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Abstract—Bai and Hancock recently proposed a novel edge-
based matching kernel for graphs [1], by aligning depth-based
representations. Unfortunately, one drawback arising in their
kernel is the computational inefficiency for large graphs. This
follows the fact that their kernel is essentially defined on directed
line graphs. Moreover, the computational complexity of the kernel
is cubic in the vertex number of the line graph. Since the directed
line graph is a dual representation and each vertex represents
a directed arc residing on the edge of the original graph. For a
graph having n vertices, there may be at most n(n− 1) directed
arcs residing on the edges and thus at most n(n− 1) vertices in
the directed line graph. As a result, computing the kernel through
the line graphs may require time complexity O(n6) for the worst
case, making the kernel unapplicable for graphs having hundreds
of vertices. The aim of this paper is to overcome this inefficiency,
by proposing a new edge-based matching kernel. In order to cope
with large graph structures, we propose to construct a sparser
version of the original graph using the simplification method
introduced in [2]. More specifically, we compute the minimum
spanning tree over the commute time matrix of a graph. This
spanning tree representation minimizes the number of edges
of the original graph while preserving most of its structural
information. With this simplification method to hand, the new
edge-based matching kernel between two graphs is then computed
on the directed line graphs transformed from their respective
minimum spanning trees. We show that this strategy significantly
reduces the computational complexity to O(n3). We evaluate the
performance of the proposed kernels on several standard graph
datasets. The experimental results demonstrate the effectiveness
and efficiency.

I. INTRODUCTION

In pattern recognition, graph kernels are powerful tools
for structural analysis on graphs [3]. The advantages of using
graph kernels are twofold. First, graph kernels can characterize
a graph structure in a high dimensional space and thus better
preserve the topology information. Second, graph kernels pro-
vide an elegant way of making the standard machine learning
algorithms for vectors applicable for graph structures.

Most existing graph kernels fall into the instances of R-
convolution [4], that is a generic way to define a graph kernel.
For a pair of graphs, an R-convolution kernel is computed by
decomposing each graph into small substructures and counting
the pairs of isomorphic substructures. Generally speaking, a
new type of decomposition usually results in a new graph
kernel. Following this scenario, most existing graph kernels
can be generally categorized into three classes [1], i.e. graph
kernels based on comparing all pairs of a) walks [5], [6],
b) paths [7], [8] and c) restricted subgraph or subtree struc-
tures [9], [10], [11]. Unfortunately, all the aforementioned R-

convolution kernels suffer from the drawback of neglecting
structural correspondence information. This follows the fact
that all these kernels add an unit kernel value by roughly iden-
tifying a pair of isomorphic substructures, and cannot establish
reliable structural correspondences between the substructures.
This drawback limits the precise kernel-based similarity mea-
sure for graphs. To overcome the shortcoming, in our previous
work [12], we have developed a new depth-based matching
kernel for graphs. The depth-based matching kernel is based
on aligning depth-based representations of vertices, and is
computed by counting the number of matched vertex pairs.
Moreover, this kernel can be seen as an aligned subgraph
kernel that encapsulates location correspondence information
between pairwise subgraphs. As a result, the depth-based
matching kernel overcomes the shortcoming of neglecting
location correspondences between substructures arising in R-
convolution kernels.

To develop the depth-based matching kernel one step
further, in [1] we have developed an edge-based matching
kernel. More specifically, we transform each graph into a
directed line graph [13] and compute the depth-based repre-
sentations of vertices on the line graphs. The resulting edge-
based matching kernel is computed by aligning the vertex
representations. Since the directed line graph can expose the
original graph in a high dimensional space, the edge-based
matching kernel can reflect richer graph characteristics than the
depth-based matching kernel on original graphs. Unfortunately,
the edge-based matching kernel may suffer from computational
inefficiency for large graphs. This is because the computational
complexity of the edge-based matching kernel is cubic in the
vertex number of the line graph. Since the directed line graph
is a dual representation and each vertex represents a directed
arc residing on the edge of the original graph [13]. For a graph
having n vertices, there may be at most n(n−1) directed arcs
residing on the edges and thus at most n(n−1) vertices in the
directed line graph. As a result, computing the kernel through
the line graphs may require time complexity O(n6) for the
worst case, making the kernel unapplicable for graphs having
hundreds of vertices.

