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Abstract 

In this document we describe the notion of correct programs, methods for the construction of 
correct programs and currently available tools for the construction of correct programs. Several 
aspects of the tools for the construction of correct programs are compared. The results of this 
overview are used to formulate requirements for a programming tool. 

This research is the first part of the SOBV-project: 'A programming environment for the 
construction of correct programs'. The goal of this project is to develop an interactive programming 
environment for the creation of correct software in a Dijkstra/Hoare like fashion. 
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Introd uction 

This report presents the results of studies performed as a prelude to the development of an environ­
ment for deriving correct programs. Goal of this project is to create a programming environment 
which supports derivation of programs in a Dijkstra/Hoare- like fashion. In this approach to pro­
gramming, a program is constructed simultaneously with its proof of correctness. The steps taken 
in this derivation are motivated by the requirements of the proof. In our opinion there are no 
tools yet that sufficiently support this style of programming. 

In order to design a tool that does not suffer from the shortcomings of other tools, we started 
by studying existing tools. In this report we present an overview containing the results of Qur 
studies. We do not claim that the overview presented here is complete. Many of the listed systems 
are still under development and their features may change in the future. Also, we discuss only 
those features that we think are important to our project. 

The report is constructed as follows: 
First we introduce the notion of correctness of a program in chapter 1. The programming 

languages are divided into three categories: functional languages; imperative languages (includ­
ing object oriented languages); and logical languages. For each language type it is shown how 
correctness of a program can be proved. 

Next, we discuss three methods to obtain correct programs in chapter 2 . These methods are 
verification of programs; derivation of programs; and extraction of programs (described in sec­
tion 2.1, section 2.2 and section 2.3 respectively). For verification and derivation of programs we 
also discuss a few existing tools in detail in order to give an impression of the current level of sup­
port for these methods of programming. For verification of programs we discuss an interactive tool 
(see 2.1.1) and a tool implemented within a general theorem prover (see 2.1.2). Derivation of pro­
grams is illustrated by the refinement calculus (see 2.2.1) and an automated program synthesizer 
(see 2.2.2). We also explain why extraction of programs is not suitable for our purposes. 

Finally, in chapter 3, we give a brief overview of existing tools which may be used by program­
mers. These tools are divided into three categories: theorem provers; generic environments; and 
programming tools. 
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Chapter 1 

Correct Programs 

Correct programming, in contrast to conventional programming, requires a proof of correctness of 
the program. However, before we can speak of a correct program, we must define what is meant 
by correctness. Exactly this is done in this first chapter: we define the notion of a correct program. 
Since programs can be written in different kinds of languages we will also state in more detail how 
correctness can be proved for each kind of language. How to obtain a correct program and the 
corresponding proof is explained in the next chapter. 

Every program that is written has to compute from some given input an entity that the 
programmer has in mind. The characteristics of the entity and the given input can be formally 
captured in logical formulas, called the program specification. The formula that captures the 
characteristics of the input is called the precondition and the formula capturing the characteristics 
of the required entity is called the postcondition. 

A program is called partially correct if for any input satisfying the precondition, the program 
returns an entity satisfying the postcondition, provided that it terminates. A program is called 
totally correct if it is partially correct and it is guaranteed to terminate for any given input 
satisfying the precondition. 

Unfortunately there are no formalisms yet that allow to specify the required efficiency of 
programs. Efficiency of a program is often determined after the program has been made, but not 
proved formally. This is a serious shortcoming of the formalisms: in 'real' programming the main 
concern of programmers is efficiency. For instance: to solve the traveling salesman problem one 
is willing to accept non-optimal solutions, if they can be computed efficiently and if they are not 
too bad approximations of the optimal solution. 

Programs are written in a wide variety of languages. The number of programming languages 
and the features they offer is still increasing. However) all these languages are based on just three 
paradigms and therefore divided into three categories: functional languages, imperative languages 
and logical languages (see below for a note on object oriented languages). The intention of what 
correct programs are remains the same for all categories) but the way in which correctness is proved 
differs. In the following sections we will explain how correctness is proved for each language type. 

Note on Object Oriented Languages 

Some people may consider object oriented languages as a distinct category of languages. In this 
document however) we will consider these languages to be imperative languages with a special 
feature: classes as data types. 

The class to which an object belongs can be seen as a special kind of record. This special 
record can contain functions and procedures1 ) whereas a normal record can only hold variables. 
A child of such a class (i.e. a class that inherits from a previously defined class) can be seen as 
a record which has at least the same fields as its parent (or contains one dummy-variable of the 
parent- type). 

1 These flUlctions and procedures are called methods in object oriented programming literature. 
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Even though objects are very handy for implementing many constructs and support a good 
modular approach in building software, it can be seen as a syntactic encoding of a construct that 
otherwise always had to be repeated by the programmer: A class can be replaced by a record type 
and a set of functions and procedures. The record type contains all data-fields of the original class, 
even if they are inherited. The methods of the class (also the inherited methods) are encoded by 
a set of functions and procedures that have an extra parameter with as type the record associated 
with the original class. 

The advantage of the object oriented feature of the language is then mainly that the inherited 
methods of a class do not have to be re-implemented for the new class in order to maintain the 
original type of this new class. 

What also is considered to be different in object oriented programming is communication 
between objects by message passing. However, in reality communication is not the right description 
for the passing of data between objects: data are passed to methods in the form of parameters, 
just like parameters are passed to functions and procedures in conventional imperative languages. 
The method called then first has to terminate before the calling object can proceed with its work, 
again like in a procedure- or function call. An exception to this rule is Lookstm , the language of 
the Generalized Display Processor developed at the Eindhoven University of Technology for the 
DenK-project (see [Peeg5]). This language does allow messages to be passed by calling a method 
of an object without waiting until termination of the method called. However, the mechanism 
used there could also be applied to languages without objects. 

On the other hand, object oriented methods have led to different design strategies. A design 
made according to these strategies is hard to implement in languages that do not support object 
oriented programming. Also, the concept of inheritance requires different approaches to proofs of 
correctness of programs. In our project we aim at a tool for deriving correct programs in classical 
imperative languages. The concepts of object oriented programming are an interesting extension, 
but are beyond the scope of our initial goals. 

1.1 Correctness of Functional Programs 

In the functional programming paradigm a program is a function. The function takes the given 
input as parameters and returns the entit.y one wants to compute. Because this paradigm allows 
normal mathematical functions to be used as executable programs, correct programming is often 
easy. This is demonstrated by the following example: 

Let F be a function that computes from a natural number i the i'th Fibonacci number. Then 
F is defined by: 

F.O 0 
F.I I 
F.i F.(i-I)+F.(i-2) 2:Si 

A functional program f that computes the function F can now easily be written. For instance 
take the following program: 

letree f == Ai : into if i = 0 then 0 
else if i = 1 then 1 
else f.(i -I) + f.(i - 2) 

In this notation letrec binds a name to a (possibly) recursive function, A is used to create 
a function, followed by the input parameter. After the first dot the actual function definition is 
placed. 

The order in which f.( i-I) and f.( i - 2) are computed is irrelevant. This also holds if 
more functions are used in more interacting ways. The mathematical notion of function is that a 
function applied to some arguments is just another encoding of its value. Computing this value 
is equal to replacing the applied function (one value) by a simpler notation of the same value. 
Since this notion is adopted by functional languages the order of evaluating functions is arbitrary. 
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However, implementations always use a fixed order, but this is transparent to the user of the 
language. 

The correctness of the above function is evident, so we will use it as an example on how 
to actually prove the correctness. To prove correctness we use the specification, which we will 
construct first. The Fibonacci numbers are only defined for natural numbers, while the program 
takes an integer as parameter. Therefore our precondition will be 0 ::; i. The result of the 
function must be the i'th Fibonacci number (F. i) , so the postcondition is /.i = F.i. The program 
must compute the correct Fibonacci number for every input satisfying the precondition, hence the 
program specification can be denoted as: 

\Ii : int.(O 'S i =? J.i = F.i) 

Proving this proposition is then equivalent to proving partial correctness of the program /. Proving 
can easily be done by induction on i. 

In order to prove the total correctness of f we can (in this case) suffice by noting that for a 
correct input value i computation of f.i only requires computing a finite number of f.j for j 
lower than i, but never below O. 

Although this program is correct, it is not efficient. For instance: to compute f.5 the program 
computes f.4 and J.3. To compute f.4 it again computes J.3, hence J.3 is computed twice. 

In functional programming there are techniques to transform the program f into a more 
efficient one. These techniques use mathematical reasoning about equality of functions and often 
result in more complex, but equivalent functions. The advantage of these derived functions is that 
they are designed in such a way that they can be computed more efficiently. We will not discuss 
functional programming techniques here, but only use some results of their application. 

For instance, applying these techniques to f could result in the auxiliary function g, that takes 
three integers as parameters. The specification of 9 is given by: 

\Ii: int.(O 'S i =? g.O.l.i = F.i) 

A program for 9 could be: 

letrec 9 == .\a, b, c : into if c = a then a 
else g.b.(a + b).(c -1) 

9 contains only one recursive call, which also is the last function call in each computation step. 
Such a function is called tail-recursive and can be implemented more efficiently than arbitrary 
recursive functions. That 9 is more efficient than / follows from the fact that every result of 9 
is computed only once, while the 'depth' of the recursion is bounded by i, like was the case for /. 

Once we have function 9 we can replace f by f == '\i : int.(g.O.l.i). However, to prove 
the correctness of 9 with respect to its specification is more difficult. A nice way to do this is 
first to prove that for 9 a stronger specification holds, which is obtained by applying functional 
programming techniques to f: 

\Ii: int.\lj : int.(O 'S j =? g.(F.i).(F.(i + l)).j = F.(i + j)) 

The original specification is then the special case when i = O. 
The above example sketches how functional programs are developed and how their correctness 

is proved. In functional languages one often starts with a trivially correct (but inefficient) function 
and then transforms it step by step into a more efficient one, possibly using auxiliary functions. 
Proving partial correctness can be done by proving a single proposition: if the input satisfies the 
precondition then the result satisfies the postcondition. To prove total correctness it is shown that 
the recursion is well-founded. 

1.2 Correctness of Imperative Programs 

The imperative paradigm exploits the semantic concept of a state machine. The machine contains 
a set of variables that can hold values. A state is described by an assignment of values to variables 
and can change in the course of time. 
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A program is built out of statements. In contrast to functional programs, imperative programs 
have to be executed in a fixed order. Operationally one can think of a program counter that refers 
to the statement of the program that is to be executed next. Statements come in two flavors: 
statements to change the state and statements to describe the order in which the machine must 
execute the program. 

Imperative languages are the most common languages. This is probably because they can be 
interpreted very operationally. Programmers with little or no knowledge about mathematics or 
logic (hobbyists) can easily imagine a computer putting values into variables and proceeding with 
the next action. Functional languages require much knowledge of mathematics. Logical languages 
can probably be read by hobbyists, but when writing them they will often encounter problems 
getting their programs to terminate. 

When proving correctness of imperative programs one starts with annotating the program. 
This annotating is done by inserting logical propositions as comment between the statements. 
These formal comments are called assertions. The idea behind the assertions is that before the 
machine executes a statement the assertion before this statement, and after execution of the 
assignment the assertion behind this statement, must be true. 

The program specification is now given by two assertions: one at the very beginning of the 
program (the precondition) and one at the end (the postcondition). The precondition states that 
certain variables contain the input values and the postcondition states that some variables contain 
the computed entity. 

Consider an imperative version of the program g of the previous section: 

{OS i} 
a:= 0; 
b:= 1; 
j := 0; 
{(OS j :s i)lI(a = Fj)II(b = F(j + I))} 
while j # i do 
r:= a; {(OS j < i)lI(a = F.j)lI(b = F(j + l))II(r = F.j)} 
a := b; {(O S j < i)lI(a = F.(j + l))II(b = F.(j + l))II(r = F.j)} 
b:= a + r; {(OS j < i)lI(a = F.(j + l))II(b = F.(j + 2))} 
j := j + 1 {(OS j :s i)lI(a = F.j)lI(b = F(j + I))} 

od; 
{(j = i)II(O:S j :s i)lI(a = Fj)lI(b = F.(j + I))} 
r:= a 
{r = F.i} 

The assertion at the beginning of the program claims that program-variable i contains a value 
at least zero'. The assertion at the end claims that the required entity (F.i) is stored in variable 
r. We will not show the proof of correctness of all the assertions, but concentrate on the most 
important ones. 

The assertion before the while-statement and the last assertion within its body are exactly the 
same: inv = (0 :s j :s i)lI(a = Fj)lI(b = F(j + 1)). However, the first occurrence of inv can be 
strengthened with j = 0, while for the latter one we are certain (by the statement j := j + 1) that 
j # O. Because execution of the loop body obviously does not change the truth of this assertion, 
inv is called an invariant of the loop. 

