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Preface

General proof theory studies how proofs are structured and how they relate to each other, and
not primarily what can be proved in particular formal systems. It has been developed within the
framework of Gentzen-style proof theory, as well as in categorial proof theory.

As Dag Prawitz’s monographNatural Deduction (1965) paved the way for this development –
he also proposed the term “General Proof Theory” – it is most appropriate to use this topic to
celebrate 50 years of this work.

The conference took place 27–29 November, 2015 in Tübingen at the Department of Philo-
sophy. The proceedings collect abstracts, slides and papers of the presentations given, as well as
contributions from two speakers who were unable to attend.

The conference and its proceedings were supported by the French-German ANR-DFG
project “Beyond Logic: Hypothetical Reasoning in Philosophy of Science, Informatics, and
Law”, DFG grant Schr 275/17-1.

We would like to thank Marine Gaudefroy-Bergmann for the organisation of the conference,
and those who assisted her, in particular Giang Bui.

Thomas Piecha
Peter Schroeder-Heister

Photo: Giang Bui
Standing, left to right:
Heinrich Wansing, Giulio Guerrieri, Peter Schroeder-Heister, Helmut Schwichtenberg,
Shawn Standefer, Nicolas Guenot, Luca Tranchini, Taus Brock-Nannestad, Greg Restall,
Ulrik Buchholtz, Göran Sundholm, Per Martin-Löf, Roy Dyckhoff, Laura Tesconi,
Kosta Došen, Alberto Naibo, Reinhard Kahle, Angeliki Koutsoukou-Argyraki, Daniel Wessel,
Mario Piazza, Federico Aschieri, Dag Prawitz, David Binder, Mattia Petrolo,
Tiago Rezende de Castro Alves, Gabriele Pulcini, Marianna Girlando, Dmitrij Smeljanskij,
Michael Arndt, René Gazzari, Wolfgang Keller, Joachim Klappenecker, Stephen Read,
Grigory Olkhovikov, Wilfried Keller

Front row, left to right:
Eugenio Orlandelli, Luiz Carlos Pereira, Wagner de Campos Sanz, Clayton Peterson,
Hermógenes Oliveira, Marine Gaudefroy-Bergmann, Enrico Moriconi
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Programme

Friday, 27 November

17.00–18.00 Registration

18.00–18.15 Peter Schroeder-Heister: Opening: General Proof Theory

18.15–19.15 Luiz Carlos Pereira and Edward Hermann Haeusler: The Russell-Prawitz
translation and schematic rules: a view from proof-theory

20.00 Conference dinner

Saturday, 28 November

9.00–10.00 Per Martin-Löf: The two interpretations of natural deduction: how do they fit
together?

10.00–10.30 Federico Aschieri: On Natural Deduction in Classical First-Order-Logic

10.30–11.00 Coffee break

11.00–11.30 Giulio Guerrieri and Alberto Naibo: Postponement of RAA and Glivenko’s
theorem, revisited

11.30–12.00 Norbert Gratzl and Eugenio Orlandelli: Logicality, Double-line Rules, and
Harmony

12.00–14.30 Lunch break

14.30–15.30 Kosta Došen: Adjunction and Normalization in Categories of Logic

15.30–16.00 Clayton Peterson:Monoidal logics: De Morgan negations and classical systems

16.00–16.30 Coffee break

16.30–17.00 Zoran Petrić: The natural deduction normal form and coherence

17.00–18.00 Helmut Schwichtenberg: Decorating natural deduction

Sunday, 29 November

9.00–10.00 Heinrich Wansing: A more general general proof theory

10.00–10.30 Reinhard Kahle: Is there a “Hilbert thesis”?

10.30–11.00 Coffee break

11.00–11.30 Nissim Francez: On distinguishing proof-theoretic consequence from derivability

11.30–12.00 Danko Ilik: High-school sequent calculus and an intuitionistic formula hierarchy
preserving identity of proofs

12.00–14.30 Lunch break

14.30–15.00 Angeliki Koutsoukou-Argyraki: New Applications of Proof Mining to Nonlinear
Analysis

15.00–15.30 Mario Piazza and Gabriele Pulcini: On the maximality of classical logic

15.30–16.00 Roy Dyckhoff and Sara Negri: Idempotent Coherentisation for First-Order Logic

16.00–16.30 Coffee break

16.30–17.30 Dag Prawitz: Gentzen’s justification of inferences
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Abstracts

The Russell-Prawitz translation and schematic rules:
a view from proof-theory

Luiz Carlos Pereira and Edward Hermann Haeusler
PUC Rio de Janeiro

Translations have been put tomany uses in logic. In the first half of last century, translations played
an important role in foundational matters: the reduction of foundational questions in classical
environments to foundational questions in constructive environments. In the sixties translations
acquired theoretical autonomy: several general approaches to translations were proposed (proof-
theoretical, algebraic). Another distinctive use of translation is related to schematic rules of
inference. What’s an introduction rule for an operator φ? What’s an elimination rule for φ? In
1978 Dag Prawitz proposed an answer to these questions by means of schematic introduction
and elimination rules. Prawitz also proposed a constructive version of the well-known classical
truth-functional completeness: if the introduction and elimination rules for an operator φ are
instances of the schematic introduction and elimination rules, then φ is intuitionistically definable.
Peter Schroeder-Heister showed how to obtain this completeness result for generalized schemata.
These schematic introduction and elimination rules can also be used to show that logics whose
operators satisfy the schematic rules and whose derivations satisfy the sub-formula principle can
be translate into minimal implicational logic. Fernando Ferreira and Gilda Ferreira proposed
still another use for translations: to use the Russell-Prawitz translation in order to study the
proof-theory of intuitionistic propositional and first-order logic. This study is done in the system
Fat for atomic polymorphism. This system can be characterized as a second order propositional
logic in the language {∀1,∀2,→} such that ∀2-elimination is restricted to atomic instantiations.
The aim of the present paper is twofold: [1] to use atomic polymorphism to study the proof
theory of schematic systems and [2] to produce high-level translations for a large class of logics.

The two interpretations of natural deduction:
how do they fit together?

Per Martin-Löf
Stockholm University

Natural deduction admits of two different interpretations, which it is natural to refer to as
the ancient and the modern one. According to the ancient interpretation, which goes back to
Aristotle, a natural deduction, or syllogism, in his terminology, is interpreted as a demonstration
that the truth of the final proposition follows from the truth of the initial propositions, which
is to say, the hypotheses, or assumptions. According to the modern interpretation, a natural
deduction is seen as a complex logical object, a proof object, which depends on arbitrary proofs
of the assumptions, named by variables, and itself is a proof of the final proposition of the
deduction. Conceptual priority is with the modern interpretation. This will be substantiated by
showing how the ancient interpretation is derived from the modern interpretation by the special
abbreviative device of suppressing proof objects
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On Natural Deduction in Classical First-Order-Logic

Federico Aschieri
Vienna University of Technology

The goal of this talk is to endow classical first-order natural deduction with a natural set of
reduction rules that also allows a natural proof of Herbrand’s Theorem. Instead of using the
double negation elimination principle as primitive axiom, the law of the excluded middle will be
used. Treating the excluded middle as primitive, rather than deriving it from the double negation
elimination, has a key consequence: classical proofs can be described as programs that make
hypotheses, test and correct them when they are learned to be wrong. As a corollary, one obtains
a simple and meaningful computational interpretation of classical logic.

Postponement of RAA and Glivenko’s theorem, revisited

Giulio Guerrieri and Alberto Naibo
Université Paris Diderot · Université Paris 1 – Panthéon-Sorbonne

In the mid-Eighties, Seldin established a normalization strategy for classical logic, which can
be considered as a kind of “dual” of the standard normalization strategy given by Prawitz in
the mid-Sixties: if a sequent Γ ` A is derivable in NK \ {∀i}, then there exists a derivation ð in
NK \ {∀i} using at most one instance of the reductio ad absurdum rule – namely, the last one –
and where the remaining part of ð corresponds to a derivation ð in NJ \ {∀i}. We give here a
new and simpler proof of Seldin’s result showing that if ð is→i -free, then the derivation ð′ is in
NM \ {∀i}. As a consequence, we prove a strengthened and more general form of Glivenko’s
theorem embedding first-order classical logic not only into the fragment {¬,∧,∨,⊥,→,∃} of
intuitionistic logic, but also into the fragment {¬,∧,∨,⊥, ∃} of minimal logic.
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Logicality, Double-line Rules, and Harmony

Norbert Gratzl and Eugenio Orlandelli
MCMPMunich · Università di Bologna

The inversion principle, and the related notion of harmony, has been extensively discussed in
proof-theoretic semantics at least since (Prawitz, 1965). In our paper we make use of multi-
conclusion sequent-style calculi to provide a harmonious proof-theoretic analysis of modal logics,
and we concentrate on Standard Deontic Logic (SDL) as a running example. Our approach is
based on combining display calculi (DSDL) with Došen’s characterization of logicality in purely
structural terms. We present a genuinely new double-line version of DSDL, i.e. DdlSDL, and we
show that DSDL and DdlSDL are deductively equivalent. This equivalence allows us to show
that the rules of DSDL are harmonious: the left introduction rules are inverse of the right one
inasmuch as they are deductively equivalent to the bottom-up elimination rule of DdlSDL.

Adjunction and Normalization in Categories of Logic

Kosta Došen
University of Belgrade and SANU

Logic inspired by category theory is usually given by “the logic of a category”, which is tied to the
subobjects in a category of mathematical objects. In categorial proof theory we deal instead with
“the category of a logic”, where the objects are logical formulae and the arrows are deductions.
Logical constants are tied to operations on arrows given by functors. These deductive categories,
which are of kinds found important for category theory and mathematics independently of logic,
are interesting when they are not preorders, i.e. when it is not the case that there is at most one
arrow with the same source and the same target; in other words, when there can be more than
one deduction with the same premise and the same conclusion. The same requirement is implied
by the BHK interpretation of intuitionistic logic, though it is usually not explicitly mentioned.

Lawvere’s characterization of intuitionistic logical constants through adjoint functors, which
has a central place in categorial proof theory, is closely related to normalization of deductions in
the style of Gentzen and Prawitz. This relationship with one of the central notions of category
theory, and of mathematics in general, sheds much light on normalization. Classical deductive
logic can also be understood in an interesting way in terms of categorial proof theory, but for it
the relationship with adjunction is not to be found to the same extent.
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Monoidal logics: De Morgan negations and classical systems

Clayton Peterson
LMUMunich

Monoidal logics (cf. Peterson 2014a,b, 2015) assume category theory as a foundation and define
logical systems using specific rules and axiom schemata in order to make explicit their categorical
(monoidal) structure. Monoidal logics can be compared to substructural logics (cf. Restall 2000)
and, more generally, to display logics (cf. Goré 1998). It is possible to define a translation t from
the language of monoidal logics to the language of display logics such that a proof ϕ → ø is
derivable within specific monoidal deductive systems if and only if t(ϕ) ` t(ø) is derivable within
their respective display counterparts. One upshot of this comparison is that monoidal logics can
be proven to be weaker and more flexible than substructural logics. For example, in substructural
logics, the elimination of double negation(s) is generally thought to be accompanied by the
satisfaction of the de Morgan dualities. In contrast, the elimination of double negation(s) can
be proven to be independent from the de Morgan dualities in monoidal logics. In this talk, we
show how this result can be understood in light of the relationship between the notions of weak
distributivity (a.k.a. linear distributivity) and classical deductive systems.

References

Goré, R. (1998). Substructural logics on display. Logic Journal of the IGPL, 6(3):451–504.
Peterson, C. (2014a). Analyse de la structure logique des inférences légales et modélisation du
discours juridique. PhD thesis, Université de Montréal.

Peterson, C. (2014b). The categorical imperative: Category theory as a foundation for deontic
logic. Journal of Applied Logic, 12(4):417–461.

Peterson, C. (2015). Contrary-to-duty reasoning: A categorical approach. Logica Universalis,
9(1):47–92.

Restall, G. (2000). An Introduction to Substructural Logics. Routledge.

The natural deduction normal form and coherence

Zoran Petrić
Mathematical Institute, SANU

Coherence results serve to describe the canonical arrows of categories of a particular kind. Some
of these results are obtained by using proof-theoretical techniques, in particular Gentzen’s cut
elimination. The aim of this talk is to show how the expanded normal form of natural deduction
derivations is useful for coherence proofs.
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Decorating natural deduction

Helmut Schwichtenberg
LMUMunich

Natural deduction provides a perfect link between logic and computation, in its purest form
of Church’s lambda-calculus: introduction and elimination rules correspond to abstraction
and application, and formulas to types. Following Kolmogorov we can view a formula A as a
problem, and a constructive proof of A as a solution. Such a solution is a computable function
of a certain type determined by A. Computable content arises where the formula A contains
inductively defined predicates. The clauses of the inductive definition determine the data type
of the solution (or “realizer”). We address the delicate question of how to “decorate” natural
deduction proofs in order to optimize their computational content. It is shown that a unique
optimal such decoration exists, and some examples are discussed.

A more general general proof theory

Heinrich Wansing
Ruhr-University Bochum

In the early 1970s Dag Prawitz introduced general proof theory, now often also called “structural
proof theory,” as “a study of proofs in their own right where one is interested in general questions
about the nature and structure of proofs.” (Prawitz 1974, p. 66) At about the same time, Georg
Kreisel used the term “theory of proofs.”

In this talk I will suggest to broaden Prawitz’s understanding of structural proof theory. The
idea is to consider in addition to verifications also falsifications, so as to obtain a theory of proofs
and dual proofs. I will motivate this more comprehensive view by taking up some remarks Prawitz
has made on falsificationist theories of meaning in (Prawitz 2007) and by considering the natural
deduction proof systems forNelson’s constructive proposition logic from his dissertation (Prawitz
1965). In that context, I will discuss the notion of co-implication within Heyting-Brouwer Logic
(Rauszer 1980) and the bi-intuitionistic logic 2Int from (Wansing 2013, 2015).

References

Dag Prawitz, Natural Deduction. A Proof-theoretical Study, Almqvist and Wiksell, Stockholm,
1965.

Dag Prawitz, “On the idea of a general proof theory”, Synthese 27 (1974), 63–77.
Dag Prawitz, “Pragmatist and verificationist theories ofmeaning”, in: R. E.Auxier andL. E.Hahn
(eds), The Philosophy of Michael Dummett, Open Court, Chicago, 2007, 455–481.

Cecylia Rauszer, “An algebraic and Kripke-style approach to a certain extension of intuitionistic
logic”,DissertationesMathematicae 167, Institute ofMathematics,PolishAcademyof Sciences,
Warsaw 1980, 62 pp.

Heinrich Wansing, “Falsification, natural deduction and bi-intuitionistic logic”, Journal of Logic
and Computation, doi: 10.1093/logcom/ext035, first published online: July 17, 2013.

Heinrich Wansing, 2015, “On split negation, strong negation, information, falsification, and
verification”, to appear in: K. Bimbó (ed.), J. Michael Dunn on Information Based Logics,
Outstanding Contributions to Logic Series, Springer.
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Is there a “Hilbert thesis”?

Reinhard Kahle
Universidade Nova de Lisboa

In his introductory paper to first-order logic, Jon Barwise writes in theHandbookofMathematical
Logic (1977):

. . . the informal notion of provable used in mathematics is made precise by the
formal notion provable in first-order logic. Following a sug[g]estion of Martin Davis,
we refer to this view as Hilbert’s Thesis.

The relation of informal and formal notion(s) of proof is currently under discussion due to the
challenges which modern computer provers issue to mathematics, and one can assume that some
kind of “Hilbert’s Thesis” is widely accepted by the scientific community.

In the firstpartofour talkwediscuss the nature of the thesis advocatedbyBarwise (including its
attribution toHilbert).Wewill compare it, in particular,withChurch’s Thesis about computability.
While Church’s Thesis refers to one particular model of computation, Hilbert’s Thesis is open to
arbitrary axiomatic implementations. We will draw some first conclusions from this difference, in
particular, concerning the question, how a “Hilbert thesis” could be formulated more specifically.

Church’s Thesis receives some evidence from the fact that it blocks any diagonalization argu-
ment by the use of partial functions. In the second part of the talk, we pose the question whether
there could be something like a partial proof, giving a formal counterpart to a partial function.
The relation would arise from an extension of the Curry-Howard isomorphism to untyped ë
terms. In this perspective, the question fits squarely in the tradition of General Proof Theory.

On distinguishing proof-theoretic consequence from derivability

Nissim Francez
The Technion, Haifa

According to the common conception of logical consequence, it can be defined in two main ways:
– Model-theoretically: For a suitable notion of a model, consequence is taken to be
preservation (also called propagation or transmission) of truth over all models.

Γ |= ϕ iff for every modelM, ifM |= Γ thenM |= ϕ (1)

– Proof-theoretically: For a suitable complete proof-system N , consequence is taken as
derivability in N , denoted ‘`N ’.

Γ `N ϕ iff there exists a derivation D of ϕ from (open) assumptions Γ (2)
The idea that logical consequence involves preservation of something, not necessarily of truth,

has been suggested by many. Some examples:
– Information: Propagation of the information (in a situation) is underlying consequence of
Relevant Logic.

– Ambiguity: a proposition p is taken as ambiguously between two different propositions, pt
and pf. A measure of ambiguity of an inconsistent Γ is defined as the minimal number of
proposition in Γ the treatment of which as ambiguous renders Γ consistent. Propagation of
ambiguity is used for defining consequence for paraconsistent logics.

– Precisification: In the context of vagueness, Logical consequence is preservation of super-truth
(i.e., truth in all precisifications).
A natural question arising is, what is common to all the “things” being suggested as preserved,

or propagated, by the various consequence relations mentioned above?
I want to argue that they all serve (either explicitly or implicitly) as central concepts on which

theories of meaning are based.
Two of the main theories of meaning are the following.

8
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– InModel-Theoretic Semantics (MTS), The central concept is truth (in arbitrarymodels).
Meaning is defined as truth-conditions.

– In Proof-Theoretic Semantics (PTS), The central concept is proof, or more generally,
canonical derivation, in appropriate meaning-conferring proof-systems.:
Meaning is determined (either implicitly or, as I prefer, explicitly) by the rules of the meaning-
conferring system.

– The other propagated “things” mentioned above have a similar role as theories of meaning
for Relevant Logic, general paraconsistent logics and for languages with vagueness.
Consequently, I suggest the following informal principle:

meaning-based logical consequence: In a theory of meaning T , logical consequence is
based on the propagation of the central concept of T .

In this paper I argue that, in spite of the coextensiveness in many logics of derivability
and preservation of truth in models, if one adheres to the proof-theoretic semantics theory of
meaning then (2) is not the right definition of proof-theoretic consequence. While (1) is faithful
to the usual model-theoretic conception of meaning, (2) is not faithful to the PTS conception of
meaning.

Instead, I suggest the following conception of proof-theoretic consequence.
– The (proof-theoretic) meaning JϕK of ϕ, is given by: JϕK = ëΓ.JϕKcΓ, a function from contexts
Γ to the (possibly empty) collection of canonical derivations of ϕ from Γ (Γ `c ϕ).

– The definition of proof-theoretic consequence (pt-consequence) rests on the notion of grounds
for assertion for ϕ, closely related to JϕK, given by: GAJϕK = {Γ | Γ `c ϕ}.

– Proof-theoretic consequence: ø is a proof-theoretic consequence of Γ (Γ 
 ø) iff GAJΓK ⊆
GAJøK.

The paper studies two definitions of GAJΓK, based on conjunction (additive) and on fusion
(multiplicative).

I show that for intuitionistic logic, but not for classical logic, proof-theoretic consequence
coincides with derivability.

High-school sequent calculus and an intuitionistic formula
hierarchy preserving identity of proofs

Danko Ilik
Inria Saclay - Île-de-France

We propose to revisit intuitionistic proof systems from the point of view of formula isomorphism
and high-school identities. We first isolate a fragment of the intuitionistic propositional sequent
calculus (LJ), which we name high-school sequent calculus (HS), such that any proof of LJ
can be mapped to one in HS that does not use invertible proof rules. This defines one precise
criterion for identity of proofs, a problem open since the early days of intuitionistic proof theory.
Second, we extend HS for first-order quantifiers and show how it gives rise to an arithmetical
hierarchy for intuitionistic logic. An even neater hierarchy can be obtained if one allows higher
types and the intuitionistic axiom of choice.

9
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New Applications of Proof Mining to Nonlinear Analysis

Angeliki Koutsoukou-Argyraki
TU Darmstadt

(joint work with Ulrich Kohlenbach)

Proof mining is a research program in applied proof theory that involves the extraction of new
quantitative, constructive information by logical analysis of mathematical proofs that appear
to be nonconstructive. The information is ‘hidden’ behind an implicit use of quantifiers in the
proof, and its extraction is guaranteed by certain logical metatheorems, if the statement proved
is of a certain logical form. The program was initiated by Georg Kreisel in the 1950’s under the
name Unwinding of Proofs, and its scope can be summarized by Kreisel’s general question:

“What more do we know if we have proved a theorem by restricted means than if we
merely know that it is true?”

Within the past 15 years, proof mining has been applied by Ulrich Kohlenbach and his collabo-
rators to various fields of Mathematics (see [2] for a general review).

In this talk we will very briefly present two recent applications of proof mining to nonlinear
analysis (both involving the study of one-parameter nonexpansive semigroups). The first work
([3]) is also the first application of proof mining to the theory of partial differential equations.
It involves the extraction of explicit, effective bounds with respect to the convergence (rates of
metastability) of the solution of abstract Cauchy problems generated by multivalued operators,
that fulfill certain accretivity properties, in general Banach spaces. Our results were obtained by
logical analysis of the proof of a theorem in [1]. The second work ([4]) is another contribution of
proof mining to fixed point theory. We give explicit bounds on the computation of approximate
common fixed points of one-parameter nonexpansive semigroups on a subset C of a general
Banach space. Moreover, we provide the first explicit and highly uniform rate of convergence
for an iterative procedure to compute such points for convex C . Our results were obtained by
logical analysis of the proof of a theorem in [5].

References
[1] Garcı́a-Falset, J.: The asymptotic behavior of the solutions of the Cauchy problem generated
by φ-accretive operators, J. Math. Anal. Appl. 310, 594–608, (2005).

[2] Kohlenbach, U.: Applied Proof Theory: Proof Interpretations and their Use in Mathematics,
Springer Monographs in Mathematics, (2008).

[3] Kohlenbach, U. and Koutsoukou-Argyraki, A.: Rates of convergence and metastability
for abstract Cauchy problems generated by accretive operators, J. Math. Anal. Appl. 423,
1089–1112 (2015).

[4] Kohlenbach, U. and Koutsoukou-Argyraki, A.: Effective asymptotic regularity for one-
parameter nonexpansive semigroups, J. Math. Anal. Appl. 433, 1883–1903 (2016).

[5] Suzuki, T.: Common fixed points of one-parameter nonexpansive semigroups, Bull. London
Math. Soc. 38, 1009–1018(2006).
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On the maximality of classical logic

Mario Piazza and Gabriele Pulcini
University of Chieti-Pescara · State University of Campinas

As is well known, classical propositional logic LK0 is Post-complete, or maximal: whenever a
nontautological formula α is added to it as a new axiom schema, the extended system LKα0
becomes inconsistent. In other words, the only nontrivial extensions of LK0 are by proper axioms,
i.e. formulas that are not closed under uniform substitution. In [2] such extensions of LK0 are
called supraclassical. Although cut elimination does not hold in general for supraclassical logics
[1] or, it does, but without necessarily entailing the subformula property [3], we show how to fill
the gap between classical and supraclassical systems for the propositional fragment. In particular,
we show how to decompose a proper axiom α into a finite set of atomic, classically underivable,
sequents Sα such that:

1. LKSα
0 enjoys both cut-elimination and subformula property,

2. LKα0 is consistent if, and only if, the empty sequent ‘`’ is not in Sα ,
3. Sα is the minimal axiomatic decomposition allowing cut elimination.

We conclude by showing a way to make extensions infinite while preserving nontriviality.

References
[1] Jean-Yves Girard. Proof theory and logical complexity. Vol. 1. Bibliopolis, Napoli, 1987.
[2] David Makinson. Bridges between classical and nonmonotonic logic. Logic Journal of the
IGPL, 11(1):69–96, 2003.

[3] Sara Negri and Jan von Plato. Cut elimination in the presence of axioms. Bulletin of Symbolic
Logic, 4(4):418–435, 1998.

Idempotent Coherentisation for First-Order Logic

Roy Dyckhoff and Sara Negri
University of St Andrews · University of Helsinki

Skolem showed in 1920 that, by use of new relation symbols, every first-order sentence is in some
sense replaceable by a single ∀∃-sentence; the precise sense can easily be seen as the construction
of something slightly stronger than a conservative extension. A variation on the argument
shows that the new sentence can be ensured to be a finite conjunction of “special coherent
implications”, i.e. sentences that are universally quantified implications with, as antecedent, a
conjunction of atoms and, as succedent, a positive formula, i.e. wlog a disjunction of existentially
quantified conjunctions of atoms. [Such sentences are also called “geometric axioms”.] Thus,
every first-order theory has a coherent conservative relational extension. We survey some of the
history of this folklore result, including what seems to be its first appearance in the unpublished
Montréal Master’s thesis of Antonius (1975), and present a new coherentisation algorithm with
the idempotence property, i.e. there is no use of normal form (e.g. NNF or PNF) and sentences
that are [almost] of the right form are left [almost] unchanged. Examples and applications will be
presented if time permits. The proof theory of theories axiomatised by sentences of the described
form is well-known to be particularly simple (using “dynamical proofs”); the result shows that,
modulo some extra relation symbols, all first-order theories are of this form.

References
Dyckhoff, R. and Negri, S. (2015). Geometrisation of first-order logic, Bulletin of Symbolic
Logic 21, pp 123–163.
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Abstracts

Adjunction and Normalization in Categories of Logic

Miloš Adžić
University of Belgrade

[unable to attend]

In the course of his conversations with Hao Wang (Hao Wang, A Logical Journey: From Gödel
to Philosophy), Kurt Gödel expanded on, among others, two very interesting topics. One is the
notion of the absolute proof and the other one being his intensional Theory of concepts, which
should, when developed, further secure his conceptual realism.

Regarding the notion of the absolute proof, already in his 1946 Princeton Bicentennial
Lecture Gödel suggested that the its analysis should be akin to Turing’s analysis of the concept
of computability:

Tarski has sketched in his lecture the great importance (and I think justly) of the
concept of general recursiveness (or Turing computability). It seems to me that this
importance is largely due to the fact that with this concept one has succeeded in
giving a absolute definition of an interesting epistemological notion, i.e. one not
depending on the formalism chosen. (Kurt Gödel, Complete Works II, p. 150)

On the other hand

In all other cases treated previously, such as demonstrability or definability, one has
been able to define them only relative to a given language, and for each individual
language it is clear that the one thus obtained is not the one looked for. For the concept
of computability, however, although it is merely a special kind of demonstrability
or decidability, the situation is different. By a kind of miracle it is not necessary to
distinguish orders, and the diagonal procedure does not lead outside the defined
notion. This, I think, should encourage one to expect the same thing to be possible
also in other cases (such as demonstrability or definability). It is true that for these
other cases there exist certain negative results, such as the incompleteness of every
formalism or the paradox of Richard. But close examination shows that these results
do not make a definition of the absolute notions concerned impossible under all
circumstances, but only exclude certain ways of defining them, or at least, that certain
very closely related concepts may be definable in an absolute sense. (Ibid., p. 150)

As pointedout in his conversationswithHaoWang (ALogical Journey: FromGödel to Philosophy,
p. 270), some of the difficulties involved in defining the concept of proof have to dowith intensional
paradoxes, which, at least in principle, his theory of concepts should help us understand better.

We take some of the remarks Gödel made regarding these topics as an inspiration and offer a
way in which one could interpret them from the standpoint of the present day logic. For instance,
his interest in the concept of proof and its intensional underpinnings is also shared by those
working in the field of categorial proof theory.
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Abstracts

On Proof Compressions in Sequent Calculi and
Natural Deductions

Lev Gordeev
University of Tübingen, University of Ghent and PUC Rio de Janeiro

[unable to attend]

In traditional Proof Theory finite proofs/derivations/deductions are presented as rooted trees
whose nodes are labeled with proof objects (e.g. sequents or formulas). A more general approach
allows more liberal dag-like presentation (‘dag’ = directed acyclic graph). This opens up several
size reducing tree-to-dag proof compression opportunities. The most natural proof compression
idea is to merge distinct nodes labeled with identical proof objects.
Theorem 1. In a given sequent calculus S, any tree-like deduction d of a given sequent s is

constructively compressible to a dag-like deduction d ′ of s in which sequents occur at most once.
Thus, in d ′, distinct nodes are supplied with distinct sequents (that also occur in d ).

Consequently, the size of d ′ can’t exceed the total number of distinct sequents occurring in d ,
which in several cases can exponentially reduce the size of d . Moreover, if S is cutfree, then by
the subformula property we conclude that sequents occurring in d ′ contain only subformulas
of s . Analogous dag-like compressions of Prawitz-style tree-like natural deductions are more
involved. This is due to the assumption’s discharging operation. On the other hand, since natural
deductions’ nodes are labeled with single formulas, there is hope to get polynomial control over
the size of d ′, provided that the subformula property holds.
Theorem 2. A natural embedding of Hudelmaier’s sequent calculus for purely implicational

logic into analogous Prawitz-style tree-like natural deduction calculus followed by appropriate
dag-like “horizontal compression” allows us to obtain polynomial-size dag-like natural deductions
d ′ of arbitrary tree-like inputs d .

A suitable formalization of the last theorem should prove the conjecture NP = PSPACE.
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Tübingen, 27-29 November 2015

Opening

Peter Schroeder-Heister

GPT Opening 27.11.2015 – p. 1

Our internal competitor

Substructural Logics

25 years after

GPT Opening 27.11.2015 – p. 2

P. Schroeder-Heister: Opening: General Proof Theory
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GPT Opening 27.11.2015 – p. 3

Why General Proof Theory?

• Its significance is still underestimated, both in
mathematical and philosophical proof theory.

• General Proof Theory is the study of proofs in their
own right, not merely under the aspect of what proofs
prove or can prove.

• This is the “intensional” aspect of proofs.

• In proof-theoretic semantics (including my own work) it
is underrepresented, actually almost non-existent.

• The term was coined by Prawitz in 1971, but the topic
was already implicitly put on the agenda by Prawitz in
his book on natural deduction of 1965.

GPT Opening 27.11.2015 – p. 4

P. Schroeder-Heister: Opening: General Proof Theory
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Celebrating 50 years of

Dag Prawitz’s ‘Natural Deduction’

GPT Opening 27.11.2015 – p. 5

GPT Opening 27.11.2015 – p. 6

P. Schroeder-Heister: Opening: General Proof Theory
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Trends in Logic 39 

Advances in Natural 
Deduction

Luiz Carlos Pereira
Edward Hermann Haeusler
Valeria de Paiva   Editors

A Celebration of Dag Prawitz's Work

GPT Opening 27.11.2015 – p. 7

Outstanding Contributions to Logic 7

Dag Prawitz 
on Proofs 
and Meaning

Heinrich Wansing 
Editor

GPT Opening 27.11.2015 – p. 8

P. Schroeder-Heister: Opening: General Proof Theory
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Why is “Natural Deduction” so important?

• Because natural deduction is so important

• The handling of assumptions (Gentzen-Jaśkowski)

• The systematics of introductions and eliminations

• Because the metatheory of deduction as developed in
“Natural Deduction” is so important

• inversion

• normalisation

• the handling of reduction

GPT Opening 27.11.2015 – p. 12

P. Schroeder-Heister: Opening: General Proof Theory
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The gap in Gentzen

• Philosophically, the calculus of natural deduction is the
“natural” basic system

• Technically, all results are dealt with in the sequent
calculus, which is not considered philosophically
significant

• Consequently, before “Natural Deduction”, natural
deduction had not (or almost not) been taken notice of

GPT Opening 27.11.2015 – p. 13

The contribution of “Natural Deduction”

• Prawitz closes this gap, by giving natural deduction its
autonomous standing

• In doing so, by his theory of reduction of proofs, he
implicitly develops a notion of identity of proofs

• This is a big step beyond Gentzen

• It means that General Proof Theory is the main topic of
the “Natural Deduction”

Therefore a conference on General Proof Theory is the
right way of honouring Prawitz and the work done in
“Natural Deduction”.

GPT Opening 27.11.2015 – p. 14

P. Schroeder-Heister: Opening: General Proof Theory
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The impact of “Natural Deduction”

• Type theory

• more generally, the computation as deduction, or
deduction as computation paradigm

• The development of proof-theoretic semantics

GPT Opening 27.11.2015 – p. 15

The didactic point of view

Not very many books in mathematical logic are so well
readable.

One can give “Natural Deduction” to anybody who has only
a very elementary knowledge in logic.

This is an aspect Prawitz’s work shares with that of Gentzen

GPT Opening 27.11.2015 – p. 16

P. Schroeder-Heister: Opening: General Proof Theory
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Personal remarks

GPT Opening 27.11.2015 – p. 17

Announcement

There will be a book on general proof theory, called

“General Proof Theory”

GPT Opening 27.11.2015 – p. 18

P. Schroeder-Heister: Opening: General Proof Theory
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“Proof-theoretic semantics”

will be postponed

GPT Opening 27.11.2015 – p. 19

Some open questions in connection with natural
deduction

• Inversion: What is the proper (intensional) notion of
harmony

• Reduction: What is a proper reduction (in
contradistinction to just a shortcut)?

• Sequent calculus: What is the proper model of
hypothetical reasoning?

x : A⊢ t : B or f : A⊢B ?

• Atomic base: What is the proper treatment of atoms?

GPT Opening 27.11.2015 – p. 20

P. Schroeder-Heister: Opening: General Proof Theory
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Trends in Logic 43

Thomas Piecha

Peter Schroeder-Heister    Editors 

Advances 

in Proof-

Theoretic 

Semantics

GPT Opening 27.11.2015 – p. 21

Acknowledgements
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Organisation:

• Marine Gaudefroy-Bergmann, Thomas Piecha
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P. Schroeder-Heister: Opening: General Proof Theory
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I wish you

a good conference

GPT Opening 27.11.2015 – p. 23

P. Schroeder-Heister: Opening: General Proof Theory
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The Russell-Prawitz translation and
schematic rules: a view from proof-theory

Luiz Carlos Pereira Edward Hermann Haeusler

PUC Rio de Janeiro

Tübingen 2015

Translations
In the late twenties and early thirties of last century several results were obtained
concerning some relations between classical logic (CL) and intuitionistic logic (IL),
and between classical arithmetic (PA) and intutionistic arithmetic (HA).

In 1927 Glivenko proved two important results relating classical propositional logic
(CPL) to intuitionistic propositional logic (IPL).

In 1925 Kolmogorov proved that CPL could be translated into IPL (in fact he showed
that a certain fragment of CPL could be translated in the same fragment of MPL).

In 1933 Gödel defined an interpretation of PA into HA, and in the same year Gentzen
defined a different interpretation of PA into HA.

These interpretations/translations/embeddings were defined in a foundational
environment.

L. C. Pereira and E. H. Haeusler: The Russell-Prawitz translation
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Translations
Main idea: to reduce a foundational problem in a classical environment to a
foundational problem in a constructive environment.

The concrete case: the consistency problem

If Heyting’s Arithmetic (HA) is consistent, so is Peano’s Arithmetic (PA)
– Gödel, Gentzen

A first general proof-theoretical approach to translations:
Prawitz and Malmnäs 1968:
A survey of some connections between classical, intuitionistic and minimal logic.

Prawitz & Malmnäs
1. Interpretability

Let S1 and S2 be two logical systems. A function from the language of S1 to the
language of S2 will be called a translation. If F is a translation from L[S1] into L[S2]
such that

S1 ⊢A iff S2 ⊢ F[A]

then S1 is said to be interpretable in S2.

2. Interpretability with respect to derivability

If for each set Γ ∪ {A} of formulas of Swe have:

Γ ⊢S1 A iff F[Γ] ⊢S2 F[A]

we say that S1 is interpretable in S2 with respect to derivability.

L. C. Pereira and E. H. Haeusler: The Russell-Prawitz translation
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Prawitz & Malmnäs
3. Schematically interpretable

We are given a number of schemata:

(i) Defining the value of F for atomic formulas.

(ii) For each logical constant c we use the schemata to define inductively the value
of F for formulas with c as the principal sign.

Example: F[(A ∧ B)] = φ(F[A], F[B])

4. Literal translation

We use the same constant c:
Example: F[(A ∧ B)] = (F[A] ∧ F[B])

Prawitz & Malmnäs

L. C. Pereira and E. H. Haeusler: The Russell-Prawitz translation
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Prawitz & Malmnäs

Kolmogorov’s translation

(1) Ko[A] = ¬¬A, A atomic.

(2) Ko[⊥] = ⊥
(3) Ko[A ∧ B] = ¬¬(Ko[A] ∧ Ko[B])

(4) Ko[A ∨ B] = ¬¬(Ko[A] ∨ Ko[B])

(5) Ko[A → B] = ¬¬(Ko[A] → Ko[B])

(6) Ko[∀xA(x)] = ¬¬∀x Ko[A(x)]

(7) Ko[∃xA(x)] = ¬¬∃x Ko[A(x)]

L. C. Pereira and E. H. Haeusler: The Russell-Prawitz translation
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Gödel’s translation

(1) Gö[A] = ¬¬A
(2) Gö[⊥] = ⊥
(3) Gö[A ∧ B] = Gö[A] ∧ Gö[B]

(4) Gö[A ∨ B] = ¬(¬Gö[A] ∧ ¬Gö[B])

(5) Gö[A → B] = ¬(Gö[A] ∧ ¬Gö[B])

(6) Gö[∀xA(x)] = ∀xGö[A(x)]

(7) Gö[∃xA(x)] = ¬∀x¬Gö[A(x)]

Gentzen’s translation

(1) Ge[A] = ¬¬A
(2) Ge[⊥] = ⊥
(3) Ge[A ∧ B] = Ge[A] ∧ Ge[B]

(4) Ge[A ∨ B] = ¬(¬Ge[A] ∧ ¬Ge[B])

(5) Ge[A → B] = (Ge[A] → Ge[B])

(6) Ge[∀xA(x)] = ∀xGe[A(x)]

(7) Ge[∃xA(x)] = ¬∀x¬Ge[A(x)]

L. C. Pereira and E. H. Haeusler: The Russell-Prawitz translation
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General approaches
Other general approaches:

1. Wójcicki, 1988

2. Epstein, 1990

3. Da Silva, D’Ottaviano and Sette, 1999

Normalization and translations
Double-negation translations can be easily justified by Prawitz’ Normalization
strategy for classical logic.