The aim of this paper is to overcome this inefficiency,
by proposing a new edge-based matching kernel. In order to
cope with large graph structures, we propose to construct a
sparser version of the original graph and reduce the number
of the edges, through the commute time [2]. For a graph
G(V,E) and a pair of vertices v, u ∈ V , the commute time
CT (u, v) is the expected time for the random walk to travel
from u to v and then return. Since the commute time can be
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anticipated to be a more robust measure of the proximity of
data than the raw proximity matrix [2], the commute time is
robust with respect to the structural noise of a graph, e.g.,
the edge deletion. As a result, the commute time provides us
an elegant way of represent an ideal candidate to sparsify the
original graph structure. More specifically, we compute the
minimum spanning tree over the commute time matrix of an
original graph [2]. This spanning tree representation minimizes
the number of edges of the original graph while preserving
most of its structural information, relying on the property of
the commute time. With this simplification method to hand,
the new edge-based matching kernel between two graphs is
then computed on the directed line graphs transformed from
their respective minimum spanning trees. We show that this
strategy significantly reduces the computational complexity to
O(n3). We evaluate the performance of the proposed kernels
on several standard graph datasets. The experimental results
demonstrate the effectiveness and efficiency.

The remainder of this paper is organized as follows. Section
II reviews the concept of the original edge-based matching
kernel developed in [1]. Section III defines the new edge-based
matching kernel on the commute-time spanning trees. Section
IV provides our experimental evaluation. Finally, Section V
concludes our work.

II. THE EDGE-BASED MATCHING KERNEL

In this section, we review the concept of the original
edge-based matching kernel [1]. Moreover, we analyze the
computational complexity of the edge-based matching kernel.

A. Directed Line Graphs

To compute the edge-based matching kernel, we need to
transform each graph into a directed line graph. The reason
of using the directed line graph is that it is a dual representa-
tion [13], and each vertex corresponds to a directed arc residing
on the edge of the original graph, i.e., each vertex of the
line graph can represent a corresponding edge in the original
graph. As a result, the directed line graph provides a way of
developing new edge-based matching kernels by aligning the
vertices on the line graphs.

Based on the definition of Ren et al. in [13], for a sample
graph G(V,E), the directed line graph OLG(VL, EdL) is a
dual representation of G(V,E). To obtain OLG(VL, EdL), we
first construct the associated symmetric digraph SDG(V,Ed)
of G(V,E), by replacing every edge e(u,w) ∈ E(G) by a
pair of reverse arcs, i.e., directed edges ed(u,w) ∈ Ed(G)
and ed(w, u) ∈ Ed(G) for u,w ∈ V . The directed line graph
OLG(VL, EdL) is the directed graph with vertex set VL and
arc set EdL defined as

VL = Ed(SDG),
EdL = {(ed(u, v), ed(v, w)) ∈ Ed(SDG)× Ed(SDG)},

(1)
where u, v, w ∈ V and u 6= w. The Perron-Frobenius operator
T = [Ti,j ]|VL|×|VL| of G(V,E) is the adjacency matrix of the
associated directed line graph OLG(VL, EdL). An example of
transforming an original graph into a directed line graph is
shown in Figure 1. Figure 1(a) shows the original graph and
Figure 1(b) shows the associated symmetric digraph.

B. The Depth-based Representation of An Edge through the
Directed Line Graph

Since each vertex of the directed line graph can represent
a corresponding edge of the original graph. We proposed to
compute the h-layer depth-based representation of the edge
through the line graph, i.e., we compute the representation
around a corresponding vertex of the line graph.

