5,017 research outputs found

    The Limited Integrator Model Regulator And its Use in Vehicle Steering Control

    Full text link
    Unexpected yaw disturbances like braking on unilaterally icy road, side wind forces and tire rupture are very difficult to handle by the driver of a road vehicle, due to his/her large panic reaction period ranging between 0.5 to 2 seconds. Automatic driver assist systems provide counteracting yaw moments during this driver panic reaction period to maintain the stability of the yaw dynamics of the vehicle. An active steering based driver assist system that uses the model regulator control architecture is introduced and used here for yaw dynamics stabilization in such situations. The model regulator which is a special form of a two degree of freedom control architecture is introduced and explained in detail in a tutorial fashion whereby its integral action capability, among others, is also shown. An auxiliary steering actuation system is assumed and a limited integrator version of the model regulator based steering controller is developed in order not to saturate the auxiliary steering actuator. This low frequency limited integrator implementation also allows the driver to take care of low frequency steering and disturbance rejection tasks. Linear simulation results are used to demonstrate the effectiveness of the proposed method

    A new momentum management controller for the space station

    Get PDF
    A new approach to CMG (control moment gyro) momentum management and attitude control of the Space Station is developed. The control algorithm utilizes both the gravity-gradient and gyroscopic torques to seek torque equilibrium attitude in the presence of secular and cyclic disturbances. Depending upon mission requirements, either pitch attitude or pitch-axis CMG momentum can be held constant: yaw attitude and roll-axis CMG momentum can be held constant, while roll attitude and yaw-axis CMG momentum cannot be held constant. As a result, the overall attitude and CMG momentum oscillations caused by cyclic aero-dynamic disturbances are minimized. A state feedback controller with minimal computer storage requirement for gain scheduling is also developed. The overall closed-loop system is stable for + or - 30 percent inertia matrix variations and has more than + or - 10 dB and 45 deg stability margins in each loop

    A survey on fractional order control techniques for unmanned aerial and ground vehicles

    Get PDF
    In recent years, numerous applications of science and engineering for modeling and control of unmanned aerial vehicles (UAVs) and unmanned ground vehicles (UGVs) systems based on fractional calculus have been realized. The extra fractional order derivative terms allow to optimizing the performance of the systems. The review presented in this paper focuses on the control problems of the UAVs and UGVs that have been addressed by the fractional order techniques over the last decade

    Rollover prevention and path following of a scaled autonomous vehicle using nonlinear model predictive control

    Get PDF
    Vehicle safety remains an important topic in the automotive industry due to the large number of vehicle accidents each year. One of the causes of vehicle accidents is due to vehicle instability phenomena. Vehicle instability can occur due to unexpected road profile changes, during full braking, obstacle avoidance or severe manoeuvring. Three main instability phenomena can be distinguished: the yaw-rate instability, the rollover and the jack-knife phenomenon. The main goal of this study is to develop a yaw-rate and rollover stability controller of an Autonomous Scaled Ground Vehicle (ASGV) using Nonlinear Model Predictive Control (NMPC). Open Source Software (OSS) known as Automatic Control and Dynamic Optimisation (ACADO) is used to design and simulate the NMPC controller based on an eight Degree of Freedom (8 DOF) nonlinear vehicle model with Pacejka tire model. Vehicle stability limit were determined using load transfer ratio (LTR). Double lane change (DLC) steering manoeuvres were used to calculate the LTR. The simulation results show that the designed NMPC controller is able to track a given trajectory while preventing the vehicle from rolling over and spinning out by respecting given constraints. A maximum trajectory tracking error of 0.1 meters (on average) is reported. To test robustness of the designed NMPC controller to model mismatch, four simulation scenarios are done. Simulation results show that the controller is robust to model mismatch. To test disturbance rejection capability of the controller, two simulations are performed, with pulse disturbances of 0.02 radians and 0.05 radians. Simulations results show that the controller is able to reject the 0.02 radians disturbance. The controller is not able to reject the 0.05 radians disturbance

    Fractional Order State Feedback Control for Improved Lateral Stability of Semi-Autonomous Commercial Heavy Vehicles

    Get PDF
    With the growing development of autonomous and semi-autonomous large commercial heavy vehicles, the lateral stability control of articulated vehicles have caught the attention of researchers recently. Active vehicle front steering (AFS) can enhance the handling performance and stability of articulated vehicles for an emergency highway maneuver scenario. However, with large vehicles such tractor-trailers, the system becomes more complex to control and there is an increased occurrence of instabilities. This research investigates a new control scheme based on fractional calculus as a technique that ensures lateral stability of articulated large heavy vehicles during evasive highway maneuvering scenarios. The control method is first implemented to a passenger vehicle model with 2-axles based on the well-known “bicycle model”. The model is then extended and applied onto larger three-axle commercial heavy vehicles in platooning operations. To validate the proposed new control algorithm, the system is linearized and a fractional order PI state feedback control is developed based on the linearized model. Then using Matlab/Simulink, the developed fractional-order linear controller is implemented onto the non-linear tractor-trailer dynamic model. The tractor-trailer system is modeled based on the conventional integer-order techniques and then a non-integer linear controller is developed to control the system. Overall, results confirm that the proposed controller improves the lateral stability of a tractor-trailer response time by 20% as compared to a professional truck driver during an evasive highway maneuvering scenario. In addition, the effects of variable truck cargo loading and longitudinal speed are evaluated to confirm the robustness of the new control method under a variety of potential operating conditions

    Reset controller design based on error minimization for a lane change maneuver

    Get PDF
    An intelligent vehicle must face a wide variety of situations ranging from safe and comfortable to more aggressive ones. Smooth maneuvers are adequately addressed by means of linear control, whereas more aggressive maneuvers are tackled by nonlinear techniques. Likewise, there exist intermediate scenarios where the required responses are smooth but constrained in some way (rise time, settling time, overshoot). Due to the existence of the fundamental linear limitations, which impose restrictions on the attainable time-domain and frequency-domain performance, linear systems cannot provide smoothness while operating in compliance with the previous restrictions. For this reason, this article aims to explore the effects of reset control on the alleviation of these limitations for a lane change maneuver under a set of demanding design conditions to guarantee a suitable ride quality and a swift response. To this end, several reset strategies are considered, determining the best reset condition to apply as well as the magnitude thereto. Concerning the reset condition that triggers the reset action, three strategies are considered: zero crossing of the controller input, fixed reset band and variable reset band. As far as the magnitude of the reset action is concerned, a full-reset technique is compared to a Lyapunov-based error minimization method to calculate the optimal reset percentage. The base linear controller subject to the reset action is searched via genetic algorithms. The proposed controllers are validated by means of CarSim.Agencia Estatal de Investigación | Ref. DPI2016-79278-C2-2-
    corecore