative
	Facial reduction
	Facial reduction maximum rank algorithm
	Transform of the auxiliary problem

	 Projection method
	Projection to the positive semidefinite cone
	Projection to an affine subspace
	Douglas-Rachford method

	The ill-conditioned case
	Well-posedness
	Computation of generators of the real radical up to a given degree
	A special case for determining positive dimensional real radical
	Comparison with Triangular decomposition of semi-algebraic sets
	Examples
	Conclusion
	Bibliography

	Conclusion
	Bibliography

	Proof of Primal Theorem of Alternative
	Copyright Release
	Curriculum Vitae