The h-layer undirected depth-based representation For a

graph G(V,E) and its directed line graph GD(VD,
−→
ED)), we

commence by computing the h-layer undirected depth-based
representation on the undirected line graph GU (VU , EU ), that
is computed by replacing each unidirectional edge of GD

into a bidirectional edge. For GU (VU , EU ) and a vertex
vU ∈ VU , let a vertex set NK

vU
be defined as NK

vU
= {uU ∈

VU | SG(vU , uU ) ≤ K}, where SG is the shortest path
matrix of GU and SG(vU , uU ) is the shortest path length
between vU and uU . For GU , the K-layer expansion subgraph
GK
vU

(VK
vU

; EK
vU

) around vU is

{

VK
vU

= {uU ∈ NK
vU

};
EK
vU

= {uU , wU ∈ NK
vU

, (uU , wU ) ∈ EU}.
(2)

For GU , the h-layer undirected depth-based representation
around vU ∈ VU is

DBh
GU

(vU ) = [HS(G
1
vU

), · · · , HS(G
K
vU

), · · · , HS(G
h
vU

)]⊤,
(3)

where (K ≤ h). HS(G
K
vU

) is the Shannon entropy of GK
vU

associated with the steady state random walk (SSRW) [14]
defined as

HS(G
K
vU

) = −
∑

uU∈VK
vU

P (uU ) logP (uU ), (4)

where P (uU ) = DGK
vU

(uU , uU )/
∑

wU∈VK
vU

DGK
vU

(wU , wU ) is

the probability of the SSRW visiting uU ∈ VK
vU

, and DGK
vU

is

the diagonal degree matrix of GK
vU

. ✷

The h-layer directed depth-based representation For

G(V,E) and its directed line graph GD(VD,
−→
ED), we first

establish the K-layer directed expansion subgraph of GD

through the undirected line graph GU (VU , EU ) and the K-
layer expansion subgraph GK

vU
(VK

vU
; EK

vU
) on GU . The K-layer

directed expansion subgraph GK
vD

(VK
vD

;
−→
E K

vD
) around vD ∈ VD

is
{

VK
vD

= {uU | uU ∈ VK
vU

};
−→
E K

vD
= {

−−−−−−→
(uU , wU ) ∈

−→
ED| (uU , wU ) ∈ EK

vU
}.

(5)

where vD ∈ VD, vU ∈ VU , and vD = vU . In other words,
the K-layer directed expansion subgraph GK

vU
can be seen

as a transformed graph of the K-layer expansion subgraph
GK
vU

(VK
vU

; EK
vU

) of GU associated with the directed edges in
GD. For GD, the h-layer directed DB representation around
vD ∈ VD is defined as

−−→
DBh

GD
(vD) = [HF (G

1
vD

), · · · , HF (G
K
vD

), · · · , HF (G
h
vD

)]⊤,
(6)

where HF (G
K
vD

) is the directed heat flow complexity measure

of GK
vD

[15], when the time t for computing the directed heat
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(a) Original graph (b) Digraph (c) Directed line graph

Fig. 1. Directed Line Graph Construction.

flow complexity HF is infinity. HF is defined as

HF (G
K
vD

) = F (∞) =

−→
E K

vD

VK
vD

. (7)

where F (∞) indicates that the time t for computing HF (G
K
vD

)
is infinity. �

The h-layer depth-based representations of edges For the
directed line graph GD(VD, ED) transformed from the original
graph G(V,E), each vertex represents a corresponding edge
of G(V,E). As a result, either the undirected depth-based
representation of a vertex in GU (VU , EU ) or the directed

depth-based representation of a vertex in GD(VD,
−→
ED) can

be seen as a vectorial signature of a corresponding edge in
G(V,E). Thus, for the graph G(V,E) and its directed line

graph GD(VD,
−→
ED), the h-layer depth-based representation

of an edge e ∈ E that is represented by a vertex vD ∈ VD can
be computed as

DBh(vD) = DBh
GU

(vU ) +
−−→
DBh

GD
(vD), (8)

where vU ∈ VU , vD ∈ VD, vU = vD and VU = VD. DBh(vD)
can be seen as a mixed h-layer depth-based representation by
summing both the h-layer undirected depth-based represen-
tation defined in Eq.(3) and the h-layer directed depth-based
representation defined in Eq.(6). �

