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Abstract 

 

With the growing development of autonomous and semi-autonomous large commercial 

heavy vehicles, the lateral stability control of articulated vehicles have caught the attention of 

researchers recently. Active vehicle front steering (AFS) can enhance the handling performance 

and stability of articulated vehicles for an emergency highway maneuver scenario. However, with 

large vehicles such tractor-trailers, the system becomes more complex to control and there is an 

increased occurrence of instabilities. This research investigates a new control scheme based on 

fractional calculus as a technique that ensures lateral stability of articulated large heavy vehicles 

during evasive highway maneuvering scenarios. The control method is first implemented to a 

passenger vehicle model with 2-axles based on the well-known “bicycle model”. The model is 

then extended and applied onto larger three-axle commercial heavy vehicles in platooning 

operations. To validate the proposed new control algorithm, the system is linearized and a 

fractional order PI state feedback control is developed based on the linearized model. Then using 

Matlab/Simulink, the developed fractional-order linear controller is implemented onto the non-

linear tractor-trailer dynamic model. The tractor-trailer system is modeled based on the 

conventional integer-order techniques and then a non-integer linear controller is developed to 

control the system. Overall, results confirm that the proposed controller improves the lateral 

stability of a tractor-trailer response time by 20% as compared to a professional truck driver during 

an evasive highway maneuvering scenario. In addition, the effects of variable truck cargo loading 

and longitudinal speed are evaluated to confirm the robustness of the new control method under a 

variety of potential operating conditions.  
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1 

 

Chapter 1: Introduction 

 

1.1      Background 

The development of autonomous and semi-autonomous commercial heavy vehicles are in 

growing demand by offering improved emissions, passenger comfort and fuel economy, along 

with the potential to reduce traffic congestion and improve human safety [1]. Large heavy trucks 

in platooning operations can play an important role in energy saving from aerodynamic drafting, 

in addition to further reducing highway congestion and safety improvements [2].   

Road freight transportation is much needed and significantly dominates other 

transportation methods such as maritime, air, and rail [3]. Further, in 2015, heavy trucks accounted 

for 70% of the national freight transportation (U.S DOT), where 10.6 billion tons equaling $10.9 

trillion worth of goods were transported by tractor-trailers, with an average of $29 billion worth 

of goods transported on a daily basis [1].  

Lateral stability control is a critical aspect of the vehicle performance which can help a 

driver maintain control during a sudden or emergency maneuver. Active front steering (AFS) is a 

technology for increasing vehicle maneuverability and stability by providing an supplemental 

steering angle that is independent of the driver hand wheel input [4]. 

 From a safety perspective, in the United States it is estimated that 52% of all road traffic 

fatalities occur due to roadway departures (FHWA) [6]. Statistical data obtained by the National 

Highway Transportation Safety Administration (NHTSA) estimates that 2016 traffic fatalities in 

the U.S. were 37,461 of which 19,676 mortalities involved lane departures. Injuries involving 

tractor-trailers during that same year are estimated to be 116,000 with 4,327 fatalities [5]. These 



 

2 

 

numbers suggest significant research and improvement needs to be conducted to solve this issue 

and reduce this tragic number of fatalities happening annually.  

 A study conducted by the Federal Motor carrier Safety Administration (FMCSA) examined 

the elements causing these accidents [72]. The factors that impact the incident of a traffic collision 

might take place hours, days or even months before the collision taking place. Some of these 

factors include the level of training and expertise of the driver, fatigue, alcohol consumption, 

weather conditions and excessive speed. The ten most cited causes of accidents involving heavy-

duty trucks and passenger automobiles are presented below. It is noted that semi-automated or 

automated systems could significantly reduce all of these factors [72]: 

 Illegal lane departures 

 Fatigue 

 False assumption of other roadway user actions 

 Interruption of traffic flow 

 Unfamiliarity with roadway configuration   

 Inattention 

 Poor observation  

 Driving too fast for conditions 

 Poor health or illness 

 Distraction by object or person inside the automobile  

Vehicle dynamics control can be categorized intro three main areas: lateral, longitudinal and 

yaw control. Varying factors affect the lateral dynamic performance of an automobile such as the 

road conditions, vehicle parameters, tire steering angle and the initial operation of the vehicle [3]. 

Vehicle stability control (VSC) is an active safety method which can help in the reduction of the 



 

3 

 

total wheel slip amount when accelerating. Furthermore, VSC generally includes active front 

steering (AFS), direct yaw moment control (DYC), anti-lock braking systems (ABS) and active 

suspension systems [7]. 

There are two main concerns for achieving lateral stability for an automobile. The first is the 

inherent nonlinearities in the vehicle dynamics. The second challenge is that the longitudinal 

velocity varies with time which makes tracking the performance more complex in order to control 

the lateral dynamics of the automobile [8]. Ensuring lateral stability for heavy duty vehicles 

remains one of the concerns in safety system design and development [9]. Large tractor-trailers 

operate under conditions with many types of uncertainty and remains one of the main concerns of 

applying modern control theory [10]. 

 One of the circumstances that tends to reduce the stability margin of large trucks is abrupt 

lateral acceleration. This makes articulated vehicles tend to oversteer during an evasive 

maneuvering situation as shown in Fig. 1.1. Reduced lateral stability margins are further reduced 

when travelling at increased highway speeds [9, 11]. Several methods have been developed to 

increase lateral stability. One method uses gain scheduling of state-feedback [12]. Using this 

method the vehicle lateral stability and handling were improved by combing AFS and DYC 

control. Another method has been the application of linear quadratic regulator (LQR) theory [13]. 

In this case it was shown that the controller reduced load transfer and roll angle at high speeds and 

improved lateral stability on banked surfaces while also preventing oversteer effects. Sliding mode 

control (SMC) [14] has been suggested such that the rear of the trailer would be required to follow 

the track of the 5th wheel. In this approach, the stability and handling were improved by applying 

the SMC controller for the tractor-trailer dynamics under adverse driving conditions. 
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H∞ control was also implemented in numerous studies [15, 16] where the vehicle behavior was 

improved under critical driving situations. It also illustrated robust performance with respect to 

model uncertainties such changing the road adhesion coefficient, vehicle forward speed, and 

freight mass in the trailer. In [17], a lead-lag control provided a driver-assistance function in 

emergency situations in order to mitigate accident sequences.  

Researchers have proposed genetic algorithm control [18] for emergency obstacle avoidance 

situations that account for the distance at which the driver first detects the object. Model reference 

adaptive control (MRAC) was implemented in [19] to increase the lateral stability of a car-trailer 

system. Tt was shown to be effective for enhancing lateral stability during several cycles of a 

sinusoidal steering input maneuver.  

  Fuzzy neural networks with self-learning functions have been utilized with various fuzzy 

logic rules. It was demonstrated in [20] that this control technique can be an effective method for 

lateral control of intelligent vehicles in tracking desired trajectories. Model predictive control 

(MPC) [28] was implemented in the basis of altering the trend on tire forces over a specified time 

interval. The prediction functions would indicate the nonlinear features in the process which 

resulted in improving the stability and handling of the vehicle steering system. 
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Fig. 1.1. Understeering and oversteering overview. 

 

With today’s technologies for automated driving, the vehicle should be able to exceed the 

human driver capability with improved time response for avoiding collisions. The Society of 

Automotive Engineers (SAE) six levels of automation is presented in Fig. 1.2. Currently, 

companies are working on reaching level four and five with the short term goal to reach level six 

in the near future [3]. For this research, the goal is to achieve the conditional or partial automation 

(levels two and three) where a driver is still behind the wheel but is not required to monitor the 

environment at all times but should be ready for intervention when needed. 
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Fig. 1.2. SAE level of automation chart [21]. 

 

 

 

 

1.2 Motivation of this Research  

Numerous factors can contribute to roadway accidents with human error being estimated 

to cause 94% of all crashes [22]. Further, tractor-trailer combinations are involved in 72% of fatal 

crashes involving large trucks [23]. Driving tasks are gradually shifting towards automated driving 

methods [2, 24] with the expectation of reducing crashes due to human error.  

