82 research outputs found

    Semi-Axiomatic Sequent Calculus

    Get PDF

    Tools for the construction of correct programs : an overview

    Get PDF

    General Proof Theory. Celebrating 50 Years of Dag Prawitz's "Natural Deduction". Proceedings of the Conference held in Tübingen, 27-29 November 2015

    Get PDF
    General proof theory studies how proofs are structured and how they relate to each other, and not primarily what can be proved in particular formal systems. It has been developed within the framework of Gentzen-style proof theory, as well as in categorial proof theory. As Dag Prawitz's monograph "Natural Deduction" (1965) paved the way for this development (he also proposed the term "General Proof Theory"), it is most appropriate to use this topic to celebrate 50 years of this work. The conference took place 27-29 November, 2015 in Tübingen at the Department of Philosophy. The proceedings collect abstracts, slides and papers of the presentations given, as well as contributions from two speakers who were unable to attend

    Software Model Checking with Explicit Scheduler and Symbolic Threads

    Full text link
    In many practical application domains, the software is organized into a set of threads, whose activation is exclusive and controlled by a cooperative scheduling policy: threads execute, without any interruption, until they either terminate or yield the control explicitly to the scheduler. The formal verification of such software poses significant challenges. On the one side, each thread may have infinite state space, and might call for abstraction. On the other side, the scheduling policy is often important for correctness, and an approach based on abstracting the scheduler may result in loss of precision and false positives. Unfortunately, the translation of the problem into a purely sequential software model checking problem turns out to be highly inefficient for the available technologies. We propose a software model checking technique that exploits the intrinsic structure of these programs. Each thread is translated into a separate sequential program and explored symbolically with lazy abstraction, while the overall verification is orchestrated by the direct execution of the scheduler. The approach is optimized by filtering the exploration of the scheduler with the integration of partial-order reduction. The technique, called ESST (Explicit Scheduler, Symbolic Threads) has been implemented and experimentally evaluated on a significant set of benchmarks. The results demonstrate that ESST technique is way more effective than software model checking applied to the sequentialized programs, and that partial-order reduction can lead to further performance improvements.Comment: 40 pages, 10 figures, accepted for publication in journal of logical methods in computer scienc

    A Proof-Theoretic Approach to Certifying Skolemization

    Get PDF
    International audienceWhen presented with a formula to prove, most theorem provers for classical first-order logic process that formula following several steps, one of which is commonly called skolemization. That process eliminates quantifier alternation within formulas by extending the language of the underlying logic with new Skolem functions and by instantiating certain quantifiers with terms built using Skolem functions. In this paper, we address the problem of checking (i.e., certifying) proof evidence that involves Skolem terms. Our goal is to do such certification without using the mathematical concepts of model-theoretic semantics (i.e., preservation of satisfiability) and choice principles (i.e., epsilon terms). Instead , our proof checking kernel is an implementation of Gentzen's sequent calculus, which directly supports quanti-fier alternation by using eigenvariables. We shall describe deskolemization as a mapping from client-side terms, used in proofs generated by theorem provers, into kernel-side terms, used within our proof checking kernel. This mapping which associates skolemized terms to eigenvariables relies on using outer skolemization. We also point out that the removal of Skolem terms from a proof is influenced by the polarities given to propositional connectives

    Formal Methods Specification and Analysis Guidebook for the Verification of Software and Computer Systems

    Get PDF
    This guidebook, the second of a two-volume series, is intended to facilitate the transfer of formal methods to the avionics and aerospace community. The 1st volume concentrates on administrative and planning issues [NASA-95a], and the second volume focuses on the technical issues involved in applying formal methods to avionics and aerospace software systems. Hereafter, the term "guidebook" refers exclusively to the second volume of the series. The title of this second volume, A Practitioner's Companion, conveys its intent. The guidebook is written primarily for the nonexpert and requires little or no prior experience with formal methods techniques and tools. However, it does attempt to distill some of the more subtle ingredients in the productive application of formal methods. To the extent that it succeeds, those conversant with formal methods will also nd the guidebook useful. The discussion is illustrated through the development of a realistic example, relevant fragments of which appear in each chapter. The guidebook focuses primarily on the use of formal methods for analysis of requirements and high-level design, the stages at which formal methods have been most productively applied. Although much of the discussion applies to low-level design and implementation, the guidebook does not discuss issues involved in the later life cycle application of formal methods
    • …
    corecore