C. The Edge-based Matching Kernel through the Directed
Line Graphs

In this section, we compute the edge-based matching kernel
for graphs by aligning the vertices of their directed line
graphs. Because, for an original graph and its directed line
graph, each vertex of the line graph represents a corresponding
edge in the original graph. For a pair of graphs Gp(Vp, Ep)

and Gq(Vq, Eq), GD;p(VD;p,
−→
ED;p) and GD;q(VD;q,

−→
ED;q)

are their directed line graphs. For each directed line graph,
we compute the h-layer depth-based representations as the
vectorial signatures of its vertices. We compute the Euclidean
distance between the depth-based representations DBh(vi)

and DBh(vj) as the distance measure of the pairwise ver-
tices vi and uj of the directed line graphs GD;p and GD;q ,
respectively. The affinity matrix element R(i, j) is defined as

R(i, j) =
√

[DBh(vi)−DBh(uj)]T [DBh(vi)−DBh(uj)].

(9)

where R is a |VD;p| × |VD;q| matrix. The element R(i, j)
represents the dissimilarity between the vertex vi in GD;p

and the vertex uj in GD;q . The rows of R(i, j) index the
vertices of GD;p, and the columns index the vertices of GD;q .
If R(i, j) is the smallest element both in row i and in column
j, there should be a one-to-one correspondence between the
vertex vi of GD;p and the vertex uj of GD;q . We record
the state of correspondence using the correspondence matrix
C ∈ {0, 1}|VD;p||VD;q| satisfying

C(i, j) =

{

1 if R(i, j) is the smallest element
both in row i and in column j;

0 otherwise.
(10)

Eq.(10) implies that if C(i, j) = 1, the vertices vi and vj are
matched. Since vi and vj represent a pair of corresponding
edges in the original graphs Gp and Gq , the pair of edges
can also be seen matched. As a result, based on the definition
in [1], the edge-based matching kernel for the pair of original
graphs Gp and Gq can be computed as

k
(h)
EB(Gp, Gq) = k

(h)
EB(GD;p, GD;q) =

|VD;p|
∑

i=1

|VD;q|
∑

j=1

C(i, j).

(11)

which counts the number of matched vertex pairs between the
directed line graphs GD;p and GD;q .

D. Computational Complexity

For a pair of graphs each having n vertices, computing the
edge-based matching kernel through their directed line graphs
requires time complexity O(n6), for the worst case. This is
because the matching kernel is based on the depth-based rep-
resentations of the line graphs. Computing the representation
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from the line graphs relies on the computation of the shortest
path matrix. The time complexity of computing the shortest
matrix is cubic in the vertex number of the directed line graph.
Thus, assume each directed line graph has m vertices, the time
complexity of computing the edge-based matching kernel is
O(m3). On the other hand, for each original graph, there may
be at most n(n − 1) directed arcs residing on the edges and
thus at most n(n− 1) vertices in the directed line graph, i.e.,
m = n(n−1). As a result, computing the edge-based matching
kernel through the line graphs may require time complexity
O(n6), for the worst case.

The above computational analysis indicates that the edge-
based matching kernel is not applicable for large graphs, since
each of these graphs may have many edges. On the other
hand, we can observe that the computational complexity of
the matching kernel relates to the number of the edges. One
way to overcome the computational inefficiency is to reduce
the number of the edges. This in turn provides us a way
of developing a new edge-based matching kernel through a
sparser structure of the original graph. Clearly, the new kernel
will be more efficient than the original kernel.

III. THE EDGE-BASED MATCHING KERNEL ON THE

COMMUTE-TIME SPANNING TREES

In this section, we proposed a new edge-based matching
kernel on minimum spanning trees, based on the commute
time. We show that the new kernel reduces the time complexity
of the original edge-based matching kernel on original graphs
from O(n6) to O(n3).

A. Graph Simplification from Commute Time

As we have stated in Section II, the original edge-based
matching kernel [1] is computational expensive, and is not
applicable. This follows the fact that there may be many edges
in the original graphs. On way to overcome this problem is to
reduce the number of edges. To this en, we propose to compute
a sparser version of the original networks through the commute
time [2].