Automated highway systems have attracted researchers’ growing attention in recent years 

[2, 11, 25]. This includes particular attention on lateral stability and is the primary topic of this 

dissertation. Furthermore, tractor-trailers have the projection of becoming the main beneficiary to 

automatic control for the following motives [27]: 

 The relative equipment price for automated heavy trucks is lower than that for 

passenger automobiles. 
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 Tractor-trailers on average travel six times the distance as compared to a passenger 

automobile. Hence, reducing the number of drivers would reduce the operating price 

significantly. 

 Autonomous heavy trucks can have a substantial influence on improving the overall 

highway safety.  

 Truck drivers have a tedious job and the automation would contribute greatly to reduce 

the stress levels and thereby would increase safety. 

In the U.S., trucks roughly move about 70% of the national freight by weight [1]. Further, 

goods transport is critical for the economy and transportation volumes are tightly coupled with 

economic prosperity. However, earlier research on autonomous driving systems was mostly 

installed on passenger vehicles. It would difficult to deploy autonomous platooning systems for 

passenger vehicles on public roads since approval by drivers has not been as favorable when 

compared to tractor-trailers [26]. Overall, autonomous trucks in platooning operations are more 

likely to be available to the market first due to the major efficiency and safety benefits they can 

provide [2, 11, 25, 26] 

a) Public safety is increased by reducing the number of accidents trucks are involved in. 

b) Cost saving by decreasing the cost for shipping companies. 

c) Traffic congestion can be significantly reduced. 

d) Providing more clean energy saving along with cost reduction from the platooning. 

e) Decreasing the workload of the driver with automated driving, is especially effective 

for truck drivers who tend to drive longer distances than passenger car drivers. 

Platooning would offer additional safety and traffic congestion measures along with fuel 

consumption and greenhouse gas emissions. In a study conducted in 2011 [2] where an observation 
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of three heavy-duty vehicles in a platooning mode with a distance gap of 6 meters was enforced. 

The result was an average of 10% reduction in fuel consumption from the platooning operation.  

 

1.3 Objective of this Research  

 Develop a new control scheme to improve the lateral stability for an evasive maneuver scenario 

for tractor-trailers platoons to avoid obstacles and collision while travelling on a highway by 

accomplishing the following: 

 Achieve a 20% response time improvement over a professional truck driver. 

 Completing an emergency lane change with the tractor-trailer being in the center of the 

adjacent lane after the maneuver is completed. 

 Integrate lateral steering control design into semi-autonomous heavy vehicles in 

platooning. 

 

1.4 Scope of this Research  

Controlling a moving vehicle requires considerable resources and data collection. For this 

research, it is assumed that the tractor-trailer is operating in a semi-autonomous platooning mode 

where the objective is to provide fast lane position control during an evasive maneuver.  The 

requisite sensor measurements are assumed to be available to the control algorithm. This is a 

reasonable assumption since these sensors are commercially available for supporting existing 

vehicle technologies. These sensors include: 

 Gyroscope. 

 Accelerometer. 

 Image and GPS. 
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In addition, the following is assumed while the tractor-trailer is in platooning operation mode: 

 Constant longitudinal velocity. 

 The tractor-trailer is properly loaded for a balanced cargo weight distribution. 

 Road surface conditions are adequate to provide suitable traction for evasive maneuvers. 

 No mechanical or equipment failures. 

 The roll motion is negligible. 

 

1.5       Contributions and Dissertation Outline 

The primary contribution of this research is developing a new control method that achieves the 

maneuvering requirements for tractor-trailer lateral dynamics. This is achieved with a novel 

fractional order 𝑃𝐼𝜆 state feedback control methodology. This results in improved lateral stability 

for commercial heavy-vehicles in platooning operations in order to safely change lanes during a 

highway emergency maneuver situation to avoid an obstacle. The results indicate achieving a 20% 

time response improvement compared to a skilled human driver. The research also presents a new 

design method for selecting the optimal fractional order integral value that provides higher stability 

margin and reduced tracking error for a ramp reference input to a tractor-trailer steering system. It 

is noted that a fractional order controller has not been previously applied to tractor-trailers and 

therefore is a new contribution to the field of large track dynamics and control. 

The outline of this dissertation is as follows: 

 Chapter 1 provides a brief background, the research motivation and objectives.  

 Chapter 2 introduces the active front steering mechanism along with passenger vehicle 

modeling with simulation results.  
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 Chapter 3 expands the passenger vehicle model to a tractor trailer modeling. The 

platooning operation is illustrated. 

 Chapter 4 presents background information of fractional calculus and the associated 

theoretical definitions. Fractional order control and its benefits are presented  

 Chapter 5 introduces the proposed control method for lateral stability. A fractional order 

PI state feedback controller is presented and the design method for selecting the optimal 

fractional order integrator is presented along with the details for implementing the 

controller. The developed fractional-order controller is initially evaluated with a linearized 

tractor-trailer model. 

 Chapter 6 provides detailed simulation results for a realistic nonlinear model of the tractor-

trailer for verification where the proposed control method is compared to a professional 

truck driver for an evasive maneuver scenario.  

 Chapter 7 concludes the major contributions of this dissertation and future research 

suggestions. 
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Chapter 2: AFS and Passenger Vehicle Model 

 

2.1      Driver Assistance Devices 

Driver assistance technologies can be broadly classified as either passive or active devices. 

A number of driver assistance devices have been developed by the automotive industry in order to 

automate driving and minimize the number of highway collisions. Examples of driver assist device 

include [29]:  

 Adaptive cruise control (ACC) that allow a leading vehicle to be followed automatically 

while maintaining a safe distance. 

 Collision avoidance devices which can provide brake assistance to the driver and 

automatically identify slower moving vehicles to provide a warning. 

 Driver condition monitoring devices that can identify objects and obstacles and also deliver 

warning for the driver in case of a drowsiness. 

 Lane departure warning systems. 

 Lane keeping systems that provide self-steering during highway environments.  

 Vision improvement and night vision devices. 

Passive safety devices are classified as vehicle components and systems alert the driver to 

possible risk conditions. These include in-cab rear-view camera vision systems, blind-spot warning 

annunciators activated by turn signals, and tire pressure and other dashboard warning lights. To 

increase the lane change performance, there have been various trailer self-steer axles have been 

introduced [9]. For minimizing sway motion associated with a trailer, a variety of coupling 

mechanisms have been suggested [9, 56]. 
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Active safety systems have the goal to prevent collisions by directly modifying vehicle speed 

and direction through braking, steering and engine controls. In the active control approach, 

numerous methods have been investigated to enhance vehicle handling by stabilizing the lateral 

performance of tractor-trailers. These methods include active and rear steering control, active 

control of the trailer differential breaking, and actively controlling both combination of the tractor-

trailers differential breaking system [9]. In general, passive safety systems have reached a well-

developed status and are widely sing by vehicle manufactures, whereas active systems have to date 

been deployed in a small number of commercially available products [9, 56]. The dissertation 

provides results that would help the future development and deployment of active safety systems.  

 

2.2      Active Front Steering  

VSC is an active safety method which is able to diminish tire slip in severe driving situations 

by modulating braking forces and thereby help drivers maintain directional stability. This helps 

the driver stay in control of the automobile at the time of an emergency maneuvering situation [7]. 

AFS can further enhance steering control during an emergency condition by augmenting driver 

inputs to avoid an oversteer response.  

AFS has been heavily studied in both academic and industrial communities [2, 7, 11, 30-35]. 

Early work was started in the late 1960’s by Kasselmann and Keranen [32]. These studies 

demonstrate the effectiveness of applying an AFS technique to provide a significant yaw 

disturbance rejection initiated for lane-change maneuvers, high speed turns, and compensating for 

side wind forces [33]. Moreover, AFS is one of the most effective techniques applied to achieving 

active safety control since it can deliver an additional steer angle element to the input of the driver. 

In prior development, the AFS function was implemented as a driver assist ratio of driver to 
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automatic steering inputs.  This ratio would be decreased at high speeds, such as driving on a 

highway in order to provide more accurate handling to the driver for harsh maneuvers, while the 

ratio is increased at slow vehicle speeds to diminish steering efforts during parking situations [11, 

7].  