It is easy to see that indeed the invariant inv is true right before the while-statement: the 
values of a, band j are 0,1 and 0 respectively. If we substitute these values in inv we have 
(0 :s 0 :s i) II (0 = FO) II (1 = F.1)), which follows from the initial condition 0 :s i and the 
definition of F. 

Whenever the loop body is executed we know that the invariant is true, since it was true initially 
and its truth was not destroyed by any previous execution of the loop body. (This argument is 

2 We will assume for now that all variables are declared and have type integer. 
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similar to induction: if the loop body did not destroy the truth of the invariant during any previous 
execution, it will not destroy its truth during this execution.) 

Also we know that in addition to the invariant, we have j i= i at the beginning of the execution 
of the loop body, since this condition was checked in order to enable the current execution. After 
some manipulation with r, a and b, the value of j is increased. After this increment operation 
the invariant must hold again. Now if the invariant must hold for the value j after it has been 
incremented by one, it must hold for j + 1 right before this increment is performed. In general, we 
have for any assignment x := e of a value e to a variable x that P[x := eJ must hold before the 
assignment in order for P to hold after the assignment3

, or, otherwise said, {P[x:= e]}x := e{P}. 
To prove correctness of the invariant we now prove as an example that 

(0 <: j <: i)i\(a = F.j)i\(b = F(j + 1)) 

holds after the assignment j := j + 1, by proving that 

(0 <: j + 1 <: i)i\(a = F.(j + 1))t\(b = F.(j + 1 + 1)) 

held before this assignment4 : 

(0 <: j+ 1 <: i)t\(a = F(j + 1))i\(b = F.(j+ 1+ 1)) (1) 
{j+1+ 1 =j+2,(0<:j+ 1 <: i) =(-1 <:j <: i-I)} (A) 
(-1 <: j <: i - 1)t\(a = F(j + 1)t\(b = F.(j + 2)) (2) 

¢= {(O <: j < i) =} (-1 <: j <: i-I)} (B) 
(0<:j<i)i\(a=F.(j+l))i\(b=F.(j+2)) (3) 

The last proposition is exactly equal to the assertion right before the assignment that increments 
j and therefore the invariant indeed holds after the increment of j. 

When the loop terminates, the invariant still holds. In addition to the invariant the negation 
of the guard of the loop also holds, since otherwise the loop would not have terminated. These 
two facts are denoted in the assertion behind the while-statement. Finally we can prove the 
correctness of the postcondition, by proving that the assertion behind the while-statement im plies 
(r = F.i)[r:= a]. This last proof is trivial, since a = Fj and i = j are conjuncts of the assertion 
before the assignment r := a. 

The total correctness of this program follows from the fact that when the loop body is executed 
the expression i - j is greater than zero, but decreases as an effect of the body-execution. Since a 
positive expression of type integer cannot decrease infinitely, the loop will terminate. An expression 
like i - j is an upper bound to the number of iterations of the loop and is therefore called a bound 
function. 

1.3 Correctness of Logical Programs 

In logical languages programs are sets of logical formulas. These formulas can contain free variables 
that are implicitly universally quantified. Moreover, all formulas have the same form: a conjunction 
of several positive literals that imply the truth of yet another literal. In a formula: 

The Ai are called the antecedents of the formula, B is the succeedent. These kind of formulas 
are called Horn-clauses5 . A logical program states a certain amount of 'knowledge'. 

Executing a logical program is done by asking questions. A question is formulated by a literal. 
If this literal does not contain any free variables the answer to the question is a simple 'yes' or 

3To some people this gives rise to some confusion, since the axiom {P}x:= e{P[x:= en looks so naturaL That 
this axiom is wrong is shown by the following simple example: {x = O}x;= 1{1 = o} 

4The format below means that (1) =. (2) because of CA) and that (2) {:: (3) by (B); hence: (3) :::> (1) 
5The Prolog denotation of AlA ... AAn :::> B is: B : -AI, ... ,An. 
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'no'. The answer should be 'yes' if the truth of the literal can be derived from the given knowledge 
and 'no' otherwise. If the literal contains free variables the answer consists of a set of formulas 
representing 'solutions' to the question. These solutions are calculated by executing all possible 
substitutions of values for the variables in such a way, that the closed proposition obtained by this 
substitution is derivable from the program. 

Since the answer to a question is derived from the knowledge according to formal logic, every 
logical program is partially correct. Hence logical programming provides correctness by definition. 
But does the language also provide total correctness automatically? 

To provide total correctness automatically, a logical program always has to terminate. If 
deriving an answer to the question asked were decidable, this would be the case: a logical program 
would then always provide a correct answer for any given problem. In particular, the language 
would then be able to decide the halting problem of Turing machines, for which it is known 
that it is undecidable. Therefore, no useful logical language will ever provide total correctness 
automatically, now or in the future. The programmer still personally has the task to provide for 
total correctness. 

In our example, the definition of F itself can be denoted as a program. However, we have to 
code numerical computations as literals: instead of a function F we get a literal F(i, X), that 
holds whenever X is the ith Fibonacci number. The program in pseudo-Prolog is denoted as 
follows: 

F(O,O). 
F(I,I). 
F(i + 2,X).;= F(i + 1, A), F(i, B),X = A + B. 

The question to compute the nth Fibonacci number is then F(n, X) for given n e: O. The 
computed answer is X :::::::: N, where N is the correct Fibonacci number. 

Since the program is the specification, partial correctness is evident. This example program 
is also totally correct: for any (sub-)question no more than one rule can be applied and in only 
one way. From the fact that the conclusion of the formulas always has a first argument that is 
greater than the first arguments of the premises, we can conclude that repetitive application of 
the rules is well-founded. This means that for every question F(n, X) for given n there is only 
one possible derivation. This derivation leads also to the correct substitution for X. Hence the 
computation will always terminate with the correct answer. 

When searching for an answer to the question asked, the logical language tries to use the 
program rules in a fixed order. If a derivation set up in this order fails) the language cancels the 
last step taken in the derivation and tries to apply the program rule that comes next. This process 
is called backtracking or exhaustive search. 

Applying a formula from the program is done in a backward style. To derive a question using 
a program formula, a substitution is computed that makes the question equal to the succedent of 
that program formula. This substitution is then also applied to the antecedents of the formula 
used. In order to obtain a derivation for the original question we now have to find derivations for 
the premises. Therefore, the premises can be regarded as sub-questions. 

If there are finitely many possible derivations the program will always terminate, but if there 
are infinitely many derivations computation may not terminate. The programmer then has to 
state the program rules in such an order that if an answer to a question exists for some instance 
of the free variables, the corresponding derivation is found in finite time. As a consequence, the 
programmer has to know exactly in what order the program is used to construct a derivation for 
the question. 

To actually prove termination of logical programs is very hard. By the nature of the execution of 
logical programs every termination proof relies on the order of execution of the separate formulas. 
Some proving-techniques are given in [Apt97]. These techniques are based on well-founded ness of 
the constructed derivation trees. 

From the above we see that a logical program is easier read than written. When reading a 
logical program only the logical contents of the formulas matters. From this contents we can 
conclude what the program should do. If the program is totally correct, the execution will always 
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provide an answer, which by definition is correct. If we write a program we cannot concentrate 
solely on the logical contents of the rules, but we also have to be concerned with the order in 
which the rules are used when an answer is computed. 
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Chapter 2 

Correct Programming 

There are three approaches that can be used to obtain a program that is correct with respect 
to its specification. Theories have been developed for all approaches. Also, several tools have 
been built that support programming by implementing these theories. In the following sections 
we elaborate on each of the methods and their supporting tools and summarize their advantages 
and disadvantages. 

However, before we elaborate on the different methods we first introduce them and give an 
impression of how they are used. The methods are: 

1. First write a program and then prove its correctness. 

2. Use the specification to derive a program and its proof of correctness simultaneously. 

3. First derive a constructive proof of the existence of the entity we want to compute and then 
extract a program from this proof. 

The first method is used the most. We first have to write a program, using not much more 
than our intuition. Then we write the program specification and finally we prove the correctness 
of the program. An elaboration of this method can be found in section 2.1. We will refer to it as 
'verification of programs'. 

If we take the second approach we start with a formal specification of the entire program. 
Next, we rewrite this specification in such a way that parts of it can easily be met (or established) 
by a simple program. This leaves us with the problem of meeting (or establishing) the rest of the 
specification, which we attack the same way as we attacked the entire programming problem. We 
will call this method 'derivation of programs' and give a more detailed explanation in section 2.2. 

The third method is the most abstract one. To obtain a program that computes an entity 
with certain specification, we construct a constructive proof of the existence of such entity. Since 
the proof is constructive, a proof of existence of an entity contains an algorithm that actually 
computes this entity. A program implementing this algorithm is then extracted from this proof 
automatically. We describe this method in section 2.3 and refer to it by 'extraction of programs'. 

2.1 Verification of Programs 

If we use verification of programs as our programming strategy, we first write a program according 
to a specification we only have in mind. Next we want to verify if the written program is correct 
with respect to our intuitive specification. For this we have to formalize the intuitive specification. 
During the formalization process, we keep one eye at the program and try to write the specification 
in such a way, that proving correctness of the program is easy in the end. Finally we can prove 
correctness of the program using the theories related to the programming language. (This last 
step is omitted far too often.) 
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We have already demonstrated the verification of programs in the previous chapter. The 
programs to compute the i'th Fibonacci number were given before they were formally specified or 
proved. When we proved the correctness of programs it was done "by hand)) , which means that 
even a program which we proved to be correct can be wrong due to errors in our proof. After all 
we can make errors in a proof just like we can make errors in a program. 

We can prevent errors in our proofs, by using mechanical tools to verify our proofs. Such tools 
exist in many forms and are based on a variety of formal systems. In this section we will discuss 
two tools, that not only verify our proofs, but also assist in constructing them. Besides, both tools 
support a programming language. For this supported language they can automatically compute 
the proof-obligations that guarantee correctness of a program written in this language. These 
proof-obligations are called verification conditions and therefore we call these tools 'verification 
conditions generators' (VCG's). 

2.1.1 An Interactive Tool for Verification of Programs 

Our first example VCG is described in chapter 10 of [RTS9]. Although the authors only use it 
to demonstrate a generator for interactive programming environments, it is a good example. It 
demonstrates all elements required for the verification of programs. 

First the authors define a simple imperative programming language, consisting of the most 
important statements: skip, assignment, if-then-else and while-do. Variables do not need to be 
declared and are always of type integer. All expressions of the language are valid, since there are 
no operations like div that require the second argument to be nonzero. The tool will support the 
programmer in verifying programs written in this language. 

Next the authors of [RTS9] define an assertion language, in which the programmer has to write 
the program specification. This is necessary, because in order to support verification the tool has 
to understand the specification and hence it must be written in a pre-defined assertion language. 
In this VCG the assertion language consists of terms of first order predicate logic. In this logic 
we have the usual connectives 1\, V, :::} as well as universal and existential quantifications over 
elements of a set. In fact, we only have quantifications over the set of integers, due to the simplicity 
of the programming language. As we described in the previous chapter, the specification, written 
in the assertion language, is added as formal comment to the program. This comment is called 
annotation. 

The programming language and the assertion language are not mutually independent. There 
is only one grammar, which describes annotated programs. This grammar is constructed in such 
a way, that boolean expressions in the programming language are a sub-language of the assertion 
language. The assertion language is more powerful in the sense that it has quantifications. The 
advantage of this approach is that expressions that occur as a condition in the programming 
language can directly be used within the assertion language. We have seen this in the example of 
section 1.2, where the loop-condition j :I i occurred negated as j = i in the assertion following 
the while-statement. 

The programmer constructs annotated programs with a structure-editor that is generated 
automatically by the environment generator l . The annotation occurs at fixed places in the program 
code: within loops (while-statements) and at the beginning and the end of the program. Even 
though one is allowed to edit the assertions at any time of the editing session, one is not guided 
in the construction of the program by the form of these assertions. We will see later that this 
is a fundamental difference with derivation of programs, where the specification leads the way in 
constructing the program. 

This tool automatically computes the verification conditions as soon as the programmer has a 
complete program. The algorithm to compute the verification conditions is explicitly encoded in 
the input for the environment generator. All theory about the correctness of these conditions is 
considered Meta-theory and has to be proved manually, outside the system. 