Let G be the set of financial market networks that will be
used in this work. These networks are all complete weighted
graphs and have a fixed number of vertices. Let G(V,E) be a
sample graph/network from G, with a weight function ω : V ×
V → R

+. If ω{e(u, v)} > 0 (ω{e(u, v)} = ω{e(v, u)}), we
refer to e(u, v) as an edge of G, and we say that u ∈ V and v ∈
V are adjacent. Let A denote the adjacency matrix of G(V,E),
which satisfies A(u, v) = w(u, v). The degree matrix D is the
diagonal matrix with diagonal entries D(u, u) =

∑

v A(u, v).
Then, the graph Laplacian is given by L = D−A. The spectral
decomposition of the Laplacian is L = ΦΛΦT , where Φ is the
n×n matrix Φ = (φ1|φ2|...|φn) with the ordered eigenvectors
as columns and Λ = diag(λ1, λ2, ..., λn) is the n×n diagonal
matrix with the ordered eigenvalues as elements, such that 0 =
λ1 ≤ λ2 ≤ ... ≤ λn.

The heat equation defines the dynamics of a diffusion
process over the graph G. This is a partial differential equation
associated with the graph Laplacian, i.e., ∂Ht

∂t
= −LHt,

where Ht is the heat kernel at time t. The solution of the
heat equation is Ht = exp(−Lt) = Φ exp(−Λt)ΦT . The
evolution of a classical continuous-time random walk on G is

also governed by the heat equation. Let pt be the probability
state vector of the walk, i.e., the vector whose components are
the probabilities of the walk visiting the vertices of the graph
at time t. Given an initial distribution p0, the state vector of
the walk at time t is pt = Htp0.

The hitting time O(u, v) of a random walk is defined as the
expected number of steps to go from vertex u to vertex v. The
commute time is similarly defined as the expected number of
steps to go from u to v, and then return to u. For the graph G,
this is simply twice the hitting time. It can be shown that the
hitting time can be written in terms of the eigendecomposition
of the normalized Laplacian [16]

O(u, v) =
1

4

n
∑

j=2

1

λj

(φj(u)− φj(v))
2, (12)

where n is the number of vertices in G, i.e., n = |V |.

It is possible to simplify the structure of a graph by
computing the minimum spanning tree over the commute time
matrix [2]. This reduces the number of edges of the graph G to
n− 1, while retaining the characteristic structural information
of the original graph. More specifically, for the complete
weighted graph G(V,E) ∈ G, we commence by computing
the associated commute time matrix CT with entries

CT (u, v) = 2O(u, v). (13)

With the commute time matrix to hand, we construct a new
complete weighted graph GW (VW , EW ) over the same vertex
set of the original graph G, i.e., VW = V . The weight of
the edge between a pair of vertices in GW is the commute
time between the vertices of G. Using Kruskal’s method [17],
we can compute the minimum spanning tree GS(VS , ES) over
GW . Note that, the spanning tree GS has the same vertex set
with G. The commute time is robust under the perturbation
of graph/network structures. Thus, the minimum spanning tree
GS constructed on the commute time matrix can reflect the
dominant structural information of the original graph G, while
yielding a sparser structure.

B. The New Kernel on Spanning Trees

In this subsection, we define the new edge-based matching
kernel on spanning trees. For a pair of graphs Gp(Vp, Ep)
and Gq(Vq, Eq), we commence by transforming them into the
corresponding minimum spanning trees Gp;S(Vp;S , Ep;S) and

Gq;S(Vq;S , Eq;S), respectively. The proposed kernel k
(h)
ST for

Gp and Gq is defined as

k
(h)
ST (Gp, Gq) = k

(h)
EB(GD;p, GD;q), (14)

where k
(h)
EB is computed as in Eq.(11).

