687 research outputs found

    An edge-based matching kernel on commute-time spanning trees

    Get PDF

    Quantum kernels for unattributed graphs using discrete-time quantum walks

    Get PDF
    In this paper, we develop a new family of graph kernels where the graph structure is probed by means of a discrete-time quantum walk. Given a pair of graphs, we let a quantum walk evolve on each graph and compute a density matrix with each walk. With the density matrices for the pair of graphs to hand, the kernel between the graphs is defined as the negative exponential of the quantum Jensen–Shannon divergence between their density matrices. In order to cope with large graph structures, we propose to construct a sparser version of the original graphs using the simplification method introduced in Qiu and Hancock (2007). To this end, we compute the minimum spanning tree over the commute time matrix of a graph. This spanning tree representation minimizes the number of edges of the original graph while preserving most of its structural information. The kernel between two graphs is then computed on their respective minimum spanning trees. We evaluate the performance of the proposed kernels on several standard graph datasets and we demonstrate their effectiveness and efficiency

    A Quantum-inspired Similarity Measure for the Analysis of Complete Weighted Graphs

    Get PDF
    We develop a novel method for measuring the similarity between complete weighted graphs, which are probed by means of discrete-time quantum walks. Directly probing complete graphs using discrete-time quantum walks is intractable due to the cost of simulating the quantum walk. We overcome this problem by extracting a commute-time minimum spanning tree from the complete weighted graph. The spanning tree is probed by a discrete time quantum walk which is initialised using a weighted version of the Perron-Frobenius operator. This naturally encapsulates the edge weight information for the spanning tree extracted from the original graph. For each pair of complete weighted graphs to be compared, we simulate a discrete-time quantum walk on each of the corresponding commute time minimum spanning trees, and then compute the associated density matrices for the quantum walks. The probability of the walk visiting each edge of the spanning tree is given by the diagonal elements of the density matrices. The similarity between each pair of graphs is then computed using either a) the inner product or b) the negative exponential of the Jensen-Shannon divergence between the probability distributions. We show that in both cases the resulting similarity measure is positive definite and therefore corresponds to a kernel on the graphs. We perform a series of experiments on publicly available graph datasets from a variety of different domains, together with time-varying financial networks extracted from data for the New York Stock Exchange. Our experiments demonstrate the effectiveness of the proposed similarity measures

    Topological graph polynomials and quantum field theory, Part II: Mehler kernel theories

    Full text link
    We define a new topological polynomial extending the Bollobas-Riordan one, which obeys a four-term reduction relation of the deletion/contraction type and has a natural behavior under partial duality. This allows to write down a completely explicit combinatorial evaluation of the polynomials, occurring in the parametric representation of the non-commutative Grosse-Wulkenhaar quantum field theory. An explicit solution of the parametric representation for commutative field theories based on the Mehler kernel is also provided.Comment: 58 pages, 23 figures, correction in the references and addition of preprint number

    A constructive commutative quantum Lovasz Local Lemma, and beyond

    Get PDF
    The recently proven Quantum Lovasz Local Lemma generalises the well-known Lovasz Local Lemma. It states that, if a collection of subspace constraints are "weakly dependent", there necessarily exists a state satisfying all constraints. It implies e.g. that certain instances of the kQSAT quantum satisfiability problem are necessarily satisfiable, or that many-body systems with "not too many" interactions are always frustration-free. However, the QLLL only asserts existence; it says nothing about how to find the state. Inspired by Moser's breakthrough classical results, we present a constructive version of the QLLL in the setting of commuting constraints, proving that a simple quantum algorithm converges efficiently to the required state. In fact, we provide two different proofs, one using a novel quantum coupling argument, the other a more explicit combinatorial analysis. Both proofs are independent of the QLLL. So these results also provide independent, constructive proofs of the commutative QLLL itself, but strengthen it significantly by giving an efficient algorithm for finding the state whose existence is asserted by the QLLL. We give an application of the constructive commutative QLLL to convergence of CP maps. We also extend these results to the non-commutative setting. However, our proof of the general constructive QLLL relies on a conjecture which we are only able to prove in special cases.Comment: 43 pages, 2 conjectures, no figures; unresolved gap in the proof; see arXiv:1311.6474 or arXiv:1310.7766 for correct proofs of the symmetric cas

    Differential graded algebras for trivalent plane graphs and their representations

    Full text link
    To any trivalent plane graph embedded in the sphere, Casals and Murphy associate a differential graded algebra (dg-algebra), in which the underlying graded algebra is free associative over a commutative ring. Our first result is the construction of a generalization of the Casals--Murphy dg-algebra to non-commutative coefficients, for which we prove various functoriality properties not previously verified in the commutative setting. Our second result is to prove that rank rr representations of this dg-algebra, over a field F\mathbb{F}, correspond to colorings of the faces of the graph by elements of the Grassmannian Gr(r,2r;F)\operatorname{Gr}(r,2r;\mathbb{F}) so that bordering faces are transverse, up to the natural action of PGL2r(F)\operatorname{PGL}_{2r}(\mathbb{F}). Underlying the combinatorics, the dg-algebra is a computation of the fully non-commutative Legendrian contact dg-algebra for Legendrian satellites of Legendrian 2-weaves, though we do not prove as such in this paper. The graph coloring problem verifies that for Legendrian 2-weaves, rank rr representations of the Legendrian contact dg-algebra correspond to constructible sheaves of microlocal rank rr. This is the first such verification of this conjecture for an infinite family of Legendrian surfaces.Comment: Minor revision
    corecore