1 Note that the entire tool was used to demonstrate a generator for programming environments. 

12 



We will demonstrate this with the example program for Fibonacci numbers from chapter 1 
on page 7. First, we introduce an abbreviation for the invariant, since the verification conditions 
are based upon it: P == (0 :S j :S i)fI(a = F.j)fI(b = F.(j + I)). We then get three verification 
conditions: 

1. 0 :S ico} (P[j:= OJ[b:= IJ[a:= OJ) 

2. (Pflj oF i) co} (P[j := j + I][b:= a + r][a := b][r:= aJ) 

3. (PfI.(j oF i)) co} ((r = Fi)[r := aJ) 

Verification condition 1 claims that the invariant is valid right before execution of the loop. Veri­
fication condition 2 claims that the invariant is indeed invariant under execution of the loop body 
and verification condition 3 claims that upon termination of the program the postcondition holds. 

Instead of creating a verification condition for every assignment, the tool computes a single 
verification condition for a serie of statements, by performing a serie of substitutions on the 
assertions. (See prj := O][b := I][a := 0] in verification condition I above.) These series of 
statements may consist of skip-, assignment-, and selection-statements. For a loop this approach 
would result in a proposition, that is a fix-point of an equation of propositions. This equation of 
propositions stems from the equality of the following program parts: 

while G do 5 od 

if G then 5; while G do 5 od else skip fi 

Because a fix-point of an equality of propositions is not always computable, the fix-point should 
be explicitly present in the verification conditions. However, programmers do not want to have a 
verification condition that contains a fix-point. Therefore, the tool requires that the invariants of 
the loops are specified explicitly. It then uses these invariants to compute verification conditions 
that do not contain fix points. This eases the work of the programmer, since constructing proofs 
for propositions that are fix points is everything but easy. 

After the verification conditions are computed, the programmer has to prove them manually. 
This kind of proving is supported by the system as follows: proofs are represented as derivations 
in a Gentzen-system. The authors have implemented this by creating syntactic terms for each rule 
of the Gentzen-system. Every syntactic term then corresponds to a legal derivation in the Gentzen 
system. The programmer can use the structure editor to edit these terms and consequently, to 
prove the verification conditions. 

The system also provides the programmer with an automated theorem prover (ATP) to prove 
parts of the verification conditions. This ATP is specified in the input file for the environment 
generator. The ATP attempts to create a derivation for the condition the programmer has to 
prove when invoking the ATP. Because this ATP produces a syntactic term corresponding to a 
derivation in the Gentzen system, every constructed proof will be correct. 

Since it is not decidable whether or not a first order predicate formula can be proved, the ATP 
will not always be successful. It may fail, even if the formula one wants to prove is true. Matters 
become worse if the assertion language is more powerful, like second, or even higher order logic. 
For these logics, good algorithms for automated theorem proving have yet to be found. 

Now that we have discussed the entire tool, it is time to summarize its strong and weak points. 
We start with the strong ones: 

• The editor is user-friendly. We have a single editor to manipulate programs, assertions and 
proofs. 

• Proving is made easier by the built-in automated theorem prover. Using an ATP is feasible 
because all assertions are in first order predicate logic. 

• We only have to learn a restricted kind of expressions, since boolean expressions in the 
programming language are immediately usable within the assertion language. 
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The weak points of the system are mainly due to consequences of its extreme simplicity: 

• The amount of assertions within the program is fixed and small. Assertions only occur at 
the beginning and end of our program and at the beginning of a loop. When we read a 
program we want to have more comments, like assertions at arbitrary places in the program. 
Comments then immediately tell us what we (hope to) have achieved at this point of the 
program. 

• The system requires from the programmer to annotate each loop with an invariant, but it 
does not help him or her to obtain one. For programmers this is problematic, since good 
invariants are hard to construct. Some aid in this process would be more than appreciated. 

• Also, the programming language is too limited. For any real programming problem one needs 
a more powerful language. Since the programming environment is generated automatically 
by the synthesizer generator of [RTS9], we can relatively easy extend the programming 
language. But beware: for every extension we make to the programming language, we will 
also need new inference rules to compute the corresponding verification conditions. Creating 
inference rules is a delicate job: in the past, inference rules have been proposed that turned 
out to be incorrect (see [GLSO, GHL7S]). 

2.1.2 Verification of Programs within a General Theorem Prover 

The second VCG we discuss is found in [HM96]. It is designed to verify mutually recursive 
procedures. It also demonstrates how a VCG can be embedded in a general purpose theorem 
prover. Homeier and Martin used HOL, the Higher Order Logic theorem prover. 

In a general purpose theorem prover one language already exists: a language to formalize 
mathematical concepts and reason about them. Within this language one can introduce sets, 
elements of sets, functions on sets and even axioms. Together these elements form the theory 
one wants to reason about. For instance, one can introduce the class of boolean expressions 
(booI) and its syntactic constructors like true : baal, false : baal, or : bool ---+ bool ---+ 

bool and and : bool ---+ bool ---+ bool. Next, axioms defining the properties of not and 
and have to be declared. As soon as the theory is defined, it is possible to prove propositions 
like ('Ix: bool • (x and x) = (x or x)). The theorem prover checks that the results are indeed 
derivable from the theory defined within the logic on which the theorem prover is based. 

Homeier and Martin define their programming language exactly in this way. First they intro­
duce sets that represent programs, boolean expressions, integers etc, along with the corresponding 
syntactic constructors like: 

skip program 
< int ---+ int ---+ bool 
if bool ---+ prog ---+ prog ~ prog 

The programming language also supports procedures with value and result parameters. Like in 
the first VCG) variables are not introduced and always have type integer. However, this time the 
language also has an increment operator ++, that is treated like an expression. For any variable 
x the value of + + x is just the value of x, but as a side-effect the value of x is incremented by 
one. This special construct has its impact on the semantics of the language: The state can change 
as an effect of evaluating an expression, while usually the state can only change when executing a 
statement. 

The assertion language and the programming language are introduced simultaneously. This 
is necessary, because while-statements require an invariant written in the assertion language (the 
while construction is defined as while: assert ---+ bool ---+ prog ---+ prog). Also) procedures re­
quire a pre- and postcondition. Basically, the assertion language is first order predicate logic. 
The assertion language is independent from the programming language: we cannot directly use 
boolean expressions of the programming language within our assertions. Whenever we need an 
expression of the program in an assertion, we explicitly have to translate it. We can assure that 
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a translation is correct by proving soundness of the translation within the theorem prover, which 
is possible because all the theory needed for this proof is defined within the theorem prover. 

Also, Homeier et al define the programming language semantics within the theorem prover. 
This is necessary, since the program correctness depends on these semantics. To compute verifica­
tion conditions axiomatic semantics are needed . Axiomatic semantics specify the correctness of 
the annotation of a program directly, but it is a delicate job to define the correct axioms. In the 
past axiomatic semantics have been proposed for procedures, that later turned out to be wrong 
(see [GL80, GHL78]). Therefore an indirect approach is taken: first, Homeier et al use struc­
tural operational semantics to specify the language semantics. Structural operational semantics 
merely define the effect of executing a program on the machine state. These semantics are less 
error-prone, because they are more intuitive to a language designer than axiomatic semantics. 
Next, the axioms required by the VCG are defined as theorems and finally these are proved to be 
correct by using the theorem prover. This is possible because all theory required for this proof is 
also defined within the theorem prover. This indirect approach guarantees the correctness of the 
axioms, even for the complex construct of mutual recursive procedures. 

The Verification Condition Generator itself is programmed as a proof-tactic in HOL. This 
tactic requires two parameters to work: the program one wants to verify and the postcondition it 
should establish. Except for the verification conditions, this VCG also produces the precondition 
of the main program. 

The only assertions the programmer can put in his program are loop-invariants and the pre­
and postconditions of procedures. These assertions are not optional, but they are needed to be 
able to compute the verification conditions. Without these assertions, computing the verification 
conditions would become difficult and also the verification conditions would contain fix points. The 
postcondition of the main program is given when calling the VCG and the precondition cannot 
be specified by the programmer at all. 

Also, the programmer is not supported in writing the program. The program has to be entered 
into the system as one large HaL-term, just like any other syntactic term defined within HOL. 
This is also the case for assertions: the assertions within the program, like the postcondition, are 
syntactic terms within HOL and have to be entered as a whole. 

After the programmer applied the VCG-tactic to his program and the corresponding postcon­
dition, he can directly prove the validity of the verification conditions within HOL. This is possible 
because the verification conditions are objects of the HOL-object language. Automated theorem 
provers are not provided, because the verification conditions are terms in Higher Order Logic. For 
this logic no good automating algorithms are known. 

We will summarize strong and weak points for this VCG as well. The strong points it has, 
stem mainly from its embedding in a general theorem prover. 

• The VCG supports a powerful language with complex programming constructs like mutually 
recursive procedures and expressions that cause changes in the state. 

• We can construct Meta-proofs over the programming language within this system as well. 
The entire language, its semantics and the assertion language are defined within a single 
formalism. 

• Correctness is always and at any level guaranteed by the system. Because everything is 
formalized within one system, even the most complex inference rules are proved to be correct. 

Using a general theorem prover also has some disadvantages. Theorem provers are not built to 
write programs. They are built to assist in proving theorems. 

• The VCG does not support the programmer in writing his program in any way. The pro­
grammer has to manually write the entire program and its specification before he can enter 
it into the system. This also implies that, again, the programmer does not get any support 
in constructing invariants for loops. 
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• The language definition does not allow the programmer to insert assertions at arbitrary 
places in the program. In this respect this VCG is even worse than the first VCG we 
discussed: even the precondition cannot be specified explicitly. It is computed automatically 
by the VCG and hence, could turn out to be entirely different from what the programmer 
had in mind. Also the postcondition is not a part of the annotated program itself, but an 
extra argument of a tactic that computes the precondition and the verification conditions. 

• Due to the embedding of the language, we have three levels of expressions: (1) Boolean 
expressions of the programming language. (2) Expressions of the assertion language. (3) 
The HOL-object language. Despite the fact that any expression in (1) can be formed in (2) 
and any expression in (2) can be formed in (3), the programmer has to translate his terms 
explicitly whenever he uses a lower level term in a higher level construct. (For instance, 
when he uses a guard within an assertion). 

• The programmer cannot use automated theorem provers to prove the verification conditions 
for his program. We can prove the verification conditions directly within HOL, but these 
are elements in Higher Order Logic, for which no good automating algorithms are known. 

2.2 Derivation of Programs 

It is also possible to derive programs from formal specifications. When using this method, we 
first have to write a formal specification of the entity we want to compute. We then rewrite 
this specification in such a way that we can split off smaller sub-problems that we can easily 
solve. Because we did not yet demonstrate this way of program development, we will first give an 
example. 

In the following example we show how we derive an imperative program to compute the i'th 
Fibonacci number from its specification. The precondition is 0 :S i and the postcondition is 
r = F.i. In our context we consider i to be a constant and r a program variable. We want to 
derive a program So, such that {O <S i}50 {r = F.i} is a valid annotation of So. 

First we rewrite the postcondition r := P.i to (r = F.j)l\(j = i). We have now created the 
possibility to establish the first conjunct by repetitive altering of rand j. The additional second 
conjunct we created is directly computable. Note that r = F.j is directly computable if j = 0 
or j = 1. In case j = 0, we also know that j :S i, since 0 :S i is stated in the precondition. This 
gives rise to implement So by a loop that initializes j with 0 and increases j in its body until 
j = i, while r = F.j is kept invariant. This loop has the required postcondition (r = Fj)A(j = i), 
because r = Fj is invariant, and j = i must be valid in order for the loop to terminate. We now 
have the following partial implementation: 

{O <S i} 
SI; 
j := 0; {r = F.j} 
while j oF i do {(r = F.j)A(j oF i)} 
52; 
j := j + 1 
{r=F.j} 

od {(r = F.j)A(j = i)}{r = Fi} 

We now have to solve two programming problems: S1 and S2. To compute the specifications 
for these programs, we use the weakest preconditions calculus given in [Dij76]. The weakest 
preconditions are computed by a function wp. If S is a program and Q is a proposition, then 
wp(5,Q) is the weakest precondition P such that {P}5{Q} is a correctly annotated program. 
We start with 52: 

{(r = Fj)A(j oF i)}5,{wp(j := j + 1, r = Fj)} 

{(r = F.j)/\(j oF i)}S,{r = F.(j + In 
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Obviously,52 must assign F.(j + 1) to r. Unfortunately, there is no formula for F.(j + 1) 
and the precondition does not provide any information on it either. Therefore, we choose to 
strengthen the invariant by introducing a fresh variable h to maintain the value of F(j + 1). The 
new invariant becomes (r = F.j)A(h = F(j + 1)) and the partial program becomes: 

{a :0; i} 
Sl; 
j := 0; {(r = F.j)A(h = F.(j + 1m 
while j =F i da Hr = F.j)A(h = F.(j + 1))A(j =F in 
52; 
j := j + 1 
{(r = Fj)A(h = F.(j + 1m 

ad {(r = F.j)A(h = F.(j + 1))A(j = i)}{r = F.i} 

According to the weakest precondition calculus, the new specification for 52 IS: 