AFS has been successfully implemented for assisting drivers to avoid a collision or an obstacle 

[11-34]. A study by Diao et al. [7] demonstrated the effectiveness of AFS in side wind disturbance 

rejection of a vehicle when completing a single lance change maneuver. Other control methods 

introduced for AFS include fuzzy logic in a study by March and Shim for a single and double lane 

change [35]. Sliding mode control (SMC) was demonstrated to be an effective method to handle 

uncertainties and disturbance rejection [36]. 𝐻∞ control has been shown to minimize the effects 

of  disturbances caused by the steering system hysteresis [37]. Optimal control was applied to 

improve vehicle handling and stability under severe driving conditions with consideration of 

nonlinearity of tire character tics [38]. Gain scheduling feedback control was considered for 

rollover avoidance by AFS while also increasing lateral stability [39, 40]. Quantitative feedback 

theory demonstrated a robust control design with respect to the mass, speed and center of gravity 

location [41]. Model predictive control (MPC) has shown good results where the effects of side 

wind disturbances at high speeds were reduced [42]. 

The active safety control incorporated in vehicles typically includes yaw moment control, 

active suspension system, anti-lock braking (ABS) and AFS [7]. AFS technology was originally 

developed by BMW with ZF Lenksysteme for passenger cars [43, 54] in order to make the front 

wheels maneuver in a particular angle based on vehicle speed. With this technology, oversteering 

and understeering can be prevented and thus AFS systems provides more security while driving. 

In contrast to steer-by-wire technologies, AFS keeps a mechanical connection from the road wheel 
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and the steering wheel during a fault situation and thereby provides intrinsic fail-safe redundancy 

[55,101]. Several basic variable gear ratio (VGR) have been implemented for the AFS system 

design which include a harmonic drive, a differential gear and a bi-planetary gear, where the bi-

planetary or planetary gear system imposes an additional steering angle on the out shaft [55]. This 

configuration is studied in this dissertation and with functional relations illustrated in Fig. 2.1. The 

mechanical configuration is shown in Fig. 2.2.   

For the block diagram shown in Fig. 2.1, the control module gathers information from the 

sensor package from which the angle through a servo motor is executed [11]. 

 

 

Fig. 2.1. Active front steering configuration. 
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An AFS assembly typically contains dual planetary gear setting in addition to a separate 

input torque from the electric motor and an input torque from the hand wheel. The dual input 

torques are additive at the output shaft, while the two planetary mechanism would allow for 

isolating the position between the inputs (handwheel and servo motor) that act on the steering 

column as shown in Fig. 2.2 [44]. 

 

 
 

Fig. 2.2. Components of the AFS [11]. 

 

An AFS provides the total torque to the steering gear during maneuvering situations. The 

net torque applied to the front wheel would also include friction and inertial effects [11]. For 

control system design purposes, the interrelations of an AFS mechanism are given in Fig. 2.3. 

The definitions for the AFS steering variables are given by steering wheel angle as 𝛿𝑠 ; the 

motor angle is denoted by 𝛿𝑀 ; and the steering gear pinion angle as 𝛿𝑔. The net effective front tire 

angle is 𝛿𝑓. Thus 𝛿𝑔 is dependent upon 𝛿𝑀 and 𝛿𝑠, while 𝛿𝑓 relies on the pinion angle 𝛿𝑔. It is also 

noted that the relation between 𝛿𝑓 and 𝛿𝑔 is non-linear and therefore needs to be accounted for in 

developing a feedback control law.  
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Fig. 2.3. Active front steering mechanism [45]. 

 

The components described above are related with the following equations: 

𝛿𝑓(𝑡) = 𝛿𝑠(𝑡)
1

𝑟
          (2.1) 

  

𝛿𝑓(𝑡) = 𝑟𝑔 𝛿𝑠(𝑡) + 𝛿𝑀(𝑡) 𝑟𝑆        (2.2) 

𝛿𝑓(𝑡) = 𝐹(𝛿𝑠 𝑔(𝑡))          (2.3) 

Where F represents the non-linear correlation within the front tire steering angle 𝛿𝑠 and the 

pinion angle 𝛿𝑔. The factor 𝑟𝑔 is applied from the motor angle to the steer gear pinion angle and 𝑟𝑠 

is the factor of conversion from the steering wheel angle to the steering gear pinion angle. Hence, 

the steer gear ratio of the active steering system is defined with the following relationship  𝑟 =
𝛿𝑠 

𝛿𝑓  
. 

. 
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The AFS outcome can be summarized in the following relationship 

   𝛿𝑠 = 𝛿𝑑 + 𝛿𝑐         (2.4) 

where 𝛿𝑠 is the steering modified angled applied to the front tires, 𝛿𝑑 is the steering input identified  

from the driver and 𝛿𝑐 is the resulting feedback angle from the control algorithm. 

By applying feedback control is possible that understeering and oversteering can be 

minimized. Understeer is the tendency to have a reduced yaw angle response resulting in the front 

of the vehicle to continue longitudinally when turning. In contrast, oversteering is defined as the 

tendency for a larger than expected yaw angle response where the rear of the automobile moves 

laterally outward which can result in loss of driver control [29].  Recall that a visual representation 

of oversteering and understeering was given in Fig 1.1. For analytical purposes, Fig. 2.4 shows the 

associated coordinates for describing under and oversteer conditions. Understeer can occur which 

when  𝛼1 > 𝛼2 , while oversteer occurs when 𝛼1 < 𝛼2,  and a neutral steer is when  𝛼1 = 𝛼2.  

 

Fig. 2.4. Vehicle coordinate diagram [29]. 
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2.3 Autonomous Vehicles Technology 

 The history of autonomous vehicles goes back to 1926 when the potential for an automated 

vehicle was assembled based on radio control and referred to as the “Linriccan Wonder” [49]. 

Following this, General Motors (GE) introduced another major breakthrough in the Motorama auto 

show in 1960 by presenting semi-automated cars. Between 1980 -1990 further progress was also 

accomplished. For example, the “Eureka Prometheus” project received funding as one of the 

largest research and development projects for automated automobiles. In addition, the automated 

land vehicle project by the U.S (DOD) through a partnership with other research universities was 

initiated. Civic and military transportation with automated abilities were explored during the early 

2000’s [50]. More details on the evolution of the development of automated vehicles can be found 

in [51]. 

 Automated vehicle technologies are potentially at a transformation phase for the driver 

experience with advantages to the transport infrastructure. The benefits are compelling from the 

safety aspect since human error is the primary contributor to the majority of traffic collisions. The 

other advantage relates to congestion reduction and air pollution decline. In addition a person with 

a disability could highly benefit from this technology. There is a growing number in the U.S of 

adults with driving restrictions and according to the U.S Census report in 2010 that those with 

some type of a disability are estimated to be 56.7 million [47]. As the deployment time frame of 

automated vehicles is uncertain, the timing depends more on the market demand and regulated 

policy rather than the technology growth [48]. 

 Today, fully automated vehicles are not available commercially and are only under pilot testing. 

Investigating innovative methods and evaluating the possible effect of automated automobiles is 

critical for the future of the automotive industry. For instance, Tesla has the most aggressive 
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porotype of highly autonomous vehicles with an auto-pilot introduced in 2017, but Tesla 

anticipates that it will not have software for a fully automated vehicle until the year of 2020 when 

complete testing and safety measures are met [48]. 

 At the Texas A&M Transportation Institute (TTI) there was an investigation of the experiences 

of present ride-sharing automobile customers as an assessment for future automated vehicles users 

[52]. The TTI concluded that present ride-sharing customers using Uber or Lyft are more willing 

to use automated automobiles than customers whom didn’t use ride-sharing services by a margin 

of two to one. Furthermore, if the customers used ride-sharing services for an extended period, the 

more likely they will be the first individuals to adopt autonomous automobiles. An alternative 

report by the University of Texas at Austin [53] indicates that people who are tech-savvy and have 

green life style preferences are more likely to use car-sharing. These studies are critical to identify 

the initial users of fully autonomous automobiles for the following reasons [48]: 

 Present ride-sharing customers in a metropolis area might be a suitable estimation for the 

rate of early users of fully automated vehicles. 