1. Restrict the language of classical first order logic to the fragment {¬, ∧, →, ∀}.
Of course nothing is lost with this restriction.

2. Reduce all applications of the classical absurd rule to atomic applications, i.e.,
to applications with atomic conclusions.

3. Apply your favorite normalization strategy for intuitionistic first order logic.

L. C. Pereira and E. H. Haeusler: The Russell-Prawitz translation
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Normalization and translations

1. Restrict the language of classical first order logic to the fragment
{¬, ∧, ∨, →, ⊥, ∃}. Again, nothing is lost with this restriction.

2. Show that every derivation Π of Γ ⊢A in this fragment can be transformed into
a derivation Π′ of Γ ⊢A such that Π′ contains at most one application of the
classical absurd rule, and in case this application does occur, it is the last rule
applied in Π′.

3. Apply your favorite normalization strategy for intuitionistic first order logic.

General result
Theorem 1
Let G be a translation/interpretation of L2 into L1 and let L3 be an intermediate logic
between L1 and L2. Then G is also a translation of L2 into L3.

Theorem 2
The translation G from L2 into L3 CAN NOT be a translation from L3 into L1!

Another use for translations: to study the proof-theory of other systems!

This could be considered as a case of “reductive proof-theory”.

L. C. Pereira and E. H. Haeusler: The Russell-Prawitz translation
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Russell-Prawitz translation
∀X.X

∀X((A → (B → X)) → X)

∀X((A → X) → ((B → X) → X))

∀X(∀x(A → X) → X)

The second order system Fat

The system Fat was introduced by Fernando Ferreira and developed by F. Ferreira
and Gilda Ferreira.

F. Ferreira and G. Ferreira

– The faithfulmess of Fat: a proof-theoretic proof (2015)

– The faithfulness of of atomic polymorphism, Trends in Logic (2014)

– Atomic polymorphism, JSL, vol. 76 (2013)

– Commuting conversions vs. the standard conversions of the “good”
connectives, Studia Logica, vol. 92 (2009).

G. Ferreira

– Strong Normalization for IPC via atomic F (2015)

T. Sandqvist

– A note on definability of logical operators in second-order logic (manuscript –
2008)

L. C. Pereira and E. H. Haeusler: The Russell-Prawitz translation
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The second order system Fat

Main idea

Language: second order propositional restricted to ∀ and →.

Rules: Natural deduction with the restriction that in the conclusion A[C/X] of ∀X.A
(∀-elim), C is atomic.

Remark:
With the predicative restriction (atomic instantiations) we get the subformula
principle and good “inductive measures”

Overflow
Remark 2:
Overflow in Fat: For formulas of the form:

∀X.X
∀X((A → (B → X)) → X)

∀X((A → X) → ((B → X) → X))

It is possible to deduce

C

((A → (B → C)) → C)

((A → C) → ((B → C) → C))

for any C.

L. C. Pereira and E. H. Haeusler: The Russell-Prawitz translation
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The case of implication

∀X((A → X) → ((B → X) → X))
I.H.

(A → D2) → ((B → D2) → D2)

[A → D1 → D2)] [A]

D1 → D2 [D1]

D2

A → D2

(B → D2) → D2 D

D2

D1 → D2

(B → (D1 → D2)) → (D1 → D2)

(A → (D1 → D2)) → ((B → (D1 → D2)) → (D1 → D2))

where D is the deduction
[B → (D1 → D2)] [B]

D1 → D2 [D1]

D2

B → D2

Prawitz’ translation

1. Pr[P] = P, for P atomic.

2. Pr[⊥] = ∀X.X
3. Pr[(A → B)] = (Pr[A] → Pr[B])

4. Pr[(A ∧ B)] = ∀X((Pr[A] → (Pr[B] → X)) → X)

5. Pr[(A ∨ B)] = ∀X((Pr[A] → X) → (Pr[B] → X) → X))

L. C. Pereira and E. H. Haeusler: The Russell-Prawitz translation
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Example
Disjunction introduction

A
A ∨ B

is translated into:
A [A → X]

X
((B → X) → X)

((A → X) → ((B → X) → X))

∀X((A → X) → ((B → X) → X))

Example
Disjunction elimination

A ∨ B

[A]

C

[B]

C
C

is translated as:

∀X((A → X) → ((B → X) → X))

((A → C) → ((B → C) → C))

[A]

C
(A → C)

((B → C) → C)

[B]

C
(B → C)

C

L. C. Pereira and E. H. Haeusler: The Russell-Prawitz translation
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Russell-Prawitz translation

⊢I A iff ⊢Fat Pr[A]

Strong normalization for Fat

Definition
We say that a term t : A is reducible iff t ∈ Red(A), with Red(A) defined by induction on
the complexity of the type {formula} A as follows:

1. For C an atomic type, t ∈ Red(C) iff t is strongly normalizable.

2. t ∈ Red(A → B) iff for all q, if q ∈ Red(A), then tq ∈ Red(B).

3. t ∈ Red(∀X.A) iff for all atomic types C, tC ∈ Red(A[C/X]).

L. C. Pereira and E. H. Haeusler: The Russell-Prawitz translation
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Strong normalization for I

1. Embedding I into Fat.
This result depends on “instantiation overflow”.

2. Beta-conversions translated into beta-eta conversions.

Moving to some generalisation
From “concrete systems” to “abstract systems”!

Re-visiting schematic rules

In what sense is natural deduction natural?

Two traditional answers:

1. Faithfull representation

2. Meaning theory

L. C. Pereira and E. H. Haeusler: The Russell-Prawitz translation
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Prawitz, Natural Deduction

Prawitz, Natural Deduction

“With one exception, the inference rules are of two kinds, viz., introduction rules and
elimination rules.”

This lead us to two new questions!

L. C. Pereira and E. H. Haeusler: The Russell-Prawitz translation
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Schematic rules
What’s an introduction rule for an operator φ?

“The introduction rule for a logical constant allows an inference to a formula that
has the constant as principal sign.”

What’s an elimination rule for an operator φ?

“The elimination rule for a constant, on the other hand, allows an inference from a
formula that has the constant as principal sign”.

In 1978 Dag Prawitz proposed an answer to these questions by means of schematic
introduction and elimination rules.

Schematic rules

L. C. Pereira and E. H. Haeusler: The Russell-Prawitz translation
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Schematic rules

Schematic rules

Prawitz also proposed a constructive version of the well- known classical
truth-functional completeness:
If the introduction and elimination rules for an operator φ are instances of the schematic
introduction and elimination rules, then φ is intuitionistically definable.

L. C. Pereira and E. H. Haeusler: The Russell-Prawitz translation
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Weak completeness
Definition of the function ∗ (Wong Hao Chi)

A∗ = A, for A atomic

[(A op B)]∗ = ([A]∗ op [B]∗)

[φ(F1, . . . , Fn)]∗ = ∨i(∧j(∧k([H(I,j,k)]∗→[G(I,j)]∗)

Theorem
Let A and Γ be in L[I + φ]. Then, Γ ⊢I+φ =⇒ Γ∗ ⊢I A∗.

Schematic rules and Fat

Connecting schematic rules with atomic polymorphism

Let φ be an operator given by the rules:

φ-introduction:
[Γ1]

P1

[Γ2]

P2

φ(P1, P2, −)

φ-elimination:

φ(P1, P2, −)

[Γ1 ⇒ P1] [Γ2 ⇒ P2]

R
R

L. C. Pereira and E. H. Haeusler: The Russell-Prawitz translation
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Fat-translation
∀X(((Γ1 → P1) → X) → (((Γ2 → P2) → X) → X))

Main idea
Use Fat to do the proof-theory of φ, as it was done for intuitionistic propositional
logic!

Schematic Fat
A generalized instantiation overflow.

Generalized instantiation overflow
Conjunctive-forms: ∀X((R1 → (R2 → (. . . → (Rn → X) . . .) → X)

Disjunctive-forms: ∀X((R∗
1 → X) → ((R∗

2 → X) → ((R∗
n → X) → X) . . .)

From
∀X((R1 → (R2 → (. . . → (Rn → X) . . .) → X)

and
∀X((R∗

1 → X) → ((R∗
2 → X) → ((R∗

n → X) → X) . . .)

derive
((R∗

1 → (R∗
2 → (. . . → (R∗

n → C) . . .) → C)

and
((R∗

1 → C) → ((R∗
2 → C) → ((R∗

n → C) → C) . . .)

for any C.

L. C. Pereira and E. H. Haeusler: The Russell-Prawitz translation
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The flattening problem
∗-introduction:

[P1]

P2

∗(P1, P2, P3)

P3

∗(P1, P2, P3)

∗∗-introduction:
[P1]

P3

∗∗(P1, P2, P3)

P2

∗∗(P1, P2, P3)

The flattening problem
∗-elimination:

∗(P1, P2, P3) P1

[P2]

R

[P3]

R
R

∗∗-elimination:

∗∗(P1, P2, P3) P1

[P2]

R

[P3]

R
R

L. C. Pereira and E. H. Haeusler: The Russell-Prawitz translation
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The flattening problem
The same rule! But the two operators are not intuitionistically equivalent!

The operator would be:

∀X(P1 → ((P2 → X) → ((P3 → X) → X)))

The moral is: We do need high-level rules!

The flattening problem

∗(P1, P2, P3)

[P1 ⇒ P2]

R

[P3]

R
R

The operator ∗ is:
∗(P1, P2, P3) ↔ ((P1 → P2) ∨ P3)

∀X(((P1 → P2) → X) → ((P3 → X) → X))

L. C. Pereira and E. H. Haeusler: The Russell-Prawitz translation
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The flattening problem

∗∗(P1, P2, P3)

[P1 ⇒ P3]

R

[P2]

R
R

The operator ∗∗ is:
∗∗(P1, P2, P3) ↔ ((P1 → P3) ∨ P2)

∀X(((P1 → P3) → X) → ((P2 → X) → X))

The flattening problem
Wrong direction

1. Take the set of introduction rules for ∗ and ∗∗.
2. Take the generalized elimination rule.

3. We have a new operator ∗∗∗.

∗∗∗(P1, P2, P3) ↔ (P1 → (P3 ∨ P2))

∀X(P1 → ((P2 → X) → ((P3 → X) → X)))

L. C. Pereira and E. H. Haeusler: The Russell-Prawitz translation
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Small questions

1. The image of a normal ICP derivation does not need to be normal in Fat.
Consider a normal derivation Π in IPC and its not normal image Pr[Π]. This not
normal image can be reduced to a normal derivation Pr[Π]∗.
What is the relationship between Pr[Π]∗ and Π?

2. Modifying the question: consider two different normal derivations Π1 and Π2 in
IPC and their not normal images Pr[Π1] and Pr[Π2] in Fat.
Do the normal forms Pr[Π1]

∗ and Pr[Π2]
∗ of Pr[Π1] and Pr[Π2] have to be

different?

The future

1. Use the Fat system to study the identity problem (as in Widebäck) for
disjunction.

2. The use of schematic elimination rules naturally introduces permutative
reductions. Use Fat to eliminate these “undesirable” reductions.

3. Use the Prawitz-Russell translation to analyse the i-axioms and the epsilon-
axioms.

4. Extensions to schematic rules with restrictions.

L. C. Pereira and E. H. Haeusler: The Russell-Prawitz translation
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A general translation based on the subformula principle
We shall consider logics whose operators admit the schematic definitions and
whose derivations satisfy the subformula principle.

A general translation based on the subformula principle

L. C. Pereira and E. H. Haeusler: The Russell-Prawitz translation
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A general translation based on the subformula principle

A general translation based on the subformula principle

Theorem 1
If L satisfies the subformula principle and is decidable then the problem of knowing
whether a formula of L is provable or not is in PSPACE. If L includes [M→] then this
problem, also known as Validity, is PSPACE-complete.

L. C. Pereira and E. H. Haeusler: The Russell-Prawitz translation

52



A general translation based on the subformula principle

[A]1

[A]1
[(A → B) ∧ (B → C)]2

A → B
B

[(A → B) ∧ (B → C)]2

B → C
C

A ∧ C
1
A → (A ∧ C)

2
((A → B) ∧ (B → C)) → (A → (A ∧ C))

[A]1
[(A → B) ∧ (B → C)]2

A → B
B

[(A → B) ∧ (B → C)]2

B → C
C

[A]1 A → (C → p(A∧C))

C → p(A∧C)

p(A∧C)
1
A → p(A∧C)

2
((A → B) ∧ (B → C)) → (A → p(A∧C))

A general translation based on the subformula principle

[A]1
[q]2 q → (A → B)

A → B
B

[q]2 q → (B → C)

B → C
C

[A]1 A → (C → p)
C → p

p
1
A → p

2
q → (A → p)

p(A→B)∧(B→C) = q, p(A∧C) = p

L. C. Pereira and E. H. Haeusler: The Russell-Prawitz translation
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A general translation based on the subformula principle

[A]1
[q]2 [q → (A → B)]3

A → B
B

[q]2 [q → (B → C)]4

B → C
C

[A]1 [A → (C → p)]5

C → p
p

1
(A → p)

2
q → (A → p)

3
(q → (A → B)) → (q → (A → p))

4
(q → (B → C)) → (q → (A → B)) → (q → (A → p))

5
(A → (C → p)) → (q → (B → C)) → (q → (A → B)) → (q → (A → p))

THANK YOU!

L. C. Pereira and E. H. Haeusler: The Russell-Prawitz translation
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Federico Aschieri On Natural Deduction in Classical First-Order Logic

The Magnificent Seven

⊥,¬,∧,∨,→, ∀, ∃

⇓
⊥,∧,→,∀

∃ := ¬∀¬
∨ := ¬ ∧ ¬

⇓
⊥,→, ∀

Federico Aschieri On Natural Deduction in Classical First-Order Logic

F. Aschieri: On Natural Deduction in Classical First-Order-Logic
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First Reason for Keeping ∨ and ∃

EM1 := ∀x P(x) ∨ ∃x ¬P(x) ( P propositional)

EM2 := ∀x ∃y P(x , y) ∨ ∃x ∀y ¬P(x , y) ( P propositional)

IL + EMn 0 ∃x A↔ ¬∀x¬A

IL + EM1 ` ∃x A =⇒ x learnable in the limit

Federico Aschieri On Natural Deduction in Classical First-Order Logic

Second Reason for Keeping ∨ and ∃

Interactive Learning-Based Realizability

t �s ∃x A iff π0t [s] = n and π1t �s A[n/x ]

Federico Aschieri On Natural Deduction in Classical First-Order Logic

F. Aschieri: On Natural Deduction in Classical First-Order-Logic
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Third Reason for Keeping ∨ and ∃

Theorem (Weak Herbrand Theorem)

CL ` ∃x P =⇒ PCL ` P[t1/x ] ∨ · · · ∨ P[tk/x ]

(P propositional)

Theorem (Strong Herbrand Theorem (Miller))

CL ` ∃x A =⇒ A has an expansion tree winning strategy

Federico Aschieri On Natural Deduction in Classical First-Order Logic

Expansion Tree Winning Strategies

∃x ∀y ∃z P(x , y , z)

∀y ∃z P(t3, y , z)

∃z P(t3,a3, z)

a3

t3

∀y ∃z P(t2, y , z)

∃z P(t2,a2, z)

P(t2,a2, t5)

t5

a2

t2

∀y ∃z P(t1, y , z)

∃z P(t1,a1, z)

P(t1,a1, t4)

t4

a1

t1

Ordered: t1 a1 t2 a2 t3 a3 t4 t5

Winning: P(t1,a1, t4) ∨ P(t2,a2, t5)
Federico Aschieri On Natural Deduction in Classical First-Order Logic

F. Aschieri: On Natural Deduction in Classical First-Order-Logic
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Natural Deduction

[A]
...
B

A→ B

...
A

B

converts to

...
A
...
B

Federico Aschieri On Natural Deduction in Classical First-Order Logic

Natural Deduction

...
A

A ∨ B

[A]
...
C

[B]

...
C

C

converts to

...
A
...
C

Federico Aschieri On Natural Deduction in Classical First-Order Logic

F. Aschieri: On Natural Deduction in Classical First-Order-Logic

58



Natural Deduction

...
A1

...
A2

A1 ∧ A2 i ∈ {1,2}
Ai

converts to:
...

Ai

π

A
∀x A

A[m/x ]

converts to:
π[m/x ]

A[m/x ]

Federico Aschieri On Natural Deduction in Classical First-Order Logic

Natural Deduction

...
A[t/x ]
∃x A

[A]

π

C
C

converts to:

...
A[t/x ]

π[t/x ]

C

Federico Aschieri On Natural Deduction in Classical First-Order Logic
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Excluded Middle

[∀x A]
...
C

[∃x A⊥]
...
C EMn

C

A is a prenex formula with n − 1 quantifiers

Federico Aschieri On Natural Deduction in Classical First-Order Logic

Two Kinds of Premises

Assumption

a sentence whose logical consequences we want to
determine; we use it just as starting point of the reasoning,
with no further questions about its validity.

Discharged by intuitionistic inference rules.

Federico Aschieri On Natural Deduction in Classical First-Order Logic
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Two Kinds of Premises

Working Hypothesis

J. Dewey: A sentence which is neither true nor false but
”provisional, working mean of advancing investigation”.

Discharged by excluded middle rules.

C. Pierce: ”A hypothesis (...) we may not believe to be
altogether true, but which is useful in enabling us to
conceive of what takes place”.

Federico Aschieri On Natural Deduction in Classical First-Order Logic

Logical Reductions: EMn

[∀x A]
...
C

[∃x A⊥]
...
C EMn

C

 
...
C

Federico Aschieri On Natural Deduction in Classical First-Order Logic
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Logical Reductions: EMn

∀x A
A[t/x ]

...

∀x A
...

C

∃x A⊥
...
C EMnC

converts to (provided the variables of t are free in the proof of
C):

A⊥[t/x ]
∃x A⊥

...
C

A[t/x ]
...

∀xA
...

C

∃x A⊥
...
C EMnC EMn−1C

Federico Aschieri On Natural Deduction in Classical First-Order Logic

Logical Reductions: EMn

[∀x A]
...

B → C

[∃x A⊥]
...

B → C EMnB → C

...
B

C

converts to

[∀x A]
...

B → C

...
B

C

[∃x A⊥]
...

B → C

...
B

C EMnC

Federico Aschieri On Natural Deduction in Classical First-Order Logic

F. Aschieri: On Natural Deduction in Classical First-Order-Logic
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Strong Normalization and Herbrand Disjunction
Extraction

π : A =⇒ π ∈ SN

π : ∃x P =⇒ π 7→∗ (t0,u0) | (t1,u1) | . . . | (tk ,uk )

CL ` P[t0/x ] ∨ P[t1/x ] ∨ · · · ∨ P[tk/x ]

π : A =⇒ We can find an expansion tree for A?

Federico Aschieri On Natural Deduction in Classical First-Order Logic

F. Aschieri: On Natural Deduction in Classical First-Order-Logic
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Glivenko’s theorem

Theorem (Glivenko, 1929)
1 If A is provable in classical propositional logic, then ¬¬A is provable in

intuitionistic propositional logic.
2 (more generally) If A is provable from Γ in classical propositional logic then:

I ¬¬A is provable from Γ in intuitionistic propositional logic;
I ⊥ is provable from Γ,¬A in intuitionistic propositional logic.

The converses hold trivially since A is equivalent to ¬¬A in classical logic.

Corollary

A theory in consistent in classical propositional logic if and only if it is consistent
in intuitionistic propositional logic.

Remark: Glivenko’s theorem holds neither in full 1st-order, nor in minimal logic.

Glivenko’s theorem has been widely studied: there is a lot of simple proofs (with a
semantical or syntactic approach) and refinements of it.

 What else is there to say?

G. Guerrieri, A. Naibo Postponement of RAA and Glivenko theorem Tübingen 2015/11/28 4 / 30
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Interlude: reductio ad absurdum (raa) in natural deduction
Consider the following rules in natural deduction:

ex falso quodlibet

...
⊥

efq
A

reductio ad absurdum

p¬Aq1...
⊥

raa1

A

Remark: efq is just the special case of raa where no assumption is discharged.

An instance raa is said to be discharging if it is not an instance of efq (i.e. it
discharges at least one assumption).

NM = first-order minimal natural deduction i.e. all introduction and elimination
rules for all connectives (except ⊥) and quantifiers

NJ = NM ∪ {efq} = first-order intuitionstic natural deduction
NK = NM ∪ {raa} = first-order classical natural deduciton

Remark: NM ( NJ ( NK

G. Guerrieri, A. Naibo Postponement of RAA and Glivenko theorem Tübingen 2015/11/28 5 / 30

A way to prove Glivenko’s theorem: postponement of raa

Let A be provable from Γ in propositional classical logic. So, there is a derivation

Γ.... π

A

in classical propositional natural deduction, with possibly many instances of raa.

Suppose that it is possible to transform π in a derivation π′ of A from Γ where
discharging raa is used only at the last rule (postponement of raa). Then,

π′ =

Γ, p¬Aq1
..... π
′′

⊥
raa1

A

where π′′ contains no discharging instance of raa.
(continue)

G. Guerrieri, A. Naibo Postponement of RAA and Glivenko theorem Tübingen 2015/11/28 6 / 30
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A way to prove Glivenko’s theorem: postponement of raa
Therefore, if we replace the instance of raa with ¬i in the last rule of π′ we get

π′′′ =

Γ, p¬Aq1
..... π

′′

⊥ ¬1
i¬¬A

π′′′ is a derivation of ¬¬A from Γ in propositional intuitionistic natural deduction
(since π′′ and hence π′′′ contain no discharging instance of raa).

To resume: If we can prove the postponement of raa (PR), we also have a proof
of Glivenko’s theorem.
Actually, PR holds for NKr {∀i}! (Seldin, 1986; von Plato, 2013).

The proof of Glivenko’s theorem sketched above is interesting because:
1 PR is an interesting result per se (that we aim to refine);
2 deducing Glivenko’s theorem from PR is more illuminating (than a “boring”

proof by induction on the derivation of A from Γ in classical logic):
I it relates Glivenko’s theorem to Kuroda (1951) negative translation;
I it gives refinements of Glivenko theorem (for 1st- and 2nd -order, into minimal).

G. Guerrieri, A. Naibo Postponement of RAA and Glivenko theorem Tübingen 2015/11/28 7 / 30
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Postponement of raa: the naive (wrong) way
Goal: Transforming a derivation in NK so that any possible instance of raa is
pushed downwards until it vanishes or occurs only in the last rule, preserving the
same conclusion and without adding new non-discharged assumptions.

The naive (wrong) approach: we consider two reduction steps as follows (B 6= ⊥)

p¬Aq1..... π
′

⊥
raa1

A

..... π
′′

s
B.... π

 

p¬Bq1
pAq2

..... π
′′

s
B ¬e⊥ ¬2

i¬A..... π
′

⊥
raa1

B.... π

and

p¬Aq1..... π
′

⊥
raa1

A

..... π
′′

s
⊥.... π

 

pAq2
..... π

′′

s
⊥ ¬2

i¬A..... π
′

⊥.... π

Problem: It works only if no assumption of π′ is discharged at s in the two derivations on
the LHS of  , otherwise  would change the set of non-discharged assumptions.

G. Guerrieri, A. Naibo Postponement of RAA and Glivenko theorem Tübingen 2015/11/28 9 / 30

Postponement of raa: Seldin (1986) approach (1 of 2)

Goal: Transforming a derivation in NK so that any possible discharging instance of
raa is pushed downwards until it vanishes or occurs only in the last rule, preserving
the same conclusion and without adding new non-discharged assumptions.

Seldin (1986) approach: he defines two reduction steps as follows (B 6= ⊥)

p¬Aq1..... π
′

⊥ raa1
A

..... π
′′

s
B.... π

 

p¬Bq1

p¬Bq1
pAq2

..... π
′′

s
B ¬e⊥ ¬2

i¬A..... π
′

⊥ efq
A

..... π
′′

s
B ¬e⊥ raa1

B.... π

(1)
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Postponement of raa: Seldin (1986) approach (2 of 2)

Goal: Transforming a derivation in NK so that any possible discharging instance of
raa is pushed downwards until it vanishes or occurs only in the last rule, preserving
the same conclusion and without adding new non-discharged assumptions.

Seldin (1986) approach: he defines two reduction steps as follows

p¬Aq1..... π
′

⊥
raa1

A

..... π
′′

s
⊥.... π

 

pAq2
..... π

′′

s
⊥ ¬2

i¬A..... π
′

⊥
efq

A

..... π
′′

s
⊥.... π

(2)

Idea: By applying repeatedly the reduction steps (1) and (2) following a suitable
strategy, any derivation in NKr {∀i} is transformed in the desired form.

G. Guerrieri, A. Naibo Postponement of RAA and Glivenko theorem Tübingen 2015/11/28 11 / 30

A problem in Seldin’s approach: the rule ∀i
Seldin’s approach does not work when the instance of raa that one would push
down is immediately followed by an instance of the rule ∀i.
Indeed, the natural way to treat the ∀i case would be the following reduction step:

Π =

p¬Aq1..... π
′

⊥ raa1

A ∀i∀xA.... π

 

p¬∀xAq1
pAq2 ∀i∀xA ¬e⊥ ¬2
i¬A..... π

′

⊥ raa1

∀xA.... π

= Π′

but Π ′ is not a derivation in NK (nor in other subsystems of NK) because in Π ′

the rule ∀i is not correctly instantiated, since the variable x may occur free in A,
and A is a non-discharged assumption when the rule ∀i is applied in Π ′.

A posteriori, it is unsurprisingly that the postponement of raa does not hold when
in the derivation in NK there is an instance of the rule ∀i, otherwise Glivenko’s
theorem would hold for full first-order logic (not only propositional), that is false:
for instance, if A = ¬(∀x¬¬P(x) ∧ ¬∀xP(x)), then `NK A but 6`NJ ¬¬A.
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Postponement of raa: our approach
Seldin’s reduction steps introduce a new instance of efq (its occurrence in the
RHS of “ ” has no corresponding in the LHS).

Question: This new instance of efq is really necessary? No, in most cases.

Instead of Seldin’s reduction steps, we define our reduction steps case by case,
depending on the inference rule instantiated immediately below the instance of raa
we want to push downwards in the derivation (see also Stålmarck, 1991; von Plato
& Siders, 2012; von Plato 2013).

Goal: To transform a derivation in NKr {∀i} so that any possible instance of raa
is pushed downwards until it vanishes or occurs only in the last rule, preserving the
same conclusion and without adding new non-discharged assumptions. Moreover,
we avoid introducing new instances of efq when possible.

Pros: Our reduction steps allow to get a more informative version of
postponement of raa.
Cons: Our reduction steps are defined in a non-uniform way (less elegant).

G. Guerrieri, A. Naibo Postponement of RAA and Glivenko theorem Tübingen 2015/11/28 13 / 30

Our reduction steps: raa vs. ¬e and raa vs. ¬i

p¬¬Aq1..... π
′

⊥ raa1
¬A

..... π
′′

A ¬e⊥.... π

 

p¬Aq2

..... π
′′

A ¬e⊥ ¬2
i¬¬A..... π

′

⊥.... π

(2)

pAq2, p¬⊥q1
..... π

′

⊥ raa1
⊥ ¬2

i¬A.... π

 

pAq2,
p⊥q3 ¬3

i¬⊥
..... π

′

⊥ ¬2
i¬A.... π

(3)
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Our reduction steps: raa vs. →i

pAq2, p¬Bq1
..... π

′

⊥
raa1

B →2
iA → B.... π

 

p¬(A → B)q1

pAq2

p¬(A → B)q1
pBq3 →0

iA → B
¬e⊥ ¬3

i¬B
..... π

′

⊥
efq

B →2
iA → B
¬e⊥

raa1

A → B.... π

(4)

This is the only reduction step where a new instance of efq is introduced.

The reduction step in the case “raa vs. →i” is different from the case “raa vs. ¬i”
⇒ For our purposes, ¬A is not considered as a shorthand for A→ ⊥, the
connective ¬ and its introduction and elimination rules are considered as primitive.

G. Guerrieri, A. Naibo Postponement of RAA and Glivenko theorem Tübingen 2015/11/28 15 / 30

Postponement of raa, revisited (1 of 2)

Theorem (postponement of raa, version 1)

Let π : Γ ` A be a derivation in NKr {∀i}.
1 Then, π  ∗ π′ for some derivation π′ : Γ ` A in NKr {∀i} with at most one

discharging instance of the rule raa; this instance, if any, is the last rule of π′,
the rest of π′ being a derivation in NJ.

2 If π contains no instance of the rule →i, then π  ∗ π′ for some derivation
π′ : Γ ` A in NKr {→i,∀i} with at most one instance of the rule raa; this
instance, if any, is the last rule of π′, the rest of π′ being a derivation in NM.

Proof (sketch).

For any derivation π, we define sizeRAA(π) (resp. size+RAA(π)) as the sum of the
distances of all instances (resp. discharging instances) of raa in π from the last rule
of π.

sizeRAA(π) = 0 (resp. size+RAA(π) = 0) if and only if π has no instance
(resp. discharging instance) of raa, except possibly at the last rule.

If π  π′ by applying the reduction step to an instance (resp. discharging instance)
of raa in π with maximal distance from the last rule of π then
sizeRAA(π) > sizeRAA(π

′) (resp. size+RAA(π) > size+RAA(π
′)). �
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Postponement of raa, revisited (2 of 2)

Corollary (postponement of raa, version 2)

Let A be provable from Γ in NK.
1 If A and the formulas in Γ do not contain any occurrence of ∀, then there

exists a derivation π′ : Γ ` A in NK containing at most one discharging
instance of the rule raa; this instance, if any, is the last rule of π′, the rest of
π′ being a derivation in NJ.

2 If A and the formulas in Γ do not contain any occurrence of ∀ and →, then
there exists a derivation π′ : Γ ` A in NK containing at most one instance of
the rule raa; this instance, if any, is the last rule of π′, the rest of π′ being a
derivation in NM.

Proof (sketch).

Thanks to the normalization theorem and the subformula property for NK proved
by Stålmarck (1991), if A and the formulas in Γ do not contain any occurrence of ∀
(resp. ∀ and →), then there exists a derivation π : Γ `NK A with no instance of the
rule ∀i (resp. ∀i and →i).

By applying Theorem 1 (resp. Theorem 2) above, we conclude the proof. �
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Intuitionistic and minimal translations
We define a translation (·)j (resp. (·)m) on formulas that just redefines the
universal quantifier (resp. the implication and the universal quantifier) in a
standard classical way. All other connectives and the existential quantifier are not
modified by (·)j (resp. (·)m).

P(t1, . . . , tn)j = P(t1, . . . , tn) >j = > ⊥j = ⊥
(A ∧ B)j = Aj ∧ B j (A ∨ B)j = Aj ∨ B j (¬A)j = ¬Aj

(A→ B)j = Aj → B j (∀xA)j = ¬∃x ¬Aj (∃xA)j = ∃xAj

P(t1, . . . , tn)m = P(t1, . . . , tn) >m = > ⊥m = ⊥
(A ∧ B)m = Am ∧ Bm (A ∨ B)m = Am ∨ Bm (¬A)m = ¬Am

(A→ B)m = ¬Am ∨ Bm (∀xA)m = ¬∃x ¬Am (∃xA)m = ∃xAm

Given a set of formulas Γ , we set Γm = {Am | A ∈ Γ} and Γ j = {Aj | A ∈ Γ}.

Remark: The difference between (·)m and (·)j is only in the translation of A→ B.
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Kuroda negative translation vs. our translations
One can prove that

`NK A ⇐⇒ `NK Aj ⇐⇒ `NK Am

`NK A ⇐⇒ `NJ ¬¬Aj ⇐⇒ `NM ¬¬Am

Our minimal and intuitionistic translations are deeply related to Kuroda negative
translation.
More precisely, if (·)m′

and (·)j′ are the translations defined above except for

(∀xA)m′
= ∀x ¬¬Am′

(∀xA)j′ = ∀x ¬¬Aj′

then the negative translation A 7→ ¬¬Aj′ is the one defined by Kuroda (1951),
while the negative translation A 7→ ¬¬Am′

is a variant of Kuroda’s one introduced
by Ferreira and Oliva (2012).

Remark:
In (·)m and (·)j we translate ∀ by means of ∃ and ¬ in order to avoid a case
“raa vs. ∀i” for the postponement of raa.
In (·)m we translate → by means of ∨ and ¬ in order to can apply our
reduction steps for postponement of raa without introducing new instances of
efq in the case “raa vs. →i”.
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Towards a revisited Glivenko’s theorem

Remark: For every formula A, by induction on A we can prove that:
1 Am contains no occurrences of → and ∀; Aj contains no occurrences of ∀;
2 Am = A if A contains no occurrences of → and ∀; Aj = A if A contains no

occurrences of ∀.

Lemma (Preservation of provability in NK via translations)

For every derivation π : Γ ` A in NK there exist a derivation π′ : Γm ` Am in
NKr {→i,∀i} and a derivation π′′ : Γ j ` Aj in NKr {∀i}.
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Glivenko’s theorem, revisited (1 of 2)

Via the translations (·)j and (·)m, we can embed full first-order classical logic:
into the fragment {⊥,>,¬,∧,∨,→,∃} of intuitionistic logic;
into the fragment {⊥,>,¬,∧,∨,∃} of minimal logic.

Glivenko’s theorem revisited, intuitionistic version

1 If Γ `NK A, then Γ j `D ¬¬Aj and Γ j,¬Aj `D ⊥ where D = NJr {∀i,∀e}.
2 If ∀ occurs neither in A nor in any formula of Γ , then

Γ `NK A ⇐⇒ Γ `NJ ¬¬A ⇐⇒ Γ,¬A `NJ ⊥.

Glivenko’s theorem revisited, minimal version

1 If Γ `NK A, then Γm `D ¬¬Am and Γm,¬Am `D ⊥ where
D = NMr {→i,→e,∀i,∀e}.

2 If → and ∀ occur neither in A nor in any formula of Γ , then

Γ `NK A ⇐⇒ Γ `NM ¬¬A ⇐⇒ Γ,¬A `NM ⊥.
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Glivenko’s theorem, revisited (2 of 2)

Proof (sketch) For both versions (intuitionistic and minimal)
1 Use our result about postponement of raa in oder to get a derivation π in NK

whose last rule is an instance of raa, the rest of π being a derivation in NJ or
NM, this instance of raa can be replaced by an instance of the rule ¬i.

2 Immediate consequence of the previous point and of the properties of the
translations (·)j and (·)m. �

Corollary (consistency of a theory)

1 If ∀ does not occur in any formula of Γ : Γ `NK ⊥ ⇐⇒ Γ `NJ ⊥.
2 If → and ∀ do not occur in any formula of Γ : Γ `NK ⊥ ⇐⇒ Γ `NM ⊥.

Remark: The fact our results are restricted to the fragments {⊥,>,¬,∧,∨,∃} or
{⊥,>,¬,∧,∨,→,∃} of first-order classical logic is not limiting because these
fragments are as expressive as full first-order classical logic.
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What is the problem between → and minimal logic?
Starting from a derivation π in NKr {∀i}, to postpone raa and get a derivation in
NM except possibly the last rule, we require that there is no instance of →i in π.

Actually, we can redefine the “raa vs. →i” case in order to avoid introducing new
instances of efq (and then get a derivation in NM except possibly the last rule)

pAq2, p¬Bq1
..... π

′

⊥ raa1
B →2

iA→ B.... π

 

p¬(A→ B)q1

pAq2

p¬(A→ B)q1
pBq3 →0

iA→ B ¬e⊥ ¬3
i¬B

..... π
′

⊥ ¬i¬¬B ∗
B →2

iA→ B ¬e⊥ raa1
A→ B.... π

but this derivation is correct only if B is a negative formula (i.e. atomic formulas
occur only negated in B, and B does not contain ∨ nor ∃).
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About our revisiting of postponement of raa
Why our postponement of raa (PR) is an improvement w.r.t. Seldin (1986)?

1 Our reduction steps are a refinement of the ones defined by Seldin (1986):
they introduce new instances of efq only when “needed”
⇒ this allows two different results for PR:

I starting from a derivation in NKr {∀i}, we get a derivation in NJ except
possibly the last rule (as already proved by Seldin 1986)

I starting from a derivation in NKr {∀i,→i}, we get a derivation in NM except
possibly the last rule (a novelty with respect to Seldin 1986).

2 We have good reason to think that our reduction steps for PR are strongly
normalizing (Seldin 1986 proved only weak normalization).

3 Our proof of weak normalization is simpler than Seldin’s one.

Moreover:
Our reduction steps can be seen as an “algorithm” transforming whatever
derivation (without ∀i) in a derivation where raa is postponed.
PR gives another way to prove normalization (i.e. no detours) for NKr {∀i}
(see also von Plato & Siders 2012): for any derivation π in NKr {∀i},

1 transform π into a derivation π′ where raa is postponed
2 apply Prawitz’s procedure for normalization in NJ (or NM) to π′.

PR holds also in NK2 r {∀i,∀2i } (same proof).
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About our revisiting of Glivenko’s theorem
All our results about Glivenko’s theorem are (more or less) well-known:

1 Glivenko (1929): from propositional classical logic into propositional
intuitionistic logic;

2 Umezawa (1959), Gabbay (1972): from first-order classical logic (without ∀)
into first-order (without ∀) intuitionistic logic;

3 Ertola & Sagastume (2008): from propositional classical logic (without →)
into propositional minimal logic (without →);

4 Zdanowski (2009): from propositional second-order classical logic (without
∀2) into propositional second-order intuitionistic logic (without ∀2);

5 . . .

All these results are proved using different approaches (semantic, syntactic, etc.)

Our proof-theoretic approach, via postponement of raa, gives a unique, uniform
and modular proof of all these versions of Glivenko’s theorem.

Moreover, our approach shows that Glivenko theorem and Kuroda negative
translation are deeply related, for intuitionistic and minimal logic (see also
Farahani & Ono 2012, but only for the intuitionistic case).

THANK YOU!
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Display calculus for SDL (DSDL)

Logicality and Double-line display calculus for SDL (DdlSDL)

Goal

Proof-theoretic semantics for modal logics:

define the meaning of modal operators by referring to the rules of

inference governing those operators.