Discussions As we have stated, the commute time captures
the structural properties of the original graphs and is robust
under perturbation of the graph structures. Thus, the minimum
spanning tree constructed on the commute time matrix can as
far as possible reflect the characteristic structural information
of the original graph, while yielding a sparser structure. Note
that, for a graph G having n vertices, the computation of the
commute time matrix is based on the eigen-decomposition of
the normalized Laplacian. Therefore, the graph simplification
step (i.e., computing the minimum spanning tree GS) through
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the commute time requires time complexity O(n3). On the
other hand, the minimum spanning tree GS can reduce the edge
number of G to n − 1. Thus, there will be 2(n − 1) vertices
in the directed line graph that is transformed from GS . As a
result, for a pair of graphs each having n vertices, computing

the edge-based matching kernel k
(h)
ST through the spanning trees

requires O(n3), a considerable improvement from the original
time complexity O(n6) of computing the edge-based matching

kernel k
(h)
EB on the original graphs.

IV. EXPERIMENTAL RESULTS

A. Graph Datasets

We demonstrate the performance of our new kernel on five
standard graph datasets from computer vision and bioinformat-
ics databases. These datasets include BAR31, BSPHERE31,
GEOD31, SHOCK, PPIs and CATH2. Details of these datasets
can be found as follows.

BAR31: The SHREC 3D Shape database consists of 15 classes
and 20 individuals per class, that is 300 shapes [18]. This is an
usual benchmark in 3D shape recognition. From the SHREC
3D Shape database, we establish a graph datasets named
BAR31 dataset through a mapping function. The function is
ERG barycenter: distance from the center of mass/barycenter
to the all other points.

Shock The Shock dataset consists of graphs from the Shock 2D
shape database. Each graph is a skeletal-based representation
of the differential structure of the boundary of a 2D shape.
There are 150 graphs divided into 10 classes. Each class
contains 15 graphs. The number of maximum, minimum and
average vertices for the dataset are 33, 4 and 13.16 respectively.

PPIs: The PPIs dataset consists of protein-protein interaction
networks (PPIs). The graphs describe the interaction relation-
ships between histidine kinase in different species of bacteria.
Histidine kinase is a key protein in the development of signal
transduction. If two proteins have direct (physical) or indirect
(functional) association, they are connected by an edge. There
are 219 PPIs in this dataset and they are collected from 5 differ-
ent kinds of bacteria with the following evolution order (from
older to more recent) Aquifex4 and thermotoga4 PPIs from
Aquifex aelicus and Thermotoga maritima, Gram-Positive52
PPIs from Staphylococcus aureus, Cyanobacteria73 PPIs from
Anabaena variabilis and Proteobacteria40 PPIs from Acidovo-
rax avenae. There is an additional class (Acidobacteria46 PPIs)
which is more controversial in terms of the bacterial evolution
since they were discovered. We select Proteobacteria40 PPIs
and Acidobacteria46 PPIs as the second group test graphs.
The maximum, minimum and average number of vertices of
selected graphs are 232, 3 and 109.60 respectively.

CATH2: The CATH2 dataset has proteins in the same class
(i.e., Mixed Alpha-Beta), architecture (i.e., Alpha-Beta Barrel),
and topology (i.e., TIM Barrel), but in different homology
classes (i.e., Aldolase vs. Glycosidases). The CATH2 dataset
is harder to classify, since the proteins in the same topology
class are structurally similar. The protein graphs are 10
times larger in size than chemical compounds, with 200−300
vertices. There is 190 testing graphs in the CATH2 dataset.

B. Experiments on Graph Datasets

Experimental Setup: We evaluate the performance of our
new edge-based matching kernel on commute-time spanning
trees (EBSK), on graph classification problems. We also com-
pare our kernel with several alternative state-of-the-art graph
kernels. These graph kernels include 1) the previous edge-
based matching kernel on original graphs [1], 2) the shortest
path graph kernel (SPGK) [7], 3) the graphlet count graph
kernel [19] with graphlet of size 4 (GCGK) [19], 4) the un-
aligned quantum Jensen-Shannon kernel (UQJS) [20]. For the
EBMK kernel and the proposed EBSK kernel, we set the
highest layer of the required depth-based representation as 10.
The reason for this is that the 10-layer expansion subgraph
rooted at a vertex of a directed line graph usually encapsulates
most vertices of the line graph. For each kernel, we compute
the kernel matrix on each graph dataset. We perform 10-
fold cross-validation using the C-Support Vector Machine (C-
SVM) Classification to compute the classification accuracy,
using LIBSVM [21]. We use nine samples for training and one
for testing. All the C-SVMs were performed along with their
parameters optimized on each dataset. We report the average
classification accuracy (± standard error) and the runtime for
each kernel in Table I and Table II, respectively. The runtime
is measured under Matlab R2011a running on a 2.5GHz Intel
2-Core processor (i.e. i5-3210m).