{(r = F.j)A(h = F.(j + 1))A(j =F in52{(r = F.(j + l))A(h = F.(j + 2m 
According to the precondition, the value 52 has to assign to r is now given by h . The new 

value for h is F.(j + 2) , which by definition is F.j + F.(j + 1) (We can easily show that a :0; j 
by strengthening the invariant with a :0; j). The latter expression is directly computable from 
the values of rand h stated in the precondition. Hence, a correct implementation of 52 IS 

r, h := h, r + h. 
The last step in deriving the program is the implementation of SI. We derive: 

{O:O; i}5, {wp(j := 0; (r = Fj)A(h = F.(j + I)))} 

{O:O; i}5, {(r = F.O)A(h = FIn 

By using the definition of F, we rewrite the postcondition of 5, to (r = O)A(h = 1). We implement 
51 by r, h := 0,1. The final program reads: 

{a :0; i} 
r,h:= 0, 1; 
j := 0; Hr = F.j)A(h = F.(j + 1m 
while j =F i da {(r = Fj)A(h = F.(j + 1))A(j =F in 
r,h:=h,r+h; 
j := j + 1 
Hr = F.j)A(h = F.(j + 1m 

ad {(r = F.j)A(h = F.(j + 1))A(j = i)}{r = F.i} 

Finally, we can prove termination by using i - j as the bound function. The invariant is 
strengthened by adding the conjunct (0 :0; j)A(j :0; i). Proving the correctness of this invariant 
is left as an exercise to the reader. Termination is guaranteed by the correctness of the following 
statements: 

1. (r = F.j)A(h = F.(j + 1))A(O :0; j)A(j :0; i)A(j =F i),*(i - j) > a 
2. {(T = Fj)A(h = F.(j + I))A(O:O; j)A(j:O; i)A(j =F i)A(i - j = Xn 

T, h := h, r + h; j := j + 1 
{i-j<X} 

Note that by deriving the program, we have now obtained a program that is slightly simpler 
than the program given in chapter 1 (the latter one has an assignment right after ad). Also it has 
the same efficiency as the functional program 9 in chapter 1. 

The method of strengthening the invariant is a very powerful method. In general it is an 
alternative to computing values that are required within the loop directly. The actual computation 
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of the value is transferred to an other place in the program, by assuming that the value is stored 
in some variable. If it then turns out that the required value can be computed simultaneously 
with some other required values, we have obtained a more efficient algorithm than one that always 
computes each value at the place where it is needed. For instance, in our example we did not 
explicitly compute F.(j + 1) at the place we needed it, but computed it along with the required 
value of F.j. 

To our knowledge there are no tools that support the actual derivation of programs. Therefore, 
we will discuss some tools that use a similar approach of program construction: program refine­
ment. In fact program refinement is another way of deriving programs, but it does not really use 
the postcondition to guide the way in constructing the program. Instead, it allows the programmer 
to refine more abstract programs to morc explicit ones. The refinement calculus then assures the 
programmer that the replacement of the abstracter program by the more explicit one is valid. 

2.2.1 The Refinement Calculus 

We will not formally explain the refinement calculus. Instead, we describe the refinement tool 
introduced in [vW94]. In this tool a simple programming language is embedded within the general 
theorem prover HOL. By using Grundy's window inference tool for refinement in HOL [Gru92J, a 
programmer can construct programs using the refinement calculus. The tool can also be used to 
apply data-refinement. 

The embedding used by von Wright, is based on the weakest precondition calculus of Dijkstra 
(see [Dij76]). Von Wright models the programming language by creating a few layers that model 
parts of the language theory: 

• Machine states are modeled by a polymorphic type, which is usually instantiated by a tuple 
type. A state then is a tuple which contains one component for each program variable. 

• Assertions are modeled by predicates, which in turn are modeled by functions from a state to 
a boolean. A predicate P is said to hold in state s, iff Ps = True. Implications, conjunctions 
and disjunctions on predicates are directly mapped to =>, /\ and V of the booleans. Using 
arbitrary functions from states to booleans as predicates allows the programmer to create 
very powerful specifications, since HOL allows the construction of higher order predicates. 

• Substitutions on predicates are modeled by combinations of A-abstractions and applications. 
In fact, every substitution is a function from predicates to predicates. 

• Programs are modeled by functions from predicates to predicates in the fashion of Dijk­
stra's predicate transformer semantics (axiomatic semantics) [Dij76, DS90]. The function 
that models a program gives for every postcondition a precondition that must hold before 
executing the corresponding program, to assure that upon termination of the program the 
post conditions hold. In other words: to prove that a program establishes a certain post­
condition, we have to prove correctness of the predicate that we obtain by applying the 
program to the postcondition. Hence, to prove {P}S{Q}, we have to prove P=eS Q. This 
corresponds to the weakest precondition calculus of programs. 

Although this formalism allows us to use any function from predicates to predicates as a program, 
we consider only those functions that correspond to program constructs in the language we work 
with. 

Von Wright uses a simple guarded command language in which guards are predicates. The 
assignment statement is very general: an assignment is a function from states to states, lifted to 
the level of predicate transformers. In general, languages do not provide such a general assignment 
statement. It is only possible to change the value of some variables, usually not more than one at a 
time. Assertions like assert P, where P is a predicate, are considered to be normal statements. An 
assertion is much like a skip command: if the assertion predicate holds the assertion does nothing. 
If the predicate does not hold, the assertion statement does not terminate. It then establishes no 
postcondition at all, not even true. 
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Von Wright also introduces a nondeterministic assignment statement, called nondass m. m 
represents a relation between states. When executing nondass m , from a state u, it terminates in 
a state u' , such that m u u' holds. If there are several u l for which the relation m with u holds, 
nondass nondeterministic ally chooses one. If there exists no u' for which m u u l holds, nondass 
establishes any postcondition, including false. Intuitively, nondass represents program parts 
that are not yet implemented and therefore it also has to be able to represent non-implementable 
parts of the program. Of course, we want to derive programs in which no nondass statements 
occur, but we need it during the derivation to fill gaps of the program for which we have not yet 
found a solution. 

Refinement of programs can be done without knowledge of the postcondition of the program. 
We say that a program S refines a program T if for all predicates p the proposition Tp =} Sp 
holds, meaning that S can establish the same postcondition but requires only a weaker precondi­
tion. All constructs of the programming language are monotonic: if T occurs in some construct 
C(T) and S refines T, then C(S) refines C(T). We can prove this monotonicity within the 
formalism for any construct, meaning that given a proof for S refines T, we derive a proof for 
C(S) refines C(T). Hence, we have to prove the correctness of: 

r I- S refines T 
r I- C(S) refines C(T) 

Once the monotonicity has been proved for all constructs we refine programs using these proofs. 
The window-inference tool described in [Gru92] supports this kind of refinement: it allows the 

programmer to focus on the refinement of subcomponents, rather than forcing him to refine the 
entire program at once. We can expand the window inference tool with new constructs, by simply 
providing proofs of monotonicity for these new constructs. 

With this system a programmer can construct a program using the refinement calculus. The 
programmer first enters the program specification, given as a pre- and postcondition, say P and 
Q respectively. Since there is no program constructed yet that meets the specification, we use a 
single nondass m that implements the entire program. The relation m for the nondass depends 
on the specification. It is defined as m:::: AU.AUI.Pu=?Qu'. Hence, if we execute nondass m from 
a state u in which Pu holds, then it can only terminate in states u' in which Qu' holds, since 
otherwise Pu =} QUI would be false. If QUI is true for all states u l this does not work, since it 
implies that Pu =} QUI is true for all states u and u'. However, in practice we will never want 
the postcondition Q to be true in all states. 

The programmer then applies several refinement steps on the program nondass m in order 
to obtain a more specific program, that meets the same, or even a stronger specification (the 
specification can be stronger in the sense that it has a weaker precondition). Whenever the 
programmer applies one of the theorems that come with the system, he has to fill in all elements 
of the refining program. Usually he will use other nondeterministic assignments for program parts 
that he has not yet solved. Although it is not explicitly mentioned in [vW94J, the actual goal of 
the programmer is to refine until he has obtained a program for which certain well-formedness 
conditions hold. These well-formedness conditions will certainly claim (among other conditions) 
that the final program should not contain any nondass statements and that guards should not 
contain any quantifications. 

Data-refinement can also be performed with this refinement tool. Data-refinement allows us 
to first derive an abstract kind of program that works with sets, and then replace all variables 
that represent sets by variables of more explicit types that implement the sets. The corresponding 
operations performed on variables of the abstract type will then also be automatically transformed 
to operations on the more explicit type. 

Constructing programs with the refinement calculus has some advantages: 

• The construction of the programs is supported by the system. The programmer does not 
have to enter the entire program at once . 

• Correctness of the program with respect to its specification IS verified during the entire 
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process of constructing the program. It is not verified after the programmer has written the 
entire program. 

• We can have variables of several types. In all the previous systems we considered all variables 
have type integer. Also the formalism of von Wright allows the use of local variables (we did 
not discuss this though). 

• During program construction it is possible to use arbitrary predicates as guards of statements. 

• Assertions can be inserted at any place of the program, since they are considered to be 
normal commands. 

Drawbacks of the tool are mainly caused by the way the refinement calculus is embedded and 
supported by the system: 

• This system still does not support the construction of invariants. The programmer has to 
fill in the various parameters when he applies a refinement step. 

• Automating the proving process is still difficult. Since any function from states to booleans 
may be used as a predicate, higher order predicates can be formed. 

• The user interface is still primitive. Even though Grundy's window inference allows the 
programmer to concentrate on parts of the program, all commands still have to be entered 
manually in a command line interface. 

• The programming language is not strictly defined. It is not stated what types are actually 
supported by the language. Also the language's constructs are too primitive for any real-life 
application. 

2.2.2 Automatic Synthesis of Imperative Programs 

In [Chr93], Heine Christensen describes a tool that automatically generates imperative programs 
from logical specifications. The tool can not yet generate large or complex programs, but it 
demonstrates that deriving and computing programs is really possible. In this subsection we 
briefly describe the programming- and specification language supported by Christensen's tool and 
the algorithm that synthesizes programs. 

The programming language supported by Christensen's tool is inspired by the language used 
in [Gri81] and Pascal. It supports variables of type boolean, integer, record types and arrays 
in any combination. Pointers are not allowed in order to avoid difficulties with aliasing in the 
specification language. The statements in the language are skip; multiple assignment; selection; 
iteration (multiple guards in selection and iteration are allowed); and procedure calls. Procedure 
calls are only used when the programmer directly implements in the programming language. They 
are not synthesized. In order to synthesize a program, it has to be formally specified by a pre­
and a postcondition in the specification language. 

The tool uses two assertion or specification languages: one for preconditions and one for 
postconditions. The assertion language for preconditions consists of the following constructs: 

• Boolean and integer expressions, with all the usual operators, including conditional integer 
expressions, conditional and (cand) and conditional or (cor) on booleans; and the power­
operator for integers. 

• Bounded quantifications over explicit domains of integers. For instance, (A i in[O .. n] .x[i] = i) 
expresses that xli] = i holds for all i in {O .. n}. Unbounded quantifications are not allowed. 
Hence, one cannot specify a 'Meta'-function, say square on integers, outside the program­
ming language by (Vi: integer.square(i) = i * i). Allowed quantifiers are forall; exists; sum; 
number; maximum; and minimum. 
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The assertion language for postconditions is equal to the assertion language for preconditions 
with two extensions: 

1. Behind the postcondition, one must give a list stating the changeable variables. The syn­
thesized program will only change these variables and considers all the other variables as 
constants. This allows the user to use constants in the specification that are implicitly uni­
versally quantified. We will call this kind of constants problem variables, since they represent 
parameters of the specified problem. 

2. One can refer to the initial value of a changeable variable by suffixing its name with a zero. 
The intitial value is the value of a variable at the moment that the preconditions holds. This 
is necessary, for example, when one wants to express that an array has been sorted without 
changing the contents of the array. 

Once a program is specified, the user can start the synthesizer, which attempts to generate an 
implementation meeting the specifications. Synthesizing programs is done by recursively applying 
the following scheme of four steps: 

1. If the precondition implies the postcondition, the synthesizer implements the program with 
a skip. 

2. If a skip is not sufficient, the synthesizer attempts to generate a multiple assignment state­
ment. The order in which values are assigned to the variables and the required expressions 
are deduced by analysis of the assertions and the dependencies of the variables. We will 
explain more about this analysis below. 