We concentrate on standard deontic logic KD and on

multi-succedent sequent calculi.

We show that:
1 Display logic allows for a double-line presentation of many

normal modal logics (KD included);
2 Thus it allows us to give a Dos̆en-style analysis of the logicality

of displayable modalities;
3 We conjecture that it can be used to give an harmonious

proof-theoretic definition of the modal operators.
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Logicality and Double-line display calculus for SDL (DdlSDL)

Standard Deontic Logic

The language of SDL is:

A ::= p | ¬A | A ∧ A | A ∨ A | A → A | 2A

where

2A stands for ‘it ought to be that A’

SDL is axiomatized by the normal modal logic KD, i.e.

K+ the deontic axiom D := 2A → 3A.

The semantics for SDL is given by serial Kripke-frames,

i.e. F =< W ,R > where W is a non-empty set and R is a

serial binary relation over W .

PTS: meaning is correct use, where correctness is defined as

satisfaction of some criteria (eliminating tonkish operators).

4 / 24

N. Gratzl and E. Orlandelli: Logicality, Double-line Rules, and Harmony

82



Gentzen-style calculi for SDL and PTS
Display calculus for SDL (DSDL)

Logicality and Double-line display calculus for SDL (DdlSDL)

Wansing’s (1998) desiderata

Local criteria:

Weakly explicit: the principal operator y occurs in the

conclusion only.

Explicit: weakly explicit+ y occurs only once.

Separated: No connective other than y occurs in a rule

introducing y.

Weakly symmetric: Every rule introducing y is either a left or

a right introduction rule.

Symmetric: y has both a left and a right introduction rule.

Global criteria:

Cut-elimination: if the rules are separated, symmetric and

weakly explicit, it implies the subformula property.

Uniqueness: each operator is uniquely characterized: there

cannot be two operators y and z that have same rules and that

are not (provably) equivalent.
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LKSDL and proof-theoretic semantics

LKSDL is LKp +
Π =⇒ A

LR2
2Π =⇒ 2A

and
Π =⇒

LD
2Π =⇒

It doesn’t meet Wansing’s desiderata:

The rule
Π =⇒ A

LR2
2Π =⇒ 2A

is not weakly symmetical;

it is not explicit (the rule for modalities like 4 are not even

weakly explicit);

If both 2 and 3 are primitive, we must replace LR2 with:
Π,Σ1 =⇒ Σ2,A

LR2�

2Π,3Σ1,=⇒ 3Σ2,2A
which is not separated.

Uniqueness is not satisfied.
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Display calculi (Wansing 1998)

Natural generalization of LK-style sequent calculi.
Better control of the structural elements of deductions:

Gentzen’s comma is replaced by a structural connective �;

The new structural connectives I, � and � are introduced.

Display sequents are expressions

X =⇒ Y

where X and Y are structures:

X ::= A | I | X � X | � X | � X

instead of sets/multisets/sequences of formulas.
In this way we have:

Display property: each connective can be introduced in

isolation (i.e. empty context on the principal side).

General ‘essentials only’ proof of cut-elimination.
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Display rules 1/3: display equivalences

Display equivalences (DE):

X � Z =⇒ Y

X =⇒ Y � �Z

Z =⇒ �X � Y

X =⇒ Y

�Y =⇒ �X

X =⇒ � � Y

X =⇒ Y � Z

X � �Z =⇒ Y

�Y � X =⇒ Z

X =⇒ �Y

�X =⇒ Y

They allow to prove the:

Theorem (Display property)

Each substructure Z of a display sequent X =⇒ Y can be

displayed as either the whole antecedent (Z =⇒ W ) or as the

whole succedent (W =⇒ Z ) of a display-equivalent sequent.
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Display rules 2/3: structural rules

Structural rules capture structural elements of deductions that in Gentzen-style

calculi may be either

implicit, e.g. associativity of comma:

X � (Y � Z ) =⇒ U
A

(X � Y ) � Z =⇒ U

explicit, e.g. commutativity of comma (permutation):

X � Y =⇒ U
P

Y � X =⇒ U

inexpressible, e.g. the intensional structural rule:

�X � �Y =⇒ �I
D

X =⇒ �Y

which corresponds to the deontic axiom D := 2A → 3A.
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Display rules 3/3: operational rules

Operational rules replace structural connectives with logical

operators.

For each logical operator y we have a left and a right rule that are

separate: don’t exhibit any logical operator other than y;

symmetric: y only in the antecedent or in the succedent;

explicit: y occurs only once (and only in the conclusion).

A =⇒ X
L2

2A =⇒ �X
�X =⇒ A

R2
X =⇒ 2A

� � �A =⇒ Y
L3

3A =⇒ Y

X =⇒ A
R3

� � �X =⇒ 3A
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�A =⇒ X
L¬

¬A =⇒ X
Y =⇒ �A

R¬
Y =⇒ ¬A

X =⇒ A B =⇒ Y
L→

A → B =⇒ �X � Y
X � A =⇒ B

R→
X =⇒ A → B

A =⇒ X B =⇒ Y
L∨

A ∨ B =⇒ X � Y
X =⇒ A � B

R∨
X =⇒ A ∨ B

A � B =⇒ X
L∧

A ∧ B =⇒ X
X =⇒ A Y =⇒ B

R∧
X � Y =⇒ A ∧ B

A =⇒ X
L2

2A =⇒ �X
�X =⇒ A

R2
X =⇒ 2A

� � �A =⇒ Y
L3

3A =⇒ Y

X =⇒ A
R3

� � �X =⇒ 3A
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Cut elimination and Uniqueness

The structural rule of Cut:

X =⇒ A A =⇒ Y
Cut

X =⇒ Y

can be eliminated from every displayable calculus satisfying 8

conditions (most of which can be shown to hold simply by

inspecting the rules).

Uniqueness is satisfied.

12 / 24

N. Gratzl and E. Orlandelli: Logicality, Double-line Rules, and Harmony

86



Gentzen-style calculi for SDL and PTS
Display calculus for SDL (DSDL)
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Limitations of Wansing’s desiderata

Each of Wansing’s criteria seems to be a necessary condition,

but no argument has been given for their (joint) sufficiency.

We would like to have only local conditions, but Wansing’s
global criteria are not dispensable since

cut-elimination is needed to rule out Prior’s tonk operator:

A � B =⇒ X
Lt

A-tonk-B =⇒ X
X =⇒ A � B

Rt
X =⇒ A-tonk-B

uinqueness is needed to rule out the operator knot, which is

the dual of Prior’s tonk:

A =⇒ X B =⇒ Y
Lk

A-knot-B =⇒ X � Y
X =⇒ A Y =⇒ B

Rk
X � Y =⇒ A-knot-B
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(Dos̆en 1989) analysis of logical symbols

A Logic is the science of formal deductions;

B Basic formal deductions are structural deductions;

C Any constant of the object language on whose presence the

description of a nonstructural formal deduction depends can

be ultimately analyzed in structural terms;

A constant is logical if, and only if, it can be ultimately analyzed in

structural terms. (Dos̆en 1989: 368)

In a nuthshell, the idea is that if we can prove that a sequent

where an object language operator z occurs is equivalent to a

purely structural sequent, then z is a logical operator.
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DdlSDL

W.r.t. DSDL, we replace atomic initial sequents p =⇒ p with

arbitrary ones A =⇒ A

We replace the operational rules with the following double-line

ones:
�A =⇒ X

¬
¬A =⇒ X

A � B =⇒ X
∧

A ∧ B =⇒ X

X � A =⇒ B →
X =⇒ A → B

X =⇒ A � B
∨

X =⇒ A ∨ B

�X =⇒ A
2

X =⇒ 2A

� � �A =⇒ X
3

3A =⇒ X
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Equivalence of DSDL and DdlSDL

Theorem

DSDL ` X =⇒ Y iff DdlSDL ` X =⇒ Y

Proof (sketch).

It is enough to show that, for each and every logical operator y,

the rule y ↑ is equivalent to the DSDL-rule for y on the other side

of the sequent arrow. E.g. for 2 we have:

2A =⇒ 2A
2 ↑

�2A =⇒ A A =⇒ X
Cut

�2A =⇒ X
DE

2A =⇒ �X

X =⇒ 2A

A =⇒ A
L2

2A =⇒ �A
Cut

X =⇒ �A
DE

�X =⇒ A
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Dos̆en principle

The double-line rule [2] can serve to characterize various sorts of

[modalities...] What in these characterizations distinguishes various

[modalities] is not [2], which is always the same, but assumptions

concerning structural deductions (Dos̆en 1989: 366)

Double-line display calculi allow us to prove the logicality of all

displayable modalities, whereas the sequents of higher levels of

(Dos̆en 1985) work only for the modal logics S5 and S4.
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Harmony and the Inversion Principle

Harmony (in one sense) is some kind of equilibrium of deductive

power between introduction and elimination rules.

It is expressed as conservativeness (Belnap)/ded. eq. (Tennant)/

reduction (Prawitz). It’s based on the Inversion Principle:

The introductions represent, as it were, the ‘definitions’

of the symbols concerned, and the eliminations are no

more, in the final analysis, than the consequences of

these definitions. (Gentzen 1935: 80)

an elimination rule is, in a sense, the inverse of the

corresponding introduction rule: by an elimination rule

one essentially only restores what had already been

established by the major premise of the application of an

introduction rule. (Prawitz 1965: 33).
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Double-line rules and Harmony

In SC the meaning of y is defined by its left and right

introduction rules and it is natural to claim that

Harmony is some kind of equilibrium of deductive power between

left and right introduction rules.

The double-line rule for y obeys the Inversion Principle.

We have shown that the standard single-line left and right

introduction rules for y are harmonious according to the

following principle:

The single-line rules for y are harmonious iff they can be shown to

be equivalent to the double-line rule for y

If this holds, the two rules defining the meaning of y are

related by the Inversion Principles and, therefore, are

harmonious. 19 / 24

Gentzen-style calculi for SDL and PTS
Display calculus for SDL (DSDL)

Logicality and Double-line display calculus for SDL (DdlSDL)

Conclusion & future works

Display calculi allow us to give an harmonious presentation of SDL

inasmuch as:

The left and right introduction rules are in a kind of deductive equilibrium

which is based on the Inversion Principle.

By changing the structural rules we can give an harmonious presentation

of many other normal modal logics.

• The harmony-as-double-line-rules hypothesis is still a work in progress

which has to be made more precise;

• We aim at extending this approach to weaker modalities (non-normal;

dyadic. . . )

• We have to investigate the relations with other approaches to PTS based

on SC or on ND such as:

The approach to inversion by definitional reflection in (de

Campos Sanz & Piecha 2009).

The approach by multiple-conclusion ND in (Francez 2014).
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Logicality and Double-line display calculus for SDL (DdlSDL)
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Harmony and Sequent calculi

Whereas in the context of natural deduction, the idea of

inversion has been intensively discussed following

Prawitz’s (1965) adaptation of Lorenzen’s term ‘inversion

principle’ to explicate Gentzen’s remark, there has been

no comparable investigation of the relationship between

right introduction and left introduction rules of the

sequent calculus. (de Campos Sanz & Piecha 2009: 551)
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Gentzen-style calculi for SDL and PTS
Display calculus for SDL (DSDL)

Logicality and Double-line display calculus for SDL (DdlSDL)

Double-line rules and the Inversion Principle

A double-line rule is made of an introduction rule and some

elimination rules respecting the Inversion Principle.

The asymmetry of natural deduction with respect to

premises and conclusion is most unfortunate when one

has to formulate precisely what Prawitz calls the

Inversion Principle.[..]

With Gentzen’s plural (multiple-conclusion) sequents we

overcome this asymmetry, and we may formulate rules for

the logical constants as double-line rules, i.e. invertible

rules, going both ways, from the premises to the

conclusion and back. The inversion of the Inversion

Principle is now really inversion.

(Dos̆en 2015: 151)
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Logicality and Double-line display calculus for SDL (DdlSDL)

Analysis and definition in (Dos̆en 1989)

To analyze an expression α of a language L, we have to find a language M not

containing α s.t.:

1 a sentence A in M + α where α occurs once is equivalent to a sentence

B of M;

2 the analysis of α has to be sound and complete;

3 α has to be uniquely characterized.

We get a definition if it also holds that:

1 Pascal’s condition: the definitional equivalence should allows us find for

every sentence of M + α a sentence of M with the same meaning;

2 the addition of α is conservative.

Though an analysis doesn’t give the meaning of an expression, as an explicit

definition would, it follows from conditions (2) and (3) that an analysis is very

closely tied to the meaning of the expression analyzed (Dos̆en 1989: 372)
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Monoidal logics
De Morgan negations and classical systems

Clayton Peterson

Munich Center for Mathematical Philosophy
LMU Munich

November 28, 2015

Motivation

Aim: Provide categorical foundations for logic.

Inspired by some of the developments made in categorical logic:

1) Adjoint functors play a fundamental role in logic (Lawvere).

2) Conceptual equivalence between categorical and logical notions
(Lambek).

3) Classification of deductive systems via their categorical structure
and the functorial properties of their connectives (Joyal and Reyes).

4) Show that some problems and paradoxes are related to specific
types of deductive systems.
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Monoidal logics

Monoidal logics

D

M

MCL

MCR

MC MCC

C CC CCC

S SC SCC

SCCcoS

CCCcoC

MCCcoM

L =
{Prop, (, ),⊗, 1,(, .,⊕, 0,n,o, ∗, ?}

(1) is the identity axiom

(cut) expresses the transitivity of
the consequence relation

Definition

A deductive system D is composed of a collection of formulas and a
collection of equivalence classes of proofs, satisfying (1) and (cut).

(1)
ϕ // ϕ

ϕ // ψ ψ // ρ
(cut)

ϕ // ρ
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Monoidal logics

D

M

MCL

MCR

MC MCC

C CC CCC

S SC SCC

SCCcoS

CCCcoC

MCCcoM

L =
{Prop, (, ),⊗, 1,(, .,⊕, 0,n,o, ∗, ?}

(1) is the identity axiom

(cut) expresses the transitivity of
the consequence relation

Definition

A deductive system D is composed of a collection of formulas and a
collection of equivalence classes of proofs, satisfying (1) and (cut).

(1)
ϕ // ϕ

ϕ // ψ ψ // ρ
(cut)

ϕ // ρ

Monoidal logics

D

M

MCL

MCR

MC MCC

C CC CCC

S SC SCC

SCCcoS

CCCcoC

MCCcoM

L =
{Prop, (, ),⊗, 1,(, .,⊕, 0,n,o, ∗, ?}

(1) is the identity axiom

(cut) expresses the transitivity of
the consequence relation

Definition

A deductive system D is composed of a collection of formulas and a
collection of equivalence classes of proofs, satisfying (1) and (cut).

(1)
ϕ // ϕ

ϕ // ψ ψ // ρ
(cut)

ϕ // ρ
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Monoidal logics

D

M

MCL

MCR

MC MCC

C CC CCC

S SC SCC

SCCcoS

CCCcoC

MCCcoM

L =
{Prop, (, ),⊗, 1,(, .,⊕, 0,n,o, ∗, ?}

(1) is the identity axiom

(cut) expresses the transitivity of
the consequence relation

Definition

A deductive system D is composed of a collection of formulas and a
collection of equivalence classes of proofs, satisfying (1) and (cut).

(1)
ϕ // ϕ

ϕ // ψ ψ // ρ
(cut)

ϕ // ρ

Monoidal logics

D

M

MCL

MCR

MC MCC

C CC CCC

S SC SCC

SCCcoS

CCCcoC

MCCcoM

1 is the unit of the tensor product

⊗ is associative

⊗ respects increasing monotony

Definition

A monoidal deductive system M is a deductive system satisfying (t), (r), (l)
and (a).

ϕ // 1⊗ ψ
(l)

ϕ // ψ

ϕ // ψ ⊗ 1
(r)

ϕ // ψ

ϕ // ψ ρ // τ
(t)

ϕ⊗ ρ // ψ ⊗ τ
τ // (ϕ⊗ ψ)⊗ ρ

(a)
τ // ϕ⊗ (ψ ⊗ ρ)
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Monoidal logics

D

M

MCL

MCR

MC MCC

C CC CCC

S SC SCC

SCCcoS

CCCcoC

MCCcoM

(/. are adjoints to ⊗
(t) is provable from (cl) and (cl’)

Negations are defined by

∼ ϕ =df ϕ( ∗ ¬ϕ =df ϕ . ∗

Intuitionistic negations

Definition

A monoidal closed deductive system MC is a M satisfying (cl) and
(cl’).

ϕ⊗ ψ // ρ
(cl)

ϕ // ψ ( ρ

ϕ⊗ ψ // ρ
(cl’)

ψ // ϕ . ρ

Monoidal logics

D

M

MCL

MCR

MC MCC

C CC CCC

S SC SCC

SCCcoS

CCCcoC

MCCcoM

ϕ ∼= ¬ ∼ ϕ ∼=∼ ¬ϕ
ϕ // ψ iff ¬ψ // ¬ϕ
ϕ // ψ iff ∼ ψ // ∼ ϕ

Definition

A monoidal closed deductive system with classical negations MCC
is a MC satisfying (¬ ∼) and (∼ ¬).

(∼ ¬)∼ ¬ϕ // ϕ (¬ ∼)¬ ∼ ϕ // ϕ
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Monoidal logics

D

M

MCL

MCR

MC MCC

C CC CCC

S SC SCC

SCCcoS

CCCcoC

MCCcoM

⊗ is commutative

(r) can be proven from (l)

(cl) can be proven from (cl’)

Definition

A symmetric deductive system S is a M satisfying (b).

ϕ // ψ ⊗ τ
(b)

ϕ // τ ⊗ ψ

Monoidal logics

D

M

MCL

MCR

MC MCC

C CC CCC

S SC SCC

SCCcoS

CCCcoC

MCCcoM

C is a conservative extension of S

Definition

A Cartesian deductive system C is a M system satisfying (⊗-in) and

(⊗-out).

ϕ // ψ ⊗ ρ
(⊗-out)

ϕ // ψ
ϕ // ψ ⊗ ρ

(⊗-out)
ϕ // ρ

ϕ // ψ ϕ // ρ
(⊗-in)

ϕ // ψ ⊗ ρ
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Monoidal logics

D

M

MCL

MCR

MC MCC

C CC CCC

S SC SCC

SCCcoS

CCCcoC

MCCcoM

The rules for co-deductive systems are
obtained by

reversing the arrows

replacing ⊗ by ⊕
replacing ( /. by n/o
replacing 1 by 0

replacing ∗ by ?

Definition

A co- deductive system...

Substructural and Display logics
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Substructural and Display logics

Given the language of display logics (cf. Goré 1998), it is possible
to define a translation function t ′(ϕ // ψ) = t ′1(ϕ) ` t ′2(ψ) s.t.

Theorem

Monoidal logics with ∗ are sound and complete with respect to
associative display logics.

∗ ∼= 0 (∗)

This yields the following correspondences:

Monoidal logics Substructural logics

MC Lambek’s syntactic calculus
MCcoMC Lambek’s BL1
SCcoSC Commutative BL1
CCcoC Intuitionistic logic

CCCcoC Classical logic

Substructural and Display logics

Given the language of display logics (cf. Goré 1998), it is possible
to define a translation function t ′(ϕ // ψ) = t ′1(ϕ) ` t ′2(ψ) s.t.

Theorem

Monoidal logics with ∗ are sound and complete with respect to
associative display logics.

∗ ∼= 0 (∗)

This yields the following correspondences:

Monoidal logics Substructural logics

MC Lambek’s syntactic calculus
MCcoMC Lambek’s BL1
SCcoSC Commutative BL1
CCcoC Intuitionistic logic

CCCcoC Classical logic
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Classical systems

Classical systems

Classical substructural and display logics are characterized by the
satisfaction of the elimination of double negation(s).

For example, Ono (1993) or Goré (1998).

Characteristics of classical systems:

1) de Morgan negation(s)

¬ψ ⊗ ¬ϕ // ¬(ϕ⊕ ψ) ∼ ψ⊗ ∼ ϕ // ∼ (ϕ⊕ ψ) (dm1)

¬(ϕ⊕ ψ) // ¬ψ ⊗ ¬ϕ ∼ (ϕ⊕ ψ) // ∼ ψ⊗ ∼ ϕ (dm2)

¬ϕ⊕ ¬ψ // ¬(ψ ⊗ ϕ) ∼ ϕ⊕ ∼ ψ // ∼ (ψ ⊗ ϕ) (dm3)

¬(ψ ⊗ ϕ) // ¬ϕ⊕ ¬ψ ∼ (ψ ⊗ ϕ) // ∼ ϕ⊕ ∼ ψ (dm4)
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Classical systems

Classical substructural and display logics are characterized by the
satisfaction of the elimination of double negation(s).

For example, Ono (1993) or Goré (1998).

Characteristics of classical systems:

1) de Morgan negation(s)

¬ψ ⊗ ¬ϕ // ¬(ϕ⊕ ψ) ∼ ψ⊗ ∼ ϕ // ∼ (ϕ⊕ ψ) (dm1)

¬(ϕ⊕ ψ) // ¬ψ ⊗ ¬ϕ ∼ (ϕ⊕ ψ) // ∼ ψ⊗ ∼ ϕ (dm2)

¬ϕ⊕ ¬ψ // ¬(ψ ⊗ ϕ) ∼ ϕ⊕ ∼ ψ // ∼ (ψ ⊗ ϕ) (dm3)

¬(ψ ⊗ ϕ) // ¬ϕ⊕ ¬ψ ∼ (ψ ⊗ ϕ) // ∼ ϕ⊕ ∼ ψ (dm4)

Classical systems

Classical substructural and display logics are characterized by the
satisfaction of the elimination of double negation(s).

For example, Ono (1993) or Goré (1998).

Characteristics of classical systems:

2) the law of excluded middle

1 // ϕ⊕ ∼ ϕ 1 // ¬ϕ⊕ ϕ (lem)
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Classical systems

Intuitionistic substructural or display logics are the ones that do
not satisfy the elimination of double negation(s).

Lambek (1993), for instance, wrote

I guess intuitionistic bilinear logic is just the syntactic
calculus.

The elimination of double negation(s) is seen as a sufficient
condition to go from an intuitionistic to a classical system.

Classical systems

Intuitionistic substructural or display logics are the ones that do
not satisfy the elimination of double negation(s).

Lambek (1993), for instance, wrote

I guess intuitionistic bilinear logic is just the syntactic
calculus.

The elimination of double negation(s) is seen as a sufficient
condition to go from an intuitionistic to a classical system.
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Classical systems

Consider a translation from the language of display logics to the
language of monoidal logics, with t(Γ ` Σ) = t1(Γ) // t2(Σ) s.t.

t1(ϕ) = ϕ t2(ϕ) = ϕ

t1(∅) = 1 t2(∅) = 0

t1(Γ; Σ) = t1(Γ)⊗ t1(Σ) t2(Γ; Σ) = t2(Γ)⊕ t2(Σ)

t1(Σ < Γ) = t1(Γ) n t1(Σ) t2(Σ < Γ) = t2(Γ) ( t2(Σ)

t1(Γ > Σ) = t1(Γ) o t1(Σ) t2(Γ > Σ) = t2(Γ) . t2(Σ)

Classical systems

Lambek’s (displayed) bilinear logics:

BL1 is defined from the syntactic calculus with ⊕ and n/o

Γ `G ϕ Σ;ϕ; Π `G ∆
(CUT3)

Σ; Γ; Π `G ∆

Γ `G Σ;ϕ; Π ϕ `G ∆
(CUT4)

Γ `G Σ; ∆; Π

The translations of these rules hold in any McoM.
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Classical systems

Lambek’s (displayed) bilinear logics:

BL1(a) is BL1 with some of Grishin’s rules:

Π ` (Γ; Σ) < ∆
(G3)

Π ` Γ; (Σ < ∆)

Π ` Γ > (Σ; ∆)
(G4)

Π ` (Γ > Σ); ∆

Within a MCcoM, t(G3) and t(G4) imply lem.

Classical systems

Lambek’s (displayed) bilinear logics:

BL1(b) is BL1 with the following cut rules:

ϕ; Γ `G ∆ Σ `G Π;ϕ
(CUT1)

Σ; Γ `G Π; ∆

Γ;ϕ `G ∆ Σ `G ϕ; Π
(CUT2)

Γ; Σ `G ∆; Π

Lambek noted the correspondence of these rules with the weak
distributivity conditions (linear distributivity or mixed associativity):

ϕ⊗ (ψ ⊕ ρ) // (ϕ⊗ ψ)⊕ ρ (ψ ⊕ ρ)⊗ ϕ // ψ ⊕ (ρ⊗ ϕ) (wd)
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Classical systems

Lambek’s (displayed) bilinear logics:

Classical bilinear logic BL2 is BL1(ab).

Lambek and Grishin noted that BL2 can alternatively be defined
via an inter-definition of the logical connectives.

In the commutative case, for example:

ϕ( ψ =df ¬(ϕ⊗ ¬ψ) ϕ⊕ ψ =df ¬(¬ϕ⊗ ¬ψ) ϕn ψ =df ¬ϕ⊗ ψ

Classical systems

Assumption:

The elimination of double negation(s) is sufficient to go from an
intuitionistic to a classical system.

For example, Goré (1998) uses Ono’s (1993) conception of
classical substructural logics and writes

A substructural logic is classical if the elimination of
double negation(s) is satisfied.

Therefore, the syntactic calculus is not intuitionistic (bilinear) logic.

What is an intuitionistic system?

C. Peterson: Monoidal logics: De Morgan negations and classical systems

106



Classical systems

Assumption:

The elimination of double negation(s) is sufficient to go from an
intuitionistic to a classical system.

However, adding the elimination of double negation(s), even if
considered with (lem), does not imply the de Morgan dualities.

Theorem

The elimination of double negations does not imply the law of
excluded middle.

Therefore, the syntactic calculus is not intuitionistic (bilinear) logic.

What is an intuitionistic system?

Classical systems

Assumption:

The elimination of double negation(s) is sufficient to go from an
intuitionistic to a classical system.

However, adding the elimination of double negation(s), even if
considered with (lem), does not imply the de Morgan dualities.

Theorem

Neither ( dm1), ( dm2), ( dm3) nor ( dm4) is derivable within
SCCcoS + ( lem).

Therefore, the syntactic calculus is not intuitionistic (bilinear) logic.

What is an intuitionistic system?
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Classical systems

Assumption:

The elimination of double negation(s) is sufficient to go from an
intuitionistic to a classical system.

However, adding the elimination of double negation(s), even if
considered with (lem), does not imply the de Morgan dualities.

Conclusion:

Neither MCCcoM nor MCCcoMCC are classical.

Therefore, the syntactic calculus is not intuitionistic (bilinear) logic.

What is an intuitionistic system?

Classical systems

Assumption:

The elimination of double negation(s) is sufficient to go from an
intuitionistic to a classical system.

However, adding the elimination of double negation(s), even if
considered with (lem), does not imply the de Morgan dualities.

Conclusion:

Neither MCCcoM nor MCCcoMCC are classical.

Therefore, the syntactic calculus is not intuitionistic (bilinear) logic.

What is an intuitionistic system?
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Classical systems

Consider how ⊕ can be defined on the grounds of ( and .:

ϕ⊕ ψ // ∼ ϕ . ψ ϕ⊕ ψ // ¬ψ ( ϕ (⊕1)

∼ ϕ . ψ // ϕ⊕ ψ ¬ψ ( ϕ // ϕ⊕ ψ (⊕2)

Remark

(⊕1) is derivable within intuitionistic logic (CCcoC).

Classical systems

1) Given MCcoM:

wd + ∗ ⇒ ⊕1

⊕1⇒ dm1

dm1⇔ dm3

2) Given MCcoM with ⊕1:

t(G3) and t(G4)⇔ ⊕2

3) Given MCCcoM:

⊕1⇔ dm1

⊕2⇔ dm2

dm2⇔ dm4
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Classical systems

· ·

·

•

·

oo

cc
oo

cc

OO · •

•
cc

oo

OO OO

OO

oo

cc

•

WW
ZZ

•

OO

FF

MCcoM
*

MCcoM
dm1,*

MCcoM
dm1,2,4,*

MCcoM
dm1,4,*

MCcoM
dm1,2,*

MCcoM
wd,∗

MCcoM
wd,dm2,∗

MCcoM
wd,dm4,∗

MCcoM
wd,dm2,4,∗

lem∼ ¬
¬ ∼

∼ ¬
¬ ∼

MCcoM
⊕1,2

Correspondence

Syntactic calculus

BL1 (if co-closed)

Properties

Intuitionistic negations

Classical systems

· ·

·

•

·

oo

cc
oo

cc

OO · •

•
cc

oo

OO OO

OO

oo

cc

•

WW
ZZ

•

OO

FF

MCcoM
*

MCcoM
dm1,*

MCcoM
dm1,2,4,*

MCcoM
dm1,4,*

MCcoM
dm1,2,*

MCcoM
wd,∗

MCcoM
wd,dm2,∗

MCcoM
wd,dm4,∗

MCcoM
wd,dm2,4,∗

lem∼ ¬
¬ ∼

∼ ¬
¬ ∼

MCcoM
⊕1,2

Correspondence

non-commutative FILL

BL1(b) (if co-closed)

Properties

⊕ is strong w.r.t. ⊗
CUT

⊕1, dm1, dm3
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Classical systems

· ·

·

•

·

oo

cc
oo

cc

OO · •

•
cc

oo

OO OO

OO

oo

cc

•

WW
ZZ

•

OO

FF

MCcoM
*

MCcoM
dm1

MCcoM
dm1,2,4,*

MCcoM
dm1,4,*

MCcoM
dm1,2,*

MCcoM
wd,∗

MCcoM
wd,dm2,∗

MCcoM
wd,dm4,∗

MCcoM
wd,dm2,4,∗

lem∼ ¬
¬ ∼

∼ ¬
¬ ∼

MCcoM
⊕1,2

Correspondence

Classical system

BL2

Properties

⊕ adjoint of ⊗

Classical systems

· ·

·

•

·

oo

cc
oo

cc

OO · •

•
cc

oo

OO OO

OO

oo

cc

•

WW
ZZ

•

OO

FF

MCcoM
*

MCcoM
dm1,*

MCcoM
dm1,2,4,*

MCcoM
dm1,4,*

MCcoM
dm1,2,*

MCcoM
wd,∗

MCcoM
wd,dm2,∗

MCcoM
wd,dm4,∗

MCcoM
wd,dm2,4,∗

lem∼ ¬
¬ ∼

∼ ¬
¬ ∼

MCcoM
⊕1,2

Proposal

Intuitionistic system

Properties

dm2
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Classical systems
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lem∼ ¬
¬ ∼

∼ ¬
¬ ∼

MCcoM
⊕1,2

Proposal

de Morgan system

Properties

dm4

Classical systems
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dm1,*

MCcoM
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MCcoM
dm1,4,*
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MCcoM
wd,dm4,∗

MCcoM
wd,dm2,4,∗

lem∼ ¬
¬ ∼

∼ ¬
¬ ∼

MCcoM
⊕1,2

Thank you!
claytonpeterson.webs.com
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Appendix

Rules

(Id)
pi ` pi

Γ ` ϕ ϕ ` Σ
(cutG)

Γ ` Σ

Γ ` ϕ Σ ` ψ
(⊗ I)

Γ; Σ ` ϕ⊗ ψ

ϕ ` Γ ψ ` Σ
(⊕ I)

ϕ⊕ ψ ` Γ; Σ

ϕ;ψ ` Γ
(I ⊗)

ϕ⊗ ψ ` Γ

Γ ` ϕ;ψ
(I ⊕)

Γ ` ϕ⊕ ψ

(0`)
0 ` ∅

(`1)
∅ ` 1

Γ `G ∅
(`0)

Γ ` 0

∅ `G Γ
(1`)

1 ` Γ

∆ ` ϕ > ψ
(` .)

∆ ` ϕ . ψ
∆ ` ψ < ϕ

(`()
∆ ` ϕ( ψ

ϕ ` Γ Σ ` ψ
((`)

ψ ( ϕ ` Γ < Σ

Γ ` ϕ ψ ` Σ
(. `)

ϕ . ψ ` Γ > Σ

ϕ > ψ ` ∆
(o `)

ϕo ψ ` ∆

ψ < ϕ ` ∆
(n `)

ϕn ψ ` ∆

ϕ ` Γ Σ ` ψ
(` o)

Γ > Σ ` ϕo ψ

Γ ` ϕ ψ ` Σ
(` n)

Γ < Σ ` ψ n ϕ
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Display postulates

Γ;∅ ` Σ
(∅ `)

Γ ` Σ

∅; Γ ` Σ

Γ ` Σ;∅
(` ∅)

Γ ` Σ

Γ ` ∅; Σ

Γ ` ∆ < Σ

Γ; Σ ` ∆
(dp)

Σ ` Γ > ∆

Γ > ∆ ` Σ
(dp)

∆ ` Γ; Σ

∆ < Σ ` Γ

Structural rules

Γ `G ∆
(Wk`)

Γ; Σ `G ∆

Γ `G ∆
(Wk`)

Σ; Γ `G ∆

Γ `G ∆
(`Wk)

Γ `G ∆; Σ
Γ `G ∆

(`Wk)
Γ `G Σ; ∆

Γ; Γ `G ∆
(Ctr`)

Γ `G ∆

Γ `G ∆; ∆
(`Ctr)

Γ `G ∆

Γ; Σ `G ∆
(Com`)

Σ; Γ `G ∆
Γ `G Σ; ∆

(`Com)
Γ `G ∆; Σ

Γ; (Σ; ∆) `G Π
(Ass`)

(Γ; Σ); ∆ `G Π

Π `G Γ; (Σ; ∆)
(`Ass)

Π `G (Γ; Σ); ∆
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Translation

Definition of structures:

Γ := ϕ | ∅ | Σ; ∆ | Σ < ∆ | Σ > ∆

The translation t(Γ `G Σ) = t1(Γ) // t2(Σ)is given by

t1(ϕ) = ϕ t2(ϕ) = ϕ

t1(∅) = 1 t2(∅) = 0

t1(Γ; Σ) = t1(Γ)⊗ t1(Σ) t2(Γ; Σ) = t2(Γ)⊕ t2(Σ)

t1(Σ < Γ) = t1(Γ) n t1(Σ) t2(Σ < Γ) = t2(Γ) ( t2(Σ)

t1(Γ > Σ) = t1(Γ) o t1(Σ) t2(Γ > Σ) = t2(Γ) . t2(Σ)

Translation

Let T ′
1(ϕ) = ϕ and T ′

2(ψ) = ψ, except for ∗ and ? in which case
T ′
1(∗) = T ′

2(∗) = 0 and T ′
1(?) = T ′

2(?) = 1.

The translation t ′(ϕ // ψ) = t ′1(ϕ) `G t ′2(ψ) is given by

t ′1(pi) = pi t ′2(pi) = pi

t ′1(1) = 1 t ′2(1) = 1

t ′1(0) = 0 t ′2(0) = 0

t ′1(?) = 1 t ′2(?) = 1

t ′1(∗) = 0 t ′2(∗) = 0

t ′1(ϕ⊗ ψ) = T ′
1(ϕ);T ′

1(ψ) t ′2(ϕ⊗ ψ) = T ′
2(ϕ)⊗ T ′

2(ψ)

t ′1(ϕ⊕ ψ) = T ′
1(ϕ)⊕ T ′

1(ψ) t ′2(ϕ⊕ ψ) = T ′
2(ϕ);T ′

2(ψ)

t ′1(ϕ . ψ) = T ′
1(ϕ) . T ′

1(ψ) t ′2(ϕ . ψ) = T ′
2(ϕ) > T ′

2(ψ)

t ′1(ϕ( ψ) = T ′
1(ϕ) ( T ′

1(ψ) t ′2(ϕ( ψ) = T ′
2(ψ) < T ′

2(ϕ)

t ′1(ϕo ψ) = T ′
1(ϕ) > T ′

1(ψ) t ′2(ϕo ψ) = T ′
2(ϕ) o T ′

2(ψ)

t ′1(ϕn ψ) = T ′
1(ψ) < T ′

1(ϕ) t ′2(ϕn ψ) = T ′
2(ϕ) n T ′

2(ψ)
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Category

A category C is composed of:

1 C-objects;
2 C-arrows;
3 an operation assigning to each arrow a domain and a

codomain within the C-objects;
4 composition of arrow gf for each pair f : ϕ // ψ and

g : ψ // ρ that respects associativity, i.e., given h : ρ // τ ,
h(gf ) = (hg)f ;

5 an identity arrow 1ψ for each C-object ψ such that 1ψf = f
and g1ψ = g for each pair f : ϕ // ψ and g : ψ // ρ.

τ ρoo
h

ϕ

τ

h(gf )=(hg)f

��

ϕ ψ
f // ψ

ρ

g

��

ϕ ψ
f //ϕ

ψ

1ψf=f

��

ψ

ψ

1ψ

��
ψ ρg

//

ψ

ψ
��

ψ

ρ

g=g1ψ

��

Functor

A functor F : C // B is a morphism between two categories such
that:

1 there is F (ϕ) in B for each ϕ in C ;

2 there is F (ϕ)
F (f ) // F (ψ) in B for each ϕ

f // ψ in C;

3 F (1ϕ) = 1F (ϕ);

4 F (gf ) = F (g)F (f ).
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Natural transformation

Let f : ϕ // ψ be a C-arrow and F ,G : C //D be two functors.
A natural transformation η : F //G is a family of arrows such
that for every ϕ of C there is ηϕ : F (ϕ) //G(ϕ) in D making the
following diagram commute.

F (ψ) G(ψ)ηψ
//

F (ϕ)

F (ψ)

F (f )

��

F (ϕ) G(ϕ)
ηϕ // G(ϕ)

G(ψ)

G(f )

��

Adjunction

An adjunction from C to D is a pair of functors F : C //D and
G : D // C together with two natural transformations
η : 1C //GF and ζ : FG // 1D such that ζFF (η) = 1F and
G(ζ)ηG = 1G .

F (ϕ) FGF (ϕ)
F (ηϕ) //F (ϕ)

F (ϕ)

1F(ϕ)

$$

FGF (ϕ)

F (ϕ)

ζF(ϕ)

��

G(ϕ) GFG(ϕ)
ηG(ϕ) //G(ϕ)

G(ϕ)

1G(ϕ)

$$

GFG(ϕ)

G(ϕ)

G(ζϕ)

��
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Adjunction

Alternative definition:

HomC(ϕ⊗ ψ, ρ) ∼= HomC(ϕ,ψ ( ρ)

For each arrow ϕ⊗ ψ // ρ there is an arrow ϕ // ψ ( ρ, and
vice versa.