 Ride-sharing customers can define the characteristics or habits of the early adapters of 

autonomous automobiles.  

 Ride-sharing travel patterns can indicate which cities that might adopt autonomous vehicle 

technology first.   

 

2.4     Vehicle Dynamics 

The behavior of an autonomous land vehicle (ALV) model is inherently nonlinear and 

uncertain thereby making it challenging to obtain a precise dynamic model. The model for the 
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system lateral motion is developed based upon the system presented in [46] with the following 

assumptions: 

 Only front wheels to steer is used by the automobile. 

 Slip angles cannot be disregarded since the longitudinal velocity is large. 

 The lateral tire force are proportional to the slip angles. 

 The longitudinal force generated by the tires is disregarded. 

In Fig. 2.5 is a diagram of the autonomous land vehicle “bicycle model” where 𝑥𝑜𝑦 represents 

the coordinate system of the automobile, whereas XOY denotes the coordinate system based on a 

fixed earth point of reference. Fig. 2.6 shows the system lateral vehicle dynamics with two degrees 

of freedom. The model parameters of the passenger vehicle is given in Table 1. 

 

Fig. 2.5. Autonomous land vehicle bicycle model. 
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Fig. 2.6.  Lateral dynamics of a vehicle. 

2.4.1 Passenger vehicle system model 

Modeling of the yaw moment of inertia, automobile mass, forward tire cornering stiffness and 

back tire cornering stiffness are difficult to accurately model due variability in vehicle operating 

conditions. It is important to develop a robust control that accounts for vehicle uncertainties and 

external disturbances. The lateral vehicle dynamic model can be written as the following [46]: 

                                           

{
 
 

 
 
�̇� =  𝑣𝑥 sinφ+𝑣𝑦𝑐𝑜𝑠 𝜑      

�̇� = 𝑟                                       

𝑣�̇� =
1

𝑚
(𝐹𝑦𝑓 + 𝐹𝑦𝑟) − 𝑣𝑥𝑟

�̇� =
1

𝐼𝑧
(𝐹𝑦𝑓𝑙𝑓 − 𝐹𝑦𝑟𝑙𝑟) .       

                                                          (2.4)                                                                      

The relationship within the tire slip angle and the tire forces could be obtained as  

                                            {
𝐹𝑦𝑓 = −𝐶𝑓(

𝑣𝑦+𝑟𝑙𝑓   

𝑣𝑥
− 𝑑𝑓)

𝐹𝑦𝑟 = −𝐶𝑟𝑎𝑟 (
𝑣𝑦+𝑟𝑙𝑓   

𝑣𝑥
) .  

               (2.5) 



 

22 

 

Substituting (2) into (1) the lateral dynamic model becomes 

   

{
 
 

 
 
�̇� =  𝑣𝑥 sinφ+𝑣𝑦𝑐𝑜𝑠 𝜑                                   

�̇� = 𝑟                                                                   

𝑣�̇� = −
𝐶𝑓+𝐶𝑟

𝑚𝑣𝑥
𝑣𝑦 + (

𝐶𝑟𝑙𝑟+𝐶𝑓𝑙𝑓

𝑚𝑣𝑥
− 𝑣𝑥) 𝑟 +

𝐶𝑓

𝑚

�̇� =
−𝐶𝑓𝑙𝑓+𝐶𝑟𝑙𝑟

𝐼𝑧𝑣𝑥
𝑣𝑦 −

𝐶𝑓𝑙𝑓
2+𝐶𝑟𝑙𝑟

2

𝐼𝑧𝑣𝑥
𝑟 + 

𝑙𝑓𝐶𝑓

𝐼𝑧
 𝛿𝑓    

                                   (2.6)                                             

where  

𝑣𝑥  Longitudinal velocity 

 𝑣𝑦   Lateral velocity 

𝑦  Lateral displacement  

�̇�  Lateral velocity 

𝜑  Yaw angle 

�̇�  Vehicle yaw rate 

𝐹𝑦𝑓  Lateral tire force of front wheel 

𝐹𝑟𝑓  Lateral tire force of rear wheel 

𝐶𝑓  Front tire cornering stiffness 

𝐶𝑟  Rear tire cornering stiffness 

𝑙𝑓  Distance between the center of gravity and the front axle 

𝑙𝑟  Distance between the center of gravity and the rear axle 

𝑚  Vehicle mass 

𝐼𝑧  Yaw moment of inertia 

With the small angle approximation cos(𝜓) ≈ 1, sin (𝜓) ≈ 𝜓, the state-space representation 

of the system can be given as the following: 

�̇� = 𝐴𝑥 + 𝐵𝑢 , 𝑦 = 𝐶𝑥                                        (2.7)      



 

23 

 

                                                      𝑥1 = 𝑦,  𝑥2 = 𝑣𝑦,  𝑥3 = 𝜓,  𝑥4 = 𝑟.                                      (2.8) 

                                𝐴 =

(

 
 
 
 

0 𝑣𝑥 1 0
0 0 0 1

0 0
−(
𝐶𝑓+𝐶𝑟

𝑚
)

𝑣𝑥
−𝑣𝑥 +

(
𝐶𝑟𝑙𝑟+𝐶𝑓𝑙𝑓

𝑚
)

𝑣𝑥

0 0
(
𝐶𝑟𝑙𝑟+𝐶𝑓𝑙𝑓

𝐼𝑧
)

𝑣𝑥

−(
𝐶𝑓𝑙𝑓

2+𝐶𝑟𝑙𝑟
2

𝐼𝑧
)

𝑣𝑥 )

 
 
 
 

,                              (2.9) 

 𝐵 =

(

 
 

0
0
𝐶𝑓

𝑚
𝐶𝑓𝑙𝑓

𝐼𝑧 )

 
 
,            (2.10) 

 𝐶 = (
1 0 0 0
0 1 0 0

).                       (2.11)    
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Chapter 3: Tractor-Trailer Modeling 

 

 

3.1 Tractor-Trailers Background 

In 2015, tractor-trailers accounted for more than 70% of the national freight transportation 

in the U.S. Moreover, in that year 10.6 billion tons of goods worth $10.9 trillion were transported 

on trucks in the United States [1]. Heavy-trucks with a gross vehicle weight rating (GVWR) 

between 10,000 – 26,000 pounds are classified as medium trucks, and those with a GVWR larger 

than 26,000 pounds are classified as heavy-duty trucks. Heavy trucks are considered the principle 

transport vehicle of cargo transportation, moving large quantities of cargo over long distances 

where the average tractor-trailer travels over 100,000 miles per year [23].  

The truck transportation industry plays a major role in freight transportation in the U.S. in 

terms of the value of the goods being shipped inside the trucks. However, rail transportation tends 

toward bulk commodities such as coal, mineral ores and agricultural products over lengthy 

distances [23]. 

One of the most commonly used modes of transportation for goods in the U.S. is the 18- 

wheeler tractor-trailer [57]. In a similar configuration to a passenger vehicle model based on the 

bicycle model (2-axles) described earlier in Fig 2.6, the model can be expanded to a large 18-

wheeler tractor-trailer combination with 3-axles as presented in Fig. 3.1.  

In this research, the standard bicycle model presented and validated in [11, 68] is used for 

modeling the tractor-trailer system. In this case, the vehicle roll and pitch effects are neglected. 

For platooning dynamics, only the lateral and yaw moments are considered. The nonlinear 

dynamic model can be developed for the tractor-trailer based on the single track bicycle model. 

From this, a linearized model can be obtained using a small angle approximation. 
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Fig. 3.1. Three-axle tractor-trailer model. 

One of the causes of accidents in tractor-trailers is truck rollover that starts after the tire linked 

force on the inside wheels becomes zero (i.e., the tire lifts off of the roadway pavement). Rollover 

is usually triggered by elevated lateral forces produced by lateral acceleration. If the location of 

the COG is too high or the longitudinal velocity of the automobile is greater than permitted at a 

specified steer angle, the resultant lateral acceleration can be sufficiently high to result in a rollover 

accident [58]. As a general guide, large truck lateral acceleration should not exceed 0.50g. 