3. Sometimes a condition C is found during the search for an assignment. If C is not implied by 
the precondition, Christensen's tool chooses to continue synthesizing conditional assignments 
until all cases are covered. All cases are covered when the precondition implies the disjunction 
of the conditions associated to the generated assignments. If this is successful, a selection 
statement is generated with the conditions as guards and the associated assignments as the 
guarded statements. 

4. Finally, if the problem cannot be solved directly with the previous steps, the synthesizer at­
tempts to create a loop. It obtains the required invariant, termination condition, and bound 
function by applying standard techniques for generating loop invariants. These standard 
techniques are discussed below. Once the invariant, the guard, and the bound function are 
known, the synthesizer computes the specification for the loop body. The loop body is then 
generated by recursive application of the synthesizer algorithm to the computed specification. 

Analysis of Assertions for Generating Multiple Assignment Statements 

Generating assignment statements is done by iterative guessing. Every guess is then verified for 
correctness against the specification of the program. To determine the order of assignment, the 
specification assertions are analyzed for dependencies of variables on other variables. For instance, 
in the assertion r = (Min i in [O .. nl.x[i]) the variable r depends on the value of variable n. In this 
case, expressions for r are guessed after expressions for n are guessed. Christensen distinguishes 
between weak and strong dependencies. A variable x is weakly depending on variable set 5, 
if given the values of the variables in 5 there exists at most one value for x, such that the 
postcondition holds. A variable x is strongly depending on variable set 5, if given the values 
of the variables in 5 there exists exactly one value for x, such that the postcondition holds. In 
the latter case, the expression for the strongly dependent variable x can be computed, once the 
expressions for the variables in 5 have been chosen. If a variable is independent, the synthesizer 
guesses as expression one of x + 1, x-I, 0, -1, +1, and + or - all computable subexpressions 
of the output assertion. 

When expressions for all variables have been guessed, the synthesizer tests whether or not 
the assignment meets the specification and if so, what the additional conditions are (see step 3). 
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If no condition can be found under which the assignment meets the specification, another set of 
assignments is searched by backtracking. Generating an assignment fails, if even after backtracking 
and with additional conditions no legal assignment can be found. 

Standard Techniques for Generating Loop Invariants 

Another open problem in the four step scheme is the generation ofloop invariants, loop termination 
conditions, and bound function. Currently the synthesizer uses two standard techniques to obtain 
them. These techniques have been introduced in [Gri81] and have been adapted to the formalism 
used by the synthesizer. They were both used in the example at the beginning of section 2.2. 

The first technique removes a directly computable conjunct from the postcondition and uses its 
negation as the guard of the loop. It is then assured that upon termination of the loop the guard is 
false and hence, the conjunct is true. The remainder of the postcondition is used as the invariant 
of the loop) to ensure correctness of the entire postcondition upon termination. As bound function 
an inequality with a changeable variable in the invariant is used. Guessing techniques are used to 
obtain the appropriate expression. We refer to this technique by 'removing a conjunct'. 

The second technique used by the synthesizer replaces a constant with a variable. First a 
constant, say N, is chosen in the postcondition. N is always a constant in the index set of a 
top-level quantifier or in a power construction. Next, the invariant P is generated to be the 
postcondition with the constant replaced by a fresh variable, say i. P is then strengthened by 
adding limits for i. These limits are N itself and another value z that either exactly empties 
the index set or makes the power construction o. Initially, i is set to z. If z < N, the guard G 
of the generated loop is i < N and the bound function is N - i. If z > N, the guard is i > N 
and the bound function is i - N. Finally a loop body is synthesized that preserves the invariant. 
Correctness of the loop is guaranteed: I A -,G => R, since I contains the limits for i. Also the 
synthesizer checks whether or not the generated bound function is legal. The second technique is 
referred to as 'replacing a constant'. 

Christensen claims that these two techniques, combined with the proposed guesses for as­
signments, are capable of solving many problems. For instance, insertion sort can be generated. 
Christensen proposes that the synthesizer should be included in a semantics-oriented editor. In 
such an editor, the user of the system must be able to give hints about the techniques the synthe­
sizer must apply in order to efficiently derive correct programs. Positive characteristics of such an 
editor are: 

• The programmer only has to outline how he or she wants to construct the program. The 
construction itself is done automatically and therefore correct. 

• Simple program parts can be generated entirely automatically and free the programmer from 
tedious repetitive work. 

• The administration of proof-obligations and their proofs is supported by the system. 

The usage of a semantics oriented editor as proposed by Christensen also has some drawbacks: 

• All programs have to be fully specified. Even simple modules have to be proved correct that 
are usually programmed without assertions. 

• The specification language does not allow meta-specifications. We cannot use unbounded 
quantifications to range over infinite sets like the one of integers. 

• Synthesizing program parts is slow. The examples in [Chr93] show that for a program 
counting the maximum row sum below the diagonal of an array half an hour of synthesizing 
time is needed. Manually this can be done much faster, including manual formal verification. 

22 



2.3 Extraction of programs 

The last method of correct programming we discuss in this chapter is extraction of programs. It 
is described in more detail in [PM89]. In contrast to the previous methods, this method will not 
be described in detail here, since the proposed method is not appropriate for our project. Instead, 
we will describe the principles underlying the method and use these to explain why the method 
does not seem to be appropriate for our goals. 

Extraction of programs is based on the observation that constructive proofs for existential 
quantifications contain an algorithm to compute a witness for the specification. In other words, a 
constructive proof of 3x.P(x) contains an algorithm that computes an x for which P(x) holds. 

To derive a program that computes an output entity y : Y from an input entity x : X , such 
that P(x, y) holds, the programmer first proves that for every x ; X such a y : Y exists. Hence, 
he proves '<Ix: X.3y : Y.P(x, y). If the proof is constructive, he can extract a program from this 
proof. This program is a function f: X -+ Y such that '<Ix : X.P(x, fx) holds. 

In Coq, extraction is done fully automatically, based on the extraction function described 
in [PM89]. To make this possible, a variant of the Calculus Of Construction is used, in which 
there is a distinction between informative and non-informative propositions. The informative 
propositions denote specifications of programs. The non-informative propositions represent log­
ical contents. Elements of informative propositions contain programs meeting the specification 
represented by the informative proposition. Elements of non-informative propositions represent 
proofs of the non-informative proposition. During the extraction of a program from a proof, all 
proofs of non-informative propositions are discarded, since these do not contribute to the compu­
tation of the witness, but to the proof that the computed witness meets the specification. 

To construct a program that computes from input x : X the output y : Y , such that P(x, y) 
holds, the programmer first constructs a proof t of '<Ix : X.3y : Y.P(x, y) within Coq. In this 
proposition, X and Yare informative and P(x,y) is non-informative. Since the proof is entirely 
constructed within Coq it is fully constructive. Once t is constructed, the programmer invokes 
Coq's extraction function to extract a program from t. Intuitively, the extraction function traverses 
t and computes a function f : X -+ Y, such that P(x ,f(x)) is" true". The function f itself is a 
t.erm in Fw } the system designed by Girard. 

Although program extraction provides a safe way to construct correct programs, it is not 
suitable for our purposes. Our objections to the method are the following ones; 

• The program does not become visible until the entire proof has been constructed, since 
program extraction cannot be applied to a partial proof. Consequently, the programmer 
cannot see whether the program he is constructing contains parts that obviously could be 
implemented more efficiently. 

• It is not possible to skip (parts of) a proof. It will often happen that propositions have to 
be proved in which the programmer is not interested at the time they are requested. For 
instance, the programmer may wish to postpone the proof of well-foundedness of a recursive 
function. 

• Program extraction only works for the construction of functional programs. 

• Programming has become a proof oriented matter. Programmers want to concentrate on 
the program, not its proof. 

• Automating parts of the proving process is difficult, since program extraction requires a logic 
like Fw or the Calculus of Constructions. For these logics good automating algorithms are 
not yet known. 

However, extracting programs is useful for obtaining prototype programs that compute enti­
ties of which the existence has been proved. If a mathematician has proved that for a certain 
class of functions a least fix point exists, it is possible to immediately extract a program for the 
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computation of this fix point. This program may be too inefficient to be used in a program that 
requires many fix points of this kind, but for the mathematician it will be adequate. 

Also, the extraction of programs is a beautiful theoretical result. It demonstrated that it is 
actually possible to immediately derive working programs from constructive proofs, which is a 
notable property of constructivism. 
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Chapter 3 

Existing Tools: an Overview 

In this chapter we present an overview of existing tools in the fields of theorem provmg and 
computer programming. The tools for theorem proving support the verification, construction 
and/or automatic construction of formal proofs for correct conjectures. The tools for computer 
programming are divided in two groups: generic environments and programming tools. Generic 
environments assist in creating programming environments for languages that can be specified by 
the user of the generic environment. Programming tools assist in writing programs in a pre-defined 
language. 

In the following sections we will discuss the results displayed in table 3.1. We do this by 
analyzing and comparing the systems in each category. Table 3.1 is compiled to the best of our 
knowledge. Note that most of the systems discussed in this chapter are still under development 
and hence, many data in the table may be outdated soon. Also, it may turn out during further 
research that despite our efforts, we misinterpreted some of the information we have about the 
systems. The list is not intended to be complete. Many other systems exist and may be added in 
the future. 

For more detailed information about the systems, we refer to table 3.2. It contains for ev­
ery system discussed in this chapter, either the URL of its World Wide Web home~ page or a 
bibliographic reference. 

3.1 Explanation of the Criteria 

In this section we explain the criteria found at the top of the columns in table 3.1. Also, we give 
the meaning of the possible cell-values in each column. The scores of the systems on the criteria 
are discussed in the following two sections. 

kind Kind indicates in what category we placed the system. The abbreviations are: Th.P. for 
Theorem Prover, Gen.E. for Generic Environments, and Pr.T. for Programming Tool. 

generality The generality of a system can vary between performing a single, specific task, being 
useful for several tasks or being customizable for a large class of tasks. The scores are 0, +, 
and ++ respectively. 

drive What has been the reason for the creators of the system to implement it? The desire for a 
system can arise from theory (T) or practice (P). We assign a T to a system if there first was 
a lot of theory that the creators wanted to support. Systems with a P in this column were 
designed because there was a need for the support they give. Most systems should be rated 
with a value in between T and P. Also, what is considered theory and what is considered 
practice depends on the point of view of the user. The values in the table indicate our point 
of view. 
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Table 3.1: A brief overview of existing tools. 
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Name Home-page URL or bibliographic reference 
Coq ht tp://pauillac.inria.fr/ coq/ systeme~coq~eng.html 
Lego http://www.dcs.ed.ac.uk/home/lego 
Isabelle http://www.cl.cam.ac. uk/users/lcp /ml~aftp / 
HOL http://Ial.cs.byu.edu/lal/hol-desc.html 
Nuprl http://www.cs.comell.edu/Info/Projects/NuPri 
PVS http:/ /www .csl.sri.com/sri~csl~pvs.html 
KIV http://ill www.ira.uka.derkiv /KIV~KA.html 
Larch Prover http://larch.lcs.mit.edu:8001/larch/LP/overview.html 
LeanTap htt p: / / emmy.ira. uka.de / - posegga/leantap /Ieantap .html 
Otter http://www.mcs.anl.gov/home/mccune/ar/otter/index.html 
The synthesizer gen. [RT89] 
ASF+SDF http://www.cwi.nlrgipe/asf+sdf.html 
The Maintainers Ass. http://www.dur.ac.ukrdcslejy/Bylands/ 
Homeier et al [HM96] 
Refinement Calc. http://cs.anu.edu.aurJim.Grundy/rcalc.html 
Christensen's [Chr93] 

Table 3.2: List of the World Wide Web home-pages or bibliographic references of the systems. 

support type A tool can provide several kinds of support. We distinguish three kinds: Verifi­
cation (V), construction (C), and automatic construction (A). In verification the tool only 
checks whether the given input meets certain constraints or not. Sometimes the user has to 
give hints. Tools for construction interactively assist the user in reaching his goal. Automatic 
construction tools attempt to reach the user's goal all by themselves, without interaction of 
the user. In this case, the user only has to specify his goal. 

autolllation The level of automation indicates how much the user has to do himself and how much 
the tool can do automatically. There are several theorem provers for constructing proofs, 
that are partially automated in order to relieve the user from proving trivial conjectures. We 
have four levels: no automation at all (-), naive automation (0), parametric or programmable 
automation (+), and sophisticated automation (++). Whether or not + is better than 0 
depends on how well the user works with the offered degrees of freedom of the automation. 

user interface Although the user-interface has no influence on the actual power of the tool, it 
determines a great deal of its practical application. Good user interfaces are better accepted 
by end-users. The possible values are: no interface (0, input comes from a file), command 
line interface (+), and graphical point~and-click interface (++). 

language This is either the language in which the tool is programmed or the system on which it 
is based. The language (among other aspects) determines the portability and speed of the 
tool. 

logic Proofs developed within a theorem prover are always based upon a formal logic. In strong 
logics more theorems can be formalized than in weaker logics. First order predicate logic 
(0) is the weakest logic that is used in the tools under consideration. Other tools use higher 
order logics (+). We also consider the calculus of constructions (++) as a higher order logic, 
but this one is so powerful that we indicate it differently. 

extendability In this column we judge the extendability of the system. If extending the logic 
and the commands of the system is not possible, we rate it with -. If extending is possible, 
but the extensions have to be programmed in the underlying language or system, we rate it 
with O. If extending is supported by the system, we rate it with +. 
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custOIll notation Custom notation indicates how well the syntax accepted by a theorem prover 
can be adjusted to the theory defined within it. For instance, if we reason about natural 
numbers, we want to use an infix notation for addition and multiplication. This kind of 
adjustment is not supported by all theorem provers. Therefore, we distinguish four levels 
of flexibility: no adjustments can be made (-), adjustments have to be programmed in the 
language underlying the theorem prover (0), the theorem prover provides limited or clumsy 
means for adjustment (+) and adjustment is well supported by the system (++). 

supported language Supported language indicates the range of languages supported by a pro­
gramming tool. Possible values are: supports only a fixed language (0), supports an extend­
able language (+), and the language can entirely be specified by the user (++). 

supported aspects What aspects of the programming language are supported? We use the 
following values: Only supports the most elementary aspects of the language (CFS, context 
free syntax), checks the "spelling" of a program to such extent, that it can be translated 
when correct (CS, context dependent syntax), program parts can be replaced by equals or 
be re-written according to re-write rules supported by the system (RW, re-writing), and 
the tool supports reasoning about the correctness of programs in the given language (PL, 
programming logic). 