Strong

⊕1ρ is strong with respect to 1ϕ⊗ when there are natural
transformations from 1ϕ ⊗⊕1ρ to ⊕1ρ1ϕ⊗ and from ⊗1ϕ1ψ⊕ and

1ψ ⊕⊗1ϕ .
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Monoidal category

A monoidal category is a category together with an associative
tensor product ⊗ and a unit object 1 satisfying the following
natural isomorphisms for every ϕ, ψ and ρ and respecting the
triangle and pentagon identities.

aϕ,ψ,ρ : (ϕ⊗ ψ)⊗ ρ // ϕ⊗ (ψ ⊗ ρ)

lx : 1⊗ ϕ // ϕ

rx : ϕ⊗ 1 // ϕ

Monoidal category

Triangle and pentagon identities

(ϕ⊗ 1)⊗ ψ

ϕ⊗ ψ
''

(ϕ⊗ 1)⊗ ψ ϕ⊗ (1⊗ ψ)
aϕ,1,ψ // ϕ⊗ (1⊗ ψ)

ϕ⊗ ψ
ww

((τ ⊗ ϕ)⊗ ψ)⊗ ρ

(τ ⊗ ϕ)⊗ (ψ ⊗ ρ)
99

((τ ⊗ ϕ)⊗ ψ)⊗ ρ

(τ ⊗ (ϕ⊗ ψ))⊗ ρ
%%

(τ ⊗ ϕ)⊗ (ψ ⊗ ρ) τ ⊗ (ϕ⊗ (ψ ⊗ ρ))//

(τ ⊗ (ϕ⊗ ψ))⊗ ρ τ ⊗ ((ϕ⊗ ψ)⊗ ρ)//

τ ⊗ (ϕ⊗ (ψ ⊗ ρ))

τ ⊗ ((ϕ⊗ ψ)⊗ ρ)

OO
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Symmetric category

A symmetric monoidal category is a monoidal category with a
natural isomorphism βϕ,ψ : ϕ⊗ ψ // ψ ⊗ ϕ which is its own
inverse. It has to satisfy the hexagon identities.

Symmetric category

Hexagon identities

ϕ⊗ (ψ ⊗ ρ) (ϕ⊗ ψ)⊗ ρ//

(ψ ⊗ ρ)⊗ ϕ ψ ⊗ (ρ⊗ ϕ)oo ψ ⊗ (ρ⊗ ϕ) ψ ⊗ (ϕ⊗ ρ)oo

ϕ⊗ (ψ ⊗ ρ)

(ψ ⊗ ρ)⊗ ϕ
��

(ϕ⊗ ψ)⊗ ρ (ψ ⊗ ϕ)⊗ ρ// (ψ ⊗ ϕ)⊗ ρ

ψ ⊗ (ϕ⊗ ρ)
��

(ϕ⊗ ψ)⊗ ρ ϕ⊗ (ψ ⊗ ρ)//

ρ⊗ (ϕ⊗ ψ) (ρ⊗ ϕ)⊗ ψoo (ρ⊗ ϕ)⊗ ψ (ϕ⊗ ρ)⊗ ψoo

(ϕ⊗ ψ)⊗ ρ

ρ⊗ (ϕ⊗ ψ)
��

ϕ⊗ (ψ ⊗ ρ) ϕ⊗ (ρ⊗ ψ)// ϕ⊗ (ρ⊗ ψ)

(ϕ⊗ ρ)⊗ ψ
��
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Monoidal closed categoriy

A closed monoidal category is a monoidal category where the
tensor product −⊗ ϕ has right adjoint ϕ( −.

Cartesian category

A Cartesian category is a category where > is a terminal object
and the tensor product respects the universal property defined by
the following commutative diagram, which means that for all f and
g such that f : ρ // ϕ and g : ρ // ψ there is one and only one
arrow 〈f , g〉 : ρ // ϕ⊗ ψ making the diagram commute.

ϕ ϕ⊗ ψoo
prϕ

ϕ⊗ ψ ψprψ
//

ρ

ϕ

f

��

ρ

ϕ⊗ ψ

〈f ,g〉

��

ρ

ψ

g

��
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Appendix

1 Display logics
Rules
Display postulates
Structural rules
Translation

2 Category theory
Category
Functor
Natural transformation
Adjunction
Strong
Monoidal category
Symmetric category
Monoidal closed category
Cartesian category
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The natural deduction normal form and

coherence

General Proof Theory, 28 November 2015, Tübingen

Zoran Petrić

Mathematical Institute SANU, Belgrade, Serbia

zpetric@mi.sanu.ac.rs

1

This talk is about coherence, a notion originated in cat-
egory theory, and its proof theoretical counterpart. Ev-
erything will be explained through an example recently
obtained in a joint work with Kosta Došen.

2
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Turning disjunction into conjunction

∨

3

Turningdisjunctionintoconjunction

∨

4
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The same holds for derivations

Φ

Φ ∨ Θ

5

Thesameholdsforderivations

Φ

Φ∨Θ

6
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The goal

p1 ∧ p2

p1

p1 ∧ p2

p2

p1 ∧ p2

p1

p1 ∧ p2

p1

p1 ∧ p1

is faithfully represented by (where Π = p ∨ p ∨ p)

Π ∨ Π

p

p ∨ Π

p

p ∨ Π

p

p ∨ Π

p

Π ∨ p

p

Π ∨ p

p

Π ∨ p

p ∨ p ∨ p ∨ p
5 times ∨ elim.

7

In the language of category theory

A skeleton of the category with finite coproducts freely
generated by a single object has a subcategory isomor-
phic to a skeleton of the category with finite products
freely generated by a countable set of objects.

8
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The conjunctive system

Consider conjunction separated from other connectives.

alphabet: p1, p2, . . ., ∧

rules of inference:
A B

A ∧B

A ∧B

A

A ∧B

B

reductions:

D
A

E
B

A ∧B

A

β−→
D
A

D
A ∧B

η−→

D
A ∧B

A

D
A ∧B

B

A ∧B

9

Equality of derivations

Single premise and single conclusion derivations. The
reductions are turned into equalities.

The following derivations from p1∧p2 to p1∧p1 are equal.

p1 ∧ p2

p1

p1 ∧ p2

p2

p1 ∧ p2

p1

p1 ∧ p2

p1

p1 ∧ p1
=

p1 ∧ p2

p1

p1 ∧ p2

p1

p1 ∧ p1

10
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The disjunctive system

Consider disjunction separated from other connectives.

alphabet: p,∨

rules of inference: as usual

reductions: as usual

The formulae (up to associativity) may be identified with
finite ordinals.

11

The representation of formulae

Let F be a mapping from conjunctive formulae to dis-
junctive formulae:

pi 7→ p ∨ . . . ∨ p︸ ︷︷ ︸
pi

,

where pi is the i-th prime number, and if A and B are
mapped respectively to

p ∨ . . . ∨ p︸ ︷︷ ︸
m

and p ∨ . . . ∨ p︸ ︷︷ ︸
n

,

then A ∧B is mapped to

p ∨ . . . ∨ p︸ ︷︷ ︸
m·n

.

12
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Examples

p1 ∧ p2 7→ p ∨ p ∨ p ∨ p ∨ p ∨ p︸ ︷︷ ︸
2·3

,

p1 ∧ p1 7→ p ∨ p ∨ p ∨ p︸ ︷︷ ︸
2·2

.

13

Derivability

For m,n ≥ 1 it is always the case that

p ∨ . . . ∨ p︸ ︷︷ ︸
m

` p ∨ . . . ∨ p︸ ︷︷ ︸
n

.

If we are interested just in derivability, then our map-
ping F is not conclusive since it is not true that

A ` B ⇔ FA ` FB.

For example, let A be p1 and let B be p2—there is a
derivation from p∨p to p∨p∨p, but there is no derivation
from p1 to p2. Hence, when one starts representing the
derivations, it will not be the case that every disjunctive
derivation represents a conjunctive derivation.

14
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Derivability

The following definition of ` at the right-hand side of

A ` B ⇔ FA ` FB.

makes this equivalence true. For m,n ≥ 1,

p ∨ . . . ∨ p︸ ︷︷ ︸
m

` p ∨ . . . ∨ p︸ ︷︷ ︸
n

,

when every prime that divides n divides m, too. This
gives an arithmetical characterization of derivability in
the conjunctive system.

15

Coherence

p1 ∧ p2

p1

p1 ∧ p2

p1

p1 ∧ p1

16
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Coherence

p1 ∧ p2

p1

p1 ∧ p2

p1

p1 ∧ p1

17

Coherence

p1 ∧ p2

p1

p1 ∧ p2

p1

p1 ∧ p1

18
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Coherence

p1 ∧ p2

p1

p1 ∧ p2

p1

p1 ∧ p1

19

Coherence

p1 ∧ p2

p1

p1 ∧ p2

p1

p1 ∧ p1

For every conjunctive derivation in normal form there
is a function (from the letter occurrences in the con-
clusion to the letter occurrences in the premise). Two
different normal forms correspond to different functions.
Hence, our derivation is completely determined by the
following picture.

p1 ∧ p2 ` p1 ∧ p1.

20

Z. Petrić: The natural deduction normal form and coherence

132



Coherence

Dually, every disjunctive derivation from

p ∨ p ∨ p ∨ p ∨ p ∨ p︸ ︷︷ ︸
m

to p ∨ p ∨ p ∨ p ∨ p ∨ p︸ ︷︷ ︸
n

is identified with a function from the ordinal m to the
ordinal n.

For every function f : m→ n there is a derivation iden-
tified with f .

21

Extending F to derivations

We have to find a function from 2·3 to 2·2 that faithfully
represents our derivation

p1 ∧ p2 ` p1 ∧ p1,

which can be determined also by the following triple

( @qq qq, p1 ∧ p2, p1 ∧ p1).

Faithfulness means that two different derivations should
be mapped to different functions.

22
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Brauerian representation

Brauerian representation of

( @qq qq, p1 ∧ p2, p1 ∧ p1)

is a function from 2 · 3 to 2 · 2 defined as follows.

Identify the elements of the ordinal 6 with the elements
of cartesian product 2× 3 lexicographically ordered. Do
the same with 4.

q q q q
00 01 10 11

q q q q q q00 01 02 10 11 12

23

Brauerian representation

Brauerian representation of

( @qq qq, p1 ∧ p2, p1 ∧ p1)

is a function from the ordinal 2 · 3 to the ordinal 2 · 2
defined as follows.

Identify the elements of the ordinal 6 with the elements
of cartesian product 2× 3 lexicographically ordered. Do
the same with 4.

q q q q
00 01 10 11

q q q q q q00 01 02 10 11 12
@
@

24
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Brauerian representation

Brauerian representation of

( @qq qq, p1 ∧ p2, p1 ∧ p1)

is a function from the ordinal 2 · 3 to the ordinal 2 · 2
defined as follows.

Identify the elements of the ordinal 6 with the elements
of cartesian product 2× 3 lexicographically ordered. Do
the same with 4.

q q q q
00 01 10 11

q q q q q q00 01 02 10 11 12
@
@

25

Brauerian representation

Brauerian representation of

( @qq qq, p1 ∧ p2, p1 ∧ p1)

is a function from the ordinal 2 · 3 to the ordinal 2 · 2
defined as follows.

Identify the elements of the ordinal 6 with the elements
of cartesian product 2× 3 lexicographically ordered. Do
the same with 4.

q q q q
00 01 10 11

q q q q q q00 01 02 10 11 12
@
@

�
�

@
@

�
�

Different triples are represented by different functions.

26
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Representing conjunctive by disjunctive
derivations

Let D be a conjunctive derivation. Use the following
steps in order to represent it by a disjunctive derivation.

(1) Normalize D.

p1 ∧ p2

p1

p1 ∧ p2

p1

p1 ∧ p1

(2) Find its triple. ( @qq qq, p1 ∧ p2, p1 ∧ p1)

27

Representing conjunctive by disjunctive
derivations

(3) Transform it into a function using brauerian rep-
resentation.

q q q qq q q q q q
@
@

�
�

@
@

�
�

(4) Find a disjunctive derivation identified with that
function.

Π ∨ Π

p

p ∨ Π

p

p ∨ Π

p

p ∨ Π

p

Π ∨ p

p

Π ∨ p

p

Π ∨ p

p ∨ p ∨ p ∨ p
5 times ∨ elim.

28
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Representing conjunctive by disjunctive
derivations

It is not the case that the conjunctive inference rules are
derivable from the disjunctive inference rules.

“Composition”, which corresponds to the cut rule in se-
quent systems is preserved by this representation.

29

Composition

Take the derivations

p1 ∧ p2

p1

p1 ∧ p2

p1

p1 ∧ p1
and

p1 ∧ p1

p1

and paste them together

p1 ∧ p2

p1

p1 ∧ p2

p1

p1 ∧ p1

p1

30
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Composition

The normal form of the result is
p1 ∧ p2

p1
.

The corresponding triple is ( qq q
, p1 ∧ p2, p1).

Its brauerian representation is given by:

q qq q q q q qHHHH
@
@

�
�

����

A disjunctive derivation identified with this function is

Π ∨ Π

p

p ∨ p

p

p ∨ p

p

p ∨ p

p

p ∨ p

p

p ∨ p

p

p ∨ p

p ∨ p
5 times ∨ elim.

31

Composition

Π ∨ Π

p

p ∨ p

p

p ∨ p

p

p ∨ p

p

p ∨ p

p

p ∨ p

p

p ∨ p

p ∨ p

is equal to the derivation obtained by pasting together

Π ∨ Π

p

p ∨ Π

p

p ∨ Π

p

p ∨ Π

p

Π ∨ p

p

Π ∨ p

p

Π ∨ p

p ∨ p ∨ p ∨ p
5 times ∨ elim.

and

p ∨ p ∨ p ∨ p

p

p ∨ p

p

p ∨ p

p

p ∨ p

p

p ∨ p

p ∨ p
3 times ∨ elim.

32
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Substitution

How can we treat F (p1) = p ∨ p and F (p2) = p ∨ p ∨ p

as variables in the formula p ∨ p ∨ p ∨ p ∨ p ∨ p?

How to substitute F (A) for F (p1) and F (B) for F (p2) in
the representation of our derivation

p1 ∧ p2

p1

p1 ∧ p2

p1

p1 ∧ p1

33

Substitution

The image of our conjunctive system in the disjunc-
tive system has the universal property with respect to
{F (p1), F (p2), . . .} in the sense that every mapping of
that set to the set of disjunctive formulae extends in a
unique way to a function that maps all the disjunctive
formulae to the disjunctive formulae and all the deriva-
tions in the image of our representation to the disjunctive
derivations. This function imitates substitution. How-
ever, it is not the operation of replacing words by words.

34
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p1 ∧ p2

p2

p1 ∧ p2

p1

p2 ∧ p1

p1 ∧ p2

p1

p1 ∧ p2

p2

p1 ∧ p2

�@q qq q q qq q

q q q q q qq q q q q q
@
@

HHHH

����
�

�
00 01 10 11 20 21

00 01 02 10 11 12

q q q q q qq q q q q q
00 01 02 10 11 12

00 01 02 10 11 12

35

The talk was based on: K. Došen and Z. Petrić, Repre-
senting conjunctive deductions by disjunctive deductions,
(available at: arXiv)

36
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Decorating natural deduction

Helmut Schwichtenberg
(j.w.w. Diana Ratiu)

Mathematisches Institut, LMU, München

General Proof Theory, Tübingen, 27. - 29. November 2015

1 / 21

I Proofs may have computational content, which can be
extracted (via realizability).

I Proofs (as opposed to programs) can easily be checked for
correctness.

Issues:

I Why proofs in natural deduction?

I Complexity.

2 / 21
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Proof terms in natural deduction

xρ yσ cτ uA vB AxC

λxρ App →+
uA

→−

∀+xρ ∀−

The realizability interpretation transforms such a proof term
directly into an object term.

3 / 21

Logic

I Use →, ∀ only, defined by introduction and elimination rules.

I View ∃xA, A ∨ B, A ∧ B as inductively defined predicates
(with parameters A, B).

I In addition, define classical existence and disjunction by

∃̃xA := ¬∀x¬A,

A ∨̃ B := ¬(¬A ∧ ¬B)

where ¬A := (A→ F) and F := (0 = 1).
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Example: disjunction

A ∨ B is inductively defined by the clauses (introduction axioms)

A→ A ∨ B, B → A ∨ B

with least-fixed-point (elimination) axiom

A ∨ B → (A→ C )→ (B → C )→ C .

5 / 21

Decoration

I Goal: fine tune the computational content of a proof.

I Tool: distinguish →c, ∀c (computational) and →nc, ∀nc
(non-computational).

The rules for (→nc)+, (∀nc)+ are restricted: the abstracted (object
or assumption) variable must not be “used computationally”.

Remark: Coq uses Set and Prop instead (but this is less flexible).
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Example: computational variants of disjunction

We have four possibilities to decorate the two clauses for ∨:

{
A→c A ∨d B

B →c A ∨d B

{
A→c A ∨l B

B →nc A ∨l B

{
A→nc A ∨r B

B →c A ∨r B

{
A→nc A ∨u B

B →nc A ∨u B

Elimination axioms:

A ∨d B →c (A→c C )→c (B →c C )→c C ,

A ∨l B →c (A→c C )→c (B →nc C )→c C ,

A ∨r B →c (A→nc C )→c (B →c C )→c C ,

A ∨u B →c (A→nc C )→c (B →nc C )→c C .

7 / 21

Formulas as computational problems

I Kolmogorov (1932) proposed to view a formula A as a
computational problem, of type τ(A), the type of a potential
solution or “realizer” of A.

I Example: ∀cn∃m>nPrime(m) has type N→ N.

I A 7→ τ(A), a type or the “nulltype” symbol ◦.
I In case τ(A) = ◦ proofs of A have no computational content;

such formulas A are called non-computational (n.c.) or
Harrop formulas; the others computationally relevant (c.r.).
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Decoration can simplify extracts

I Suppose that a proof M uses a lemma Ld : A ∨d B.

I Then the extract et(M) will contain the extract et(Ld).

I Suppose that the only computationally relevant use of Ld in
M was which one of the two alternatives holds true, A or B.

I Express this by using a weakened lemma L : A ∨u B.

I Since et(L) is a boolean, the extract of the modified proof is
“purified”: the (possibly large) extract et(Ld) has disappeared.
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Decoration algorithm

Goal: Insert as few as possible decorations ∀c,→c into a proof.

I Seq(M) of a proof M consists of its context and end formula.

I The uniform proof pattern P(M) of a proof M is the result of
changing in c.r. formulas of M (i.e., not above a n.c. formula)
all →c, ∀c into →nc, ∀nc (some restrictions apply on axioms
and theorems).

I A formula D extends C if D is obtained from C by changing
some →nc, ∀nc into →c, ∀c.

I A proof N extends M if (i) N and M are the same up to
variants of →, ∀ in their formulas, and (ii) every c.r. formula
in M is extended by the corresponding one in N.
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Decoration algorithm (ctd.)

I Assumption: For every axiom or theorem A and every
decoration variant C of A we have another axiom or theorem
whose formula D extends C , and D is the least among those
extensions.

I Example: Induction

A′(0)→c/nc ∀c/ncn (A′′(n)→c/nc A′′′(n+1)))→c/nc ∀c/ncn A′′′′(n).

Let A be the lub (w.r.t. deco) of A′, . . . ,A′′′′. Extended axiom:

A(0)→c ∀cn(A(n)→c A(n + 1)))→c ∀cnA(n).

11 / 21

Decoration algorithm (ctd.)

Theorem (Ratiu & S., 2010)

Under the assumption above, for every uniform proof pattern U
and every extension of its sequent Seq(U) we can find a decoration
M∞ of U such that

(a) Seq(M∞) extends the given extension of Seq(U), and

(b) M∞ is optimal in the sense that any other decoration M of U
whose sequent Seq(M) extends the given extension of Seq(U)
has the property that M also extends M∞.
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Case (→nc)−. Consider a proof pattern

Φ, Γ

| U

A→nc B

Γ,Ψ

| V

A
(→nc)−

B

Given: extension Π,∆,Σ⇒ D of Φ, Γ,Ψ⇒ B. Alternating steps:

I IHa(U) for extension Π,∆⇒ A→ncD 7→ decoration M1 of U
whose sequent Π1,∆1 ⇒ C1 → D1 extends Π,∆⇒ A→ncD
(→∈ {→nc,→c}). Suffices if A is n.c.: extension ∆1,Σ⇒ C1

of V is a proof (in n.c. parts of a proof →nc, ∀nc and →c, ∀c
are identified). For A c.r:

I IHa(V ) for the extension ∆1,Σ⇒ C1 7→ decoration N2 of V
whose sequent ∆2,Σ2 ⇒ C2 extends ∆1,Σ⇒ C1.

I IHa(U) for Π1,∆2 ⇒ C2 → D1 7→ decoration M3 of U whose
sequent Π3,∆3 ⇒ C3→D3 extends Π1,∆2 ⇒ C2→D1.

I IHa(V ) for the extension ∆3,Σ2 ⇒ C3 7→ decoration N4 of V
whose sequent ∆4,Σ4 ⇒ C4 extends ∆3,Σ2 ⇒ C3. . . .

13 / 21

Example: Euler’s ϕ, or avoiding factorization

Let P(n) mean “n is prime”. Consider

Fact : ∀cn(P(n) ∨r ∃m,k>1(n = mk)) factorization,

PTest : ∀cn(P(n) ∨u ∃m,k>1(n = mk)) prime number test.

Euler’s ϕ has the properties

{
ϕ(n) = n − 1 if P(n),

ϕ(n) < n − 1 if n is composed.

Using factorization and these properties we obtain a proof of

∀cn(ϕ(n) = n − 1 ∨u ϕ(n) < n − 1).

Goal: get rid of the expensive factorization algorithm in the
computational content, via decoration.

14 / 21

H. Schwichtenberg: Decorating natural deduction

147



Example: Euler’s ϕ, or avoiding factorization (ctd.)

How could the better proof be found? Recall that we assumed

Fact : ∀cn(P(n) ∨r ∃m,k>1(n = mk)),

PTest : ∀cn(P(n) ∨u ∃m,k>1(n = mk))

and have a proof of ∀cn(ϕ(n) = n− 1∨u ϕ(n) < n− 1) from Fact.

I The decoration algorithm arrives at Fact with goal

P(n) ∨u ∃m,k>1(n = mk).

I PTest fits as well, and it has ∨u rather than ∨r, hence is
preferred.
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(define decnproof (fully-decorate nproof "Fact" "PTest"))

(proof-to-expr-with-formulas decnproof) =>

Elim: allnc n((C n -> F) oru C n ->

((C n -> F) -> phi n=n--1 oru phi n<n--1) ->

(C n --> phi n=n--1 oru phi n<n--1) ->

phi n=n--1 oru phi n<n--1)

PTest: all n((C n -> F) oru C n)

Intro: allnc n(phi n=n--1 -> phi n=n--1 oru phi n<n--1)

EulerPrime: allnc n((C n -> F) -> phi n=n--1)

Intro: allnc n(phi n<n--1 -> phi n=n--1 oru phi n<n--1)

EulerComp: allnc n(C n -> phi n<n--1)

(lambda (n)

((((Elim n) (PTest n))

(lambda (u1542) ((Intro n) ((EulerPrime n) u1542))))

(lambda (u1544) ((Intro n) ((EulerComp n) u1544)))))

(pp (nt (proof-to-extracted-term decnproof))) => cPTest
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Example: Maximal Scoring Segment (MSS)

I Let X be linearly ordered by �. Given seg : N→ N→ X .
Want: maximal segment

∀cn∃i≤k≤n∀i ′≤k ′≤n(seg(i ′, k ′) � seg(i , k)).

I Example: Regions with high G ,C content in DNA.

X := {G ,C ,A,T},
g : N→ X (gene),

f : N→ Z, f (i) :=

{
1 if g(i) ∈ {G ,C},
−1 if g(i) ∈ {A,T},

seg(i , k) = f (i) + · · ·+ f (k).

17 / 21

Example: MSS (ctd.)

Prove the existence of a maximal segment by induction on n,
simultaneously with the existence of a maximal end segment.

∀cn(∃i≤k≤n∀i ′≤k ′≤n(seg(i ′, k ′) � seg(i , k)) ∧
∃j≤n∀j ′≤n(seg(j ′, n) � seg(j , n)))

In the step:

I Compare the maximal segment i , k for n with the maximal
end segment j , n + 1 proved separately.

I If �, take the new i , k to be j , n + 1. Else take the old i , k .

Depending on how the existence of a maximal end segment was
proved, we obtain a quadratic or a linear algorithm.
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Example: MSS (ctd.)

Two proofs of the existence of a maximal end segment for n + 1:
∀cn∃j≤n+1∀j ′≤n+1(seg(j ′, n + 1) � seg(j , n + 1)).

I Introduce an auxiliary parameter m; prove by induction on m

∀cn∀cm≤n+1∃j≤n+1∀j ′≤m(seg(j ′, n + 1) � seg(j , n + 1)).

I Use ESn : ∃j≤n∀j ′≤n(seg(j ′, n) � seg(j , n)) and the additional
assumption of monotonicity

∀i ,j ,n(seg(i , n) � seg(j , n)→ seg(i , n + 1) � seg(j , n + 1)).

Proceed by cases on seg(j , n + 1) � seg(n + 1, n + 1).
If �, take n + 1, else the previous j .
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Example: MSS (ctd.)

Could decoration help to find the better proof? Have lemmas L:

∀cn∀cm≤n+1∃j≤n+1∀j ′≤m(seg(j ′, n+1) � seg(j , n+1))

and LMon:

Mon→ ∀cn(ESn →c ∀ncm≤n+1∃j≤n+1∀j ′≤m(seg(j ′, n+1) � seg(j , n+1))).

I The decoration algorithm arrives at L with goal

∀ncm≤n+1∃j≤n+1∀j ′≤m(seg(j ′, n+1) � seg(j , n+1)).

I LMon fits as well, its assumptions Mon and ESn are in the
context, and it is less extended (∀ncm≤n+1 rather than ∀cm≤n+1),
hence is preferred.
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Abstract

In this talk, it is suggested to generalize our understanding of
general (alias structural) proof theory and to consider it as a
general theory of two kinds of derivations, namely proofs and
dual proofs.

The proposal is substantiated by some considerations on
assertion and denial, the idea of compositionality in
proof-theoretic semantics, and some thoughts about
falsification and co-implication.

The main result is a normal form theorem for the natural
deduction proof system for the bi-intuitionistic logic 2Int.
The proof uses the faithful embedding of 2Int into
intuitionistic logic with respect to validity and shows that
conversions of dual proofs can be sidestepped

2 / 55

H. Wansing: A more general general proof theory

153



Assertion and denial, compositionality, and co-implication
Natural deduction for 2Int

Faithful embeddings
Normal forms for 2Int

In the 1970s Dag Prawitz introduced general proof theory as “a
study of proofs in their own right where one is interested in general
questions about the nature and structure of proofs” (1974, p. 66).

In his seminal paper on “Ideas and results in proof theory” (1971),
Prawitz listed what he considered to be obvious topics in general
proof theory:

2.1. The basic question of defining the notion of
proof, including the question of the distinction between
different kinds of proofs such as constructive proofs and
classical proofs.

2.2. Investigation of the structure of (different kinds
of) proofs, including e.g. questions concerning the
existence of certain normal forms.
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2.3. The representation of proofs by formal
derivations. In the same way as one asks when two
formulas define the same set or two sentences express the
same proposition, one asks when two derivations
represent the same proof; in other words, one asks for
identity criteria for proofs or for a “synonymity” (or
equivalence) relation between derivations.

2.4. Applications of insights about the structure of
proofs to other logical questions that are not formulated
in terms of the notion of proof.
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I will suggest to broaden Prawitz’s understanding of general proof
theory. The idea is to consider in addition to verifications also
falsifications, so as to obtain a theory of proofs and what I call
dual proofs.

General proof theory would thus be a study of proofs and dual
proofs in their own right where one is interested in general
questions about the nature and structure of both proofs and dual
proofs.

The topic can be approached from different perspectives. I shall
consider (i) the speech acts of assertion and denial and (ii) the
problem of compositionality in proof-theoretic semantics, and (iii)
the idea of supplementing intuitionistic implication with an
operation of co-implication.
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Assertion and denial

Assertion and denial are usually seen to correspond to certain
propositional attitudes. Ripley (2011) uses the terms “‘deny’ and
‘denial’ exclusively to pick out a certain type of speech act: the
sort someone is engaged in when they deny something” and uses
“‘reject’ and ‘rejection’ to pick out a certain type of attitude: the
sort someone has to a content when they reject it.”

Timothy Williamson (2000) explains that “we can regard assertion
as the verbal counterpart of judgement and judgement as the
occurrent form of belief.”

If assertion is the verbal expression of the attitude of belief towards
a propositional content, then denial is the verbal expression of the
attitude of rejection The attitude verbalized by a denial may be
understood as disbelief or perhaps a weaker form of rejection.
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In the context of general proof theory, the speech acts of assertion
and denial are considered in Per Martin-Löf’s 1983 lectures “On
the Meanings of the Logical Constants and the Justifications of the
Logical Laws”, where he takes up Frege’s understanding of
inferences as transitions between judgements or assertions. A
presentation of the Fregean conception of inference can also be
found in a recent paper by Prawitz (2015):

[A] reflective inference contains at least a number of
assertions or judgements made in the belief that one of
them, the conclusion, say B, is supported by the other
ones, the premisses, say A1,A2, . . . ,An. An inference in
the course of an argument or proof is not an assertion or
judgement to the effect that B “follows” from
A1,A2, . . . ,An, but is first of all a transition from some
assertions (or judgements) to another one. . . .
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This is how Frege saw an inference, as a transition
between assertions or judgements. To make an assertion
is to use a declarative sentence A with assertive force,
which we may indicate by writing ` A, using the Fregean
assertion sign. We may also say with Frege that a
sentence A expresses a thought or proposition p, while
` A, the assertion of A, is an act in which p is judged to
be true.

This is, however, only a first characterization of inferences, and
Prawitz develops a more sophisticated conception by considering
assertions under assumptions, open assertions, and inference
figures.
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The Fregean notion of inferences as transitions between
judgements differs from the prevailing understanding of inference
as logical consequence (or logical deduction).

Usually, logical consequence is regarded not as a relation between
concrete actions but as a relation between sets of formulas of a
formal language and single or multiple conclusions satisfying the
well-known conditions due to Alfred Tarski and Dana Scott.

It may therefore be useful to draw a notational distinction between
Frege’s judgement stroke |−−− that goes back to the
Begriffsschrift and the derivability symbol `, the “turnstile”,
introduced by Kleene and Rosser in the 1930s.
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Since assertion and denial appear to be equally respectable and
equally relevant notions, the following questions arise quite
naturally:

If the external action type of assertion corresponds to the
internal action type of judgement, to which internal action
type does the external action type of denial correspond?

If we refer to the internal action type corresponding to denial
as dual judgement, which subject-independent and
non-agentive notion stands to dual judgement as the turnstile
` stands to Frege’s judgement stroke |−−−?

According to Frege, the first question can be answered by saying
that denying A amounts to asserting A’s negation.

The occurrent form of the attitude of the rejection of A thus is the
type of action in which the negation of A is judged to be true.
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According to G. Restall (2005), “[d]enial is not to be analysed as
the assertion of a negation,” whereas B. Brown (2002) has a
modest proposal: “negation is denial in the object language.”

In (Wansing 2010) I suggested to associate the denial of A with
the provability of the strong negation ∼A of A. In Nelson’s
constructive logics with strong negation a notion of disprovability
can be defined as follows:

`disN4 A iff `N4 ∼A.

For strong negation free-fragments, we would loose the possibility
of expressing denial.

Moreover, a distinction between the turnstile and a
subject-independent and non-agentive counterpart `d of dual
judgement can be drawn also in the absence of strong negation.
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Compositionality in proof-theoretic semantics

In a recent paper, Nissim Francez and Gilad Ben-Avi (2011) note
that

[i]n spite of the vast literature on the subject, there is
nowhere an explicit definition for a semantic value as
determined by the I-rules of the ND-system; something of
the form

‖ ? ‖ = . . .

where ‘?’ is a logical constant.

Francez and Ben-Avi call a derivation canonical iff its last rule
application is an application of an introduction rule. If A is a
formula and Γ a (finite) set of formulas, then

‖A‖cΓ := {Dc | Dc is a canonical derivation of A from Γ}
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The proof-theoretic meaning ‖A‖ of A is then defined as follows:

‖A‖ := λΓ. ‖A‖cΓ

Francez and and Ben-Avi emphasize that ‖A‖ “is a proof-theoretic
object, a function from contexts to the collection of (canonical)
derivations from that context, not to be confused with
model-theoretic denotations (of truth values, in this case).”

The proof-theoretic meaning ‖ A ‖ of A thus defined depends on
the introduction rules, but I think that for securing
compositionality restrictions are needed.
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Namely, compositionality for single-conclusion natural deduction
requires harmonious rules (so as to exclude Prior’s tonk) and that
for any compound expression e:

in addition to parametric formulas and e, the introduction
rules for e display only immediate subformulas of e, and every
immediate subformula of e is displayed in some introduction
rule for e;

in addition to parametric formulas and e, the elimination rules
for e display only immediate subformulas of e, and every
immediate subformula of e is displayed in some elimination
rule for e.
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Compositionality does not hold in Prawitz’s (1965) or other natural
deduction calculi for Nelson’s logics, where we have, for example:

A ∼B
∼(A→ B)

∼A ∼B
∼(A ∨ B)

∼(A ∧ B)
[∼A]

C
[∼B]

C

C

The problem with these rule is not only that they are holistic and
display two connectives at once, but that they spoil the subformula
property.
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One possible reaction is to liberalize the notion of a subformula.
Arnon Avron (in conversation) suggested a rather drastic
generalization of the concept of a subformula. The idea is to first
translate a formula into Polish notation and then to consider any
well-formed order-preserving substring of it as a subformula.

Consider, as an example, the purely implicational formula
(p → (q → r))→ s. Rewriting it in Polish notation, we obtain
→→p→qrs. The set of well-formed order-preserving substrings
contains the formula →qs.

If meaning assignments by means of holistic natural deduction
introduction rules are admitted, we could thus in a compositional
manner make the meaning of (p → (q → r))→ s dependent on
the meaning of q → s.
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Another solution consists of replacing the truth-preserving
transitions to or from negated formulas by falsity preserving
transitions to or from non-negated formulas:

A B

(A→ B)

A B

(A ∨ B)

(A ∧ B)

JAK
C

JBK
C

C

This way we obtain two kinds of derivations, proofs ending with a
formula under a single line, and dual proofs ending with a formula
under a double line.

What happens to strong negation?
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Strong negation operates as a switch between proofs and dual
proofs, and since strong negation expresses definite falsity, the dual
proofs my be seen as disproofs:

A
∼A

A
∼A

∼A
A

∼A
A

Not only is compositionality regained, the resulting relation of dual
provability may be taken to be the relation that stands to dual
judgement as the turnstile ` stands to the Fregean judgement
stroke |−−−.1

1Note on terminology: Often proofs are defined as derivations from the
empty set of assumptions (hypotheses). Here I will consider proofs and dual
proofs from pairs consisting of a possibly non-empty, finite set of assumptions
and a possibly non-empty, finite set of counterassumptions, and I will speak of
both proofs and dual proofs as derivations.

18 / 55

H. Wansing: A more general general proof theory

161



Assertion and denial, compositionality, and co-implication
Natural deduction for 2Int

Faithful embeddings
Normal forms for 2Int

Co-implication

In Prawitz (2007), Dag Prawitz briefly considers falsificationist
theories of meaning as suggested by Dummett (1993).
He draws a distinction between obvious rules for the falsification of
a sentence and the standard way of falsifying a compound
sentence and explains that (2007, p. 475)

[t]here are obvious rules for the falsification of a sentence
such as inferring ¬(A ∧ B) from either ¬A or ¬B,
¬(A ∨ B) from the two premises ¬A and ¬B, ¬(A→ B)
from the premises A and ¬B and so on. The notion of
falsity that results if we take such rules as introduction
rules is, however, quite different from our usual one, since
¬(A ∧ ¬A) becomes assertible only if either A or ¬A is
assertible.
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These rules result in the notion of constructible falsity assumed in
David Nelson’s constructive logics with strong negation, logics for
which Prawitz (1965) presented natural deduction proof systems.

The falsification of an implication (A→ B) in Nelson’s logics is
understood as the falsification of the strong negation of A together
with a falsification of B. The falsification of an implication can
thus be explained completely in terms of falsifications.

However, accounting for the falsification of a strongly negated
formula ∼A as a verification of A leads to considering both
verification and falsification. If ∼ toggles between proofs and dual
proofs, we need them both.
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The second-mentioned way of falsifying a compound sentence A
consists of deriving a constantly false sentence or, if it in the
language, the falsity constant ⊥ from A. Here Prawitz sees the
problem we have just noted for strong negation as a toggle
between proofs and dual proofs.

A falsification of an implication (A→ B) requires in addition to a
falsification of B also a verification of A, which is different from a
falsification of A’s negation.

Prawitz draws the quite reserved conclusion that a “falsificationist
meaning theory seems thus to have to mix different ideas of
meaning in an unfavorable way” (2007, p. 476).
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The noted complication, however, is not specific to the
falsificationist approach to the meaning of the logical connectives
as compared to the more familiar verificationist approach. If the
falsificationist has to specify falsification conditions for
implications, then it may be claimed that the verificationist must
specify verification conditions for co-implications.

The role of implication in verificationism is dual to the role of
co-implication in falsificationism. These connectives may be seen
to internalize a semantical relation of entailment into the logical
object language.

There are, however, different notions of entailment that can be
considered, in particular different notions of entailment
co-implication may internalize.
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Co-implication in Heyting-Brouwer logic

The language LBiInt of Heyting-Brouwer logic (see, e.g., (Rauszer
1980), (Goré 2000)), also called “bi-intuitionistic logic”, BiInt,
extends the language of intuitionistic logic, Int, by a primitive
binary co-implication connective −� and is defined in Backus–Naur
form as follows:

A ::= p | ⊥ | > | (A ∧ A) | (A ∨ A) | (A→ A) | (A−�A).

where p is a propositional variable from some fixed denumerably
infinite set Φ of sentential variables (atomic formulas).