There are many contributing factors that cause heavy-duty vehicles to lose control which can 

cause the yaw angle to become unstable or the truck to rollover. Hence, by applying an appropriate 

control scheme, the incidence of these crash scenarios listed below can be minimized [23, 69]: 
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 High speed attempt a turn: When the lateral acceleration of the automobile exceeds the 

yaw stability or the vehicles roll threshold during a maneuver situation then loss of the 

vehicle control would be initiated. 

 Abrupt maneuver steer to evade a collision: When the motorist attempts a sudden 

steering operation, for example a single or a dual lane departure, this would create a lateral 

acceleration large enough to make the yaw angle unstable (oversteer phenomena). 

 Load condition in the Tractor-trailer: When oversteering occurs the yaw angle becomes 

unstable and thus is more probable to happen when the truck is partially loaded as opposed 

to then the truck is fully loaded.  

 Surface condition in the roadway: A truck attempting an evasive lane change in a large-

friction roadway or a dry surface is less likely to have the yaw angle instability due to 

improved tire cornering stiffness.  

 Design shape of the roadway: When a motorist under or overestimates the curvature 

radius of a highway ramp and does not sufficiently reduce vehicle speed. Thus, increased 

lateral acceleration might occur which could result in a rollover event. 

 Breaking maneuvers: Applying the brakes improperly resulting in reduced vehicle 

maneuvering capability. 

 Vehicle factors: Worn tires are more likely to contribute to vehicle yaw or under-steering 

in wet slippery circumstances. 

 

3.2 Tractor-Trailer Modeling 

The model and the derived equations for the tractor-trailer system are based on the 

coordinate definitions in Fig. 3.2. 
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Fig. 3.2. Diagram of a single track model for tractor. 

Fig. 3.3 indicates the dimensional parameters and forces of the trailer where the 

acceleration and velocity are defined in an inertial coordinate system that is fixed to the vehicle. 

The longitudinal velocities of the tractor and the trailer are 𝑢1 and 𝑢2, respectively. The lateral 

velocity of the tractor is 𝑣1; the yaw rate of the tractor is 𝑟1; the yaw rate of the trailer is 𝑟2; the 

articulation angle is 𝜓. The input control variable is the front axle steering angle 𝛿𝑓. 

 

Fig. 3.3. Diagram of a trailer single-track model. 
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By applying Newton’s second law, the dynamic model of the tractor-trailer can be derived. 

The equations for the torque and force acting on the tractor are as follows: 

𝑚1𝑎𝑥1 = 𝐹𝑥1𝑐𝑜𝑠𝛿 − 𝐹𝑦1𝑠𝑖𝑛𝛿 + 𝐹𝑥2 − 𝐹𝑥 − 𝐹𝑎1,                      (3.1)     

 𝑚1𝑎𝑦1 = 𝐹𝑦1𝑐𝑜𝑠𝛿 + 𝐹𝑥1𝑠𝑖𝑛𝛿 + 𝐹𝑦2 − 𝐹𝑦,                               (3.2)   

𝐼𝑧1𝑟1̇ = 𝑎1𝐹𝑦1𝑐𝑜𝑠𝛿 + 𝑎1𝐹𝑥1𝑠𝑖𝑛𝛿 − 𝑏1𝐹𝑦2 + 𝑑1𝐹𝑦,                    (3.3)  

The equations for the torque and force acting on the trailer are given by    

𝑚2𝑎𝑥2 = 𝐹𝑥𝑐𝑜𝑠𝜓 + 𝐹𝑥3 − 𝐹𝑦𝑠𝑖𝑛𝜓 − 𝐹𝑎2,                                  (3.4)  

𝑚2𝑎𝑦2 = 𝐹𝑦3 + 𝐹𝑦𝑐𝑜𝑠𝜓 + 𝐹𝑥𝑠𝑖𝑛𝜓 ,                                          (3.5)                    

𝐼𝑧2𝑟2̇ = −𝑏2. 𝐹𝑦3 + 𝑒2(𝐹𝑦. 𝑐𝑜𝑠𝜓 + 𝐹𝑥 . 𝑠𝑖𝑛𝜓),                           (3.6) 

The rate of change of the articulation angle in between the tractor and trailer is indicated by the 

following:  

�̇� = 𝑟1 − 𝑟2.                                                        (3.7) 

The velocity and acceleration are defined in an inertial coordinate system that is fixed to 

the vehicle and is defined in Fig. 3.4. The relationships for the longitudinal and lateral velocities 

in the local coordinates can be obtained using Fig. 3.4. The longitudinal velocity is given by the 

following: 

𝑑𝑉𝑥 = (𝑢 + 𝑑𝑢). cos(𝑑𝜃) −  𝑢 − (𝑣 + 𝑑𝑣). sin(𝑑𝜃).               (3.8) 

The lateral velocity variation is  

𝑑𝑉𝑦 = (𝑣 + 𝑑𝑣). cos(𝑑𝜃) −  𝑣 + (𝑢 + 𝑑𝑢). sin(𝑑𝜃).               (3.9) 

Since the angle 𝑑𝜃 is small and the time interval 𝑑𝑡 between the two points is small as well, (3.8) 

and (3.9) become 

    𝑑𝑉𝑥 = 𝑑𝑢 − 𝑣 𝑑𝜃,       (3.10) 

    𝑑𝑉𝑦 = 𝑑𝑣 − 𝑢 𝑑𝜃.       (3.11) 
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 Fig. 3.4. Vehicle coordinate system velocity definitions. 

The longitudinal and lateral acceleration is given as   

        𝑎𝑥 = �̇� − 𝑣𝑟,                   (3.12)  

        𝑎𝑦 = �̇� − 𝑢𝑟.       (3.13) 

    

The equations describing the motion of the tractor-trailer system can be adapted to the 

results of (3.10), (3.11), (3.12) and (3.13). The resulting equations representing the motion of the 

tractor and trailer are given as follows: 

𝑢1̇ = 𝑣1𝑟1 +
1

𝑚1
(𝐹𝑥1 𝑐𝑜𝑠𝛿 − 𝐹𝑦1 𝑠𝑖𝑛𝛿 + 𝐹𝑥2 − 𝐹𝑎1),              (3.14) 

𝑣1̇ =  − 𝑢1𝑟1 +  
1

𝑚1
(𝐹𝑦1 𝑐𝑜𝑠𝛿 + 𝐹𝑥1 𝑠𝑖𝑛𝛿 + 𝐹𝑦2 − 𝐹𝑦),        (3.15) 

𝑟1̇ =
1

𝐼𝑧1
(𝑎1𝐹𝑦1 𝑐𝑜𝑠𝛿 + 𝑎1𝐹𝑥1 𝑠𝑖𝑛𝛿 − 𝑏1𝐹𝑦2 + 𝑑1𝐹𝑦),            (3.16) 

𝑢2̇ = 𝑣2𝑟2 +
1

𝑚2
(𝐹𝑥 𝑐𝑜𝑠𝜓 + 𝐹𝑥3 − 𝐹𝑦  𝑠𝑖𝑛𝜓 − 𝐹𝑎2),               (3.17) 
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𝑣2̇ =  − 𝑢2𝑟2 +  
1

𝑚2
(𝐹𝑦3 + 𝐹𝑦𝑐𝑜𝑠𝜓 + 𝐹𝑥𝑠𝑖𝑛𝜓),                    (3.18) 

�̇�2 =
1

𝐼𝑧2
(−𝑏2𝐹𝑦3 + 𝑒2(𝐹𝑦 𝑐𝑜𝑠𝜓 + 𝐹𝑥  𝑠𝑖𝑛𝜓)),                         (3.19) 

where (3.14), (3.15) and (3.16) are the equations representing the tractor, and (3.17),( 3.18) and 

(3.19) are the equations representing the trailer. The longitudinal speed is constant and thus the 

forward motion 𝑢1is a constant.  �̇� remains the same as in (3.7). 