3.2 Theorem Provers 

Now that we know the meaning of the criteria and their values, we explain why the systems are 
rated the way they are. We will not do this by explaining every score assigned to each of the 
systems, but rather by comparing the systems and emphasizing the most important differences 
and features. All the general claims in the following discussion only apply to the systems in this 
overview. There will always be systems that do not fit into this scheme, now nor in the future. 

To the end-users, the theorem provers present themselves in two flavors: proof assistants and 
automatic theorem provers. A proof assistant's main task is to take care of the administration of 
a proof. The user constantly enters commands (called tactics), telling the assistant what to do 
next. The automated theorem provers try to construct the entire proofs themselves. The user 
then merely enters a conjecture, which the theorem prover attempts to prove. To the user this 
distinction will be clear immediately, since the first systems are highly interactive, while the latter 
ones are more automated. 

3.2.1 Proof Assistants 

The main differences in proof assistants are their underlying logic and the customizability of 
the notation. For the average user the strength of the underlying logic (for proof assistants 
higher order logic (+) or the calculus of constructions (++)) of these systems is not immediately 
clear. This explains also why weaker systems like HOL (Higher Order Logic) and PVS (Prototype 
Verification System) are more used in practice than Coq1 and Lego, which have more powerful 
logics. Apparently, the extendability of the logic and the flexibility of the user interface by means 
of flexible syntax are more important to a user of a system than the strength of its logic. Therefore, 
practically based systems are used more. 

The most practically based proof assistants are HOL (see [GM93]), PVS and KIV (Karlsruhe 
Interactive Verifier). HOL is often applied in VLSI-design and has been extended to meet the 
requirements in this area. More recently, HOL has been used for proving mathematical theorems 
and reasoning about program correctness (see also Homeier's tool and the refinement calculator 
below). PVS is a specification verification system. It is specifically designed to deal with industri­
ally scaled specifications. The KIV system is created to prove correctness of programs. However, 

1 Coq is pronounced as COC, Calculus Of Constructions 
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the way in which the programs are constructed is the way in which proofs of theorems are con­
structed in general theorem provers, which is not the way in which a programmer wants to work. 
Also, proving correctness of programs requires proving many trivial propositions. 

The automation in the proof assistants is usually very naive. For instance, consider Coq, Nuprl 
(see [CABS6]) and PVS. In Coq the user specifies a set of proved conjectures and declares a set of 
definitions that may be unfolded during the proof search. Coq's auto-tactic then na·ively searches 
through all proofs that can be constructed with the specified conjectures for a proof of the current 
proof goal. In Nuprl there also exist a few tactics to search proofs for conjectures about the set of 
integer numbers. These tactics rewrite the proposition to a normal form and then apply heuristics 
to decide on the correctness of the proposition. This works only for a limited class of propositions. 
Automatically proving propositions about integer numbers cannot be done in Coq: unlike Nuprl, 
Coq does not contain the set of integer numbers as a primitive and it does not support extensions 
of the automatic proof facility. Automatic proof search in PVS is based on model checking. In 
model checking a proposition is proved by considering all possible models and checking for each 
model whether or not the proposition holds. 

3.2.2 Automated Theorem Provers 

The automated theorem provers are always based on first order logics (score 0 on logic). This is 
because for these logics good automation is possible. The most popular automatic proof construc­
tion algorithms are tableaux methods (used in LeanTap, see also [Oph92, dK95]) and resolution 
methods (used in Otter, see also [dN95]). For both of these methods completeness has been proved: 
If a proposition is correct, then there exist a tableau- and resolution proof for it. However, finding 
such a proof is not decidable: any algorithm could search for a proof forever without finding one, 
since the search space is infinite. Automatic proving is a one-way street: If a proof is found, then 
the conjecture is correct. If a proof is not found, it may still be correct, but the program is not 
able to decide on the correctness. Therefore, automatic theorem provers like Otter and the Larch 
prover are extended with algorithms that find counter examples. If the prover does not find a 
proof within a certain amount of time, Otter and the Larch prover attempt to find a model in 
which the proposition does not hold. Similarly but opposite to proof search: if no such model can 
be found, the conjecture can still be wrong, but this cannot be proved by the system. 

The Larch prover uses the possibility of automatic proof search for the construction of correct 
conjectures. Unlike other automatic theorem provers it does not assume that the initially given 
conjecture is correct. Instead, it tries to find flaws in the conjecture and reports them to the user. 
The user can then correct these flaws and let the corrected conjecture be processed by the Larch 
prover agam. 

The automated systems are typically not extendable, because the level of automation limits the 
logic. Extendability of the logic would cause great difficulties in the automatic proof search. Also 
the syntax of the systems is inflexible. Since the logic is simple and not extendable, no complex 
theories that need adjustment of the prover's syntax can be formalized within it. 

3.3 Computer Programming 

The differences in tools for computer programming are such that we divided them in two kinds: 
Generic environments and programming tools. The generic environments produce tools for a 
programming language that the user can specify. Programming tools support constructing or 
verifying programs in a specific, built-in language. Hence, generic environments produce pro­
gramming tools. Also, tools that generate other tools are more general, since they can produce 
programming tools for a wide range of languages. Programming tools for a specific language are 
usually more powerful, since they can exploit properties that are specific to the language they 
support. 
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3.3.1 Generic Environments 

The synthesizer generator (see [RTS9J) and the ASF+SDF (Algebraic Specification Formalism + 
Syntax Definition Formalism, see [vDHK96]) environment both generate syntax-directed editors 
for given language specifications. The ASF+SDF environment takes not only a syntax of a lan­
guage, but also a set of re-write rules that will be supported by the generated tool. The fe-write 
rules can contain abstract variables, which is why the ASF +SDF environment is also called a 
META-environment. By specifying Ie-write rules that transform correct programs into other cor­
rect programs, the tools generated by the ASF +SDF environment support correctness preserving 
transformations. The synthesizer generator generates tools that only support syntax directed edit­
ing. On the other hand, the synthesizer generator has also been used to create a programming 
tool that can also verify the correctness of programs (see chapter 2). To do this, however, the user 
(also the authors in this case) had to specify the specification logic himselve. This way, proving 
program correctness became a purely syntactical matter supported by the generated tool. 

3.3.2 Programming Tools 

The programming tools are specifically designed to support programming in a specific language. 
Therefore these tools can give more sophisticated support, like verification of programs and re­
finement. Since we consider only four programming tools, we will give for each system a short 
description. 

The Maintainers Assistant is a tool that supports correctness preserving transformations on the 
Wide Spectrum Language (WSL). The transformations are supported by a set of built in re-write 
rules. WSL is designed to encode high level specifications as well as low level implementations. 

The remaining tools (of Homeier et aI, the Refinement Calculator and Christensen's tool) all 
support the programming logic, but all in a different way, namely for verification, construction 
and automatic construction respectively. 

Homeier et al programmed a verification condition generator (VCG) for mutually recursive 
procedures in HOL. The correctness of the programming logic is guaranteed, by proving the 
soundness of the axioms of the language with respect to its structural operational semantics 
within HOL. This construction makes it hard to extend the language, since all axioms about 
new constructs would have to be derived. The actual VCG is programmed in ML, which is the 
implementation language and meta language of the HOL system. 

Von Wright's refinement calculator uses the programming logic to refine programs. Re­
finement of programs is similar to re-writing of programs, but takes advantage of the context 
in which the re-writing takes place. For instance, we can refine {x = a}x := x + 1 {x > a} by 
{x = a}x := x + 2{ x > a}. because both programs are correct with respect to the specification. 
We cannot perform this mutation by re-writing though, since x := x + 1 cannot be replaced 
by x := x + 2 in an arbitrary context. The programming language supported by this tool can 
easily be extended. Within the tool, programs are formalized as functions from predicates to 
predicates (predicate-transformer semantics) and hence, we can extend the language by defining 
more constructors for this kind of functions. 

Christensen's tool uses Gries's programming methodology, combined with a programming logic 
for a simple While language. It automatically derives programs from specifications in first order 
predicate logic. The main importance of this tool is that it demonstrates that computing programs 
is really possible. In practice the time needed to derive simple programs is such that it is more 
efficient to write and verify them manually. Also, no complex programs have yet been computed 
with this tool. 

3.4 Conclusions 

Although a few tools exist that support the construction of correct programs, none of these tools 
uses the Dijkstra/Hoare style of programming. The refinement calculator is based on the same 
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basic principles as the Dijkstra/Hoare style, but does not support the programming methods de­
scribed in [Dij76, GriSl, Ka190J. Christensen's tool uses the Dijkstra/Hoare style of programming, 
but does not provide interactive support to a programmer and thereby limits the complexity of the 
programs. Instead it attempts to derive programs fully automatically. Moreover, the truth of the 
assertions accepted by Christensen's tool are directly computable, which indicates their limited 
expressional power. 

Without exceptions the programming tools are large and do not run on average sized computers. 
If programmers are to lise a tool on a larger scale, this tool must run on their own computers which 
usually are average sized. We believe that often the size could be limited by directly implementing 
the tool in an executable language. The existing tools are built in layers: 

1. Tools like The Refinement Calculator, Homeier's tool, and KJV are implemented in a general 
theorem prover, like HOL. 

2. General theorem provers are mostly implemented in ML or another functional language. 

3. The functional language is interpreted or compiled by an imperative program. 

This layered design of the systems requires not only large, but also very fast computers in order to 
run the systems. If a system is directly implemented in an imperative language it becomes faster 
and smaller at the same time. 

Also) tools for correct programming have user-interfaces that are based on constructing proofs) 
not programs. Tools with user-interfaces for the construction of programs do not support checking 
correctness on the logical level. An exception is the tool generated with The Synthesizer Generator 
in [RTS9J. Unfortunately, this tool only supports verification of programs and not the derivation 
of programs. The programming and specification language supported by this tool are rather weak. 

The requirements of the tool we want to construct in our project are as follows: 
the tool should support the derivation of programs in the Dijkstra/Hoare fashion. To 
avoid a rejection of the tool by the programmers at forehand, it must also be possible 
to use the tool to write programs without proving correctness. The programmer can 
then decide for himself when he wants to have fOrInal support to construct program 
parts. The tool also must be able to run on average sized computers. This can be 
achieved by directly implementing the tool in an imperative language instead of using 
the usual layered approach. Finally the tools should have a program-oriented user 
interface, opposed to the proof-oriented user interfaces provided by the existing tools. 

31 



Bibliography 

[Apt97] 

[CABS6] 

[Chr93] 

[Dij76] 

[dK95] 

[dN95] 

[DS90] 

[CHL7S] 

[GLSO] 

[GM93] 

[GriSl] 

[Gru92] 

[HM96] 

[KaI90] 

[Oph92] 

[Pau94] 

Krzysztof R. Apt. From Logic Programming to Prolog. Prentice Hall international 
series in Computer Science. Prentice Hall, 1997. 

R.L. Constable, S.F. Allen, and H.M. Bromley. Implementing mathematics with the 
Nuprl proof development system. Prentice-Hall, 19S6. 