The language LDualInt of dual intuitionistic propositional logic,
DualInt, is LBiInt restricted to the connectives >, ⊥, ∧, ∨, and
−� . I will use ≡ to denote the syntactic identity relation between
formulas.
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In BiInt, co-implication internalizes the preservation of non-truth
from the conclusion of a valid inference (understood as logical
consequence) to its premises. In the relational semantics for BiInt,
a state x from a Kripke model M = 〈I ,≤, v〉 supports the truth of
a co-implication (A−�B) (“B co-implies A”) iff there is an
“earlier” state x ′ such that x ′ supports the truth of A but fails to
support the truth of B:

M, x |= (A−�B) iff there exists x ′ ≤ x with M, x ′ |= A and M, x ′ 6|= B.

The support of truth clause for implication is the intuitionistic one:

M, x |= (A→ B) iff for every x ′ ≥ x :M, x ′ 6|= A or M, x ′ |= B.

Every (no) state supports the truth of the truth (falsity) constant
> (⊥).
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A formula A is valid in a model for BiInt M = 〈I ,≤, v〉 iff for
every x ∈ I , M, x |= A, and A is valid in BiInt iff A is valid in
every model for BiInt.

We write |=BiInt A to mean that A is valid in BiInt. Let ∆ ∪ {A}
be a set of formulas. ∆ entails A in BiInt (∆ |=BiInt A) iff for every
model for BiInt M = 〈I ,≤, v〉 and every x ∈ I , it holds that if the
truth of every element of ∆ is supported by x , then the truth of A
is supported by x .

We may note that
A |=BiInt B iff > |=BiInt A→ B iff A−�B |=BiInt ⊥. In this sense
co-implication in BiInt internalizes preservation of non-truth from
the conclusion of a valid inference (understood as logical
consequence) to the premises. Moreover, in the following sense
co-implication in BiInt is the residual of disjunction with respect to
entailment: A |=BiInt B ∨ C iff A−�B |=BiInt C iff A−�C |=BiInt B.
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Co-implication in 2Int

The bi-intuitionistic logic 2Int introduced in (Wansing 2013,
Wansing 2015a) contains a co-implication connective that
internalizes a notion of entailment different from preservation of
non-truth from the conclusion of valid inferences (seen as as
deductions) to the premises.

The language L2Int of 2Int is that of of BiInt, but the
co-implication connective has a different meaning. In both systems,
BiInt and 2Int, the intuitionistic negation ¬A of A is defined as
A→ ⊥, and the co-negation −A of A is defined as >−�A.
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Definition

A model for 2Int is a structure M = 〈I ,≤, v +, v−〉, where 〈I ,≤〉 is
a pre-order and v +, v− are functions from the set of atomic
formulas to subsets of the non-empty set of states I . For x ∈ I the
relations M, x |=+ A (“x supports the truth of A in M”) and
M, x |=− A (“x supports the falsity of A in M”) are inductively
defined as shown below. Moreover, support of truth and support of
falsity are required to be persistent. For every atomic formula p,
and all states x , x ′: if x ′ ≥ x and M, x |=+ p, then M, x ′ |=+ p
and if x ′ ≥ x and M, x |=− p, then M, x ′ |=− p.

M, x |=+ p iff x ∈ v +(p)
M, x |=− p iff x ∈ v−(p)

M, x |=+ > M, x 6|=+ ⊥
M, x 6|=− > M, x |=− ⊥
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M, x |=+ (A ∧ B) iff M, x |=+ A and M, x |=+ B
M, x |=− (A ∧ B) iff M, x |=− A or M, x |=− B

M, x |=+ (A ∨ B) iff M, x |=+ A or M, x |=+ B
M, x |=− (A ∨ B) iff M, x |=− A and M, x |=− B

M, x |=+ (A→ B) iff for every x ′ ≥ x :M, x ′ 6|=+ A or M, x ′ |=+ B
M, x |=− (A→ B) iff M, x |=+ A and M, x |=− B

M, x |=+ ¬A iff for every x ′ ≥ x :M, x ′ 6|=+ A
M, x |=− ¬A iff M, x |=+ A

M, x |=+ −A iff M, x |=− A
M, x |=− −A iff for every x ′ ≥ x :M, x ′ 6|=− A

M, x |=+ (A−�B) iff M, x |=+ A and M, x |=− B
M, x |=− (A−�B) iff for every x ′ ≥ x :M, x ′ 6|=− B or M, x ′ |=− A.
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Definition

An L2Int-formula A is valid in a model for 2Int M = 〈I ,≤, v +, v−〉
iff for every x ∈ I , M, x |=+ A (iff for every x ∈ I , M, x |=− ¬A);
A is valid in 2Int (|=2Int A) iff A is valid in every model for 2Int.

An L2Int-formula A is dually valid in a model for 2Int M =
〈I ,≤, v +, v−〉 iff for every x ∈ I , M, x |=− A (iff for every x ∈ I ,
M, x |=+ −A); A is dually valid in 2Int (|=d

2Int A) iff A is dually
valid in every model for 2Int.
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Definition

Let ∆ ∪ {A} be a set of L2Int-formulas. The set ∆ entails A
(∆ |= A) iff for every model for 2Int M = 〈I ,≤, v +, v−〉 and every
x ∈ I , it holds that if the truth of every element of ∆ is supported
by x, then the truth of A is supported by x.
Let ∆ ∪ {A} be a set of L2Int-formulas. The set ∆ dually entails A
(∆ |=d A) iff for every model for 2Int M = 〈I ,≤, v +, v−〉 and
every x ∈ I , it holds that if the falsity of every element of ∆ is
supported by x, then the falsity of A is supported by x.

We may note that A |=d
2Int B iff ⊥ |=d

2Int B−�A. In this sense
co-implication in 2Int internalizes preservation of falsity from the
premises to the conclusion of a dually valid deduction. In the
following sense co-implication in 2Int is the residual of disjunction
with respect to dual entailment: A ∨ B |=d

2Int C iff A |=d
2Int C−�B

iff B |=d
2Int C−�A.
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In (Goré 2000), the set of validities of DualInt is defined as the set
of all LDualInt-formulas that are valid in BiInt. Entailment in
DualInt can be defined as entailment in BiInt restricted to LDualInt.

We can define a relation |=d
DualInt of dual entailment for DualInt by

requiring that ∆ |=d
DualInt A iff for every model for BiInt M =

〈I ,≤, v〉 and every x ∈ I , it holds that if the truth of no element of
∆ is supported by x , then the truth of A is not supported by x , cf.
(Wansing 2013).

Dual entailment in DualInt thus preserves non-truth from the
premises to the conclusion of a dually valid deduction.

31 / 55

Assertion and denial, compositionality, and co-implication
Natural deduction for 2Int

Faithful embeddings
Normal forms for 2Int

The natural deduction proof system N2Int for 2Int uses single-line
rules for proofs and double-line rules for dual proofs. Derivations in
N2Int may contain proofs and dual proofs as subderivations.

The conclusion of a derivation therefore depends on an ordered
pairs (∆; Γ) of finite sets, a set of assumptions ∆ and a set of
counterassumptions Γ. Single square brackets [ ] are used to
indicate that assumptions may be cancelled, and double-square
brackets J K are used to indicate that counterassumptions may be

discharged. We write [A] instead of [A] and JAK instead of JAK.
Then we draw a distinction between rules for introducing
connectives into proofs, Ip rules, and for eliminating them from
proofs, Ep rule,s and rules for introducing connectives into dual
proofs, Idp rules, and for eliminating them from dual proofs, Edp
rules.
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The proof rules for the connectives >, ⊥, ∧, ∨, and → are
basically those of intuitionistic logic. The rules for introducing
(eliminating) the connectives of intuitionistic logic into (from) dual
proofs are obtained by a dualization of their introduction and
elimination rules for proofs.

In 2Int the rules for introducing (eliminating) implications into
(from) dual proofs are chosen in accordance with the usual
understanding of the falsification conditions of implications, i.e., an
implication A→ B is false iff A is true and B is false. This is not
the only option, see (Wansing 2008, 2015a, 2015b).

The rules for introducing (eliminating) co-implications into (from)
proofs are such that the provability of A−�B amounts to the dual
provability of A→ B.
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The introduction and elimination rules can be applied to certain

basic building blocks of derivations. We consider A as a proof of A

from ({A};∅) and A as a dual proof of A from (∅; {A}).

Moreover > is a proof of > from (∅;∅) and ⊥ is a dual proof of
⊥ from (∅;∅).

We write (∆; Γ) ` A if there is a proof of A from (∆; Γ); and we
write (∆; Γ) `d A if there is a dual proof of A from (∆; Γ).
Moreover, we assume that if (∆; Γ) ` A, ∆ ⊆ ∆′ and Γ ⊆ Γ′ for
finite sets of L2Int-formulas ∆′ and Γ′, then (∆′; Γ′) ` A. Similarly,
we assume that if (∆; Γ) `d A, ∆ ⊆ ∆′ and Γ ⊆ Γ′ for finite sets
of L2Int-formulas ∆′ and Γ′, then (∆′; Γ′) `d A.

The system N2Int comprises the following proof rules:

34 / 55

H. Wansing: A more general general proof theory

169



Assertion and denial, compositionality, and co-implication
Natural deduction for 2Int

Faithful embeddings
Normal forms for 2Int

(∆; Γ)
...
⊥
A

(⊥Ep)

(∆; Γ)
...
A

(∆′; Γ′)
...
B

(A ∧ B)
(∧Ip)

(∆; Γ)
...

(A ∧ B)

A
(∧Ep)

(∆; Γ)
...

(A ∧ B)

B
(∧Ep)

(∆; Γ)
...
A

(A ∨ B)
(∨Ip)

(∆; Γ)
...
B

(A ∨ B)
(∨Ip)

(∆; Γ)
...

(A ∨ B)

([A],∆′; Γ′)
...

C

([B],∆′′; Γ′′)
...

C

C
(∨Ep)
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([A],∆; Γ)
...
B

(A→ B)
(→ Ip)

(∆; Γ)
...
A

(∆′; Γ′)
...

(A→ B)

B
(→ Ep)

(∆; Γ)
...
A

(∆′; Γ′)
...
B

(A−�B)
(−� Ip)

(∆; Γ)
...

(A−�B)

A
(−�Ep)

(∆; Γ)
...

(A−�B)

B
(−�Ep)

Moreover, we have the following dual proof rules.
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(∆; Γ)
...
>
A

(>Edp)

(∆; Γ)
...
A

(∆′; Γ′)
...
B

(A ∨ B)
(∨Idp)

(∆; Γ)
...

(A ∨ B)

A
(∨Edp)

(∆; Γ)
...

(A ∨ B)

B
(∨Edp)

(∆; Γ)
...
A

(A ∧ B)
(∧Idp)

(∆; Γ)
...
B

(A ∧ B)
(∧Idp)
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(∆; Γ)
...

(A ∧ B)

(∆; Γ, JAK)
...

C

(∆; Γ, JBK)
...

C

C
(∧Edp)

(∆; Γ, JAK)
...
B

(B−�A)
(−� Idp)

(∆′; Γ′)
...

(B−�A)

(∆; Γ)
...
A

B
(−�Edp)

(∆; Γ)
...
A

(∆′; Γ′)
...
B

(A→ B)
(→ Idp)

(∆; Γ)
...

(A→ B)

A
(→ Edp)

(∆; Γ)
...

(A→ B)

B
(→ Edp)
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We note the following facts.

Observation

Let ¬Θ := {¬A | A ∈ Θ} and −Θ := {−A | A ∈ Γ} for a set of
formulas Θ. If Θ = ∅, then ¬Θ := −Θ := ∅.

1 (∆; Γ) ` A iff (∆; Γ) `d ¬A; (∆; Γ) `d A iff (∆; Γ) ` −A.

2 (∆; Γ) ` A iff (∆ ∪ −Γ;∅) ` A and (∆; Γ) `d A iff
(∅; Γ ∪ ¬∆) `d A.

3 (∆; Γ) ` ¬A iff (∆; Γ) `d −¬A; (∆; Γ) `d ¬A iff
(∆; Γ) ` −¬A.

4 (∆; Γ) ` −A iff (∆; Γ) `d ¬ − A; (∆; Γ) `d −A iff
(∆; Γ) ` ¬ − A.
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Observation

1 N2Int restricted to LInt, sets of assumptions, and the Ip and
Ep rules is a natural deduction proof system NInt for Int.

2 Refer to the restriction of N2Int to LDualInt, sets of
counterassumptions, and the Idp and Edp rules as NDualInt.
There is an isomorphism between proofs in NInt and dual
proofs in NDualInt.

3 There is an isomorphism between dual proofs in NDualInt and
derivations in L.Tranchini’s (2012) multiple-conclusion natural
deduction proof system for DualInt.

Proof. 1.: consider the standard natural deduction proof system
for Int, for example in (Prawitz 1965).
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2.: The function δ from LInt to LDualInt is defined as follows:

δ(p) = p
δ(>) = ⊥ δ(⊥) = >

δ((A ∧ B)) = (δ(A) ∨ δ(B)) δ((A ∨ B)) = (δ(A) ∧ δ(B))
δ((A→ B)) = (δ(B)−� δ(A)).

We extend δ to a bijection between the proofs in NInt and the dual

proofs in NDualInt: δ(A) = A, every Ip rule is mapped to the Idp
rules for the dual connective, and every Ep rule is mapped to the
Edp rule for the dual connective.We have, for example,

δ




[A],∆
...
B

(A→ B)
(→ Ip)


 =

δ(∆), Jδ(A)K
...

δ(B)

(δ(B)−� δ(A))
(−� Idp)

where δ(∆) = {δ(B) | B ∈ ∆}.
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The function δ is an isomorphism between proofs in NInt and dual
proofs in NDualInt. Π is a proof of A from ∆ in NInt iff δ(Π) is a
dual proof of δ(A) from δ(∆) in NDualInt; δ−1(δ(π)) = π for
every proof π in NInt.

3.: We combine the isomorphism between derivations in the
multiple-conclusion natural deduction system for DualInt in
(Tranchini 2012) and proofs in NInt with the isomorphism δ
between between proofs in NInt and dual proofs in NDualInt. 2

Item 1 of the first observation reveals the difference with strong
negation as a switch between provability and dual provability; the
back–and-forth transition between proofs and dual proofs is
accomplished not by a single negation operation but by a division
of labour between intuitionistic negation and co-negation:

A
−A

A
¬A

−A

A
¬A
A
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The proof system N2Int is sound and complete with respect to its
relational semantics.

Theorem

Let A be an L2Int-formula and let {A1, . . . ,Ak}, {B1, . . . ,Bm} be
finite, possibly empty sets of L2Int-formulas.

1 ({A1, . . . ,Ak}; {B1, . . . ,Bm}) ` A iff
{A1, . . . ,Ak ,−B1, . . . ,−Bm} |= A;

2 ({A1, . . . ,Ak}; {B1, . . . ,Bm}) `d A iff
{¬A1, . . . ,¬Ak ,B1, . . . ,Bm} |=d A.

Proof. See (Wansing 2013, Wansing 2015a). 2
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Definition

Let Φ′ = {p′ | p ∈ Φ}. The translation τ from L2Int into LInt based on
the set of atomic formulas Φ ∪ Φ′ is defined as follows :

τ(p) := p τ(−p) = p′

τ(>) := > τ(−>) := ⊥
τ(⊥) := ⊥ τ(−⊥) := >

τ(A ∧ B) := τ(A) ∧ τ(B) τ(−(A ∧ B)) := τ(−A) ∨ τ(−B)
τ(A ∨ B) := τ(A) ∨ τ(B) τ(−(A ∨ B)) := τ(−A) ∧ τ(−B)
τ(A→ B) := τ(A)→ τ(B) τ(−(A→ B)) := τ(A) ∧ τ(−B)
τ(A−�B) := τ(A) ∧ τ(−B), τ(−(A−�B)) := τ(−B)→ τ(−A)

if A 6≡ >
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Definition

Let Φ′ = {p′ | p ∈ Φ}. The translation ζ from L2Int into LDualInt based
on the set of atomic formulas Φ ∪ Φ′ is defined as follows:

ζ(p) := p ζ(¬p) = p′

ζ(>) := > ζ(¬>) := ⊥
ζ(⊥) := ⊥ ζ(¬⊥) := >

ζ(A ∧ B) := ζ(A) ∧ ζ(B) ζ(¬(A ∧ B)) := ζ(¬A) ∨ ζ(¬B)
ζ(A ∨ B) := ζ(A) ∨ ζ(B) ζ(¬(A ∨ B)) := ζ(¬A) ∧ ζ(¬B)
ζ(A−�B) := ζ(A)−� ζ(B) ζ(¬(A−�B)) := ζ(¬A) ∨ ζ(B)
ζ(A→ B) := ζ(¬A) ∨ ζ(B), ζ(¬(A→ B)) := ζ(¬B)−� ζ(¬A)

if B 6≡ ⊥

Theorem

Let A be any formula from L2Int. Then 1. |=2Int A iff |=Int τ(A), and
2. |=d

2Int A iff |=d
DualInt ζ(A).
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Normalization for 2Int

Detour conversions
In addition to the intuitionistic detour (or β) conversions for proofs
there are now detour conversions for dual proofs. Let D, D′, D1,
D2 stand for derivations in N2Int. The derivations on the left hand
side of ; are converted into the derivations on the right hand side
of ;; i ∈ {1, 2}:
∧-conversions:

D1

A1

D2

A2

A1 ∧ A2

Ai

;
Di

Ai

D
Ai

A1 ∧ A2

JA1K
D1

C

JA2K
D2

C

C

;

D
Ai
Di

C
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∨-conversions:

D
Ai

A1 ∨ A2

[A1]
D1

C

[A2]
D2

C
C

;

D
Ai
Di

C

D1

A1

D2

A2

A1 ∨ A2

Ai

;
Di

Ai

→-conversions:

[A]
D
B

A→ B
D1

A
B

;

D1

A
D
B

D1

A

D2

B
A→ B

A

;
D1

A

D1

A

D2

B
A→ B

B

;
D2

B
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−� -conversions:

D1

A

D2

B
A−�B

A

;
D1

A

D1

A

D2

B
A−�B

B

;
D2

B

JAK
D
B

B−�A

D1

A

B

;

D1

A
D
B

Permutation conversions

Depending on whether ∨-eliminations from proofs or
∧-introductions into dual proofs are permuted over eliminations
from proofs or dual proofs, we get four different kinds of
permutation conversions.

D
A ∨ B

D1

C
D2

C
C D′

D
Ep rule

;
D

A ∨ B

D1

C D′
D

D2

C D′
D

D

48 / 55

H. Wansing: A more general general proof theory

176



Assertion and denial, compositionality, and co-implication
Natural deduction for 2Int

Faithful embeddings
Normal forms for 2Int

D
A ∧ B

D1

C

D2

C
C D′

D
Ep rule

;
D

A ∨ B

D1

C D′
D

D2

C D′
D

D

D
A ∨ B

D1

C
D2

C
C D′

D
Edp rule

;
D

A ∨ B

D1

C D′
D

D2

C D′
D

D

D
A ∧ B

D1

C

D2

C
C D′

D
Edp rule

;
D

A ∨ B

D1

C D′
D

D2

C D′
D

D
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Simplification conversions

Next to simplification conversions arising from ∨-eliminations
(from proofs) in which no assumptions are discharged, we also
consider simplification conversions arising from ∧-introductions
(into dual proofs) in which no counterassumptions are cancelled.

D
A ∨ B

D1

C
D2

C
D

;
Di

C

D
A ∧ B

D1

C

D2

C
D

;
Di

C

where no assumptions are cancelled by ∨Ep or ∧Edp in Di for
i ∈ {1, 2}.
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Normal forms for 2Int

We refer to the relation defined by the above conversions that
exhibit only proofs (dual proofs) as ;Int (;DualInt).

Observation

Let D, D′ be derivations in N2Int. If D ;Int D′, then
δ(D) ;DualInt δ(D′).

Definition

A derivation in N2Int is in normal form iff there is no derivation to
which it can be converted.
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Observation

Let Cσ be the result of replacing every occurrence of an atom p′ in
C by −p, and let A be a formula of L2Int based on Φ. The
following derivability statements can be verified by presenting
normal proofs, respectively normal dual proofs:

1. ({A};∅) ` (τ(A))σ; 2. (∅; {A}) ` (τ(−A))σ;
3. ({(τ(A))σ};∅) ` A;
4. ({(τ(−A))σ};∅) `d A.

Theorem

For every derivation of a formula A in N2Int from a pair (∆; Γ) of
finite sets of assumptions and counterassumptions there exists a
normal derivation of A from (∆; Γ)
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Proof. Suppose first that (∆; Γ) ` A and assume without loss of
generality that ∆ = {A1, . . . ,Ak} and Γ = {B1, . . . ,Bm}.

({A1, . . . ,Ak}; {B1, . . . ,Bm}) ` A

iff ({A1, . . . ,Ak ,−B1, . . . ,−Bm};∅) ` A Obs. 1.2

iff (∅;∅) ` (A1 → (A2 → (. . . (−B1 → (. . . (−Bm → A) . . .)) . . .)))

iff |= (A1 → (A2 → (. . . (−B1 → (. . . (−Bm → A) . . .)) . . .))) Thm. 1.1

iff |=Int τ((A1 → (A2 → (. . . (−B1 → (. . . (−Bm → A) . . .)) . . .)))) Thm. 2.1

iff ∅ `NInt τ((A1 → (A2 → (. . . (−B1 → (. . . (−Bm → A) . . .)) . . .)))) Obs. 2.1

iff ∅ `NInt (τ(A1)→ (. . . (τ(−B1)→ (. . . (τ(−Bm)→ τ(A)) . . .)) . . .)) Def. τ

iff {τ(A1), . . . , τ(Ak), τ(−B1), . . . , τ(−Bm)} `NInt τ(A)

only if there is normal proof of τ(A) from
{τ(A1), . . . , τ(Ak), τ(−B1), . . . , τ(−Bm)} in NInt
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Any such normal proof π′ in NInt is a normal proof of τ(A) from
({τ(A1), . . . , τ(Ak), τ(−B1), . . . , τ(−Bm)}; ∅) in N2Int and L2Int

based on Φ ∪ Φ′. We transform π′ into a normal proof π of A from
({A1, . . . ,Ak}; {B1, . . . ,Bm}) in N2Int and L2Int based on Φ. In a first
step, we replace every occurrence of an atom p′ in π′ by −p. The result
is a normal proof π′′ in N2Int and L2Int. In a second step, we replace
every assumption (τ(Ai ))σ in π′′ (for i ∈ {1, . . . , k}) by a normal proof
of (τ(Ai ))σ from ({Ai};∅) in N2int. In a third step, we replace every
assumption (τ(−Bj))σ (for j ∈ {1, . . . ,m}) by a normal proof of
(τ(−Bj))σ from (∅; {Bj}) in N2int. In a forth and final step, we replace
the conclusion (τ(A))σ of by a normal proof of A from ({(τ(A))σ};∅).
The result is a normal proof π of A from ({A1, . . . ,Ak}; {B1, . . . ,Bm}) in
N2Int and L2Int.

Suppose now that (∆; Γ) `d A. Then (∆; Γ) ` −A. As shown in

the previous case, there exists a normal proof π of −A from (∆; Γ). One

application of (−�Ep) to the conclusion of π gives us a normal dual

proof of A from (∆; Γ). 2
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Conclusion

If (i) assertion and denial as well as their internal counterparts,
judgement and dual judgement, are taken to be generic actions
that are on a par, (ii) a compositional proof theoretic semantics for
logics of constructible falsity is desired, and (iii) co-implication is
taken seriously as a dual of implication, then it makes much sense
to consider in addition to proofs also dual proofs.

General proof theory can be generalized to a more comprehensive
theory of derivability, namely to a study of proofs and dual proofs
in their own right where one is interested in general questions
about their nature and structure.

We may also conclude that logic is not as pair (L,`) consisting of
a language and a consequence relation, but as a triple (L,`,`d)
consisting of a language, a consequence relation, and a dual
consequence relation (or a quintuple (L,`, |=,`d , |=d) instead of a
triple (L,`, |=)).
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Jon Barwise, Handbook of Mathematical Logic (1977)

... the informal notion of provable used in mathematics is made precise by
the formal notion provable in first-order logic. Following a sug[g]estion of
Martin Davis, we refer to this view as Hilbert’s Thesis.
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Saul Kripke, The Church-Turing “Thesis” as a Special Corollary (2013)

Now I shall state another thesis which I shall call “Hilbert’s thesis,”
namely, that the steps of any mathematical argument can be given in a
language based on first-order logic (with identity).

There is a footnote added to “Hilbert’s thesis” (see below).
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Stewart Shapiro, The Open Texture of Computability (2013)

We might define “Hilbert’s thesis” to be the statement that a text
constitutes a proof if and only if it corresponds to a formal proof
(although any of half a dozen other names would have done just as
well—including that of Alonzo Church).
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Multiple other references:

Lon A. Berk. Hilbert’s Thesis: Some Considerations about
Formalization of Mathematics.
PhD Thesis, MIT, September 1982, supervised by George Boolos.

Boolos, Burgess, Jeffrey. Computability and Logic.
§14.3. Other Proof Procedures and Hilbert’s Thesis

Dershowitz, Gurevich (2008) already refer to the use of “Hilbert’s
thesis” by Kripke.

Stewart Shapiro: Necessity, Meaning, and Rationality (2008)

. . .
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Various forms of Hilbert’s thesis

1 Every mathematical proof can be formalized in ZFC.
“ZFC version”

2 Every mathematical proof can be formalized in first-order logic.
→ Barwise

3 Every mathematical statement can be formalized in first-order logic.
“First-order version (statement)”

4 Every mathematical proof can be formalized.
→ Shapiro

5 Every mathematical proof needs only finitly many steps.
“Finiteness version”
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Kripke’s Footnote

Martin Davis originated the term “Hilbert’s thesis”; see Barwise (1977, 41).

The version stated here, however, is weaker. Rather than referring to
provability, it is simply that any mathematical statement can be formulated
in a first-order langugage. Thus, it is about statability, rather than
provability.

Very possibly the weaker thesis about statability might have originally been
intended. Certainly Hilbert and Ackermann’s famous textbook still regards
the completeness of conventional predicate logic as an open problem.

Had Gödel not solved the problem in the affirmative a stronger formalism
would have been necessary, or conceivably no complete system would have
been possible.

Note also that Hilbert and Ackermann do present the “restricted calculus,”
as they call it, as a fragment of the second-order calculus, and ultimately of
the logic of order ω. However, they seem to identify even the second-order
calculus with set theory, and mention the paradoxes. Little depends on these
exact historical points.
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Various forms of Hilbert’s thesis

1 Every mathematical proof can be formalized in ZFC.
“ZFC version”

2 Every mathematical proof can be formalized in first-order logic.
→ Barwise

3 Every mathematical statement can be formalized in first-order logic.
→ Kripke

4 Every mathematical proof can be formalized.
→ Shapiro

5 Every mathematical proof needs only finitly many steps.
“Finiteness version”
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Hilbert’s Thesis — Finiteness version

Every mathematical proof needs only finitly many steps.

Seems to be trivial; rather part of a definition of proof than a “Thesis”.

Only version of which we have hard textual evidence in Hilbert’s texts.

Excludes, in some sense, Second-Order Logic.
I Of course, Hilbert could not have been

aware of it (before 1931).
I Gives, in this way, evidence for the

first-order versions.

Challenges the ω rule (suggested by Hilbert himself!).
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Hilbert’s Thesis — ZFC version

Every mathematical proof can be formalized in ZFC.

In this form, not forwarded by anybody.

At best, an instance of the thesis:

Every mathematical proof can be formalized in set theory.

Could be considered for a “statability version”.

Added here, because it is the only version corresponding properly to
Church’s Thesis . . .

. . . or not, as we will argue.
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Church’s Thesis

Every intuitively computable function is λ definable.

You may replace λ definability by your favorite (Turing-complete)
notion of computability:

I µ recursion
I Turing computable
I . . .

Reinhard Kahle Is there a “Hilbert Thesis”? 29.11.2015 11 / 16

What’s your reason to believe in Church’s Thesis?

My reason is Kleene’s:

Kleene, 1981

When Church proposed this thesis, I sat down to disprove it by
diagonalizing out of the class of the λ-definable functions. But, quickly
realizing that the diagonalisation cannot be done effectively, I became
overnight a supporter of the thesis.

Diagonalization is blocked by partiality (here in a strict setting):

I (λx .xx)(λx .xx) ↑
I There is no λx .t such that (λx .t) s ↓, if s ↑.
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Is Hilbert’s Thesis immune to diagonalization?

1 ZFC version

2 First-order verison (proof)

3 First-order verison (statement)

4 Formalization version

5 Finiteness version

2–4 Too vague, in some sense.

5 Immune, but very weak Thesis.

1 The only form comparable with Church Thesis, as it refers to a
concrete system (as CT to λ definability) . . .

. . . but clearly subject to diagonalization:
I Just add a new large cardinal to ZFC (and any reasonable extension),

closed under the cardinal construction principle used before
(echo of Cantor’s Absolute).
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New question

Is there a concept of “partial proof” corresponding to “partial function”?
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Extended Curry-Howard isomorphism?

Recall (our) reason for Church’s Thesis:

Intuitive Computability corresponds to λ terms.

Diagonalization is blocked by partiality.

Curry-Howard isomorphism

Typed λ terms can be considered as notations for natural deduction
derivations (in an intuitionistic setting).

Untyped λ calculus

Partiality comes in by use of (untyped/untypable) self-application:
λx .xx .

The key tool is the Curry’s paradoxical combinator :
Y = λf .(λx .f (xx))(λx .f (xx))
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Extended Curry-Howard isomorphism?

Goal

Extending the Curry-Howard isomorphism covering the Y combinator.

Y should give rise to “partial proofs”.

1st application: Y , Second Recursion Th. & Diagonalizationlemma

There is a recognizable parallel between
I Y
I The proof of Kleene’s second recursion theorem
I The proof of the Diagonalizationlemma (Gödel/Carnap).

This correspondence should become formal!

2nd application: Partial Functions in Martin-Löf Type Theory.
I Partial Functions are necessary for an Extended Predicative Mahlo

Universe.
I Not yet formalizable in Martin-Löf Type Theory.
→ Kahle/Setzer: The Limits of the Curry-Howard Isomorphism

Functions, Proofs, Constructions. Tübingen, 21.2.2014
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Introduction

– Common conception: logical consequence

can be defined in two main ways.

- Model-theoretically: Consequence is taken,

to be preservation (also called propagation or

transmission) of truth over all models:

Γ |= ϕ iff for every model M, if M |= Γ then

M |= ϕ

– Two characteristics:

necessity: Here manifested by the universal

quantification over all models.

formality: The truth in models is in virtue of

(logical) form, depending on the logical con-

stants and their arrangement.

- Proof-Theoretically: For a suitable proof-

system N (which I will take here as ND),

consequence is taken as derivability in N , de-

noted `N ; Γ`Nϕ iff there exists an N -derivation

of ϕ from (open) assumptions Γ.

Typically, (strong) soundness and complete-

ness theorems, that is Γ`Nϕ iff Γ |= ϕ, estab-

lish the coextensiveness of those two notions

of consequence.

1
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What else could be propagated?

– That logical consequence involves preser-

vation of something, not necessarily of truth,

has been suggested by many.

- Information: propagation of the informa-

tion (in a situation) is underlying consequence

of Relevant Logic(s).

- Ambiguity: This notion suggests to treat

a proposition p ambiguously as two different

propositions, pt and pf . A measure of ambi-

guity of an inconsistent Γ is the minimal num-

ber of proposition in Γ the treatment of which

as ambiguous renders Γ consistent. Propaga-

tion of ambiguity is used for defining conse-

quence for paraconsistent logics.

- Precisification: In the context of vague-

ness, there is an appeal to propagation of

super-truth (i.e., truth in all precisifications)

in defining logical consequence.

2

Propagation and meaning

– A natural question: what is common to

all the “things” being suggested as propa-

gated by the various consequence relations

mentioned above?

- I want to argue that they all serve (either

explicitly or implicitly) as central concepts on

which theories of meaning are based.

- Two of the main theories of meaning are:

- Model-Theoretic Semantics (MTS): The

central concept of MTS is truth (in arbitrary

models). Meaning is defined as truth-conditions.

Proof-Theoretic Semantics (PTS): The cen-

tral concept of PTS is proof, or more gener-

ally, canonical derivation in appropriate meaning-

conferring proof-systems. Meaning is defined

(implicitly or explicitly) by the rules of the

meaning-conferring system.

- The other propagated “things” mentioned

above have a similar role in theories of mean-

ing for Relevant Logic, general paraconsistent

logics and for languages with vagueness.

3
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A principle

–Consequently, I suggest the following infor-
mal principle.
meaning-based logical consequence: In a
theory of meaning T , logical consequence is
based on the propagation of the central con-
cept of T .

By being faithful to a theory of meaning T I
mean relating the notion of ϕ being a logical
consequence (logically following from) Γ to
the meanings of ϕ and Γ as determined by
that theory of meaning T .
– I want to argue that, in spite of the coex-
tensiveness for many logics of derivability and
preservation of truth in models, if one adheres
to PTS then derivability is not the right defi-
nition of proof-theoretic consequence. While
MTS is faithful to the usual model-theoretic
conception of meaning, PTS is not faithful
to its conception of meaning.
- I suggest another definition of proof-theoretic
consequence that is faithful to PTS, some-
times (i.e., for some logics) coextensive with
derivability, and sometimes – not.

4

Meaning according to PTS

– In the PTS literature, meaning is conceived

as implicitly defined by the I-rules, not ap-

pealing to any proof-theoretic semantic value

as an explicit definition.

- For several purposes, e.g., the construction

of a grammar, an explicit definition is needed.

In MTS, an explicit definition of meaning is

usually taken as the following semantic value:

[[ϕ]] = {M | M |= ϕ}
- Note that MTS is not interested in assign-

ing semantic values to the logical constants

themselves, so usually no definitions of [[∧]],

[[∀]] are considered.

- But what exactly can be taken as an ex-

plicitly defined proof-theoretic semantic value

within PTS as the result of the determina-

tion of meaning via the meaning-conferring

I-rules?

I have suggested such a proof-theoretic se-

mantic value as an explicit definition of mean-

ing. I recapitulate this proposal below.

5
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Canonicity - I

– An important concept in PTS is that of a

canonical proof in N , where a proof of some

compound ϕ is a derivation of ϕ from no open

assumptions (an empty Γ).

definition(canonical proof): A proof D in

N is canonical iff the last rule applied in D is

an I-rule.

-To define proof-theoretic consequence, there

is a need to extend canonicity to arbitrary

N -derivations, including ones with open as-

sumptions.

Definition (canonical derivation from open

assumptions): A N -derivation D for Γ`ψ
(for a compound ψ) is canonical iff it sat-

isfies one of the following two conditions.

(1) The last rule applied in D is an I-rule (for

the main operator of ψ).

The last rule applied in D is an assumption-

discharging E-rule, the major premise of which

is some ϕ in Γ, and its encompassed sub-

derivations D1, · · · ,Dn are all canonical deriva-

tions of ψ.

6

Canonicity - II

– Denote by `cN canonical derivability in N .
Let [[ϕ]]cΓ the (possibly empty) collection of
canonical derivations of ϕ from Γ, and [[ϕ]]∗Γ
the (also possibly empty) collection of all deriva-
tions of ϕ from Γ.
-For Γ empty, the definition reduces to that
of a canonical proof.
- The important observation regarding the re-
cursion is that it always terminates via the
first clause, namely by an application of an I-
rule. Call such an application of an I-rule an
essential application, the outcome of which
is propagated throughout the canonical sub-
derivation.
-Note also that, similarly to the case of canon-
ical proofs, there are no canonical derivations
for an atomic sentence, which by definition
has no introducible operators. Traditionally,
the PTS programme views the meaning of an
atomic sentence to be given, possibly exter-
nally. To overcome this non-specificity, I take
here the rule of assumption Γ, p`p to consti-
tute the canonical way an atomic sentence is
introduced into a derivation.

7
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Reified meaning, Grounds for assertion

– Definition (sentential semantic values):

(1) For a compound ϕ, its meaning (con-
tributed semantic value) [[ϕ]], is [[ϕ]] = λΓ.[[ϕ]]cΓ
(2) For an arbitrary (atomic or compound)
ϕ, its contributing semantic value is given as
[[ϕ]]∗ = λΓ.[[ϕ]]∗Γ
– The definition of proof-theoretic consequence
(pt-consequence) rests on the notion of grounds
for assertion for ϕ, closely related to [[ϕ]].
Definition ( grounds for assertion): GA[[ϕ]] =
{Γ | Γ`cϕ}
-Thus, any Γ that canonically derives ϕ serves
as grounds for assertion of ϕ.
– The notion of grounds considered here is
different than, though in the same spirit as,
the grounds considered by Prawitz. The grounds
here are formal constructs, collections of sen-
tences (assumptions) canonically deriving a
sentence (conclusion). On the other hand
Prawitz considers grounds as mental coun-
terparts, associated with possession of the
formal grounds and justifying the epistemic
acts of inference, assertion.

8

Collective grounds

– Next, I extend the definition of the grounds

for assertion of a single sentence to grounds

for the collective assertion of a finite, non-

empty collection of sentences, say ∆.

- There are two natural options distinguished

by the way assumptions are combined.

common grounds: GAc[[∆]] =df. ∩ψ∈∆GA[[ψ]].
joint grounds: GAj[[∆]] =df. ◦ψ∈∆GA[[ψ]],
where ‘◦’ is fusion, known also as intensional

conjunction.

- The difference between conjunction and fu-

sion originates in the I-rules for conjunction

being additive (or shared context), while the

I-rules for fusion are multiplicative (context

free).

- When I want to remain neutral regarding

this difference in combining grounds, I will

speak generically of “collective grounds”, with

a generic notation GA[[∆]] (without a quali-

fying superscript).

9
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Proof-Theoretic consequence

– Based on the definitions of grounds combi-

nation, I define two notions of proof-theoretic

consequence (pt-consequence).

Definition (proof-theoretic consequences):

- conjunctive pt-consequence: ψ is a conjunc-

tive proof-theoretic consequence of Γ (Γ 
c
ψ) iff GAc[[Γ]] ⊆ GA[[ψ]]. [explosion!]