TABLE II. RUNTIME OF COMPUTING THE KERNEL MATRIX.

Datasets EBMK EBSK SPGK GCGK UQJS

BAR31 302” 332” 11” 1” 630”

Shock 8” 10” 1” 1” 14”

PPIs > 2h 597” 22” 4” 204”

CATH2 > 2h 3050” 253” 8” 4440”

Experimental Results: In terms of the classification accura-
cies, the new EBSK kernel outperforms or is competitive to any
alternative graph kernel. Only the accuracies of the EBMK and
GCGK kernels on the BAR31 and CATH2 datasets are a little
higher than those of the new EBSK kernel. However, the EBSK
kernel obviously outperforms these kernels on the PPIs and
Shock datasets. The reasons of this effectiveness are twofold.
First, unlike the SPGK, GCGK and UQJS kernels that ignore
structural correspondence information between graphs, the new
EBSK kernel can reflect correspondence information between
edges of graphs. Second, the spanning trees for the EBSK
kernel through the commute time can encapsulate dominant
structural information of original graphs, relying on the nice
properties of the commute time. In terms of the runtime,
the new EBSK kernel is not the fastest kernel, but it can
complete the computation in a polynomial time on any dataset.
More significantly, the new EBSK kernel is more efficient
than the EBMK kernel on the PPIs and CATH2 datasets
that have large graphs with many edges. This is because the
computational complexity of the EBSK and EBMK kernels
relies on the edge number of original graphs, and the required
spanning trees for the EBSK kernel can significantly reduce
the edge number. On the other hand, the EBSK kernel is a
little lower than the EBMK kernel on the BAR31 and Shock
datasets. This is because the edge density of the two datasets
is very sparse, reducing the edge number will not influence
the computational efficiency of the EBMK kernel on original
graphs. By contrast, the EBSK kernel on spanning trees needs
extra time to compute the commute time matrix. These above
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TABLE I. CLASSIFICATION ACCURACY (IN % ± STANDARD ERROR) USING C-SVM.

Datasets EBMK EBSK SPGK GCGK UQJS

BAR31 67.06 ± .64 62.30± .51 55.73± .44 23.40± .60 30.80± .61

Shock 42.06± .85 42.13 ± 1.01 37.88± .93 27.06± .99 40.60± .92

PPIs −− 72.47 ± .67 59.04± .44 46.61± .47 65.61± .77

CATH2 −− 71.21± .63 32.57± .45 73.68 ± 1.09 71.11± .88

observations demonstrate the effectiveness and efficiency of
the new proposed EBSK kernel.

V. CONCLUSION AND FUTURE WORK

In this paper we have developed a new fast edge-based
matching kernel on spanning trees through the commute time
matrix. The spanning tree representation not only minimizes
the edge number of the original graph but also preserves most
of its structural information, relying on the nice properties of
the commute time. Unlike the previous edge-based matching
kernel on original graphs [1] that requires time complexity
O(n6), the new matching kernel on spanning trees reduces
the computational complexity to O(n3) that is a considerable
improvement. We have evaluated the performance of the
new proposed kernel on several standard graph datasets and
demonstrate the effectiveness and efficiency.

In the future work, we will extend our analysis as follows.
First, in our previous work [10] we have developed a hyper-
graph kernel based on subtree isomorphism test on directed
line graphs. Similar to the edge-based matching kernel, the
vertex set of the line graph also corresponds to the edge set
of the original hypergraph. It would be interesting to use the
commute time to develop a new hypergraph kernel on commute
time spanning trees. Second, in our previous work [22], we
have developed a novel framework for computing depth-based
complexity traces of hypergraphs through the directed line
graphs. It would be interesting to develop a new complexity
trace method for hypergraphs through the commute time
spanning trees.
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