Heine Christensen. Synthesis of programs from logic specifications using program­
ming methodology. Structured Programming, 14:173-1S6, 1993. 

Edsger W. Dijkstra. A Discipline of Programming. Prentice-Hall International, 1976. 

Eric de Kogel. Equational Proofs in Tableaux and Logic Programming. PhD thesis, 
Tilburg University, 1995. 

Hans de Nivelle. Ordering Refinements of Resolution. PhD thesis, Delft University 
of Technology, 1995. 

Edsger W. Dijkstra and Carel S. Scholten. Predicate Calculus and Program Seman­
tics. Springer, 1990. 

J. Guttag, J. Horning, and R. London. A proof rule for euclid procedures. Formal 
Description of Programming Language Concepts, pages 211-220, 1975. 

David Gries and G. Levin. Assignment and procedure call proof rules. ACM 
TOPLAS, 2:564-579, 19S0. 

M.J.C. Gordon and T.F. Melham. Introduction to HOL: a theorem proving environ­
ment for higher order logic. Cambridge University Press, Cambridge, 1993. 

David Gries. The Science of Programming. Springer, 19S1. 

Jim Grundy. A window inference tool for refinement. In Cliff B. Jones, Roger C. 
Shaw, and Tim Denvir, editors, 5th Refinement Workshop, pages 230-254. Springer, 
1992. 

Peter V. Homeier and David F. Martin. Mechanical verification of mutually recur­
sive procedures. In M.A. McRobbie and J .K. Slaney, editors, Automated Deduction 
CADE-13, Lecture Notes in Artificial Intelligence. Springer, July/August 1996. 

Anne Kaldewaij. Programming: the derivation of algorithms. Prentice-Hall interna­
tional series in Computer Science. Prentice Hall, 1990. 

W.J.Ophelders. Automated Theorem Proving Based Upon a Tableau-Method With 
Unification Under Restrictions: Theory) Implementation and Empiracal Results. 
PhD thesis, Tilburg University, 1992. 

Lawrence C. Paulson. Isabelle: a generic theorem prover. Springer, Berlin, 1994. 

32 



[Pee95] Eric A.J. Peeters. Design of an Object-Oriented Interactive Animation System. PhD 
thesis, Eindhoven University of Technology, 1995. 

[PM89] Christine Paulin-Mohring. Extracting F w 's programs from proofs in the calculus of 
constructions. In Sixteenth Annual ACM symposium on Principles oj Programming 
Languages, pages 89-104, Austin, Texas, Januari 1989. ACM, ACM press. 

[RT89] Thomas W. Reps and Tim Teitelbaum. The Synthesizer Generator, A System for 
Constructing Language-Based Editors. Texts and Monographs in Computer Science. 
Springer-Verlag, 1989. 

[vdBvDK96] Mark van den Brand, Arie van Deursen, and Paul Klint. Industrial applications 
of asf+sdf. Technical Report CS-Rj 9622, Centrum voar Wiskunde en Informatica, 
Amsterdam, 1996. 

[vDHK96] Arie van Deursen, Jan Heering, and Paul Klint. Language Prototyping, an Algebraic 
Specification Approach, volume 5 of AMAST: Series in Computing. World Scientific, 
1996. 

[vW94] Joakim von Wright. Program refinement by theorem prover. In David Till, editor, 
6th Refinement Workshop, pages 121-150. Springer, 1994. 

33 



Computing Science Reports 

In this series appeared: 
93/01 

93102 

93/03 

93/04 

93/05 

93/06 

93/07 

93/08 

93/09 

93/10 

93111 

93112 

93/13 

93/14 

93115 

93/16 

93/17 

93118 

93/19 

93120 

93121 

93122 

93/23 

93124 

93125 

93/26 

93/27 

9312S 

93129 

93/30 

R. van Geldrop 

T. Yerhoeff 

T. Verhoeff 

E.H.L. Aarts 
J.H.M. Korst 
PJ. Zwietering 

J.C.M. Baeten 
C. Verhoef 

J.P. Veltkamp 

P.O. Moerland 

1. Verhoosel 

K.M. van Hee 

K.M. van Hee 

KM. van Hee 

K.M. van Hee 

KM. van Hee 

1.C.M. Baeten 
1.A. Bergstra 

1.C.M. Baeten 
lA. Bergstra 
R.N. Bol 

H. Schepers 
J. Haoman 

D. Alstein 
P. van dec Stok 

C. Verhoef 

G-J. Hauben 

F.S. de Boer 

M. Codish 
D. Dams 
G. File 
M. Bruynooghe 

E. Poll 

E. de Kogel 

E. Poll and Paula Seven 

H. Schepers and R. Gerth 

W.M.P. van dec Aalst 

T. Kloks and D. Kratsch 

F. Kamareddine and 
R. Nederpelt 

R. Post and P. De Bra 

J.Deogun 
T. Kloks 
D. Kratsch 
H. Muller 

Department of Mathematics and Computing Science 
Eindhoven University of Technology 

Deriving the Aho-Corasick algorithms: a case study into the synergy of programming 
methods, p. 36. 

A continuous version of the Prisoner's Dilemma, p, 17 

Quicksort for linked lists, p, 8. 

Deterministic and randomized local search. p. 78. 

A congruence theorem for structured operational 
semantics with predicates, p. 18. 

On the unavoidability of metastable behaviour, p. 29 

Exercises in Multiprogramming, p. 97 

A Formal Deterministic Scheduling Model for Hard Real-Time Executions in DEDOS, p. 
32. 

Systems Engineering: a Fonnal Approach 
Part I: System Concepts. p. 72. 

Systems Engineering: a Formal Approach 
Part II: Frameworks. p. 44. 

Systems Engineering: a Formal Approach 
Part III: Modeling Methods, p. 101. 

Systems Engineering: a Formal Approach 
Part IV: Analysis Methods. p. 63. 

Systems Engineering: a Formal Approach Part V: Specification Language, p. 89. 

On Sequential Composition. Action Prefixes and 
Process Prefix. p. 21. 

A Real-Ti me Process Logic, p. 31. 

A Trace-Based Compositional Proof Theory for 
Fault Tolerant Distributed Systems. p. 27 

Hard Real-Time Reliable Multicast in the DEDOS system. 
p. 19. 

A congruence theorem for structured operational 
semantics with predicates and negative premises, p. 22. 

The Design of an Online Help Facility for ExSpect. p.21. 

A Process Algebra of Concurrent Constraint Programming, p. 15. 

Freeness Analysis for Logic Programs - And Correctness, p. 24 

A Typechecker for Bijective Pure Type Systems, p. 28. 

RelationaJ Algebra and Equational Proofs, p. 23. 

Pure Type Systems with Definitions, p. 38. 

A CompOSitional Proof Theory for Fault Tolerant Real-Time Distributed Systems, p. 31. 

Multi-dimensional Petri nets, p. 25. 

Finding all minimal separators of a graph. p. II. 

A Semantics for a fine A-calculus with de Bruijn indices. 
p.49. 

GOLD, a Graph Oriented Language for Databases, p. 42. 

On Vertex Ranking for Permutation and Other Graphs. 
p. 11. 

/ li 



93/31 

93/32 

93/33 

93/34 

93/35 

93/36 

93/37 

93/38 

93/39 

93/40 

93/41 

93/42 

93/43 

93/44 

93/45 

93/46 

93/47 

93/48 

94101 

94/02 

94/03 

94104 

94/05 

94106 

94107 

94108 

94/09 

W. Korver 

H. ten Eikelder and 
H. van Geldrop 

L. Layens and J. Moonen 

J.C.M. Baeten and 
1.A. Bergstra 

W. Ferrer and 
P. Severi 

I.CM. Baeten and 
I.A. Bergstra 

J. Brunekreef 
J-P. Katoen 
R. Koymans 
S. Mauw 

C. Verhoef 

W.P.M. Nuijten 
E.H.L. Aarts 
D.A.A. van Erp Taalman Kip 
K.M. van Hee 

P.D.V. van dec Stok 
M.M.M.PJ. Claessen 
D. Alstein 

A. BijIsma 

P.M.P. Rambags 

B.W. Watson 

B.W. Watson 

EJ. Luit 
I.M.M. Martin 

T. Kloks 
D. Kratsch 
J. Spinrad 

W. v.d. Aalst 
P. De Bra 
G,J. Hauben 
Y. Komatzky 

R. Gerth 

P. America 
M. van def Kammen 
R.P. Nederpelt 
0.5. van Roosmalen 
H.C.M. de Swart 

F. Kamareddine 
R.P. Nederpelt 

L.B. Hartman 
K.M. van Hee 

I.C.M. Baeten 
I.A. Bergstea 

P. ZhOIl 
J. Hooman 

T. Basten 
T. Kunz 
1. Black 
M. Coffin 
D. Taylor 

K.R. Apt 
R.801 

0.5. van Roosmalen 

I.CM. Baeten 
I.A. Bergstra 

Derivation of delay insensitive and speed independent CMOS circuits, using directed 
commands and production rule sets, p. 40. 

On the Correctness of some Algorithms to generate Finite 
Automata for Regular Expressions, p. 17. 

ILIAS, a sequential language for parallel matrix computations, p. 20. 

Real Time Process Algebra with Infinitesimals, p.39. 

Abstract Reduction and Topology, p. 28. 

Non Interleaving Process Algebra, p. 17. 

Design and Analysis of 
Dynamic Leader Election Protocols 
in Broadcast Networks, p. 73. 

A general conservative extension theorem in process algebra, p. 17. 

Job Shop Scheduling by Constraint Satisfaction, p. 22. 

A Hierarchical Membership Protocol for Synchronous 
Distributed Systems. p. 43. 

Temporal operators viewed as predicate transfonners. p. II. 

Automatic Verification of Regular Protocols in Ptf Nets, p. 23. 

A taxomomy of finite automata construction algorithms. p. 87. 

A taxonomy of finite automata minimization algorithms. p. 23. 

A precise clock synchronization protocol,p. 

Treewidth and Patwidth of Cocomparability graphs of 
Bounded Dimension, p. 14. 

Browsing Semantics in the "Tower" Model, p. 19. 

Verifying Sequentially Consistent Memory using Interface 
Refinement. p. 20. 

The object·oriented paradigm. p. 28. 

Canonical typing and II·conversion, p. 51. 

Application of Marcov Decision Processe to Search 
Problems, p. 21. 

Graph Isomorphism Models for Non Interleaving Process 
Algebra. p. 18. 

Fonnal Specification and Compositional Verification of 
an Atomic Broadcast Protocol. p. 22. 

Time and the Order of Abstract Events in Distributed 
Computations, p. 29. 

Logic Programming and Negation: A Survey, p. 62. 

A Hierarchical Diagrammatic Representation of Class Structure, p. 22. 

Process Algebra with Partial Choice, p. 16. 



94110 T. verhoeff 

94111 J. Peleska 
C. Huizing 
C. Petersohn 

94/12 T. Kloks 
D. Kmtsch 
H. Muller 

94/13 R. Seljee 

94/14 W. Peremans 

94115 R.J.M. Vaessens 
E.H.L. Aarts 
J . K. Lenstra 

94116 R.C. Backhouse 
H. Doornbos 

94117 S. Mauw 
M.A. Reniers 

94118 F. Kamareddine 
R. Nederpelt 

94119 B.W. Watson 

94/20 R. Bloo 
F. Kamareddine 
R. Nederpelt 

94/21 B.W. Watson 

94/22 B.W. Watson 

94/23 S. Mauw and M.A. Reniers 

94124 D. Dams 
O. Grumberg 
R. Gerth 

94/25 T. Kloks 

94/26 RR. Hoogerwoord 

94127 S. Mauw and H. Mulder 

94128 C.W.A.M. van Overveld 
M. Verhoeven 

94/29 J. Haoman 

94/30 J.C.M. Baeten 
l.A. Bergstea 
Dh. Stefanescu 

94/31 B.W. Watson 
R.E. Watson 

94/32 J.J. Vereijken 

94133 T.Laan 

94/34 R. Bloo 
F. Kamareddine 
R. Nederpelt 

94/35 J.C.M. Baeten 
S. Mauw 

94/36 F. Kamareddine 
R. Nederpelt 

94/37 T. Basten 
R.801 
M. Voorhoeve 

94/38 A. Bijlsma 
C.S. Scholten 

94/39 A. Blokhuis 
T. Kloks 

The testing Paradigm Applied to Network Structure. p. 31. 

A Comparison of Ward & Mellor's Transformation 
Schema with State- & Activitycharts. p. 30. 

Dominoes. p. 14. 

A New Method for Integrity Constraint checking in Deductive Databases. p. 34. 

Ups and Downs of Type Theory, p. 9. 

Job Shop Scheduling by Local Search. p. 21. 

