28,676 research outputs found

    Toward automated threat modeling of edge computing systems

    Get PDF
    Edge computing brings processing and storage capabilities closer to the data sources, to reduce network latency, save bandwidth, and preserve data locality. Despite the clear benefits, this paradigm brings unprecedented cyber risks due to the combination of the security issues and challenges typical of cloud and Internet of Things (IoT) worlds. Notwithstanding an increasing interest in edge security by academic and industrial communities, there is still no discernible industry consensus on edge computing security best practices, and activities like threat analysis and countermeasure selection are still not well established and are completely left to security experts.In order to cope with the need for a simplified yet effective threat modeling process, which is affordable in presence of limited security skills and economic resources, and viable in modern development approaches, in this paper, we propose an automated threat modeling and countermeasure selection strategy targeting edge computing systems. Our approach leverages a comprehensive system model able to describe the main involved architectural elements and the associated data flow, with a focus on the specific properties that may actually impact on the applicability of threats and of associated countermeasures

    Advanced Cloud Privacy Threat Modeling

    Full text link
    Privacy-preservation for sensitive data has become a challenging issue in cloud computing. Threat modeling as a part of requirements engineering in secure software development provides a structured approach for identifying attacks and proposing countermeasures against the exploitation of vulnerabilities in a system . This paper describes an extension of Cloud Privacy Threat Modeling (CPTM) methodology for privacy threat modeling in relation to processing sensitive data in cloud computing environments. It describes the modeling methodology that involved applying Method Engineering to specify characteristics of a cloud privacy threat modeling methodology, different steps in the proposed methodology and corresponding products. We believe that the extended methodology facilitates the application of a privacy-preserving cloud software development approach from requirements engineering to design

    Security and Privacy Issues in Cloud Computing

    Full text link
    Cloud computing transforming the way of information technology (IT) for consuming and managing, promising improving cost efficiencies, accelerate innovations, faster time-to-market and the ability to scale applications on demand (Leighton, 2009). According to Gartner, while the hype grew ex-ponentially during 2008 and continued since, it is clear that there is a major shift towards the cloud computing model and that the benefits may be substantial (Gartner Hype-Cycle, 2012). However, as the shape of the cloud computing is emerging and developing rapidly both conceptually and in reality, the legal/contractual, economic, service quality, interoperability, security and privacy issues still pose significant challenges. In this chapter, we describe various service and deployment models of cloud computing and identify major challenges. In particular, we discuss three critical challenges: regulatory, security and privacy issues in cloud computing. Some solutions to mitigate these challenges are also proposed along with a brief presentation on the future trends in cloud computing deployment

    Investigating the tension between cloud-related actors and individual privacy rights

    Get PDF
    Historically, little more than lip service has been paid to the rights of individuals to act to preserve their own privacy. Personal information is frequently exploited for commercial gain, often without the person’s knowledge or permission. New legislation, such as the EU General Data Protection Regulation Act, has acknowledged the need for legislative protection. This Act places the onus on service providers to preserve the confidentiality of their users’ and customers’ personal information, on pain of punitive fines for lapses. It accords special privileges to users, such as the right to be forgotten. This regulation has global jurisdiction covering the rights of any EU resident, worldwide. Assuring this legislated privacy protection presents a serious challenge, which is exacerbated in the cloud environment. A considerable number of actors are stakeholders in cloud ecosystems. Each has their own agenda and these are not necessarily well aligned. Cloud service providers, especially those offering social media services, are interested in growing their businesses and maximising revenue. There is a strong incentive for them to capitalise on their users’ personal information and usage information. Privacy is often the first victim. Here, we examine the tensions between the various cloud actors and propose a framework that could be used to ensure that privacy is preserved and respected in cloud systems

    Service Level Agreement-based GDPR Compliance and Security assurance in (multi)Cloud-based systems

    Get PDF
    Compliance with the new European General Data Protection Regulation (Regulation (EU) 2016/679) and security assurance are currently two major challenges of Cloud-based systems. GDPR compliance implies both privacy and security mechanisms definition, enforcement and control, including evidence collection. This paper presents a novel DevOps framework aimed at supporting Cloud consumers in designing, deploying and operating (multi)Cloud systems that include the necessary privacy and security controls for ensuring transparency to end-users, third parties in service provision (if any) and law enforcement authorities. The framework relies on the risk-driven specification at design time of privacy and security level objectives in the system Service Level Agreement (SLA) and in their continuous monitoring and enforcement at runtime.The research leading to these results has received funding from the European Union’s Horizon 2020 research and innovation programme under grant agreement No 644429 and No 780351, MUSA project and ENACT project, respectively. We would also like to acknowledge all the members of the MUSA Consortium and ENACT Consortium for their valuable help
    corecore