The two interdependent states are constrained at the trailer pivot point as the following: 

𝑢2 = 𝑢1 cos𝜓 − ( 𝑣1 −𝑑1𝑟1) sin 𝜓,                    (3.20)                              

     

𝑣2 = 𝑢1 sin𝜓  + (𝑣1  −  𝑑1𝑟1) cos𝜓 − 𝑒2𝑟2.               (3.21)              

     

By back substituting and eliminating these constraints, the system order can be reduced. Thus one 

can find expressions for 𝐹𝑥 and 𝐹𝑦 as follows: 

(
𝐹𝑥
𝐹𝑦
) =  

1

𝑑11𝑑22 − 𝑑12𝑑21
 (
−𝑑22 𝑑12
𝑑21 −𝑑11

) (
𝑡1
𝑡2
),                    (3.22)                        

                

where, 

𝑑11 =  (
1

𝑚1
+ 

1

𝑚2
) cos𝜓,                                            (3.23)  

𝑑12 =  − sin𝜓 (
𝑑1
2

𝐼𝑧1
  +  

1

𝑚1
+ 

1

𝑚2
),                             (3.24)    

𝑑21 =  (
1

𝑚1
+ 

1

𝑚2
+ 

𝑒2
2

𝐼𝑧2
) sin 𝜓,                                   (3.25)     

𝑑22 = (
𝑒2
2

𝐼𝑧2
+
𝑑1
2

𝐼𝑧1
 +  

1

𝑚1
+ 

1

𝑚2
) cos𝜓,                           (3.26)             

𝑑0 = 𝑑11𝑑22 − 𝑑12𝑑21.      (3.27) 

𝑡1 = sin𝜓 (𝐹𝑦2 (
𝑏1𝑑1

𝐼𝑧1
+

1

𝑚1
) − 𝑟2𝑈1)  + sin 𝛿 (𝐹𝑥1 sin𝜓 (

1

𝑚1
− 

𝑎1𝑑1

𝐼𝑧1
) + 

𝐹𝑦1

𝑚1
cos𝜓)  +

           cos𝜓 (
1

𝑚1
(𝐹𝑎1 − 𝐹𝑥2) − (𝑟1 − 𝑟2)(𝑑1𝑟1) − 𝑟2𝑉1) + cos 𝛿 (𝐹𝑦1 sin𝜓 (

1

𝑚1
−
𝑎1𝑑1
𝐼𝑧1
) −

           
𝐹𝑥1

𝑚1
cos𝜓) − 

1

𝑚2
(𝐹𝑎2 − 𝐹𝑥3) + 𝑟2𝑣2,                                                     (3.28) 
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𝑡2 = sin𝜓 (
1

𝑚1
(𝐹𝑎1 − 𝐹𝑥2) − 𝑟2𝑉1 + (−𝑟1 + 𝑟2)(𝑑1𝑟1)) + sin 𝛿 (𝐹𝑥1 cos𝜓 (

𝑎1𝑑1
𝐼𝑧1
− 

1

𝑚1
) +

           
𝐹𝑦1

𝑚1
 sin 𝜓) + cos𝜓 (−𝐹𝑦2 (

𝑏1𝑑1

𝐼𝑧1
+

1

𝑚1
) + 𝑟2𝑈1 ) + cos 𝛿 (𝐹𝑦1 cos𝜓 ( 

𝑎1𝑑1

𝐼𝑧1
−

1

𝑚1
) −

           sin𝜓
𝐹𝑥1

𝑚1
) + 𝐹𝑦3 (

1

𝑚2
−
𝑏2𝑒2

𝐼𝑧2
) − 𝑟2𝑢2.                                                             (3.29) 

The longitudinal forces that affect the system are  

𝐹𝑥1 = 𝐹𝑑1  +  𝐹𝑏1 , 𝐹𝑥2 = 𝐹𝑑2  +  𝐹𝑏2 , 𝐹𝑥3 = 𝐹𝑑3  +  𝐹𝑏3.                (3.30)                      

The side forces acting on the system tires are  

𝐹𝑦1 = 𝐶1𝛼1, 𝐹𝑦2 = 𝐶2𝛼2, 𝐹𝑦3 = 𝐶3𝛼3.                      (3.31) 

  

 𝐶1, 𝐶2 and 𝐶3 are the cornering stiffness of tires and are defined as  

𝛼1 =  𝛿 − 
𝑣1+ 𝑎1𝑟1

𝑢1+ 
                      (3.32)                                      

               

𝛼2 =  −
𝑣1− 𝑏1𝑟1

𝑢1+ 
                                                  (3.33) 

          

𝛼3 = −
𝑣2− 𝑏2𝑟2

𝑢2+ 
,                               (3.34)                                  

where, ε is a small parameter to avoid a singularity at zero speed. 

 

3.3 Linearized Model Development 

With normal driving conditions, the steering angle and the articulation are small and thus 

result in the following approximation:  

cos 𝛿 = 1, sin 𝛿 = 𝛿, cos𝜓 = 1, sin𝜓 =  𝜓.              (3.35)                     

Equations (3.32)-(3.34) can be reduced considering small angular excursions to  

𝛼1 =  𝛿 − 
𝑣1+ 𝑎1𝑟1

𝑢1
 ,                                                     (3.36)  
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𝛼2 =  − 
𝑣1− 𝑏1𝑟1

𝑢1
,                                                      (3.37) 

                 

𝛼3 = − 
𝑣2− 𝑏2𝑟2

𝑢2
.                                                       (3.38) 

                

With normal driving considerations the braking forces can assumed to be zero: 

𝐹𝑏1 =  𝐹𝑏2  =  𝐹𝑑3  = 0,  𝐹𝑥2 = 𝐹𝑑2                                      (3.39)    

   

By applying (3.34)-(3.39) to the tractor-trailer equations (3.14)-(3.19), a simplified model can be 

obtained as the following 

�̇�1 = 𝑣1𝑟1 + 
1

𝑚1
(𝐹𝑑2 − 𝐹𝑥 − 𝐹𝑦1𝛿 − 𝑅1),                       (3.40)            

      

(
�̇�1
�̇�1
) =  𝐴 (

𝑣1
𝑟1
) +  𝐵𝛿 + 𝐷𝐹𝑦,                                   (3.41)   

     

�̇�2 = 𝑣2𝑟2  +  
1

𝑚2
(𝐹𝑥 − 𝐹𝑦𝜓 − 𝑅2),                     (3.42)              

     

(
�̇�2
�̇�2
) =  𝐹 (

𝑣2
𝑟2
) +  𝐺𝐹𝑦 + 𝐷𝐹𝑥𝜓 ,                          (3.43)                  

           

where the matrices are defined as  

𝐴 =  (
−
𝑐1+𝑐2

𝑚1.𝑢1
−𝑈 +

−𝑎1𝑐1+𝑏1.𝑐2

𝑚1.𝑢1

−
𝑎1𝑐1−𝑏1𝑐2

𝐼𝑧1𝑢1
−
𝑎1
2𝑐1+𝑏1

2𝑐2

𝐼𝑧1𝑢1

),               (3.44)                       

        

𝐵 =  (

𝑐1

𝑚1
𝑎1𝑐1

𝐼𝑧1

),                                                     (3.45)           

    

𝐷 =  (
−

1

𝑚1
𝑑1

𝐼𝑧1

),                                                         (3.46)            

𝐹 = (
−

𝑐3

𝑚2𝑢2
−𝑢2 +

𝑏2𝑐3

𝑚2.𝑢2

𝑏2𝑐3

𝐼𝑧2𝑢2
−
𝑏2
2𝑐3

𝐼𝑧2𝑢2

),                                     (3.47) 
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                                                             𝐺 = (

1

𝑚2
𝑒2

𝐼𝑧2
 
),                                              (3.48)                           

𝑅1 = 𝐹𝑎1  +  𝐹𝑟1 + 𝐹𝑟2, 𝑅2 = 𝐹𝑎2 + 𝐹𝑟3.                                (3.49)              

Assuming that the articulation angle is small, the relationship between the velocities from (3.20)-