Mathematical Induction Made CaiculationaJ. p. 36. 

An Algebraic Semantics of Basic Message 
Sequence Charts, p. 9. 

Refining Reduction in the Lambda CaJculus, p. 15. 

The performance of single-keyword and multiple-keyword pattern matching aJgorithms, p. 
46. 

Beyond fJ-Reduction in Church's i..--+, p. 22. 

An introduction to the Fire engine: A C++ toolkit for Finite automata and Regular Ex­
pressions. 

The design and implementation of the FIRE engine: 
A C++ toolkit for Finite automata and regular Expressions. 

An aJgebraic semantics of Message Sequence Charts, p. 43. 

Abstract Interpretation of Reactive Systems: 
Abstractions Preserving 'VCTL"', 3CTL* and CfL*, p. 28. 

K1.1-free and W4-free graphs, p. 10. 

On the foundations of functionaJ programming: a programmer's point of view. p. 54. 

Regularity of BPA-Systems is Decidable, p. 14. 

Stars or Stripes: a comparative study of finite and 
transfinite techniques for surface modelling, p. 20. 

Correctness of ReaJ Time Systems by Construction, p. 22. 

Process Algebra with Feedback, p. 22. 

A Boyer-Moore type aJgorithm for regular expression 
pattern matching, p. 22. 

Fischer's Protocol in Timed Process Algebra, p. 38. 

A formalization of the Ramified Type Theory, pAO. 

The Barendregt Cube with Definitions and Generalised 
Reduction, p. 37. 

Delayed choice: an operator for joining Message 
Sequence Charts, p. 15. 

Canonical typing and IT-conversion in the Barendregt 
Cube, p. 19. 

Simulating and AnaJyzing Railway Interlockings in 
ExSpect, p. 30. 

Point-free substitution, p. 10. 

On the equivalence covering number of splitgraphs, p. 4. 



94/40 

94/41 

94142 

94143 

94144 

94145 

94146 

94/47 

94/48 

94/49 

94/50 

94/51 

94152 

94153 

95/01 

95/02 

95/03 

95/04 

95/05 

95106 

95/07 

95/08 

95/09 

95/10 

95/11 

95/12 

D. Alstein 

T. Kloks 
D. Kratsch 

J. Engelfriet 
J.J. Vereijken 

R.C. Backhouse 
M. Bijsterveld 

E.Brinksma 
R. Gerth 
W. Janssen 
S. Katz 
M. Poel 
C. Rump 

G.J. Hauben 

R. Bloo 
F. Kamareddine 
R. Nederpelt 

R. B100 
F. Kamareddine 
R. Nederpelt 

J. Davies 
S. Graf 
B. Jonsson 
G.Lowe 
A. Poueli 
J. Zwiers 

Mathematics of Program 
Construction Group 

I.C.M. Baeten 
I.A. Bergstra 

H. Geuvers 

T. Kloks 
D. Kratsch 
H. Muller 

W. Penczek 
R. Kuiper 

R. Gerth 
R. Kuiper 
D. Peled 
W. Penczek 

J.J. Lukkien 

M. Bezem 
R.801 
J.P. Groote 

I.C.M. Baeten 
C. Verhoef 

J. Hidders 

P. Severi 

T.W.M. Vossen 
M.O.A. Verhoeven 
H.M.M. ten Eikelder 
E.H.L. Aarts 

G.A.M. de Bruyn 
O.S. van RoosmaIen 

R. B100 

I.C.M. Baeten 
I.A. Bergstra 

R.C. Backhouse 
R. Verhoeven 
O.Weber 

R. Seljee 

S. Mauw and M. Reniers 

Distributed Consensus and Hard Real-Time Systems, p. 34. 

Computing a perfect edge without vertex elimination 
ordering of a chordaJ bipartite graph, p. 6. 

Concatenation of Graphs, p. 7. 

Category Theory as Coherently Constructive Lattice 
Theory: An Illustration, p. 35. 

Verifying SequentiaJly Consistent Memory, p. 160 

TutoriaJ voor de ExSpect·bibliotheek voor "Administratieve Logistiek", p. 43. 

The A-CUbe with classes of tenns modulo conversion, 
p.16. 

On II-conversion in Type Theory, p. 12. 

Fixed-Point CaJculus. p. II. 

Process Algebra with PropositionaJ Signals, p. 25. 

A short and flexible proof of Strong Nonnalazation 
for the CaJculus of Constructions, p. 27. 

Listing simplicial vertices and recognizing 
diamond-free graphs, p. 4. 

Traces and Logic, p. 81 

A Partial Order Approach to 
Branching Time Logic Model Checking. p. 20. 

The Construction of a small CommunicationLibrary, p.16. 

Fonnalizing Process Algebraic Verifications in the Calculus 
of Constructions, pA9. 

Concrete process algebra. p. 134. 

An lsotcpic Invariant for Planar Drawings of Connected Planar Graphs, p. 9. 

A Type Inference Algorithm for Pure Type Systems, p.20. 

A Quantitative AnaJysis of Iterated Local Search. p.23. 

Drawing Execution Graphs by Parsing, p. to. 

Preservation of Strong Nonnalisation for Explicit Substitution, p. 12. 

Discrete Time Process Algebra, p. 20 

Mathfpad: A System for On-Line Prepararation of MathematicaJ 
Documents, p. 15 

Deductive Database Systems and integrity constraint checking, p. 36. 

Empty Interworkings and Refinement 



Semantics of Interworkings Revised, p. 19. 

95113 B.W. Watson and G. Zwaan A taxonomy of sublinear multiple keyword pattern matching algorithms, p. 26. 

95114 A. Ponse, C. Verhoef, De proceedings: ACP'95, p. 
S.F.M. Vlijmen (eds.) 

95115 P. Niebert and W. Penczek On the Connection of Partial Order Logics and Partial Order Reduction Methods, p. 12. 

95/16 D. Dams. O. Grumberg, R. Gerth Abstract Interpretation of Reactive Systems: Preservation of CTL*, p. 27. 

95117 

95/18 

95/19 

95/20 

95/21 

95122 

95/23 

95/24 

95/25 

95/26 

95127 

95/28 

95129 

95/30 

95/31 

95/32 

95/33 

95/34 

95/35 

96101 

96102 

96/03 

96104 

96/05 

96/06 

96/07 

96/08 

96/09 

96110 

96111 

96112 

96113 

96/14 

96/15 

96117 

S. Mauw and E.A. van der Meulen 

F. Kamareddine and T. Laan 

J.C.M. Baeten and J.A. Bergstra 

F. van Raamsdonk and P. Severi 

A. van Deursen 

B. Arnold, A. v. Deursen, M. Res 

W.M.P. van der Aalst 

F.P.M. Dignum, W.P.M. Nuijten, 
L.M.A. Janssen 

L. Feijs 

W.M.P. van der Aalst 

P.D.V. van der Stok, J. van der Wal 

W. Fokkink, C. Verhoef 

H. Iurjus 

I. Hidders, C. Hoskens, I. Paredaens 

P. Kelb. D. Dams and R. Gerth 

W.M.P. van der Aalst 

1. Engelfriet and JJ. Vereijken 

I. Zwanenburg 

T. Basten and M. Voorhoeve 

M. Voorhoeve and T. Basten 

P. de Bra and A. Aerts 

W.M.P. van der Aalst 

S. Mauw 

T. Basten and W.M.P. v.d. Aalst 

W.M.P. van der Aalst and T. Basten 

M. Voorhoeve 

ATM. Aerts, P.M.E. De Bra, 
I.T. de Munk 

F. Dignum, H. Weigand, E. Verharen 

R. Bloo, H. Geuvers 

T.Laan 

F. Kamareddine and T. Laan 

T. Borghuis 

S.H.I. Bos and M.A. Reniers 

M.A. Reniers and J.J. Vereijken 

E. Boiten and P. Hoogendijk 

Specification of tools for Message Sequence Charts, p. 36. 

A Reflection on Russell's Ramified Types and Kripke's Hierarchy of Truths, 
p. 14. 

Discrete Time Process Algebra with Abstraction, p. 15. 

On Nonnalisation, p. 33. 

Axiomatizing Early and Late Input by Variable Elimination, p. 44. 

An Algebraic Specification of a Language for Describing Financial Products, 
p. 11. 

Petri net based scheduling, p. 20. 

Solving a Time Tabling Problem by Constraint Satisfaction, p. 14. 

Synchronous Sequence Charts In Action, p. 36. 

A Class of Petri nets for modeling and analyzing business processes, p. 24. 

Proceedings of the Real-Time Database Workshop, p. 106. 

A Conservative Look at tenn Deduction Systems with Variable Binding, p. 29. 

On Nesting of a Nonmonotonic Conditional, p. 14 

The Fonnal Model of a Pattern Browsing Technique, p.24. 

Practical Symbolic Model Checking of the full ,u-calculus using Compositional 
Abstractions, p. 17. 

Handboek simulatie, p. 51. 

Context-Free Graph Grammars and Concatenation of Graphs, p. 35. 

Record concatenation with intersection types, p. 46. 

An algebraic semantics for hierarchical prr Nets, p. 32. 

Process Algebra with Autonomous Actions, p. 12. 

Multi-User Publishing in the Web: DreSS, A Document Repository Service 
Station, p. 12 

Parallel Computation of Reachable Dead States in a Free-choice Petri Net, p. 26. 

Example specifications in phi-SOL. 

A Process-Algebraic Approach to Life-Cycle Inheritance 
Inheritance = Encapsulation + Abstraction, p. 15. 

Life-Cycle Inheritance A Petri-Net-Based Approach. p. 18. 

Structural Petri Net EquiValence, p. 16. 

OODB Support for WWW Applications: DisclOSing the internal structure of 
Hyperdocuments, p. 14. 

A Formal Specification of Deadlines using Dynamic Oeontic Logic, p. 18. 

Explicit Substitution: on the Edge of Strong Normalisation, p. 13. 

AUTOMATH and Pure Type Systems, p. 30. 

A Correspondence between Nuprl and the Ramified Theory of Types, p. 12. 

Priorean Tense Logics in Modal Pure Type Systems, p. 61 

The /2 C-bus in Discrete-Time Process Algebra, p. 25. 

Completeness in Discrete-Time Process Algebra, p. 139. 

Nested collections and polytypism, p. II. 



96/18 

96/19 

96/20 

96121 

96122 

96/23 

96/24 

96/25 

97/01 

97/02 

97/03 

97/04 

97/05 

P.O.V. van der Stok 

M.A. Reniers 

L. Feijs 

L. Bijlsma and R. Nederpelt 

M.e.A. van de Graaf and GJ. Hauben 

W.M.P. van dec Aalst 

M. Voorhoeve and W. van dec Aalst 

M. Vaccari and R.C. Backhouse 

B. Knaack and R. Gerth 

J. Hooman and O. v. Roosmalen 

J. Blanco and A. v. Deursen 

I.C.M. Baeten and J.A. Bergstra 

I.eM. Baeten and 1.1. Vereijken 

Real-Time Distributed Concurrency Control Algorithms with mixed time con­
straints, p. 71. 

Static Semantics of Message Sequence Charts, p. 71 

Algebraic Specification and Simulation of Lazy Functional Programs in a concur· 
rent Environment, p. 27. 

Predicate calculus: concepts and misconceptions. p. 26. 

Designing Effective Workflow Management Processes, p. 22. 

Structural Characterizations of sound workflow nets, p. 22. 

Conservative Adaption of Workflow. p.22 

Deriving a systolic regular language recognizer. p. 28 

A Discretisation Method for Asynchronous Timed Systems. 

A Programming-Language Extension for Distributed Real-Time Systems. p. 50. 

Basic Conditional Process Algebra. p. 20. 

Discrete Time Process Algebra: Absolute Time. Relative Time and Parametric 
Time. p. 26. 

Discrete-Time Process Algebra with Empty Process, p. 51. 


	Abstract
	Contents
	Introduction
	1. Correct Programs
	1.1 Correctness of Functional Programs
	1.2 Correctness of Imperative Programs
	1.3 Correctness of Logical Programs
	2. Correct Programming
	2.1 Verification of Programs
	2.1.1 An Interactive Tool for Verification of Programs
	2.1.2 Verification of Programs within a General Theorem Prover
	2.2 Derivation of Programs
	2.2.1 The Refinement Calculus
	2.2.2 Automatic Synthesis of Imperative Programs
	2.3 Extraction of Programs
	3. Existing Tools: An Overview
	3.1 Explanation of the Criteria
	3.2 Theorem Provers
	3.2.1 Proof Assistants
	3.2.2 Automated Theorem Provers
	3.3 Computer Programming
	3.3.1 Generic Environments
	3.3.2 Programming Tools
	3.4 Conclusions
	Bibliography