-fused pt-consequence: ψ is a fused proof-

theoretic consequence of Γ (Γ 
j ψ) iff GAj[[Γ]] ⊆
GA[[ψ]]. [Relevant Grounds]

Thus, both pt-consequences are based on grounds

propagation: every collective grounds for col-

lectively asserting all of Γ (depending on the

mode of combination of grounds employed)

are already grounds for asserting ψ.

By this definition, ψ is a pt-consequence of Γ

according to ψ’s meaning as pt-consequence

involves canonical derivability.

10

Relating pt-consequence to derivability

Definition (smoothness): An ND-system

N is proof-theoretically smooth iff for every

Γ and every compound ϕ: Γ`Nϕ iff Γ`cNϕ
-That is, a compound ϕ is N -derivable from

Γ iff it is canonically derivable.

- In a smooth N , derivability is coextensive

with pt-consequence.

- This is another formulation of Dummett’s

Fundamental Assumption (FA), extended from

proofs to derivations from open assumptions.

Proposition: The ND-system NJ (for propo-

sitional intuitionistic logic is proof-theoretically

smooth.

As for classical logic, suppose we consider the

version of NK obtained by adding to NJ the

rule for double-negation elimination.

Γ`NK¬¬ϕ
Γ`NKϕ (DNE)

Proposition: The ND-system NK (for propo-

sitional classical logic) is not proof-theoretically

smooth.

11
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1
Exp-log normal form

Types / Propositional formulas / Exponential polynomials

A common language E for products, coproducts, and exponentials:

E 3 F ,G ::= F ×G | F + G | F → G | Xi

E 3 F ,G ::= F ∧G | F ∨G | F ⊃ G | Xi

E 3 F ,G ::= FG | F + G | GF | Xi

where Xi are type variables / atomic propositions / variables.
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Tarski’s high-school algebra problem

Can all true exponential polynomial equations,

N+ � f = g,

be derived using the high-school identities:

f .
= f 1f .

= f

f + g .
= g + f f 1 .

= f

(f + g) + h .
= f + (g + h) 1f .= 1

fg .
= gf f g+h .

= f g f h

(fg)h .
= f (gh) (fg)h .

= f hgh

f (g + h)
.

= fg + fh (f g)h .
= f gh

?

Danko Ilik – High-school sequent calculus and an intuitionistic formula hierarchy preserving identity of proofs 5

Isomorphism of types / Strong equivalence of formulas

Definition (Type isomorphism)
Types F and G are isomorphic,

F ∼= G,

if there exist S : F → G and T : G→ F such that

λx .S(Tx) =βη λx .x and λy .T (Sy) =βη λy .y .

Danko Ilik – High-school sequent calculus and an intuitionistic formula hierarchy preserving identity of proofs 6
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Strong equivalence / Equality of exponential polynomials

Theorem
Strong equivalence generalizes equality of multivariate exponential
polynomials:

F ∼= G implies N+ � F = G.

A non-strong-equivalence procedure, assuming we can solve F = G,
• like in absence of implication (canonical polynomials),
• or in absense of disjunction (Curried types),

but not clear in simultaneous presence of ⊃ and ∨.

Danko Ilik – High-school sequent calculus and an intuitionistic formula hierarchy preserving identity of proofs 7
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A quasi-normal form for propositional formulas (Du Bois Reymond,
Hardy 1910)

Decompose exponentiation in terms of unary exp and log,

GF = eF log G = exp (F log G),

i.e. decompose implication in terms of two ‘negations’,

F ⊃ G = ¬exp(F ∧ ¬logG).

And we can keep things abstract since exp and log can be seen as
homomorphisms between the additive and multiplicative group in exponential
fields.

In other words, do not treat ¬exp and ¬log as logical connectives but rather as
macros:

exp(F + G) = (expF )(expG) log(FG) = logF + logG

exp(logF ) = F log(expF ) = F

Danko Ilik – High-school sequent calculus and an intuitionistic formula hierarchy preserving identity of proofs 9
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Exp-log normal form (ENF) Operational characterization

Operationally, the exp-log transformation is just orienting the high-school
identities,

F G+H 7→ F GF H

(FG)H 7→ (F H)(GH)

(F G)H 7→ F GH ,

or logically,

G ∨ H ⊃ F 7→ (G ⊃ F ) ∧ (H ⊃ F )

H ⊃ F ∧G 7→ (H ⊃ F ) ∧ (H ⊃ G)

H ⊃ G ⊃ F 7→ G ∧ H ⊃ F .

Danko Ilik – High-school sequent calculus and an intuitionistic formula hierarchy preserving identity of proofs 11

Exp-log normal form (ENF) Inductive characterization

Theorem
A formula F is in exp-log normal form if and only if F ∈ D, where:

D 3 D ::= C | C ∨ D

C 3 C ::= A | A ∧ C

A 3 A ::= Xi | C ⊃ Xi | C ⊃ C′ ∨ D

The inductive characterization is slightly flexibility, for instance, working with
n-ary ∧ and ∨ gives:

D 3 D ::= Xi | C1 ∨ · · · ∨ Cn (n ≥ 2)

C 3 C ::= (C1 ⊃ D1) ∧ · · · ∧ (Cn ⊃ Dn) (n ≥ 0)

Danko Ilik – High-school sequent calculus and an intuitionistic formula hierarchy preserving identity of proofs 12
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2
Application: Identity of proofs

λ-Calculus with sums Syntax and =βη

M,N ::= xτ | (Mτ→σNτ )σ | (π1Mτ×σ)τ | (π2Mτ×σ)σ | δ(Mτ+σ, xτ
1 .N

ρ
1 , x

σ
2 .N

ρ
2 )ρ |

|(λxτ .Mσ)τ→σ | 〈Mτ ,Nσ〉τ×σ | (ι1Mτ )τ+σ | (ι2Mσ)τ+σ

(λx .N)M =β N{M/x} (β→)

πi〈M1,M2〉 =β Mi (β×)

δ(ιiM, x1.N1, x2.N2) =β Ni{M/xi} (β+)

N =η λx .Nx x 6∈ FV(N)
(η→)

N =η 〈π1N, π2N〉 (η×)

N{M/x} =η δ(M, x1.N{ι1x1/x}, x2.N{ι2x2/x}) x1, x2 6∈ FV(N)
(η+)

Danko Ilik – High-school sequent calculus and an intuitionistic formula hierarchy preserving identity of proofs 14
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λ-Calculus with sums Trouble

Example (at type τ + σ → (τ + σ → ρ) → ρ)

λx .λy .yδ(x , z.ι1z, z.ι2z)

λx .λy .δ(x , z.y(ι1z), z.y(ι2z))

λx .δ(x , z.λy .y(ι1z), z.λy .y(ι2z))

Example (at type (τ1 → τ2) → (τ3 → τ1) → τ3 → τ4 + τ5 → τ2)

λxyzu.x(yz)

λxyzu.δ(δ(u, x1.ι1z, x2.ι2(yz)), y1.x(yy1), y2.xy2).

Danko Ilik – High-school sequent calculus and an intuitionistic formula hierarchy preserving identity of proofs 15

λ-Calculus with sums Trouble

Example (at type τ + σ → (τ + σ → ρ) → ρ)

λx .λy .yδ(x , z.ι1z, z.ι2z)

λx .λy .δ(x , z.y(ι1z), z.y(ι2z))

λx .δ(x , z.λy .y(ι1z), z.λy .y(ι2z))

Example (at type (τ1 → τ2) → (τ3 → τ1) → τ3 → τ4 + τ5 → τ2)

λxyzu.x(yz)

λxyzu.δ(δ(u, x1.ι1z, x2.ι2(yz)), y1.x(yy1), y2.xy2).

Danko Ilik – High-school sequent calculus and an intuitionistic formula hierarchy preserving identity of proofs 16

D. Ilik: High-school sequent calculus and an intuitionistic formula hierarchy

204



βη-Congruence classes at ENF type

When the isomorphism τ ∼= σ is witnessed by λ-terms S,T , and when σ is a
smaller type than τ , we can decide =βη at σ rather than at τ :

τ S

S

σ
T

T

In particular, when σ contains no more sum types, we collapse τ to a singleton.

Danko Ilik – High-school sequent calculus and an intuitionistic formula hierarchy preserving identity of proofs 17

βη-Congruence classes at ENF type
Allows to choose the plane at which we prefer to look at λ-term representations:

βη
-equivalence classes at type enf (τ)

βη
-equivalence classes at type τ

In particular, there may be better planes than the one of quasi-normal form
enf (τ) (ex. ones that involve concrete datatypes)
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Canonical representations of the two examples

Example (at type τ + σ → (τ + σ → ρ) → ρ)

λx .λy .yδ(x , z.ι1z, z.ι2z)

λx .λy .δ(x , z.y(ι1z), z.y(ι2z))

λx .δ(x , z.λy .y(ι1z), z.λy .y(ι2z))

Canonical representative: 〈λx .(π1(π2x))(π1x), λx .(π2(π2x))(π1x)〉

Example (at type (τ1 → τ2) → (τ3 → τ1) → τ3 → τ4 + τ5 → τ2)

λxyzu.x(yz)

λxyzu.δ(δ(u, x1.ι1z, x2.ι2(yz)), y1.x(yy1), y2.xy2).

Canonical representative:
〈λx .(π1x)((π1π2x)(π1π2π2x)), λx .(π1x)((π1π2x)(π1π2π2x))〉

Danko Ilik – High-school sequent calculus and an intuitionistic formula hierarchy preserving identity of proofs 19

Terms of ENF type

WLOG, we need only consider terms of ENF type:

M,N ::= xd | (Mc→pNc)p | (Mc→c′+d Nc)c′+d |
(π1Ma×c)a | (π2Ma×c)c | δ(Mc+d , xc

1 .N
d′
1 , x

d
2 .N

d′
2 )d′ |

(λxc .Mp)c→p | (λxc .Mc′+d )c→c′+d |
〈Ma,Nc〉a×c | (ι1Mc)c+d | (ι2Md )c+d

Theorem
Let P,Q be terms of type τ and let S : τ → enf (τ) ,T : enf (τ)→ τ be a
witnessing pair of terms for the isomorphism τ ∼= enf (τ). Then, P =βη Q if and
only if SP =e

βη SQ and if and only if T (SP) =βη T (SQ).
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Equations at ENF type

An equational theory =e
βη refining =βη:

(λxc′ .N
p

c+d )M =e
β N{M/x} (βe

→)

πi〈Ma
1 ,M

c
2 〉 =e

β Mi (βe
×)

δ(ιiM, x1.N1, x2.N2)d =e
β Ni{M/xi} (βe

+)

N
c→p

c′→c+d =e
η λx .Nx x 6∈ FV(N)

(ηe→)

Na×c =e
η 〈π1N, π2N〉 (ηe×)

N
p

c+d {M/x} =e
η δ(M, x1.N{ι1x1/x}, x2.N{ι2x2/x}) x1, x2 6∈ FV(N)

(ηe+)

πiδ(M, x1.N1, x2.N2) =e
η δ(M, x1.πiN1, x2.πiN2)c (ηeπ)

λy .δ(M, x1.N1, x2.N2) =e
η δ(M, x1.λy .N1, x2.λy .N2)

c→p
c′→c+d y 6∈ FV(M)

(ηeλ)
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3
Application: Intuitionistic “arithmetical” hi-
erarchy
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From propositional towards predicate calculus

What is the exponential polynomial representation of intuitionistic ∀ and ∃?

Danko Ilik – High-school sequent calculus and an intuitionistic formula hierarchy preserving identity of proofs 23

The classical arithmetical hierarchy

Theorem

Every formula F ∈ Σ0
n ∪ Π0

n, where the classes Σ0
n and Π0

n are based on
classical equivalence↔c :

F ∈ Π0
n+1 iff there exists G ∈ Σ0

n such that F ↔c ∀xG

F ∈ Σ0
n+1 iff there exists G ∈ Π0

n such that F ↔c ∃xG

Π0
0 = Σ0

0

Prenex rules.

∀xF ∨G↔c ∀x(F ∨G) ∃xF ∧G↔c ∃x(F ∧G) where x 6∈ FV(G)

∀xF ∧G↔c ∀x(F ∧G) ∃xF ∨G↔c ∃x(F ∨G)

¬∃xF ↔c ∀x¬F ¬∀xF ↔c ∃x¬F ,
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Prenex rules seen intuitionistically

Half of the rules are not valid intuitionistically, but half are strong equivalences!

∀xF ∨G 6↔i ∀x(F ∨G) ∃xF ∧G 6↔i ∃x(F ∧G)

∀xF ∧G ∼= ∀x(F ∧G) ∃xF ∨G ∼= ∃x(F ∨G)

(∃xF ) ⊃ G ∼= ∀x(F ⊃ G) (∀xF ) ⊃ G 6↔i ∃x(F ⊃ G)

where x 6∈ FV(G).

Danko Ilik – High-school sequent calculus and an intuitionistic formula hierarchy preserving identity of proofs 25

Polynomial notation for intuitionistic anti-prenexing

So, instead of pushing quantifiers outside, in intuitionistic logic we should be
pushing them inside!

∀x(F ∧G) ∼= (∀xF ) ∧ (∀xG) (FG)x = F x Gx

∃x(F ∨G) ∼= (∃xF ) ∨ (∃xG) x(F + G) = xF + xG

∀x(F ⊃ G) ∼= (∃F ) ⊃ G (GF )x = GxF (x 6∈ FV(G))

Exp-polynomial notation is retrieved if we reserve lowercase x , y , . . . for
variables and uppercase F ,G,X , . . . for formulas.
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The exp-log normal form extended to quantifiers

Recall the inductive characterization for propositional formulas:

Σ 3 C ::= > | A1 ∧ · · · ∧ An n ≥ 1

Π 3 A ::= C ⊃ P | C ⊃ (C1 ∨ · · · ∨ Cn) n ≥ 2

Extending with the quantifier isomorphisms gives:

Σ 3 C ::= > | A1 ∧ · · · ∧ An | ∃xC n ≥ 1

Π 3 A ::= C ⊃ P | C ⊃ (C1 ∨ · · · ∨ Cn) | C ⊃ ∃xC1 | ∀xA | ∀x∃yC n ≥ 2

Danko Ilik – High-school sequent calculus and an intuitionistic formula hierarchy preserving identity of proofs 27
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Retrieving the classes Π and Σ

The obtained hierarchy is “arithmetical” for it does not allow a linear indexing: Π
and Σ have more to do with Π- and Σ-types of Martin-Löf than with the classical
hierarchy.

Theorem
Every formula is intuitionistically strongly equivalent (isomorphic) to one in
Σ ∪ Π, where

Σ 3 C ::= > | A1 ∧ · · · ∧ An | ∃xC n ≥ 1

Π 3 A ::= C ⊃ P | C ⊃ (C1 ∨ · · · ∨ Cn) | C ⊃ ∃xC1 | ∀xA | ∀x∃yC n ≥ 2

Danko Ilik – High-school sequent calculus and an intuitionistic formula hierarchy preserving identity of proofs 29

Π and Σ in presence of intuitionistic choice rules Experimental!

In presence of further isomorphisms for Choice,

∀x∃yF (x , y) ∼= ∃f∀xF (x , fx) (yF )x = y x F x

the hierarchy can be further simplified to:

Σ 3 C ::= > | A1 ∧ · · · ∧ An | ∃xC n ≥ 1

Π 3 A ::= C ⊃ P | C ⊃ (C1 ∨ · · · ∨ Cn) | ∀xA n ≥ 2

This would be the case in Martin-Löf Type Theory.
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4
Application: High-school sequent calculus

Analyze sequent calculi as polynomial transformations

Conventions:
• Turnstile “`” is the top-most ⊃ (implication is right-associative)

Ex. Γ ⊃ F ⊃ G instead of Γ ` F ⊃ G

• Context comma “,” is conjunction ∧

Ex. F ∧G ∧ Γ instead of F ,G, Γ

• Conjunction and disjunction are n-ary
- This avoids having to deal with associativity isomorphisms
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Invertible (asynchronous) rules of LJ

F , Γ→ G
Γ→ F → G

GFΓ

(GF )Γ
(→r )

Γ→ F Γ→ G
Γ→ F ∧G

F ΓGΓ

(FG)Γ
(∧r )

F , Γ→ H G, Γ→ H
F ∨G, Γ→ H

HFΓHGΓ

H(F+G)Γ
(∨l )
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Further invertible rules of LJ (G4ip)

F → G→ H, Γ→ I
F ∧G→ H, Γ→ I

I(HG)F Γ

IHFGΓ
(→∧l )

F → H,G→ H, Γ→ I
F ∨G→ H, Γ→ I

IHF HGΓ

IHF+GΓ
(→∨l )

F ,G, Γ→ H
F ∧G, Γ→ H

HFGΓ

HFGΓ
(∧′l )

All of the invertible (asynchronous) rules shown are formula isomorphisms.

But, not all possible formula isomorphisms are accounted for as proof rules.
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Synchronous rules of LJ (G4ip)

P, Γ→ P PPΓ
P-prime (init)

Γ→ F
Γ→ F ∨G

F Γ

(F + G)Γ
(∨1

r )

Γ→ G
Γ→ F ∨G

GΓ

(F + G)Γ
(∨2

r )

F ,P, Γ→ G
P → F ,P, Γ→ G

GFPΓ

GFP PΓ
P-prime (→P

l )

G→ H, Γ→ F → G H, Γ→ I
(F → G)→ H, Γ→ I

(GF )HGΓIHΓ

IHGF
Γ

(→→l )
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Reasons for working with G4ip

• Practical: minimal set of non-invertible rules (less cases to consider when
doing meta-proofs)

• Possible applications: absence of contraction leaves some hope for
verifying the in-equality interpretation:

For all rules but→→l , we have that F ≤ G,
whenever F represents the premise(s) and G the conclusion.

Taus Brock-Nannestad showed that ≤-interpretation of→→l holds as
well, when G,H, I ≥ 2 !
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Applying ENF to LJ

Recall the inductive hierarchy of propositional formulas:

D 3 D ::= P | C1 ∨ · · · ∨ Cn (n ≥ 2)

C 3 C ::= (C1 → D1) ∧ · · · ∧ (Cn → Dn) (n ≥ 0)

i.e.

D 3 D ::= P | C1 + · · ·+ Cn (n ≥ 2)

C 3 C ::= DC1
1 · · ·DCn

n (n ≥ 0)

And denote by enf (F ) the formula normalization operation.
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Isolating a complete fragment HS of LJ

Use the same ideas as for treating λ-calculus with sums:

Γ ` F S

S

enf
(
F Γ

)

T

T
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A complete fragment HS of LJ

Theorem
Every derivation of F in LJ can be transformed to a derivation of enf (F ) in HS.

Proof.

• Invertible (asynchronous) rules F
G are mapped to enf(F )

enf(G)
— but note that

actually enf (F ) = enf (G) — so no invertible rules are needed in the
target HS!

• Non-invertible (synchronous) rules are mapped to special forms of
themselves [next slide]
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The rules of High-school sequent calculus (HS)

P ∧ C → P PPC P-prime (init)

C → Ci

C → C1 ∨ · · · ∨ Cn

CC
i

(C1 + · · ·+ Cn)C n ≥ 2 (∨i
r )

D1,P,C → D2

P → D1,P,C → D2

DD1PC
2

D
DP

1 PC
2

P-prime (→P
l )

C1,P1 → P2,C2 → P1 P2,C2 → D
(C1 → P1)→ P2,C2 → D

P
C1P

P1
2 C2

1 DP2C2

DP
P

C1
1

2 C2

P-prime (→→l )
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New Applications of Proof Mining to Nonlinear Analysis

Angeliki Koutsoukou-Argyraki (joint work with Ulrich Kohlenbach)

Department of Mathematics, TU Darmstadt, Germany

Tübingen, 29/11/2015

Funded by DFG Project KO 1737/5-2 and IRTG 1529

Origin of proof interpretations

Hilbert’s 2nd problem (1900): Is arithmetic consistent?
Gödel (1931) : Impossible to prove the consistency of a theory
T within T .
Let theories T1, T2 with languages L(T1), L(T2). T2 is
consistent relative to T1 if it can be proved that if T1 is
consistent then T2 is consistent.
A theorem φ ∈ L(T1) transformed into φ′ ∈ L(T2) ; the proof
p of φ transformed in a proof p′ of φ′. This often gives new
quantitative information. Also: p′ using restricted version of
the assumptions of φ, thus proving a more general result φ′.
Gödel’s functional “Dialectica” Interpretation (1958):
consistency of PA reduced to a quantifier-free calculus of
primitive recursive functionals of finite type.
Gödel’s motivation: obtain a relative consistency proof for HA
(and hence for PA).
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Proof Mining

G. Kreisel (1950’s): Unwinding of proofs

“What more do we know if we have proved a theorem by restricted
means than if we merely know that it is true?”

Possible to obtain new quantitative/ qualitative information by
logical analysis of proofs of statements of certain logical form.
Extraction of constructive information from non-constructive
proofs.
Within past ≈ 15 years, U. Kohlenbach et al have applied proof
mining to : approximation theory, ergodic theory, fixed point
theory, nonlinear analysis, and (recently) PDE theory.

Applications described as instances of logical phenomena by
general logical metatheorems.

Herbrand normal form

In general, for a Π0
3 sentence, i.e. of the form

A ≡ ∀k ∃n ∀m A0(k , n,m)

where A0 is quantifier-free, it is not possible to compute a
bound on n.

However: possible to compute a bound on n for AH , the
Herbrand normal form of A;

AH :≡ ∀k ∃n A0(k , n, g(n))

where g is the Herbrand index function (in theories allowing
function variables and function quantifiers it would be
AH :≡ ∀g , k ∃n A0(k , n, g(n))
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Herbrand normal form - Metastability
An instance in analysis-convergence statements

considering a statement of the form

lim
t→∞

P(t) = 0

written as

∀k ∈ N ∃n ∈ N ∀t ≥ n (|P(t)| < 2−k),

by considering the metastable version

∀k ∈ N ∀g : N→ N ∃n ∈ N ∀t ∈ [n, n + g(n)] (|P(t)| < 2−k),

possible to find a computable bound (rate of metastability : a
term by T. Tao) Φ(k , g , ·) depending on general uniform
bounds on the input data, so that n ≤ Φ(k, g , ·).

Application to the Cauchy problem generated by accretive
operators

In the following X is a real Banach space with dual X ∗. A mapping
A : X → 2X will be called an operator on X .

Definition

A is said to be accretive if for all λ ≥ 0, z ∈ Ax , w ∈ Ay

‖x − y + λ(z − w)‖ ≥ ‖x − y‖

equiv. 〈z − w , x − y〉+ ≥ 0
where: 〈y , x〉+ := max{〈y , j〉 : j ∈ J(x)},

J(x) := {j ∈ X ∗; 〈x , j〉 = ‖x‖2, ‖j‖ = ‖x‖}.
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Application to the Cauchy problem generated by accretive
operators

Definition

(J. Garćıa-Falset, 2005)a Let φ : X → [0,∞) continuous with
φ(0) = 0, φ(x) > 0 for x 6= 0 so that for every sequence (xn) in X
such that (‖xn‖) is nonincreasing and φ(xn)→ 0 as n→∞, then
‖xn‖ → 0. A with 0 ∈ Az is said to be φ-accretive at zero if

∀(x , u) ∈ A (〈u, x − z〉+ ≥ φ(x − z)).

a(Garćıa-Falset, J.: The asymptotic behavior of the solutions of the Cauchy
problem generated by φ-accretive operators, J. Math. Anal. Appl. 310 594–608
(2005))

Application to the Cauchy problem generated by accretive
operators
Preliminaries

We introduce the property of uniform accretivity at zero for an
operator A : D(A)→ 2X with 0 ∈ Az as follows:

Definition

(Kohlenbach, K.-A., 2015) An accretive operator A : D(A)→ 2X

with 0 ∈ Az is called uniformly accretive at zero if

∀k ∈ N ∀K ∈ N∗ ∃m ∈ N ∀(x , u) ∈ A

(‖x − z‖ ∈ [2−k ,K ]→ 〈u, x − z〉+ ≥ 2−m)(∗).
Any function Θ(·)(·) : N× N∗ → N is called a modulus of
accretivity at zero for A if m := ΘK (k) satisfies (∗).
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Application to the Cauchy problem generated by accretive
operators
Preliminaries

It is known that the following initial value problem (P1):

u′(t) + A(u(t)) 3 f (t), t ∈ [0,∞)

u(0) = x

where f ∈ L1(0,∞,X ) for each x ∈ D(A) has a unique integral
solution u so that u(t) ∈ D(A) for all t.
Moreover, it is known that for x0 ∈ D(A) (P2):

u′(t) + A(u(t)) 3 0, t ∈ [0,∞)

u(0) = x0

has a unique integral solution given by Crandall-Liggett :

u(t) := S(t)(x0) = lim
n→∞

(I +
t

n
A)−n(x0).

Application to the Cauchy problem generated by accretive
operators

Theorem

(J. Garćıa-Falset, 2005) Let A be an φ-accretive at zero operator
on X so that ∀λ > 0 (D(A) ⊂ R(I + λA)). If

v ′(t) + A(v(t)) 3 0, t ∈ [0,∞), v(0) = x0

has a strong solution for each x0 ∈ D(A), Then for each x ∈ D(A)
the integral solution u(·) of

u′(t) + A(u(t)) 3 f (t), t ∈ [0,∞), u(0) = x

where f (·) ∈ L1(0,∞,X ) converges strongly to the zero z of A as
t →∞.
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Application to the Cauchy problem generated by accretive
operators

Theorem

(Kohlenbach, K.-A., 2015) Same as above except that A is a
uniformly accretive at zero operator on X with a modulus of
accretivity Θ. Then, for each x ∈ D(A) the integral solution u(·) of

u′(t) + A(u(t)) 3 f (t), t ∈ [0,∞), u(0) = x

where f (·) ∈ L1(0,∞,X ) satisfies

∀k ∈ N ∀ḡ : N→ N ∃n̄ ≤ Ψ(k , ḡ ,M,Θ,B)

∀t ∈ [n̄, n̄ + ḡ(n̄)] (‖u(t)− z‖ < 2−k)

with rate of metastability

Ψ(k , ḡ ,M,B,Θ) = g̃ (M·2k+1)(0) + h(g̃ (M·2k+1)(0))

where
g̃(n) := g(n) + n,

( g (0)(k) := k

g (i+1)(k) := g(g (i)(k)) ),

g(n) := ḡ(n + h(n)) + h(n),

h(n) := (B(n) + 2) · 2ΘK(n)(k+2)+1,

K (n) := p
√

2(B(n) + 1)q,
B(n) is a nondecreasing upper bound :B(n) ≥ 1

2‖u(n)− z‖2,

N 3 M ≥ I :=

∫ ∞

0
‖f (ξ)‖dξ.
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One-parameter Nonexpansive Semigroups

Definition

Given a Banach space E and C ⊆ E , a mapping T on C is
nonexpansive if ∀x , y ∈ C ‖Tx − Ty‖ ≤ ‖x − y‖.

Definition

A family {T (t) : t ≥ 0} of T (t) : C → C is called a one-parameter
nonexpansive semigroup on C ⊆ E if :

1 for all t ≥ 0, T (t) is a nonexpansive mapping on C ,

2 T (s + t) = T (s) ◦ T (t),

3 for each x ∈ C , the mapping t → T (t)x from [0,∞) into C is
continuous.

Theorem

(Suzuki (2006))a Let {T (t) : t ≥ 0} a nonexpansive semigroup on
C ⊆ E . Let F (T (t)) the set of fixed points of T (t). Let
α, β ∈ R+, 0 < α < β, α/β ∈ R+ \Q+. Let λ ∈ (0, 1). Then :

⋂

t≥0

F (T (t)) = F (λT (α) + (1− λ)T (β)).

aSuzuki, T. : Common fixed points of one-parameter nonexpansive
semigroups, Bull. London Math. Soc. 38 1009–1018 (2006).
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Main Idea
⋂

t≥0 F (T (t)) ⊆ F (λT (α) + (1− λ)T (β)) is trivial.
We will extract a bound from (the proof of)

⋂

t≥0

F (T (t)) ⊇ F (λT (α) + (1− λ)T (β));

Set
S := λT (α) + (1− λ)T (β).

The above gives for q ∈ C

Sq = q → ∀t ≥ 0 T (t)q = q

i.e.
∀m ∈ N ∀M ∈ N ∀t ∈ [0,M] ∃k ∈ N

(‖Sq − q‖ ≤ 2−k → ‖T (t)q − q‖ < 2−m),

which is a ∀∃ statement.

Main Idea

By proof mining on the proof of Suzuki’s theorem (applying a tool
from logic due to Kohlenbach (2005)), we will extract a
computable bound Ψ > 0 depending on bounds on the input data
so that (where for given b ∈ N let Cb := {q ∈ C : ‖q‖ ≤ b})

∀b ∈ N ∀q ∈ Cb ∀M ∈ N ∀m ∈ N

(‖Sq − q‖ ≤ Ψ(M, b,m, . . .)→ ∀t ∈ [0,M] ‖T (t)q − q‖ < 2−m).

For that we will make use of a stronger notion of uniform
equicontinuity in the following sense:
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Uniform Equicontinuity for Nonexpansive Semigroups

Definition

{T (t) : t ≥ 0} on C ⊆ E is uniformly equicontinuous if t → T (t)q
is uniformly continuous on each [0,K ] for all K ∈ N with a
common modulus of uniform continuity for all q ∈ Cb. i.e. if there
exists ω : N× N× N→ N so that

∀b ∈ N ∀q ∈ Cb ∀m ∈ N ∀K ∈ N ∀t, t ′ ∈ [0,K ]

(|t − t ′| < 2−ωK ,b(m) → ‖T (t)q − T (t ′)q‖ < 2−m).

We call ω a modulus of uniform equicontinuity for {T (t) : t ≥ 0}.

’Quantifying’ Irrationality

Let γ ∈ R+ \Q+. Then

∀p ∈ N ∀p′ ∈ Z+ ∃z ∈ N (|γ − p′

p
| ≥ 1

z
).

The above gives rise to the following definition:

Definition

Let γ ∈ R+ \Q+. The function fγ as in

∃fγ : N→ N ∀p ∈ N ∀p′ ∈ Z+ (|γ − p′

p
| ≥ 1

fγ(p)
)

is called an effective irrationality measure for γ.
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Theorem

(Kohlenbach, K.-A.(2015))
In addition to Suzuki’s assumptions, assume that {T (t) : t ≥ 0} is
uniformly equicontinuous with a modulus ω. Let fγ be the effective
irrationality measure for γ, Λ ∈ N so that 1/Λ ≤ λ, 1− λ, N ∈ N
so that β ≥ 1/N , N 3 D ≥ β. Then

∀b ∈ N ∀M ∈ N ∀q ∈ Cb ∀m ∈ N

(‖Sq − q‖ ≤ Ψ→ ∀t ∈ [0,M] ‖T (t)q − q‖ < 2−m)

Theorem

with

Ψ(m,M,N,Λ,D, b, fγ , ω) =
2−m

8(
∑φ(k,fγ)−1

i=1 Λi + 1)(1 + MN)

where
k := D2ωD,b(3+[log2(1+MN)]+m)+1 ∈ N

and

φ(k , f ) := max{2f (i − j) + 6 : 0 ≤ j < i ≤ k + 1} ∈ N.
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APPENDIX: Mathematical Definitions

Definition

A continuous function u : [0,∞)→ X is said to be a strong
solution of (P2) if it is Lipschitz on every bounded subinterval of
[0,∞), a.e. differentiable on [0,∞), u(t) ∈ D(A) a.e., u(0) = x0

and u′(t) + A(u(t)) 3 0 for almost every t ∈ [0,∞).

Definition

A continuous function u : [0,∞)→ X is an integral solution of
(P1) if u(0) = x and for s ∈ [0, t] and (w , y) ∈ A

‖u(t)− w‖2 − ‖u(s)− w‖2 ≤ 2

∫ t

s
〈f (τ)− y , u(τ)− w〉+dτ.
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General purpose

I Nonmonotonic logics
I D. Makinson. Bridges from classical to nonmonotonic logics. College

Publications, 2005.
I Bridges = deductive extensions of propositional classical logic =

supraclassical logics
I Goal: give a proof-theoretic ‘dignity’ to nonmonotonic logics

(cut-elimination ⇒ subformula)

I same extend-to-constrain strategy for paraconsistency

I proof-theoretical treatment of proper, extra-logical, axioms:
I proper axioms may hamper standard cut elimination procedures

(Girard, 1987)
I Goal: define a proof theory for supraclassical logics in a way to get

both cut elimination and the subformula property

Logic of pivotal assumptions

I Fix a set of formulas Ψ = {α1, . . . , αn}

I extend the classical consequence relation ` to `Ψ as follows:

Γ `Ψ β ⇔ Γ,Ψ ` β

I LKα1,...,αn
0 = LK0 + α1 + . . .+ αn added as new axioms

I clearly: `Ψ = `LKα1,...,αn
0

Remark
LKα1,...,αn

0 ≈ LKα1∧...∧αn
0 , so we can reduce to one-axiom extensions

without loss of generality
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Post-completeness

Post-completeness
LK0 is maximal w.r.t. the set of its theorems:

I given any proper axiomatic extension, structurality (i.e., provability
is preserved by uniform substitution) and consistency are mutually
excluding properties

I any axiom α properly extending (without trivializing) LK0 must be:
non-logical = proper = not closed under uniform substitution

Example

1. p := ‘Bob is an inhabitant of Flatland’
2. q := ‘Bob is either a polygon or a circle’
3. given the extra-logical information provided by the book Flatland,

you have: p → q

Remark
I In LK0, any atom is a variable
I In LKp→q

0 , p and q may occur as constants, as names to all intents
and purposes

I lack of structurality ⇒ linguistic commitment
(points (1) and (2))
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Cut-elimination

Proper axioms, once added to LK0, may hamper cut-elimination (even at
the very propositional level!)

Example
Consider the extension LKp→q

0 :

ax .p ` p ax .q ` q →`p, p → q ` q
proper ax.

` p → q cutp ` q

Clearly, p ` q is not derivable in LKp→q
0 without resorting to cut

applications

Related works
Negri & von Plato, Cut Elim. in the Presence of Axioms, BSL ’98

I two ways of decomposing a formula α into a set of ‘elementary’
sequents:
1. by doing proof-search on α within a suitable sequent system for LK0

(logical rules are reversible + no structural rules)
2. by stressing the notion of conjunctive normal form

⇒ we stress this second kind of decomposition

I Negri & von Plato are mainly interested in axiomatic theories, so
they focus on first order logic

⇒ we are interested in propositional extensions

I proper axioms  inference rules: cut-elimination is preserved, but it
does not necessarily implies the subformula property

⇒ decompostions are deductively closed under the cut rule and it
suffices to get both cut-elimination and the subformula property
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Agenda

1. For any proper axiom α, there is a decompostion Sα such that:
I LKα

0 ≈ LKSα
0

I LKSα
0 enjoys both cut-elimination and the subformula property.

2. fully syntactical decision procedure for the consistency problem of
supraclassical systems

3. uniqueness: given any proper axiom α, there is exactly one axiomatic
(i.e. minimal) decomposition, which allows for cut elimination

4. final philosophical discussion: which is the right way to extend
classical propositional logic?

DECOMPOSITIONS

M. Piazza and G. Pulcini: On the maximality of classical logic

235



Sequent system LK0

ax .
α ` α

Γ ` α,∆ Γ′, α ` ∆′ cut
Γ, Γ′ ` ∆,∆′

Γ ` ∆ weak. `
Γ, α ` ∆

Γ ` ∆ ` weak.
Γ ` α,∆

Γ ` α,∆
¬ `

Γ,¬α ` ∆

Γ, α ` ∆
` ¬

Γ ` ¬α,∆

Γ, α, β ` ∆
∧ `

Γ, α ∧ β ` ∆

Γ ` α,∆ Γ′ ` β,∆′
` ∧

Γ, Γ′ ` α ∧ β,∆,∆′

Γ, α ` ∆ Γ′, β ` ∆′
∨ `

Γ, Γ′, α ∨ β ` ∆,∆′
Γ ` α, β,∆

` ∨
Γ ` α ∨ β,∆

Γ ` α,∆ Γ′, β ` ∆′
→`

Γ, Γ′, α→ β ` ∆,∆′
Γ, α ` β,∆

`→
Γ ` α→ β,∆

Complementary sequents

Definition
A sequent Γ ` ∆ is complementary if:

I Γ and ∆ display only atoms
I Γ ∩∆ = ∅

Example
p, q ` r is complementary

Remark
I complementary sequents are classically unprovable
I complementary sequents are called basic by Gentzen and regular by

Negri&von Plato
I complementary sequents are the axioms of complementary classical

logic
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Decomposition

Notation
I S ,T , . . . sets of sequents
I LKα1,...,αn

0 system obtained from LK0 by adding α1, . . . , αn as
new axioms

I LKS
0 system obtained from LK0 by adding the sequents in S as

new axioms

Definition
A set S is a decomposition for a formula α in case:

I all the sequents in S are complementary
I LKS

0 ≈ LKα0

Decomposition procedure

1. α cnf(α) = α1 ∧ . . . ∧ αn

2. Build a new sequent for each one of the clauses of cnf(α):
αi = `1 ∨ . . . ∨ `k ⇒` `1, . . . , `k .

3. Shift negative literals on the left and remove negations:

` p1, . . . , pn,¬q1, . . . ,¬qm ⇒ q1, . . . , qm ` p1, . . . , pn.