(3.22) can be rewritten as   

𝑢1 = 𝑢2, 𝑣2 = 𝑢1𝜓 + (𝑣1 − 𝑑1𝑟1) − 𝑒2𝑟2.                               (3.50)                   

Applying (3.50) to (3.40) and (3.42) one obtains the following relationship  

𝑣1𝑟1 + 
1

𝑚1
(𝐹𝑑2 − 𝐹𝑥 − 𝑅1) =   𝑣2𝑟2  + 

1

𝑚2
(𝐹𝑥 − 𝑅2).           (3.51)                       

Under small angle operations the relationship for the 5th wheel force (trailer pivot point) in (3.22) 

can reduced to  

(
𝐹𝑥
𝐹𝑦
) =  

1

𝑑0
 (
−𝑑22 𝑑12
𝑑21 −𝑑11

) (
𝑡1
𝑡2
),                            (3.52)                         

where,   

𝑑11 =  (
1

𝑚1
+ 

1

𝑚2
),                                        (3.53)                          

𝑑12 =  −𝜓 (
𝑑1
2

𝐼𝑧1
  +  

1

𝑚1
+ 

1

𝑚2
),                                    (3.54)                

𝑑21 =  (
1

𝑚1
+ 

1

𝑚2
+ 

𝑒2
2

𝐼𝑧2
)𝜓,                                   (3.55)                     

𝑑22 = (
𝑒2
2

𝐼𝑧2
+
𝑑1
2

𝐼𝑧1
 +  

1

𝑚1
+ 

1

𝑚2
),                                    (3.56)                

𝑑0  =  𝑑11𝑑22  − 𝑑12𝑑21.        (3.57) 
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𝑡1 =  𝜓 (𝐹𝑦2 (
𝑏1𝑑1

𝐼𝑧1
+

1

𝑚1
) − 𝑟2𝑈1) +  𝛿 (𝐹𝑥1𝜓(

1

𝑚1
− 

𝑎1𝑑1

𝐼𝑧1
) + 

𝐹𝑦1

𝑚1
)  + (

1

𝑚1
(𝐹𝑎1 −

𝐹𝑥2) − (𝑟1 − 𝑟2)(𝑑1𝑟1) − 𝑟2𝑉1) + (𝐹𝑦1𝜓(
1

𝑚1
−
𝑎1𝑑1
𝐼𝑧1
) −

𝐹𝑥1

𝑚1
) − 

1

𝑚2
(𝐹𝑎2 − 𝐹𝑥3) + 𝑟2𝑣2,                                

                        (3.58) 

𝑡2 =  𝜓 (
1

𝑚1
(𝐹𝑎1 − 𝐹𝑥2) − 𝑟2𝑉1 + (−𝑟1 + 𝑟2)(𝑑1𝑟1)) +  𝛿 (𝐹𝑥1 (

𝑎1𝑑1
𝐼𝑧1
− 

1

𝑚1
) + 

𝐹𝑦1

𝑚1
 𝜓) +

(−𝐹𝑦2 (
𝑏1𝑑1

𝐼𝑧1
+

1

𝑚1
) + 𝑟2𝑈1 ) + 1 (𝐹𝑦1 ( 

𝑎1𝑑1

𝐼𝑧1
−

1

𝑚1
) − ψ

𝐹𝑥1

𝑚1
) + 𝐹𝑦3 (

1

𝑚2
−
𝑏2𝑒2

𝐼𝑧2
) − 𝑟2𝑢2.      (3.59) 

Solving for 𝐹𝑥 one can obtain the following 

𝐹𝑥 = 
1

𝑑11
(
1

𝑚1
𝐹𝑑2 −

1

𝑚1
𝑅1 +

1

𝑚2
𝑅2 −

1

𝑚1
𝐹𝑦1𝛿 + 

1

𝑚2
𝐹𝑦𝜓 + 𝑣1(𝑟1 − 𝑟2) +

               𝑑1𝑟1𝑟2 + 𝑒2𝑟2
2 − 𝑢1𝑟2𝜓).                                                                   (3.60) 

The relationship between the nonlinear longitudinal state and lateral dynamics can be obtained as: 

𝑣2 = 𝑢1̇𝜓 + (𝑣1̇ − 𝑑1𝑟1̇) − 𝑒2𝑟2̇,                            (3.61)                            

                                𝑢1̇ = 𝑣1𝑟1 + 
1

𝑚1+𝑚2
(𝐹𝑑2 − 𝐹𝑦1𝛿 − (𝑅1 + 𝑅2) − 𝐹𝑦𝜓 −𝑚2𝑅𝑥).          (3.62)                      

The state space equation of the tractor-trailer dynamics can be obtained from (3.41) and (3.43) 

with the expression for the forces 𝐹𝑥 and 𝐹𝑦 from (3.52) to be the following 

                                                      (

𝑣1̇
𝑟1̇
𝑟2̇
�̇�

) = 𝐴(

𝑣1
𝑟1
𝑟2
𝜓

) + 𝐵𝛿 + 𝐷𝐹𝑥𝜓,                                        (3.63) 
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where  𝐴 = 𝐴1 + 𝐴2, 

A1 =

(

 
 
 

−
𝑐1+𝑐2

𝑚1𝑢1
−𝑢1 +

−𝑎1𝑐1+𝑏1𝑐2

𝑚1𝑢1

−
𝑎1𝑐1−𝑏1𝑐2

𝐼𝑧1𝑢1
−
𝑎1
2𝑐1+𝑏1

2𝑐2

𝐼𝑧1𝑢1

0 0
0 0

𝑏2𝑐3

𝐼𝑧2𝑢2
−𝑑1

𝑏2𝑐3

𝐼𝑧2𝑢2

0 1

−
𝑏2
2𝑐3

𝐼𝑧2𝑢2
− 𝑒2

𝑏2𝑐3

𝐼𝑧2𝑢2

𝑏2𝑐3

𝐼𝑧2𝑢2
𝑢1

−1 0 )

 
 
 

,        (3.64)       

𝐴2 =
1

𝑑22

(

 
 
 

−
1

𝑚1
𝑑1

𝐼𝑧1
𝑒2

𝐼𝑧2

0 )

 
 
 
(ℎ11 ℎ12 ℎ13 ℎ14),                              (3.65)   

      

ℎ11 = (−
𝑐1+𝑐2

𝑚1𝑢1
− 𝑑1 −

𝑎1𝑐1−𝑏1𝑐2

𝐼𝑧1𝑢1
) − (−

𝑐3

𝑚2𝑢2
+ 𝑒2

𝑏2𝑐3

𝐼𝑧2𝑢2
),            (3.66)           

        

ℎ12 = (−𝑢1 +
−𝑎1𝑐1+𝑏1𝑐2

𝑚1𝑢1
− 𝑑1 −

𝑎1
2𝑐1+𝑏1

2𝑐2

𝐼𝑧1𝑢1
) + 𝑑1 (−

𝑐3

𝑚2𝑢2
+ 𝑒2

𝑏2𝑐3

𝐼𝑧2𝑢2
) + 𝑢1 (3.67)                   

ℎ13 = −(𝑢2 +
𝑏2𝑐3

𝑚2𝑢2
− 𝑒2

𝑏2
2𝑐3

𝐼𝑧2𝑢2
) + 𝑒2 (−

𝑐3

𝑚2𝑢2
+ 𝑒2

𝑏2𝑐3

𝐼𝑧2𝑢2
) − 𝑢1,         (3.68) 

                   

ℎ14 = −(−
𝑐3

𝑚2𝑢2
+ 𝑒2

𝑏2𝑐3

𝐼𝑧2𝑢2
) 𝑢1.                                                (3.69) 

        

  𝐵 =  

(

 
 

𝑐1

𝑚1
𝑎1𝑐1

𝐼𝑧1

0
0 )

 
 
+

(

 
 
 

−
1

𝑚1
𝑑1

𝐼𝑧1
𝑒2

𝐼𝑧2

0 )

 
 
 

,         (3.70)                                           

𝐷 =

(

 
 
 

−
1

𝑚1
𝑑1

𝐼𝑧1
𝑒2

𝐼𝑧2

0 )

 
 