4. Remove identity sequents, i.e. sequents Γ ` ∆ such that Γ ∩∆ 6=∅.
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Example (step 1)

I α = ((p0 ↔ p1)→ (p2 → p3)) ∧ (p1 → ¬(p0 ∧ p2))

⇓

I step 1: cnf(α) = (p0 ∨ p1 ∨ ¬p2 ∨ p3) ∧ (p1 ∨ ¬p1 ∨ ¬p2 ∨ p3)∧
∧(p0 ∨ ¬p0 ∨ ¬p2 ∨ p3) ∧ (¬p0 ∨ ¬p1 ∨ ¬p2 ∨ p3)∧
∧(¬p0 ∨ ¬p1 ∨ ¬p2)

Example (step 2)

I step 1: cnf(α) = (p0 ∨ p1 ∨ ¬p2 ∨ p3) ∧ (p1 ∨ ¬p1 ∨ ¬p2 ∨ p3)∧
∧(p0 ∨ ¬p0 ∨ ¬p2 ∨ p3) ∧ (¬p0 ∨ ¬p1 ∨ ¬p2 ∨ p3)∧
∧(¬p0 ∨ ¬p1 ∨ ¬p2)

⇓

I step 2:
{
` p0 ∨ p1 ∨ ¬p2 ∨ p3
` p1 ∨ ¬p1 ∨ ¬p2 ∨ p3
` p0 ∨ ¬p0 ∨ ¬p2 ∨ p3
` ¬p0 ∨ ¬p1 ∨ ¬p2 ∨ p3
` ¬p0 ∨ ¬p1 ∨ ¬p2

}
.
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Example (step 3)

I step 2:
{
` p0 ∨ p1 ∨ ¬p2 ∨ p3
` p1 ∨ ¬p1 ∨ ¬p2 ∨ p3
` p0 ∨ ¬p0 ∨ ¬p2 ∨ p3
` ¬p0 ∨ ¬p1 ∨ ¬p2 ∨ p3
` ¬p0 ∨ ¬p1 ∨ ¬p2

}
.

⇓

I step 3:
{
` p0, p1,¬p2, p3
` p1,¬p1,¬p2, p3
` p0,¬p0,¬p2, p3
` ¬p0,¬p1,¬p2, p3
` ¬p0,¬p1,¬p2

}
.

Example (step 4)

I step 3:
{
` p0, p1,¬p2, p3
` p1,¬p1,¬p2, p3
` p0,¬p0,¬p2, p3
` ¬p0,¬p1,¬p2, p3
` ¬p0,¬p1,¬p2

}
.

⇓

I step 4:
{

p2 ` p0, p1, p3
p1, p2 ` p1, p3
p0, p2 ` p0, p3
p0, p1, p2 ` p3
p0, p1, p2 `

}
.
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Example (step 5)

I step 4:
{

p2 ` p0, p1, p3
p1, p2 ` p1, p3
p0, p2 ` p0, p3
p0, p1, p2 ` p3
p0, p1, p2 `

}

⇓

I step 5:
{

p2 ` p0, p1, p3
p0, p1, p2 ` p3
p0, p1, p2 `

}

CUT-ELIMINATION & SUBFORMULA
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Closure under cut

Definition
I S is a set of complementary sequents
I its closure under cut S ∗ is the smallest supraset

S ∗ of S such that:
1. Γ ` ∆, p ∈ S ∗ and Γ′, p ` ∆′ ∈ S ∗ are both in S ∗

2. (Γ ∪ Γ′) ∩ (∆ ∪∆′) = ∅,

⇒ Γ, Γ′ ` ∆,∆′ ∈ S ∗

Example

S = {p ` q ; q ` p ; q ` r}
⇓ ∗

S ∗ = {p ` q ; q ` p ; q ` r ; p ` r}.

Hauptsatz

Hauptsatz
Let LK0− be LK0 without the cut rule: for any α, LKS ∗

α

0− ≈ LKS ∗
α

0 .

Key case
Γ, Γ′ ∩∆,∆′ = ∅:

p.ax .
Γ ` ∆, p

p.ax .
Γ′, p ` ∆′ cut

Γ, Γ′ ` ∆,∆′
−→ p.ax .

Γ, Γ′ ` ∆,∆′

Remark
We stress here the fact that, if Γ ` ∆, p ∈ S ∗ and Γ′, p ` ∆′ ∈ S ∗,
then Γ, Γ′ ` ∆,∆′ ∈ S ∗.
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Decision of consistency
Consistency problem
Given a formula α: is LKα0 consistent?

Semantics
Equivalent to check whether α is a contradiction.

Syntax (corollary to the subformula property)
Equivalent to check whether ` ∈ S ∗α

Example

Sp∧¬p = {` p ; p `}
⇓ ∗

S ∗p∧¬p = {` p ; p ` ; `}
⇓

LKp∧¬p
0 is inconsistent

AXIOMATICITY & UNIQUENESS
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Axiomatic decomposition

Definition
A set of complementary sequents T is said to be axiomatic in case:

I LKT
0 ≈ LKT

0−

I no sequent in T can be derived from the others within LK0−

Remark
An axiomatic set T is a minimal set allowing for cut-elimination.

Reduct under weakening

Definition
Given a set of complementary sequents T its reduct under weakening is
the largest subset T ? of T such that,

I if Γ ` ∆ ∈ T and Γ, Γ′ ` ∆,∆′ ∈ T

I then Γ, Γ′ ` ∆,∆′ /∈ T ?.

Example

T = {p2 ` p0, p1, p3 ; p0, p1, p2 ` p3 ; p0, p1, p2 `}
⇓ ?

T ? = {p2 ` p0, p1, p3 ; p0, p1, p2 `}.

Theorem
If α is a contradiction, then S ∗?α = { ` }

M. Piazza and G. Pulcini: On the maximality of classical logic

243



Uniqueness

Theorem
If both S and T are axiomatic and LKS

0 ≈ LKT
0 , then S = T .

Theorem
For any α, S ∗?α is an axiomatic decomposition for α.

Conclude:
I for any α, there is exactly one axiomatic decomposition
I such a decomposition can be achieved by computing:

α Sα  S ∗α  S ∗?α

Circularity?

I Decompositions are closed under cut in order to get cut elimination:
is this move circular?

I NO! we close under cut a set of complementary sequents S in
order to prove cut elimination for the whole system LKS

0

this gap needs to be filled by a proof that conveys the information
saying that cuts can be pushed upwards
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Naturalness?

Girard, Proof Theory and Logical Complexity, 1987
“If the Post system is closed under cut, then it will be easy to see that
the calculus enjoys the Hauptsatz. [. . . ] We have not chosen this
possibility because

(i) the pleasure of being able to state a full cut-elimination theorem is
spoiled by the artificial character of the axioms one has to consider,

(ii) more essentially, we do not see the mathematical gain in this
change.”

Remark
α↔ β ⇔ S ∗?α = S ∗?β

Reply to point (i)

Girard does not seem to consider the possibility to close
decompositions, instead of proper axioms, under cut.

I uniqueness ⇒ decompositions are not arbitrary syntactical devices

I decomposition allows for the removal of the redundant ‘information’
contained in proper axioms

I decomposition as a way to analyse the hidden content of proper
axioms

M. Piazza and G. Pulcini: On the maximality of classical logic

245



Example

I Suppose you want to admit abduction for two atoms p and q:

((p → q) ∧ q)→ p

I S ∗?((p→q)∧q)→p = {q ` p}

hence:
axiomatic accounts of abduction are ‘empty’: allowing abduction on p
and q means imposing their equivalence p ↔ q

FUTURE WORK
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Nonmonotonic logics

I go a step further into nonmonotonic logics:
apply this kind of proof-theoretic achievements so as to offer a
well-behaved proof theory for an as wide as possible range of
nonmonotonic systems

I logics of default assumptions
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Preamble

Gentzen systems, both sequent calculus and natural deduction, are
“natural”, in the sense that proofs use logical constants in a simple
(syntax-directed) way. By contrast, Hilbert systems and (from a different
world) Resolution are “unnatural”.

An extension of Gentzen’s ideas is the notion of “coherent” (aka
“geometric”) logic and the associated notion of “dynamical proof”, as
developed and popularised by various authors (Joyal, Reyes, Simpson,
Negri, Lombardi, Bezem, Coquand). In such proofs, logical constants are
invisible—their effect has disappeared into the notation.

Not all (first-order) theories are coherent. A folklore result from the
1970s shows that every theory has, by use of extra relation symbols, a
coherent conservative relational extension, i.e. a theory can be
“coherentised”. Algorithms to do this tend to use “atomisation” (every
formula becomes equivalent to an atom) or preprocessing to PNF (then
CNF or DNF) or NNF, generating many new axioms.

We’ll recall some of the history of this result and present a new
coherentisation algorithm with the virtue of being “idempotent”.

2 / 28

R. Dyckhoff and S. Negri: Idempotent Coherentisation for First-Order Logic

249



Coherent and Geometric Implications

A formula is positive, aka “coherent”, iff built from atoms (e.g.
J,K, t “ t 1, t ď t 1,Pptq, . . . ) using only _, ^ and D.
Warning: model theory also allows @.

A sentence is a coherent implication (CI) iff of the form @x.C Ą D,
where C ,D are positive. [Neither coherent nor an implication . . . .]

A sentence is a special coherent implication (SCI) iff of the form
@x.C Ą D where C is a conjunction of atoms and D is a finite
disjunction of existentially quantified conjunctions of atoms.

Some restrict the notion of “coherent implication” to mean an SCI.

Old Theorem: Any coherent implication is intuitionistically equivalent to
a finite conjunction of SCIs.

A formula is geometric iff built from atoms (as before) using only _, ^, D and

infinitary disjunctions. A sentence is a geometric implication iff of the form

@x.C Ą D, where C ,D are geometric. Similar terminology (SGI) and result for the

infinitary (geometric) case.

3 / 28

Examples

Universal formulae @x.A (where A is quantifier-free) are equivalent to finite
conjunctions of SCIs, just by putting A into CNF, distributing @ past ^ and
rewriting (e.g.  P _Q as P Ą Q). (No D is involved. J and K may be useful.)

Theory of fields is axiomatised by SCIs, including @x .J Ą px “ 0_ Dy .xy “ 1q.

Theory of real-closed fields is axiomatised by countably many SCIs, including
@a.J Ą pa2n`1 “ 0_ Dx .a2n`1x

2n`1
` a2nx

2n
` ¨ ¨ ¨ ` a0 “ 0q.

Theory of local rings (rings with just one maximal ideal) is axiomatised by
SCIs, including @x .J Ą pDypxy “ 1q _ Dypp1´ xqy “ 1qq.

Theory of transitive relations is axiomatised by SCI: @xyz .pRxy ^ Ryzq Ą Rxz .

Theory of partial order is axiomatised by SCIs, e.g. @xy .pxďy^yďxqĄx“y .

Theory of strongly directed relations is axiomatised by SCI:
@xyz .pRxy ^ Rxzq Ą Du.Ryu ^ Rzu.

(Infinitary) theory of torsion abelian groups is axiomatised by SGIs, including
@x .J Ą

Ž

ną0pnx “ 0q. [nx stands for “sum of n copies of x”].

(Infinitary) theory of fields of non-zero characteristic is axiomatised by SGIs,

including @x .J Ą
Ž

pą0ppx “ 0q.
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Theory about [and advantages of] Coherent Theories

A coherent theory is one axiomatised by [special] coherent implications.
“Geometric” and “coherent” are often used synonymously.

1. “Barr’s Theorem”: Coherent implications form a “Glivenko Class”, i.e.
if a sequent I1, . . . , In ñ I0 is classically provable, then it is
intuitionistically provable, provided each Ii is a coherent implication.

2. Coherent theories are those whose class of models is closed under
filtered co-limits (calculated in Set) (Keisler (1960).

3. Coherent theories are “exactly the theories expressible by natural
deduction rules in a certain simple form in which only atomic formulas
play a critical part” (Simpson 1994).

4. Similarly, in a sequent calculus context, SCIs can be converted directly
to inference rules (using and generating only atomic formulas) so that
admissibility of the structural rules is unaffected (Negri 2003).

5 / 28

Conversion of Coherent Implications to Rules

When adding axioms to a first-order theory, one option for formalisation
(in a sequent calculus such as G3c) is to include them all in the
antecedents of all sequents.

But if they are SCIs it is more elegant to convert them to inference
rules (Negri 2003); Simpson (1994).

We’ll sometimes write an SCI without universal quantifiers; free variables
are then schematic, i.e. instantiable as any terms we like.

Such an axiom pP1pxq ^ P2pxq ^ ¨ ¨ ¨ ^ Pnpxqq Ą Dpxq is then converted
to the rule

Dptq,P1ptq,P2ptq, . . . ,Pnptq, Γ ñ ∆

P1ptq,P2ptq, . . . ,Pnptq, Γ ñ ∆

in which the atoms P1ptq,P2ptq, . . . ,Pnptq are atoms in the conclusion’s
antecedent; the instance Dptq can then (as we grow the derivation in a
root-first fashion) be added to the antecedent.

Better still, analyse Dptq immediately, using branching for analysis of _,
fresh variables for analysis of D and commas for analysis of ^.

6 / 28
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Other Kinds of Sentences and Theories

Not all sentences, and not all theories, are coherent implications, or even
equivalent to (resp. axiomatised by) a set of such things.

§ The “McKinsey condition” (a frame condition for modal logic,
related to the McKinsey axiom l♦A Ą ♦lA)

@xDy . xRy ^ p@z . yRz Ą y “ zq

is not a coherent implication. [We can’t shift the @z out past Dy .]

§ The “strict seriality condition”

@x . Dy . xRy ^ pyRxq

is likewise not a coherent implication, because of the negation.

§ The axioms for Henselian local rings provide (so far as I know)
another example of an axiom that is almost a coherent implication.

§ The frame condition for Kreisel-Putnam logic (see later) is almost a
coherent implication.

7 / 28

Coherentisation Theorem

Theorem. Every first-order theory has a coherent conservative extension.

We’ll look at two variants of this theorem, and at several methods of
proof.

Proof. First, for variant 1, using “functional Skolemisation” (Skolem
(1928)), i.e. by adding new function symbols, we can replace each axiom
by a @-sentence, and put the body in CNF. Each conjunct is a clause,
easily representable as an SCI. We’ll call this a “functional extension”.
Well known to be “equi-satisfiable”; and in fact a conservative extension.
l

We neglect this approach as (i) destroying the formula structure and (ii)
introducing function symbols that, regrettably, ensure the Herbrand
universe is infinite.

Remaining approaches (for variant 2) introduce no new function symbols
but just new relation symbols: a “relational extension”, using “relational
Skolemisation” (Skolem (1920)).

8 / 28
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Atomisation

Theorem. Every first-order theory has a coherent conservative relational
extension.

Proof. We use the technique of “atomisation” (aka “Morleyisation”, aka
“Wajsberg’s depth-reduction technique from 30’s”). We introduce new
relation symbols and axioms in such a way that each subformula of each
axiom is made to be equivalent to an atomic formula.

For example, if ψpxq is a subformula of an axiom and is of the form
@y.φpx, yq, we introduce new relation symbols Rψ and Rφ and the
(almost “coherent”) axioms @x.Rψpxq Ą @y.Rφpx, yq and
@x. Rψpxq_Dy. Rφpx, yq. The first is easily dealt with by moving @y
outwards; the second needs an extra trick to get rid of the negation. l

We neglect this approach as (i) concealing the formula structure and (ii)
introducing too many axioms, albeit very simple ones.

Essentially this approach is used in the “Structural Clause Form
Transformation”, of Baaz et al (1994) (c.f. also Egly et al (2000))
allowing resolution to simulate LK or tableaux. In that context there can
undoubtedly be efficiency advantages.
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Polarised Atomisation
Theorem. Every first-order theory has a coherent conservative relational
extension.

Proof. (Johnstone (2002); Bezem and Coquand (2003).) We use a
technique based on atomisation, but with two relation symbols per
sub-formula. We introduce new relation symbols and axioms in such a
way that, according to its polarity, each subformula of each axiom is now
implied by or implies an atomic formula.

For example, if ψpx, yq is a positively occurring subformula of an axiom
and is of the form @x.φpx, yq, we introduce new relation symbols R`ψ and

R`φ and the (almost “coherent”) axiom @y. R`ψ pyq Ą @x.R`φ px, yq.

Formula is made into an SCI by shifting @x outwards.

Similarly, if ψpxq is  φpxq, we get, according to polarity, one of
@x. R`ψ pxq Ą R´φ pxq and @x. R´ψ pxq Ą R`φ pxq.
l

We neglect this approach as (i) concealing the formula structure and (ii)
introducing too many axioms, albeit very simple ones. Johnstone does it
for every formula of the language.
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Antonius’ Translation

Antonius (1975) defined, for each formula A of a first-order language L,
a positive formula A in an extended language L1, approximately thus:

Ppxq “ Ppxq

B ^ C “ B ^ C

B _ C “ B _ C

DxB “ DxB

B Ą C “  B _ C

@xB “  Dx B

 Bpxq “ NBpxqpxq

where Ppxq is atomic and NBpxq is a new relation symbol whose arity is
the number of free variables x of Bpxq.

Let T be a theory, T 1 the theory got by replacing each axiom A of T by
JĄA, and T the theory got by adding to T 1 just the coherent
implications @x.J Ą pNBpxqpxq _Bpxqq and @x.pNBpxqpxq ^Bpxqq Ą K for
the negated subformulae  Bpxq looked at in the analysis of A.

11 / 28

Antonius’ Translation, Contd

Theorem [Antonius]. A theory T proves a sequent B ñ B 1 (implicitly
universally quantified) iff T proves the sequent B ñ B 1, where the latter
form of proof is in a sequent calculus restricted to coherent sequents.

We can strengthen this as follows:

Theorem [RD & SN]. Let A be a sentence, axiomatising the theory T ;
then the theory T , axiomatised by J Ą A and the CIs generated from A
by Antonius’ method, is a coherent conservative relational extension of T .

Note that there are, in comparison to the atomisation techniques,
relatively few new relation symbols.

12 / 28
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A variant on Skolem (1920)
Another approach is to construct the PNF of the axiom, and put the
body into CNF or DNF. Skolem (1920) showed (in effect) that every
first-order sentence can be replaced by a @D-sentence (its “normal form”)
giving a conservative relational extension.

Pairs of quantifier blocks are eliminated by use of one trick; negation
symbols are eliminated by another. Without bothering with PNF or CNF,
we illustrate the main idea with examples:

§ For the McKinsey axiom @xDy . xRy ^ p@z . yRz Ą y “ zq, introduce
a new unary predicate symbol M (for Maximal, with Mpyq
“meaning” @z . yRz Ą y “ z), and two SCIs:

@yz . pMpyq ^ yRzq Ą y “ z

@x . J Ą pDy . xRy ^Mpyqq

§ For the strict seriality axiom, @x .Dy . xRy ^ pyRxq introduce a new
binary predicate symbol S , with xSy “meaning”  xRy and two SCIs:

@xy . pxRy ^ xSyq Ą K

@x .J Ą Dy .xRy ^ ySx

13 / 28

New Coherentisation Algorithm

Existing published algorithms to convert a sentence into a finite set of
SCIs may not just generate lots of new relation symbols, but also fail to
be idempotent, i.e. to leave the SCIs unchanged, since conversion to PNF
and then to CNF or DNF, or to NNF, can destroy too much of the
sentence’s structure. Can we do any better?

Definition [RD & SN]. A formula is weakly positive iff the only
occurrences of @, Ą and  are strictly positive, i.e. not within a negation
or the antecedent of an implication.

Proposition [RD & SN]. A formula is weakly positive iff the only
occurrences of @, Ą and  are positive, i.e. within the scope of an even
number of negations and antecdents of implications.

Examples. Positive formulae (i.e. having no such occurrences); CIs;
Negation normal formulae; the McKinsey condition; the strict seriality
condition; the frame condition for Kreisel-Putnam logic (see later).
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New Coherentisation Algorithm: Weak Positivisation

Every first-order formula can be converted to a classically
equivalent weakly positive formula as follows. Note that conversion
to NNF would suffice, but may change too much of the formula.

First, we treat negations as implications. Second, if the formula is an
implication with positive antecedent we leave the antecedent unchanged
(and, recursively, we convert the succedent). Then (with x not free in B)
we can use the classical equivalences

pC Ą Kq Ą B ” C _ B (1)

pC Ą Dq Ą B ” pC ^ Dq _ B (2)

@xA Ą B ” Dx . A Ą B (3)

and the intuitionistic equivalences

pC _ Dq Ą B ” pC Ą Bq ^ pD Ą Bq (4)

pC ^ Dq Ą B ” C Ą pD Ą Bq (5)

DxA Ą B ” @x .A Ą B (6)

15 / 28

New Coherentisation Algorithm: Analysis of W.P. Formula

Proposition [RD & SN]. Every weakly positive formula A is either

§ an atom or

§ a universally quantified implication @x. CĄD (with C positive) and
D a disjunction of zero or more existentially quantified conjunctions
of zero or more of the following:

§ atoms
§ weakly positive formulae Ai simpler than A.

We allow empty quantification; we consider negations to be implications
and D to be the same as J Ą D.

Proof. By analysis of the structure of A. We also allow trivial
disjunctions (at most one disjunct) and trivial conjunctions (at most one
conjunct)—but, to avoid an infinite recursion, some step of analysing A,
if non-atomic, must be non-trivial.
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New Coherentisation Algorithm: Constructing CIs

Corollary [RD & SN]. Given a weakly positive formula A, we can
introduce fresh relation symbols and “semi-definitional implications” so
that A is simplified to a CI and the new implications are CIs, making a
coherent theory conservative over A.

Proof. By induction on the structure of A. If, when analysing a
conjunction, we meet a subformula C pxq other than an an atom or a
conjunction A1 ^ A2, we introduce in its place a fresh relation symbol Ni

(with appropriate arguments) and a “semi-definitional implication”
@x.Ni pxq Ą C pxq (which we may need to analyse further).

Any universal quantifiers or implications (with positive antecedents) at
the front of C pxq can easily be shifted, so we get a formula of the form
@xy.Ni pxq ^ Ppx, yq Ą Bpx, yq, where Ppx, yq is positive and Bpx, yq is
weakly positive and smaller than A.

After a finite number of steps we have replaced A by a finite number of
CIs axiomatising a theory conservative over the theory with axiom A.
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New Coherentisation Algorithm: Constructing SCIs

We can (intuitionistically) convert the coherent implications (the CIs) to
SCIs by methods discussed earlier.

We can reduce the number of steps that we go round the loop (and thus
reduce the number of fresh relation symbols and of SCIs generated) by
applying (as transformations) any of the intuitionistic “permutations”:

exists x. A v B ==> exists x A v exists x B
A & (B v C) ==> (A & B) v (A & C)
(B v C) & A ==> (B & A) v (C & A)
C & exists x D ==> exists x. C & D (x chosen not free in C)
(exists x C) & D ==> exists x. C & D (x chosen not free in D)
A => forall x B ==> forall x. A => B (x chosen not free in A)
A => B => C ==> (A & B) => C
~A ==> A => \bot

Theorem (RD & SN) With or without these permutations, we have an
idempotent translation, i.e. any SCI is transformed by this process to
itself. (NB: no part of an SCI matches the LHS of any of these
permutations. We allow trivial simplifications, e.g. K_ B ” B.)

Remark Examples such as the McKinsey condition are translated exactly
as we have illustrated. [Otherwise, trouble!]
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Example: Frame Condition for Kreisel-Putnam Logic

A suitable frame condition for the Kreisel-Putnam (intermediate) logic
KP, axiomatised by p AÑpB_C qqÑpp AÑBq _ p AÑC qq is

@xyz. px ď y ^ x ď zq Ą py ď z _ z ď y _ Du.px ď u ^ u ď y ^ u ď z ^ Fpu, y , zqqq

where F pu, y , zq abbreviates @v . uďv Ą Dw . pvďw ^ pyďw _ zďwqq;

By changing F from a (bi-directional) abbreviation to a new predicate
symbol with an associated SCI (in just one direction)

@uvyz . pF pu, y , zq ^ uďvq Ą pDwpvďw ^ yďwq_Dwpvďw ^ zďwqq

we achieve our goal of making the condition for KP an SCI.

Our coherentisation algorithm does just this.
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A Glivenko-style Theorem

Theorem If T is a theory whose axioms are weakly positive sentences,
and A is a positive sentence provable in T , then A has an intuitionistic
proof from T .

This is just an extension of what we have called “Barr’s theorem”; a
proof of T ñ A in G3c is (because of the syntactic restrictions) already
a proof in m-G3i (multi-succedent intuitionistic calculus.

Result can be strengthened by allowing A to be an SCI.

Result is due to Negri: see her paper “From rule systems to systems of
rules” in the JLC 2014 on “generalised geometric implications”.
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Implementation

The new coherentisation algorithm is implemented in OCaml and
available on my website. It requires the loading of John Harrison’s
excellent OCaml library for manipulating first-order terms, as documented
in his wonderful book.

I don’t have a Coq or Isabelle proof of its correctness. (There isn’t even
one for Harrison’s code.)

Work is in progress on YAPE, Yet Another Proof Engine, in Prolog,
which allows natural expression of rules for root-first search in sequent
calculi for propositional logics such as Int, and LATEX output of proofs.
The 2014 version is on my website, but doesn’t properly cover labelled
calculi; the 2015 version (to be completed REAL SOON) will be, once
termination conditions are properly implemented.

Once that is done, incorporation of ideas from coherent logic automation
can be started. The two kinds of system need to interact; it’s not just a
matter of using the work of (e.g.) Bezem & Coquand as an oracle.
Termination will of course continue to be an issue.
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Concept Formation

One idea not yet explored is that the replacement of an axiom by a finite
conjunction of coherent implications (in an extended language) is a
simple form of concept formation, i.e. the fresh relation symbols stand for
what might turn out to be concepts of interest in their own right, whose
inclusion helps clarify and simplify the structure of the theory.
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Kant’s Logic

Achourioti & van Lambalgen (2011) argue that coherent/geometric logic
is the “general logic” underlying Kant’s Table of Judgments, with a
semantically defined notion (for sentences) of “objective validity” such
that a sentence is objectively valid iff equivalent to a conjunction of
finitely many coherent implications.
See also https://cast.itunes.uni-muenchen.de/vod/clips/jSeSzC9jG0/quicktime.mp4
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Caution

It may appear that all we are doing is constructing a definitional
extension of the language.

Here is a counter-argument. Let us first distinguish three ways of
extending a theory with (for example) a new unary symbol M, informally
with Mpyq “meaning” @z .yďz Ą y“z :

§ Adding an abbreviative definition (aka “[definitional] abbreviation”).
The new symbol is a “defined symbol”, so the formula Mpyq is indistinguishable

from the formula @z.y ď z Ą y “ z; in particular, it is not atomic, and not even

quantifier-free.

§ Making a definitional extension (aka a “extension by definitions”),
i.e. adding a fresh primitive relation symbol M and a new axiom

@y . Mpyq ” p@z. yďz Ą y“zq. Well-known to give a conservative extension

[Shoenfield (1967), van Dalen’s book].

§ Making a semi-definitional extension, i.e. adding a fresh primitive relation

symbol M and a new axiom: @y .Mpyq Ą @z.yďz Ą y“z [or the equivalent SCI

@yz.Mpyq^yďz Ą y“z]. This suffices for our needs. Note that

@y . p@z.yďz Ą y“zq Ą Mpyq is not a CI.
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Caution, 2

The theory of posets in which every element is below a maximum
element is axiomatised by easy conditions including the McKinsey
Condition: @x . Dy . xďy ^ @z .yďz Ą y“z .

Model-theoretic considerations show the theory to have no coherent
axiomatisation. (Its models (with order-preserving morphisms) are not
closed under filtered direct limits in Set.)

It doesn’t help to make the abbreviations Mpyq ” @zpyďz Ą y“zq
and Npx , yq ”  px “ yq; this doesn’t change the classes of models and
of their morphisms. [See next slide for why N is useful.]

But the other techniques described construct a conservative extension
that is coherent. (Having a new primitive M changes the class of
morphisms.)

There is thus a subtle difference between the other techniques described
and the use of abbreviations; the latter can’t change an incoherent theory
into a coherent one. For details of the argument, based on Johnstone
(2002), see our paper.
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Caution, 3

But how does what we do differ from Shoenfield’s “extension by
definitions”?

We could add both halves of the equivalence, i.e. both
@yz .Mpyq^yďz Ą y“zq and @y .p@z .yďz Ą y“zq Ą Mpyq; that gives
an extension by definitions.

The first formula is an SCI; the second formula is not even a CI.
Rearranging it classically, we get @y . Mpyq _ Dz .y ď z ^ y‰z .

A fresh relation symbol N and the axiom @yz . Npy , zq ” y‰z allows the
second formula to be turned into an SCI ; the new axiom is equivalent to
the conjunction of @yz . pNpy , zq^y“zq Ą K and @yz . y“z_Npy , zq.

Two fresh relation symbols and three SCIs in total, and effectively a
definitional extension.

But, we don’t need the second formula, provided that we are only
replacing a positive occurrence of an instance of @z .yďz Ą y“zq.

We have therefore introduced the notion of a semi-definitional extension.
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Summary

So, what have we done? We have

1. tried to stick to our (unstated) principles of following Gentzen by (i)
limiting pre-processing and (ii) retaining naturality

2. retrieved from obscurity a result that uses a technique of Skolem
(1920), “Relational Skolemisation” (a better name here than
“Atomisation”): a result best formulated as “Every f.-o. theory has
a coherent conservative [relational] extension”.

3. introduced the notion of “weakly positive formula”, and shown that
any f.-o. formula can easily be put (equivalently) into this form, in a
way that leaves w.p. formulae unchanged.

4. given (and implemented) an idempotent algorithm for converting
weakly positive sentences to conjunctions of SCIs—not necessarily
equivalent but at least giving a conservative extension.

5. continued implementation of generic framework for exploiting
coherent axioms for intermediate and modal logics.
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Gentzen’s justification of inferences∗

Dag Prawitz
Stockholm University

When Peter Schroeder-Heister invited me to give a talk at this conference, on
the occasion of the 50th anniversary of the appearance of my thesis, as he said
kindly, he gave me the option to present something scientific in the narrower
sense or to reflect more personally or historically on my thesis and what came
afterwards in the last half-century. I have chosen to try to do both. I shall
start with some personal and historical remarks1 and at the end I shall present
some new things. Gentzen’s ideas about how inferences may be justified will
be the central theme throughout the talk.

1 Prelude to my “Natural Deduction”

In the summer of 1961, I started to work towards a doctor’s degree at the
Philosophy Department of Stockholm University. I had got a scholarship for
four years to write a doctoral dissertation. In Sweden at that time, at least
at my department, a thesis for a doctorate was written essentially without
supervision. The thesis should be the result of independent research and should
be published. It was presupposed that you had alreadywritten a less demanding
licentiate’s dissertation. Mine had been about automated deduction. Now I
wanted to work on something more philosophical.

My aim was to study the concept of proof. The vague question I had was:
What is it that makes something a deductive proof ? I took for granted that
the answer must somehow take into account the meaning of the sentences
involved in the proof. I started to read works by Lorenzen and Curry. They
related in different ways the meanings of compound sentences to inferential
matters and saw logic as a super-structure over deductive systems for atomic
sentences, but they did not really try to explain inferences or proofs. Then I
read Gentzen’s “Untersuchungen über das logische Schließen”. I had read that
work earlier in the way most people at that time read it, putting most attention

∗I am indebted to professor Cesare Cozzo and professor Per Martin-Löf for comments on
an earlier draft. The text is an edited version of the manuscript for my talk at the conference, at
which I used the weaker condition of fn. 5 in the definition of analytical validity.

1Some of them overlap with a part of “A short scientific autobiography”, in Dag Prawitz on
Proofs and Meaning, (Outstanding Contributions to Logic, vol. 7), H. Wansing (ed.), Springer
2015, pp. 33–64.
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to Gentzen’s Sequenzenkalkül. But now I realized that what he called “Kalkül
des natürlichen Schließens” gave a kind of answer to my question what it is
that makes something a proof.

Gentzen drew attention to some noteworthy features of his system of
natural deduction. The first one that he mentioned was the affinity with actual
reasoning, which was, he said, the fundamental aim in setting up the system.
The affinity consists of course first of all in the deductions being free to start
not only from axioms but also from assumptions that could be discharged in
the course of the reasoning.

Secondly, he emphasized another aspect that he described by saying: “[. . .]
daß hier eine beachtenswerte Systematik vorliegt.” (ibid., p. 189; transl.: “that
a noteworthy systematics is present here”). This was an understatement in my
view. It is indeed true that his system is remarkably systematic in containing
introduction rules and elimination rules for each logical constant, but the really
remarkable thing is the different statuses given to these two kinds of inference
rules. What especially attractedme at least was Gentzen’s nowwell-known idea
that the introduction rules for a logical constant could be seen as constituting
a definition of the constant in question and that the corresponding elimination
rules are “no more than a consequence of this definition”, as he put it.

This I saw as a way of justifying the inference rules: the introductions stated
sufficient conditions for inferring compound sentences of different logical
forms in accordance with the constructive meanings of the logical constants
and could be seen as specifying these meanings, and the eliminations were
justified by the meanings given to the logical constants by the introductions.
What justified an elimination rule was more precisely the fact that a deduction
of the conclusion could be obtained directly (without using the elimination)
from deductions of the premisses provided that the condition to infer the
major premiss by introduction was satisfied.

Having seen this it was immediately obvious that nothing newwas obtained
by inferring a conclusion by elimination if its major premiss had been proved
by introduction. Clearly, all such eliminations could be removed by simple
transformations or reductions, which were exemplified byGentzen, and which I
now formulated explicitly. One could then not but expect that these reductions
should make it possible to remove all such eliminations from a deduction.
To prove that the reductions terminated in what I called a normal deduction
required only a suitable induction measure and a suitable order of reductions.

I recognized that the indispensable use of eliminations consisted in inferring
conclusions from assumptions or what had already been inferred by successive
eliminations from an initial assumption. In a normal deduction, the elimina-
tions were restricted to this use, and as a result of this, the normal deductions
had a perspicuous form that struck me: each of its threads consisted of two
consecutive parts, an initial part containing only eliminations, followed by a
second part containing only introductions (disregarding here the constant for
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falsehood). I also realized that a normal intuitionistic natural deduction could
easily be transformed to a cut-free proof in the sequent calculus. In this way
the normalization theorem for natural deduction gave Gentzen’s Hauptsatz as
a corollary. This theorem now got a deeper meaning for me.

I saw these things in the summer of 1961, and it made me quite happy – I
felt like having hit, almost by chance, on important secrets. In the autumn I
told about my discoveries at two seminars jointly arranged by the philosophy
departments at Stockholm and Uppsala.

After having worked out the results in more detail, I presented them (in
German) at a colloquium at the Institut für Mathematische Logik at Münster
in the summer of 1962, when I was spending a term there. The essential part
of what would become my dissertation three years later as far as intuitionistic
logic was concerned was ready at this time. But I wanted my thesis to contain
many other things, and in any case, I wanted to use the three years that
remained of my scholarship to get other results.

I experimentedwith several different natural deduction systems for classical
logic that could be suitable for proving a normalization theorem. One version
used the axiom of the excluded third instead of the classical form of reductio
ad absurdum that I finally chose in the thesis. It was presented at a meeting of
the Association for Symbolic Logic in New York in 1964. Another discovery
that I made was the parallelism of natural deduction systems and extended
lambda-calculi. I presented it in Stockholm in 1963, and lectured on it in
seminars that I gave as visiting assistant professor at UCLA in the spring of
1964. I also spent much energy in trying to extend the normalization theorem
to 2nd order logic but in vain.

2 The publication of “Natural Deduction”

In the spring of 1965 when my scholarship was soon to end, I got in a hurry
to put in order what I had ready in publishable form so that I could give it to
the printer, and on the last day of my scholarship period, there was the public
defence of my doctor’s thesis. It then lay ready in the form of a printed book
as required, titled Natural Deduction. A Proof-Theoretical Study.

One cannot say that the justification of inferences was an explicit theme
in the book. Nor did I write there about my question what it is that makes
something a proof. I did not know how to speak about such things in a
stringent way.

The closest I came to speaking of justifications was in an indirect way,
pointing out that an elimination inference is the inverse of the corresponding
introduction inference in the sense that a deduction of the conclusion of an
elimination is already “contained” in the deductions of its premisses when the
major premiss is inferred by introduction; since my presentation at Münster, I
had referred to this as the inversion principle, using a term fromLorenzen. I also
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emphasized that the inversion principle was the essential intuitive idea behind
not only the normalization theorem but also behind Gentzen’s Hauptsatz,
whose essence was best seen in this way, I claimed. Otherwise, the thesis gave
most attention to the reductions, to the precise normal form of deductions
obtained by them, and to corollaries of the existence of this normal form.

The reception of the dissertation was quite varied. Many people did not
at all agree with my perspective on Gentzen’s work. When I presented my
results at Münster, three senior logicians were present: Ackermann, Hermes
and Hasenjaeger. I do not remember the comments from the first two, but
they were not negative. Hasenjaeger wondered however why I bothered with
natural deduction, because, as far as he knew, Gentzen had been so happy
to leave the troublesome system of natural deduction when he had found his
calculus of sequents and its Hauptsatz.

At the public defence of my thesis, Stig Kanger was the faculty opponent.
Hismain criticism of the thesis was that I shouldhave derived the normalization
theorem for natural deduction from the Hauptsatz for the sequent calculus.
Thus, in effect, he rejected totally my perspective. In private he also told me
that my dissertation was far too long – I could preferably have written it in
half of the space that I had used, he said.

In view of this, it was comforting that the reviewer in the Journal of
Symbolic Logic, who was Richmond Thomason, wrote: “this very compressed
book will require the reader to fill in many details”. Thomason granted the
naturalness of the meta-theory for natural deduction but was of the opinion
that the meta-theory for the sequent calculus lent itself better for rigorous
proofs. Mints, who also reviewed the book, appreciated the normalization
theorem for classical logic, but meant that my approach became complicated
in the case of intuitionistic logic with its commutative reductions.

There were also more positive remarks. At a conference in Hannover in
1966, I met in a hallway a person who said very briefly something like this:
“Hello. I am Robin Gandy. I liked your book. This is the way to present
Gentzen’s stuff.”

3 Gentzen’s view of natural deduction

Allow me here an interlude to speculate about what Gentzen’s own attitude
could have been. In the summer of 1971, I was very surprised that Gentzen
had not presented the normalization theorem for natural deduction. It seemed
clear to me that he must have seen the possibility of such a theorem. In his
“Untersuchungen über das logische Schließen”, he says in fact that natural
deduction for intuitionistic logic contains the properties essential for something
like the Hauptsatz, but that natural deduction for classical logic does not.

As is now known, thanks to Jan von Plato’s investigations of Gentzen’s
Nachlass, Gentzen actually finished a manuscript where he proved the nor-
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malization theorem for intuitionistic logic more or less in the way I did in my
thesis. But he never published it. Perhaps Hasenjaeger was right: Gentzen
preferred later not to think about natural deduction.

For two reasons, I think that this is not the truth. Firstly, it is clear already
from Gentzen’s published writings that the normalization theorem for natural
deduction played an essential role in his own intuitive thinking. When he is to
describe the underlying idea of his second consistency proof, what he actually
describes, informally, but in some detail, is the normalization theorem for
natural deduction. Secondly, we now know from his Nachlass that he even
planned to write a book about the foundations of mathematics where the
starting point would be the normalization theorem for natural deduction,
called “der Gipfelsatz” or “der Hügelsatz” in his notes, which was to be
assimilated with the proof of the consistency of arithmetic. It is true that he
was disturbed by the fact that classical logic has an inference rule or an axiom
that falls outside the introduction-elimination pattern. But I think it is likely
that we would have seen publications by Gentzen about the normalization
theorem for natural deduction at the end of the forties, if he had not died
shortly after the war.

4 My return to the theme of “Natural Deduction”

In the years after the publication of my thesis, I turned to other things, among
them to extending the Hauptsatz to higher order logic by model theoretic
means. Only four years later I returned to the theme of the dissertation. There
were two particular stimuli for that.

One came from Per Martin-Löf who was in Chicago in 1968-69 where he
was introduced to Bill Howard’s ideas about “formulae-as-types”. Howard
did not know about my work on natural deduction and tried first to connect
the terms in his extended lambda-calculus with proofs in sequent calculus. Per,
who knew about my thesis but had so far shown little interest in it, saw that
it made more sense to connect the terms with natural deductions. From that
time Per has been a strong supporter of my perspective on Gentzen’s work
and he developed it further in several respects. Particularly stimulating was
his extension of Gentzen’s introduction-elimination pattern to arithmetic and,
more generally, to inductively defined predicates. Furthermore, I was fascinated
by the very powerful method for establishing normalization theorems that he
obtained by carrying over to natural deductions Tait’s notion of convertibility
for terms in the lambda-calculus, calling it computability. He presented these
things at the 2nd Scandinavian Logic Symposium at Oslo in 1970.

A second stimulus came from Kreisel, with whom I had joint seminars
at Stanford in the academic year 1969-70. He too became convinced of my
perspective on Gentzen’s work and got especially interested in the reductions
by which I had transformed deductions into normal form and their relation to
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the identity of proofs. In a review (Journal of Philosophy 68 (1971), 238–265),
he wrote: “As I see it now, [. . .] [footnote: Guided by D. Prawitz’s reading of
Gentzen] the single most striking element of Gentzen’s work occurs already in
his doctoral dissertation”, which “provided the germs for a theory of proofs”.
This theory would concern “the process of reasoning, not only its result”.
Kreisel was as we see an early advocate of general proof theory. He too
presented a paper, “A survey of proof theory II”, at the Oslo symposium,
where he further developed his ideas about these things.

One thing that he and I discussed at Stanford was the hope that the normal
form theorem for 2nd order logic obtained by model-theoretic means could be
strengthened by showing that every 2nd order deduction reduces to a normal
one; the term “normalization theorem” was suggested at this time by Kreisel
to name this stronger result. In the spring of 1970 when he was one of the
supervisors of Girard’s doctoral work, he suggested that an idea that Girard
was working on could be used to solve this problem. This was also discussed
at the Oslo symposium and turned out to be right; in the proceedings of the
symposium, Girard, Martin-Löf, and myself presented solutions based on the
idea of Girard.

Several of the papers of these proceedings were concerned in this way with
developing themes of my thesis; I think one could say that its perspective
became generally accepted at this time as a fruitful approach in proof-theory.
In the decade that was to come, there was also Martin-Löf ’s type theory where
introductions and eliminations of Gentzen’s kind and reductions of my kind,
now in the form of definitional equality rules, became cornerstones.

5 The notion of valid deduction

My contribution to the Oslo symposium was a survey paper where among
other things I brought up to date themes that I had been dealing with in my
thesis. The notion of computability that Per had defined for natural deductions
now seemed to me to offer a way to make explicit Gentzen’s ideas about the
justification of inferences, which I had not known how to state in a general
and rigorous way in my thesis.

Somewhat modifying the notion of computability, now calling it validity, I
stated in effect the following two principles for intuitionistic natural deductions:

(I) A closed deduction is valid if and only if it reduces to a deduction ending
with an introduction – what a little later I started to call a deduction in
canonical form – whose immediate subdeductions are valid.

(II) An open deduction is valid if and only if the result of substituting, first,
closed terms for the free variables in the deduction, and then, closed valid
deductions for the free assumptions, is always valid.

The validity was to be relative to a base of valid deductions of atomic sentences.
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Principle (II) is an expression of the idea that an open deduction is seen
as a schema for closed deductions and is therefore valid if and only if its
closed instances obtained by replacing parameters with constants and open
assumptions with valid deductions are valid; this can be said to be implicit in
Gentzen.

Principle (I) is an expression of the idea that the meaning of a sentence
is given by its introduction rule viewed as the canonical way of proving the
sentence; dubbing it canonical is to say that proofs in other forms can be valid
if and only if they can be rewritten in that form. The principle can be broken
up into two principles (since “reduce” is a reflexive relation):

(Ia) A closed deduction in canonical form is valid if and only if its immediate
subdeductions are valid; and

(Ib) A closed deduction in non-canonical form is valid if and only if it reduces
to a valid deduction in canonical form.

Since the premisses and the assumptions closed by the application of
an introduction rule are subformulas of the conclusion, the subdeductions
referred to in clause (Ia) are of lower complexity than the given deduction. It
is therefore possible to give by recursion a definition of validity relative to a
base that satisfies principles (I) and (II). This definition of validity seemed to
me at that time to make precise Gentzen’s idea about how inferences may be
justified.

To see that the intuitionistic natural deductions really are valid in the
defined sense, we have to verify that the inference rules preserve validity. For
the introductions this is immediate by (Ia), and should be so since themeanings
of the conclusions are supposed to be given by them. For the eliminations
this is seen by essentially spelling out the inversion principle: when D∗ is the
reduction of a deductionD that ends with an elimination whose major premiss
is inferred by introduction, D∗ is contained in the immediate subdeductions
of D and is valid if they are.

6 The notion of valid argument

However, the definitional domain of this notion of validity consists of deduc-
tions that all turn out to have the property defined. One would like a notion
of validity to be defined, not for deductions already expected to be valid, but
for reasoning or argumentation in general, some of which is clearly not valid.
Shortly after the Oslo symposium, I therefore extended the notion of validity
to what I called arguments.

A collection of arbitrary inferences, not just applications of some given
inference rules, arranged in tree-form like a natural deduction, was called
an argument. Some inference rules, referred to as introductions, were to be
taken as meaning explanatory, and an argument whose last inference was an
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instance of such a rule was referred to as canonical (so called in my second
presentation of these ideas, published in 1974). To all other inference rules
were to be assigned (alleged) justifications in the form of reduction operations,
and the notion of reduction of natural deduction was generalized to them, so
that one could speak of one argument reducing to another relative to a setR
of reductions.

An argument A together with a set of reductionsR was called a justified
argument. Validity of a justified argument (A,R) was nowdefined in essentially
the same way as I had defined validity for deductions. A natural deduction
D paired with the setR of standard reductions assigned to elimination rules
constituted an example of a justified argument, and (D,R) would come out
as valid. But a justified argument in general could be built up of any kinds of
inferences and reductions, only some of which would be valid.

Introduction rules were assumed to satisfy the same complexity condition
as Gentzen’s introduction rules, and a base that determined what counted as
valid arguments for atomic sentences was presupposed as before. Then, what
it is for a justified argument (A,R) to be valid – or for an argument A to
be valid relative to a set R of reductions, as I also said synonymously – was
possible to define by recursion by clauses similar to the ones that defined the
validity of deductions:

1. A closed argument A in canonical form is valid relative toR, if and only
if its immediate subarguments are.

2. A closed argument A in non-canonical form is valid relative toR, if and
only if it reduces relative toR to a closed argument in canonical form that
is valid relative toR.

3. An open argumentA is valid relative toR if and only if the result obtained
from A by first substituting closed terms for the free variables in A, and
then substituting for the free assumptions closed arguments valid relative
to an extensionR∗ ofR, is always valid relative toR∗.

The notion of validity obtained in this way came to be discussed by others
as time went on. In his book The Logical Basis of Metaphysics from 1991,
Michael Dummett devoted a couple of chapters to a discussion of my notion,
which he slightly modified, calling it a proof-theoretical justification of logical
laws. In the volume Proof-Theoretic Semantics, which grew out of a conference
with the same name held here in Tübingen in 1999, Peter Schroeder-Heister
discussed and modified my notion in some essential respects, in particular
with respect to what is to be counted as a set of reductions paired with an
argument.2

2“Validity concepts in proof-theoretic semantics”, in Proof-Theoretic Semantics, R. Kahle
and P. Schroeder-Heister (eds.), Synthese 148 (2006), 525–571.
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7 Valid and legitimate inference

It is to be noted that this notion of valid argument (in its different versions) is
defined by recursion over the complexity of the sentences they are arguments
for, as BHK-proofs are defined by recursion over the sentences they are proofs
of, whereas intuitively we think usually of a proof as arising inductively by
making accepted inferences. As we have understood the notion of proof since
ancient Greece, a proof is built up stepwise by making inferences, one after
another, by which conclusions are demonstrated categorically or shown to
hold under certain assumptions, given that the premisses have been established
in the same way. Similarly, a proof in a formal system is defined inductively
over its length, each step being an application of one of the given inference
rules.

In contrast, the notion of valid argument, like the notion of a BHK-proof,
does not presuppose a notion of accepted inference. But given the notion of
valid argument, we can define an inference rule as valid relative to a setR of
reductions when any application of the rule to a valid argument relative to
R yields a new argument that is valid relative to R. However, we should be
aware that this is to turn the usual conceptual order upside-down.

If the intuitive notion of proof is to be explicated, we need to make precise
what it is for an inference to be acceptable in a proof. It cannot be enough
that the conclusion in fact follows from the premisses, whatever is meant by
that. In particular, it is clearly not sufficient that the inference is valid in the
traditional sense of necessarily preserving truth or preserving truth under all
variations of the meanings of the non-logical terms. Unless this is evident,
the inference is not accepted in a deductive proof but is seen as a gap in the
reasoning.

However, to get an objective notion of proof we do not want to rely on a
primitive notion of evidence or an explanation of that notion in psychological
terms. I have suggested elsewhere3 that we make precise what it is to have
objectively a binding ground for an assertion or judgement, so that to be
in possession of such a ground amounts to the assertion or the judgement
being warranted or justified. The notion of ground, which must of course
not presuppose the notion of proof if it is to work in an explication of that
concept, may then be used to define what it is for an inference to be acceptable
or legitimate, as I have called it: To be legitimate the inference should deliver a
ground for the conclusion given grounds for the premisses.

For the same reason that an inference may be valid in the traditional sense
without being legitimate, an inference may be valid as defined above in terms
of valid arguments without being legitimate; it may need an elaborate proof
to establish that an argument is valid or that an inference preserves validity.

3“Explaining deductive inference” in Dag Prawitz on Proofs and Meaning (Outstanding
Contributions to Logic, vol. 7), ed. H. Wansing, Springer 2015, pp. 65–100.
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More generally speaking, for an inference to be legitimate it is not enough
that the conclusion can be justified, in other words that the conclusion is
justifiable, given that the premisses have been justified. What is required is that
the conclusion becomes justified by the inference without further reasoning;
in other words, it must be the very inference that delivers a ground for the
conclusion.

Note that I am here speaking of acts of inference; in this I am following
Per Martin-Löf and Göran Sundholm, who have for a long time emphasised
that an inference is primarily an act. It is only by performing an act that we
can hope to justify a judgement. In particular, it is an inference act that can
bring us in possession of a ground for its conclusion – a mere inference figure
cannot bring about anything. However, the act must consist of something
more than a mere transition of assertions or judgements, if it is to make
the conclusion justified. I have suggested that we should see an inference
as an operation on grounds. Then a legitimate inference delivers literally a
ground for the conclusion when applied to grounds for the premisses. In this
reconceptualization of the notion of inference, I have taken the grounds to be
objects denoted by terms in an extended typed lambda-calculus, isomorphic
to Gentzen’s natural deduction; in other words, what Per Martin-Löf in his
talk yesterday called proof-objects and took to be the modern interpretation
of natural deduction.

This I see today as the most promising analysis of our intuitive notions
of inference and proof. Ideas from Gentzen are involved here in two ways.
Firstly, the meaning of a proposition is explained by telling how a ground for
asserting the proposition is formed, and the grounds are formed by applying
an operation structurally similar to Gentzen’s corresponding introduction rule.
Secondly, inferences other than introductions, when understood as essentially
operations on grounds, become structurally of the same kind as the operations
by which the reductions that justify Gentzen’s elimination rules are obtained.

8 A new notion of valid argument

It is possible however to describe Gentzen’s ideas about the justification of
inferences in precise, general terms that stay closer to how he saw it and to
how inferences are commonly seen. But it requires another notion than the
one of valid argument that I have been speaking of here. That notion has other
undesirable features than the one just noted above.

The problem is, roughly stated, that the reduction assigned to an inference
of an argument may not have much to do with that inference; it may come
“just out of the blue”, as Peter has put it in discussions of this issue. As an
extreme case, the validity of an argument relative to a setR of reductions may
depend totally onR and not at all on its inferences. In contrast, the standard
reductions associatedwithGentzen’s elimination rules dependessentially on the
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deductions to which they are applied. They are obtained by operations of three
very simple kinds applied to these deductions: (a) extracting subdeductions,
(b) substituting terms for free variables in subdeductions, and (c) composing
two subdedcutions, that is, substituting one subdeduction for free assumptions
in another subdeduction.

At the second conference on proof-theoretic semantics held here in
Tübingen two years ago, I investigated the relation between valid arguments
and BHK-proofs. But as I suggested in the paper4, a notion of valid argument
where the reductions were restricted to operations of the kind (a)-(c) may be
in much better concordance with the intuition behind Gentzen’s justification
of elimination rules than the notion studied in the paper.

In my thesis, I tried to catch that intuition by the informally stated inversion
principle, which said, as we recall, that a deduction of the conclusion of an
elimination inference is already “contained” in the deductions of the premisses
when the major premiss is inferred by introduction, but I did not try to give a
general definition of the term “contained”. However, such a definition is easily
given, since for the inversion principle to hold for Gentzen’s eliminations it
is sufficient and necessary that what is obtained by a reduction is counted as
contained in the redex, and as just noted there are just three kinds of simple
operations that are used in order to get the reductions.

Let us say that the argument A is immediately extracted from the set Σ of
arguments if and only if either

(a) A is an argument in Σ or a sub-argument of some argument in Σ, or

(b)A is the result of substituting a term for the occurrences of a free variable
in an argument in Σ, or

(c) A is the result of composing two arguments B and C in Σ, or more precisely,

A =
B
[B]
C
,

that is, A is the result of replacing some free assumptions B in C by B.

We can then define an argumentA to be contained in a set Σ of arguments,
if there is a sequence of argumentsA1,A2, . . . ,An whereAn = A and for each
i < n, Ai is immediately extracted from Σ ∪ {A1,A2, . . . ,Ai−1}. I shall say
that the argument A is contained in the argument B or that B contains A, if
A is contained in {B}.

4“On the relation between Heyting’s and Gentzen’s approach to meaning” in Advances in
Proof-Theoretic Semantics, T. Piecha and P. Schroeder-Heister (eds.), Springer 2016, pp. 5–25.

In the entry “Proof-Theoretic Semantic” in Stanford Encyclopedia of Philosophy (Summer 2014
Edition), Peter Schroeder-Heister also notes that the standard reductions for the connectives are
elementary in the sense that they are obtained by composing given subderivations.
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Given this notion of containment, we can consider a new notion of valid
argument. To distinguish it from the previously defined notions we may call it
analytical validity5; I shall sometimes drop the prefix “analytical” in contexts
where I only speak of this new notion of validity. Most of the terminology
and assumptions in connection with valid arguments can be used as before, in
particular concerning introductions, canonical arguments, and the base for
atomic sentences. The important difference is that analytical validity will not
be relative to a set of reductions.

Of the three recursive clauses in the previous definition of validity, the first
and the third can essentially be kept while the second is different:

1) A closed argument in canonical form is analytically valid, if and only if its
immediate sub-arguments are.

2) A closed non-canonical argument for a sentence A is analytically valid,
if and only if it contains an analytically valid closed canonical argument
for A.6

3) An open argument is analytically valid if and only if all results of substi-
tuting, first, closed terms for the free variables in the argument, and then,
closed analytically valid argument for the free assumptions, are valid.

Note that a closed non-canonical argumentA for a sentenceA that contains
a closed (analytically) valid argument A∗ for A is itself valid. This is seen by
noting that A∗ must in its turn contain a valid closed canonical argument for
A (by clause 2) which is also contained in A (because of the transitivity of the
containment relation), and that therefore A is valid by clause 2.

The definition of this newnotion of analytical validity is still using recursion
over the complexity of sentences and is not presupposing a notion of validity
for inferences. Such a notion, analytical validity of inferences, may be defined
again as preservation of the property in question. Then, introductions are
analytically valid in virtue of clause 1. To demonstrate for any other inference
rule that it is analytically valid, it is sufficient to show in view of the remark
just made that for any closed argument obtained by applying the rule, an
analytically valid, closed argument for its conclusion is contained in the set of
arguments for its premisses, given that these arguments are analytically valid.

Analytical validity is a much more demanding notion of validity than we
had before. Derivable inferences that are not essentially variations or iterations
of introductions or eliminations seem usually not to be analytically valid. But
given that the usual introductions determine what is counted as canonical

5The terminology may be appropriate in view of the emphasis that is here put on an argument
containing another, although, as Göran Sundholm pointed out in the discussion after my talk,
as far as Kant’s notion of analytical truth is concerned, the containment is a relation between
predicates, not between arguments.

6A slightly weaker condition would be to require that it contain the immediate sub-arguments
of an analytically valid closed canonical argument for A.
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arguments, it is easy to see that all the usual eliminations are valid in this
strong sense.

To verify (analytical) validity for→E, letA be a valid argument for A and
let B be a valid argument for A→ B . We have to show that the argument

C =
A
A

B
A→ B
B

is valid. In case C is an open argument, this amounts to showing that any
closed instance C∗ of C (in the sense of clause 3), which we may write

A∗

A∗
B∗

A∗→ B∗

B∗

is valid (if C is already closed, let C∗ = C). Since A and B are valid, so are
the closed arguments A∗ and B∗ (by clause 3). Hence, B∗ contains a closed,
canonical, and valid argument for A∗→ B∗, which in turn must contain, in
fact, must have as immediate sub-argument, a valid argument B1 for B∗ from
A∗ (by clause 2). Let B2 be

A∗

[A∗]
B1

that is, the closed argument for B∗ obtained by substituting A∗ for all free
assumptionsA∗ inB1. By clause 3,B2 is valid, and by clause (c),B2 is contained
in {A∗,B1} and hence also in C∗ (by the transitivity of containment). It follows
by the remark following the definition of analytical validity that C∗ is valid.

This kind of result can be extended beyond the elimination rules for logical
constants. If we follow Per Martin-Löf in seeing Peano’s first and second
axioms (reformulated as inference rules) as introduction rules for the predicate
of being a natural number, then it is not difficult to see that the rule of induction
(which is to be seen as the corresponding elimination rule) is analytically valid.

For an example of a simple inference that is intuitionistically derivable but
is not analytically valid, consider the following inference taken from the paper
by Peter Schroeder-Heister referred to earlier:

A→ (B → C )
B → (A→ C )

It is easily seen to be valid in the previously defined sense relative to a setR
containing the standard reduction assigned to→E and an obvious reduction
that transforms any argument for the premiss valid relative to an extension
ofR to an argument for the conclusion valid relative to that extension. The
transformed argument contains however inferences that need not be a part
of an analytically valid argument for the premiss. That the inference is not
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analytically valid for arbitrary A, B , and C is seen by letting A be B → C .
An example of an analytically valid, closed argument for the premiss is the
one-step argument that assumes B → C and then applies → I. Clearly it
does not contain an argument for the conclusion, not even an argument for
(B→C )→C fromB ; thus,when weakening clause 2 as described in footnote 5,
the inference remains invalid.

Not even the trivial inference

A ∨ B
B ∨ A

is analytically valid. An analytically valid closed argument for A ∨ B does not
need to contain a canonical argument for B ∨ A. However, it does contain
an analytically valid closed argument for A or for B , which would make the
inference valid if we change the notion in the way described in footnote 5.

Let me close with a few final remarks, in particular concerning Gentzen’s
idea that in an elimination inference we are using the major premiss only
“in the sense afforded it by the [corresponding] introduction”. It is this idea
that becomes better reflected by the new, stronger condition for the analytical
validity of a closed non-canonical argument. For validity it was sufficient (and
necessary) that the argument could be rewritten in canonical form by applying
a reduction and that the result was valid; how the reduction operation looked
was left essentially open, which meant that the meanings of the premisses of
the last inference of the argument did not necessarily matter. When we now
require for analytical validity that the argument contain a closed, analytically
valid argument for the sentence in question, we get a condition that can be
satisfied only thanks to what the major premiss means, that is, because of the
nature of a canonical argument for it. The inversion principle formulated in
my thesis indicates the general feature that Gentzen’s elimination rules must
possess, and in fact do possess, in order to satisfy this stronger condition.

It is also noteworthy that given that the introductions take the usualGentzen
form, essentially only they and Gentzen’s eliminations (including inferences
that compress a number of iterated eliminations) seem to be analytically valid.
The analytically valid inferences may in this way correspond to what may be
called essentially gap-free inferences.

To the extent that there are also other analytically valid inferences ex-
pressible in a first order language, they can be expected to be derivable in the
intuitionistic system for natural deduction. This conjecture seems to make pre-
cise the plausible idea that Gentzen’s eliminations are the strongest inferences
expressible in the usual first order language that can be justified in terms of
his introductions. It may have a greater chance to be proved than the similar
and more doubtful conjecture formulated more than 40 years ago in terms of
my previous notion of validity7.

7“Towards a foundation of general proof theory”, in Logic, Methodology and Philosophy of
Science IV, P. Suppes et al. (eds.), North Holland, 1973, pp. 225–250.
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Abstract

Theorem

A natural embedding of Hudelmaier’s sequent calculus for purely
implicational logic into analogous Prawitz-style tree-like natural
deduction calculus followed by appropriate dag-like horizontal
compression allows to obtain polynomial-size dag-like natural
deductions d ′ of arbitrary tree-like inputs d. (‘dag’ = directed
acyclic graph).

A suitable formalization of the theorem should prove the
conjecture NP = PSPACE.
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§1. Overview of the procedure -1

Formalize purely implicational minimal propositional logic as
fragment LM→ of Hudelmaier’s tree-like cutfree intuitionistic
sequent calculus. Note that for any LM→ proof d of a given
formula α we have:

1 the height h (d) of d is polynomial (actually linear) in the
length |α|,

2 the total number φ (d) of pairwise distinct formulas occurring
in d is also polynomial (actually quadratic) in |α|.

Embed LM→ into Prawitz’s tree-like natural deduction
formalism for minimal logic, NM→. Observe that this
translation preserves polynomial estimates (1) and (2).

L. Gordeev On Proof Compressions in SC and ND

§1. Overview of the procedure -2

Elaborate the dag-like deducibility in NM→.

Elaborate and apply horizontal tree-to-dag proof compression
in NM→. Note that for any given tree-like input d , the size of
the resulting dag-like output d ′ is bounded by the product of
h (d) and φ (d). Hence, in the dag-like version of NM→, the
size of the compressed embedded tree-like LM→ proof of α is
polynomially bounded in |α|.
Since purely implicational minimal propositional logic is
known to be PSPACE-complete, conclude: NP = PSPACE.
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§2. Hudelmaier’s sequent calculus for minimal logic -1-

Definition (Sequent calculus LM→)

LM→ includes the following axioms (MA) and inference rules
(MI 1→), (MI 2→), (ME → P), (ME →→) in standard
intuitionistic sequent formalisma of one connective →.
(α, β, γ formulas; p, q distinct propositional variables; in
(MI 1→), no (α→ β)→ γ occurs in Γ, while in (ME → P) and
(ME →→), q occurs in Γ, γ).b

aThe antecedents, Γ, of our sequents Γ =⇒ α are viewed as multisets of
formulas. Sequents =⇒ α , i.e. ∅ =⇒ α, are identified with formulas α.

bThis slight modification is equivalent to the corresponding subsystem of
Hudelmaier’s original calculus LG. The constraints q ∈ VAR (Γ, γ) are added
just for the sake of transparency.
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§2. Hudelmaier’s sequent calculus LM→ -2-

(MA) : Γ, p =⇒ p

(MI 1→) :
Γ, α =⇒ β

Γ =⇒ α→ β
[(@γ) : (α→ β)→ γ ∈ Γ]

(MI 2→) :
Γ, α, β → γ =⇒ β

Γ, (α→ β)→ γ =⇒ α→ β

(ME → P) :
Γ, p, γ =⇒ q

Γ, p, p → γ =⇒ q
[q ∈ VAR (Γ, γ) , p 6= q]

(ME →→) :
Γ, α, β → γ =⇒ β Γ, γ =⇒ q

Γ, (α→ β)→ γ =⇒ q
[q ∈ VAR (Γ, γ)]
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§2. Hudelmaier’s sequent calculus LM→ -3-

Theorem (Hudelmaier)

LM→ is sound and complete with respect to minimal propositional
logic and tree-like deducibility. So any given formula α is valid in
the minimal logic iff sequent =⇒ α is tree-like deducible in LM→.

For any (tree-like or dag-like) deduction d denote by h (d) and
φ (d) its height (:= maximal thread length) and foundation (:=
the total number of pairwise distinct formulas), respectively.
For any sequent (in particular, formula) s denote by |s| the total
number of ‘→’-occurrences in s and define its complexity degree
deg (s):

1 deg (Γ, α→ β =⇒ α) := |α→ β|+ ∑
ξ∈Γ

|ξ| ,

2 deg (Γ =⇒ α) := |α|+ ∑
ξ∈Γ

|ξ| , if (@β) : α→ β ∈ Γ.
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§2. Hudelmaier’s sequent calculus LM→ -4-

Lemma (Hudelmaier)

1 Tree-like LM→ deductions have the semi-subformula
property, where semi-subformulas of (α→ β)→ γ include
β → γ along with proper subformulas α→ β, α, β, γ.
That is, any β occurring in a given tree-like LM→ deduction
of α is a semi-subformula of α.

2 If s ′ occurs strictly above s in a given tree-like LM→
deduction d, then deg (s ′) < deg (s).

3 The height of any tree-like LM→ deduction d of s is linear in
|s|. In particular if s = α, then h (d) ≤ 3 |α|.

4 The foundation of any tree-like LM→ deduction d of s is at
most quadratic in |s|. In particular if s = α, then
φ (d) ≤ (|α|+ 1)2.
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§3. Basic Prawitz-style formalism NM→

We consider Prawitz’s purely implicational system for minimal
propositional logic that contains just two rules

(→ I ) :

[α]
...
β

α→ β
(→ E ) :

α α→ β

β

where α, β, γ, · · · denote arbitrary formulas over propositionl
variables p, q, r , · · · and one propositional connective →.

Theorem (Prawitz)

NM→ is sound and complete with respect to minimal propositional
logic and tree-like deducibility.
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§4. Embedding LM→ into NM→ -1-

M→ consists of natural deductions for minimal logic with rules
(→ I), (→ E). We embed LM→ into M→ following standard
sequent deduction ↪→ natural deduction pattern, where sequent
deduction of Γ =⇒ α is interpreted as a natural deduction of α
from assumptions in Γ (we don’t expose minor assumptions).

(MA) : Γ, p ⇒ p ↪→ p

(MI 1→) :
Γ, α⇒ β

Γ⇒ α→ β
↪→

[α]1
⇓
β

α→ β [1]
(→ I)

(discharging premise-assumption α; [(@γ) : (α→ β)→ γ ∈ Γ])
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§4. Embedding LM→ into NM→ -2-

(MI 2→) :
Γ, α, β → γ ⇒ β

Γ, (α→ β)→ γ ⇒ α→ β
↪→

[α]1
⇓

[β]2
α→ β

(→ I) (α→ β)→ γ

γ
(→ E)

β → γ [2]
(→ I)

⇓
β

α→ β [1]
(→ I)

(discharging/deducing premise-assumptions α, β → γ)
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§4. Embedding LM→ into NM→ -3-

(ME → P) :
Γ, p, γ =⇒ q

Γ, p, p → γ =⇒ q
↪→

p

⇓

p p → γ

γ
(→ E)

⇓
q

(
deducing premise-assumption γ;

[q ∈ VAR (Γ, γ) , p 6= q]

)
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§4. Embedding LM→ into NM→ -4-

(ME →→) :
Γ, α, β → γ ⇒ β Γ, γ ⇒ q

Γ, (α→ β)→ γ ⇒ q
↪→

[α]1
⇓

[β]2
α→ β

(α→ β)→ γ

γ

β → γ [2]

⇓
β

α→ β [1]
(α→ β)→ γ

γ

[γ]3
⇓
q

γ → q [3]

q
(

discharging/deducing premise-assumptions α, β → γ, γ;
[q ∈ VAR (Γ, γ) , p 6= q]

)

L. Gordeev On Proof Compressions in SC and ND

§4. Summary

Lemma (embedding)

There is a recursive operator z transforming any given tree-like
LM→ deduction d of Γ =⇒ α into a tree-like NM→ deduction
z (d) with endformula α and assumptions occurring in Γ.
Moreover d and z (d) share the semi-subformula property, linearity
of the height and polynomial upper bounds on the foundation.
In particular if Γ = ∅, then z (d) is a NM→ proof of α such that
h (z (d)) ≤ 18 |α| and φ (z (d)) < (|α|+ 1)2 (|α|+ 2).
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§5. Dag-like natural deductions -1-

We wish to formalize dag-like deducibility in Prawitz’s world.
Recall that ‘dag’ stands for directed acyclic graph (edges
directed upwards).

The main difference between tree-like and dag-like natural
deductions is caused by the art of discharging, as the following
examples show.
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§5. Dag-like natural deductions -2-

Example

Consider a dag-like natural deduction d =

(→ E)

(→ E)

Γ
︷︸︸︷
∵

β → α

[α]1 α→ β

β
(→ E)

α α→ β [1]
(→ I)

β

in which the right-hand side premise of second (→ E) coincides
with (→ I) premise β. Note that the assumption α above β is
discharged by this (→ I). However, we can only infer that d
deduces β from Γ ∪ {α, α→ β}, instead of expected Γ ∪ {α→ β},
which leaves the option Γ ∪ {α→ β} 0 β open, if α /∈ Γ.
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§5. Dag-like natural deductions -3-

Example (continued)

This becomes obvious if we replace d by its “unfolded” tree-like
version du =

α α→ β

β

Γ
︷︸︸︷
∵

β → α

α

[α]1 α→ β

β

α→ β [1]

β

Clearly du deduces β from Γ∪{α, α→ β}, instead of Γ∪{α→ β},
which leaves the option Γ ∪ {α→ β} 0 β open, if α /∈ Γ.
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§6. Global dag-like proof correctness

Keeping this in mind we’ll say that in a dag-like natural
deduction d , a given leaf u labeled with formula α is an open
(or undischarged) assumption-node, and α is an open (or
undischarged) assumption, iff there exists a thread θ
connecting u with the root such that no w ∈ θ is the (→ I)
conclusion labeled with α→ β. Other leaves are called closed
(or discharged) assumption-nodes.

A natural deduction d is called a proof (of its root-formula) iff
the set of open assumptions is empty.

Note that the corresponding condition ‘ u is open (resp.
closed) in d ’ belongs merely to NP (resp. coNP), unless d is
a tree-like deduction, in which case both conditions are in P,
as desired. (Thus tree-like deducibility is no problem.)
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§7. Local dag-like proof correctness -1-

We overcome this trouble by a suitable notion of local
correctness that includes special edge-labeling function
`d : e (d)× f (d)→ {0, 1}, where e (d) and f (d) are
respectively the edges and formulas of d .

Definition

Local correctness conditions for `d are as follows, where s (u, d)
contains τ as u’s children (c (u, d)) or pairs of children and `g (τ)
are corresponding grandparents.

Suppose u 6= root (d) and τ ∈ s (u, d). Then:
1 If τ = x ∈ c (u, d), then `d (〈u, x〉 , α) =



1 , if `f (u) = α→ `f (x) ,∏
v∈`g(τ)

`d (〈v , u〉 , α) , else.

2 If τ = 〈y , z〉 with y , z ∈ c (u, d), then
`d (〈u, y〉 , α) = `d (〈u, z〉 , α) =

∏
v∈`g(τ)

`d (〈v , u〉 , α).
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§7. Local dag-like proof correctness -2-

Definition

Denote by D→ the set of locally correct dag-like NM→ deductions.
A given assumption α is called discharged (or closed) in
D =

〈
d , `f, `g, `d

〉
∈ D→ iff for every leaf u with `f (u) = α we

have `d (〈x , u〉 , α) = 1, ∀x ∈p(u,D). Otherwise α is called open.
Denote by ΓD the set of open assumptions, in D. D is called an
encoded dag-like NM→ proof of `f (root (d)) iff ΓD = ∅.

Lemma (global = local)

There is an isomorphism between global (i.e. unencoded) and
encoded dag-like natural proofs of `f (root (d)).

Proof.

Easy bottom-up induction on the height of d .
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§8. Local dag-like proof correctness -2-

Lemma (soundness and completeness)

1 For any given quadruple D =
〈
d , `f, `g, `d

〉
∈ D→, the

condition ‘ D is an encoded dag-like proof of root (D) ’ is
decidable in |D|-polynomial time.

2 Dag-like version of NM→ (whether global or encoded) is
sound and complete with respect to minimal propositional
logic.

Proof.

1 Straightforward.

2 Completeness trivial (: trees are dags). Soundness proved via
unfolding (cf. Example).

L. Gordeev On Proof Compressions in SC and ND

§9. Horizontal compression -1-

Horizontal dag-like compression of a tree-like deduction is an
ultimate inversion of the unfolding. It is obtained by iteration of
horizontal collapsing of distinct vertices labeled by equal formulas.

Definition (horizontal collapsing)

Let D =
〈
d , `f, `g, `d

〉
∈ D→, k ∈ [h (D)], α ∈ F and

Sα = {x ∈ Lk (D) : `f (x) = α}. a Moreover we assume that
(d)�x are pairwise disjoint (sub)trees, for all x ∈ Sα. Let u ∈ Sα
be fixed. A required collapsed dag-like deduction

Dc
k,α =

〈
dk,α, `

f
k,α, `

g
k,α, `

d
k,α

〉
∈ D→ is stipulated as follows, where

Rα =
⋃

x∈Sα
s(x , d) and

[
(d)Rα

]
u

is a dag that extends upper

subdags
⊎

τ∈Rα
(d)�τ by a new root u.

aLk (d) is the set of nodes of the height (level) k.
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§9. Horizontal compression -2-

Definition (horizontal collapsing)

1 dk,α arises from d by substituting
[
(d)Rα

]
u

for (d)�u, while
deleting all (d)�x , u 6= x ∈ Sα.
Note that v(dk,α) = {u}∪ (v (d) \ Sα). The edges are given

by e (dk,α)=e (d)↓
v(dk,α)

2 ∪
{
〈w , u〉 : w ∈ ⋃

x∈Sα
p (x , d)

}
.

2 `fk,α and `gk,α are naturally inherited from `f and `g.fk,α
3 Recall that (by global = local) `dk,α is determined by `fk,α, `gk,α

and/but also explicitly definable (omitted for brevity).

D ↪→ Dc
k,α is called dag-like horizontal collapsing, in NM→ .

Lemma

Dc
k,α ∈ D→. D and Dc

k,α have the same root formulas and

assumptions, while ΓDc
k,α

= ΓD. Besides,
∣∣∣Dc

k,α

∣∣∣ < |D|, if |Sα| > 1.
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§9. Horizontal compression -3-

Definition (horizontal tree-to-dag compression)

Let T→ be the set of tree-like dags ∈ D→. Our compressing
operator C : T→ → D→ is obtained by bottom-up iteration of the
horizontal collapsing so long as possible, starting with T→.

Theorem

For any NM→ deduction T =
〈
d , `f, `g, `d

〉
∈ T→, h (T ) > 2,

and compressed encoded dag-like NM→ deduction C (T ) ∈ D→,

|C (T )| < h (d) · φ (d)

Moreover T and C (T ) both have the same root formulas and
assumptions, while ΓC(T ) = ΓT . In particular, if T is an encoded
tree-like NM→ proof of any given α, then C (T ) is an encoded
dag-like NM→ proof of α, whose size, |C (T )|, is polynomial in |α|,
provided that so are both h (T ) and φ (T ).
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§10. Summary -1-

Proof.

By the definition we have

|C (T )| =

h(T )⋃

n=0

|`fn (Ln (d))| ≤

1 + 2 +

h(T )⋃

n=2

|`fn (Ln (d))| ≤ 3 + (h (d)− 1) · φ (d) < h (d) · φ (d) .

The rest follows from Lemma by induction on h (T ).
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§10. Summary -2-

Corollary

Let d be any given tree-like LM→ deduction of α and T be the
encoded tree-like NM→ proof of α that corresponds to z (d).
Then |C (T )| < 18 (|α|+ 1)4.

Proof.

By previous estimates

|C (T )| ≤ h (z (d)) · φ (z (d)) < 18 |α| (|α|+ 1)2 (|α|+ 2)

< 18 (|α|+ 1)4 .

Corollary

NP = PSPACE, and hence
NP = coNP = PSPACE = NPSPACE.
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§10. Summary -3-

Proof.

Recall that the validity problem for minimal propositional logic is
PSPACE-complete. Now by standard arguments, the Corollary
shows that it is a NP problem. Indeed, consider any given purely
implicational formula α. By Hudelmaier’s result, α is valid in the
minimal logic iff there exists a tree-like LM→ deduction d of α.
Hence, by the embedding lemma and soundness and completeness
of dag-like NM→, α is valid in the minimal logic iff we can
“guess” a dag-like NM→ proof C (T ) of α, whose size is
polynomial in |α|. Moreover, we know that the assertion ‘ C (T ) is
an encoded dag-like NM→ proof of α ’ is decidable in polynomial
time with respect to |C (T )|, and hence also |α|. Thus the
existence of an encoded dag-like NM→ proof of α is verifiable in
polynomial time by a non-deterministic algorithm, and hence so is
the problem of minimal validity of α, Q.E.D.
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