 1

𝑚2
+
𝑒2
2

𝐼𝑧2

(
𝑒2
2

𝐼𝑧2
+
𝑑1
2

𝐼𝑧1
+
1

𝑚1
+
1

𝑚2
)

+

(

 

0
0
𝑒2

𝐼𝑧2

0 )

 .                    (3.71)  
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The equation representing the torque applied to the steering is the following  

�̇�=𝜔,   �̇�=−𝐵𝑠𝜔 − 𝐾𝑠𝛼1+𝜏ℎ𝑤+𝜏𝑎𝑓𝑠      (3.72) 

The side slip angle to front tire is         

𝛼1= 𝛿 −
𝑣1+𝑎1𝑟1

𝑢1
       (3.73) 

 The previous mathematical model of the tractor-trailer system can be augmented to include 

earth-based coordinates for evaluating the lateral position in a manner similar to the passenger 

vehicle given by (2.4)-(2.6). A fifth state variable is added for the truck yaw-angle and a sixth state 

variable is added for the lateral position: 

     �̇� = 𝑟         (3.74) 

     �̇� = 𝑢1 sin(𝜑) + 𝑣1cos (𝜑)      (3.75) 

This results in a sixth-order system for the tractor-trailer system dynamics 

        �̇� = 𝐴𝑥 + 𝐵𝑢 , 𝑦 = 𝐶𝑥                                      (3.76)      

The tractor-trailer modeling presented in this chapter does not explicitly consider the roll 

dynamics of the truck, however avoiding the tendency for rollover is usually accounted for by 

ensuring that the lateral acceleration is maintained less than 0.50g.   

 

3.3. Tractor-Trailer Platooning 

There are two classes to form automated driving. The first is an individual vehicle 

maneuvering autonomously within traffic conditions of other vehicles. The second is platoon 

formation with coordination of adjacent vehicles. With platooning there is the capability for 

increased fuel economy from the aerodynamic drafting along with reduced highway congestion 

and safety improvements [2, 26]. Truck platooning is a technology for a coordinated highway 

operation of a group of two or more trucks equipped with a variety of sensors and communications 
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to inform each of the vehicles about surrounding traffic conditions and the status of partner 

vehicles. The leading truck wirelessly communicates to the following trucks and sends messages 

that controls the throttle and brakes as illustrated in Figs. 3.5 – 3.6. 

Fig. 3.5. Four trucks forming a platooning operation in a highway. 

 

Fig. 3.6. Truck platooning demonstration (source European truck platooning 

challenge [59]). 

A human driver is remains behind the wheel in the leading vehicle to steer for lateral 

control, while sensors that enable platooning operation of the truck lateral position control can be 

enhanced along with the reduction in aerodynamic drag is shown in Fig. 3.7. Platooning of tractor-

trailers results in increased fuel economy and reduction in carbon dioxide emissions [60].  

In a recent study, a group of two or more platooned trucks were examined where the fuel 

consumption was reduced in range of 5% to 7.6% [61].  Data from the federal highway 
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administration (FHWA) in 2016 indicates that large trucks in the U.S. consumed 29.6 billion 

gallons of fuel [60]. Consequently, a reduction of 5% or more of fuel consumption through truck 

platoons would be very beneficial for reducing greenhouse gas emissions. 

Automated platooning operation would be more beneficial for heavy vehicle compared to 

passenger vehicles for the following reasons noted by Tsugawa [26]: 

i. Utilization rate of trucks is much greater than of passenger vehicles which leads to 

more effective energy saving.                                                                                                          

ii.  Automated driving reduces driver workload. 

iii. Reduced driving workload will result in safety improvements and accident 

reduction for heavy trucks which is more significant and costly than passenger cars. 

iv.  As professionally trained and supervised, heavy truck operators are better 

positioned to utilize the benefits of automated platoon operations.  

One of the main objectives of this research is to provide control methods that enable heavy 

trucks to maintain lateral stability during a rapid lane change.  

 

Fig. 3.7. Platooning leads to reduction in aerodynamic drag. 
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The functions of the platooning operation are obstacle avoidance, speed control, lane 

keeping and maintaining following distance.  Automated platooning operation does not require 

additional infrastructure and roadway equipment. Technologies that would enable the platooning 

operation include sensors for longitudinal control for measuring the following truck distances and 

for obstacle detection. Sensors for lateral control are needed where sensors can detect divergence 

of the tractor from the roadway lane markings.  In addition, a combination of communication 

technologies between the leading and following trucks is needed for real-time control functions. 

These capabilities are referred to as vehicle-to-vehicle (V2V) and vehicle-to-infrastructure (V2I) 

protocols. In most cases these are similar to IEEE 802.11 and provided for platooning operation 

as indicated in Fig. 3.8 [2, 62].  

 

Fig. 3.8 Technologies that enable the platooning operation [62]. 
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One of the concerns of V2V communication technologies are cybersecurity threats. There 

is ongoing research in overcoming concerns. For example, SIP-adus attempts to obtain security 

specifications by constructing joint modes based on risk analysis.  

Human machine interfaces also present concerns regarding the effectiveness and safety of 

autonomous vehicles. There are three critical concerns that should be examined. The first is to 

examine the effects of previous data on driver reactions while using autonomous driving systems. 

The second is to evaluate methods for autonomous driving automobiles to interconnect with other 

roadway users under different traffic situations. The third is to examine the effect of driver reaction 

when attempting to transition from autonomous driving to manual driving as illustrated in Fig. 3.9 

[63]. 

 

Fig. 3.9. Human machine interface [63]. 

 

Truck platooning levels can classified into six levels of automation based upon SAE 

standards presented earlier in Chapter 2 and Fig. 2.2. The first level of platooning would refer to 

systems that can only be automated based on forward truck speed such as autonomously 

maintaining a continuous time separation distance with respect to a leading truck. In this case a 
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motorist would remain in control over the lateral vehicle position. Several research efforts are 

ongoing for the development of Level 1 platooning such as the Auburn University EARP projects 

and the University of California at Berkley PATH project.  

Several trucking manufacturing companies likewise have announced their intention in the 

near future to introduce to the market truck platoons in U.S. However it’s not certain if these will 

be categorized as SAE level one or two. Concurrent developments in Singapore, Japan, Finland, 

Sweden, Germany, United Kingdom, Netherlands and Australia [64] have advanced autonomous 

vehicle operations. Fig. 3.10 shows the current level of platooning tests in these counties, with 

Japan and Singapore currently testing levels 1-4 [65]. 

The second level of platooning would include automated steering. Studies suggest it is 

critical to permit smaller forward distance separation between vehicles due to visibility restraints 

by the following truck at a smaller distances. This makes manual steering more challenging. 

Several studies have conducted testing on level two platoons. These studies include 

CHAUFFEUR, SARTRE, ENERY ITS, and Tesla Autopilot. Further in Texas, TTI is presently 

conducting trials of level two platoons in the surrounding region. Also other technology companies 

and truck manufactures are presently researching, developing and testing level two platoon on the 

public roadways. [11, 64]. 

The third level of platooning is where the motorist can divert his attention to additional 

tasks for a short period of time. However, the driver is expected to be ready to intervene when 

needed. The forth level of platooning assumes a capability that would guarantee achieving the least 

amount of hazard in any fault situation without any human intervention. 
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Fig. 3.10. Truck platooning levels in different countries (source Peloton Technology) [65]. 

 

Thus level three and four platooning truck operation could also be linked behind a leading 

truck at a lesser automated level. Hence these two levels at platooning initiate a high demand on 

safety assurance while many experts consider it as unsatisfactory to implement this level of 

automated trucks with the current state of the art for mixed highway speed and traffic operations. 

Hence, Levels 3-4 truck platooning might be exclusive to bounded closed locations such as ports 

or separated driveways in order to facilitate the operational design domain. However, Singapore 

announced in the near future they plan to adopt level four platooning in civil roadways [64]. 

Level five platooning corresponds to full automation where the truck can operate under all 

driving circumstances and the driver is merely a passenger and does not need to intervene or be 

involved in driving operations. This level of automation theoretically does not need a steering 

wheel or brake pedal, hence leaving the human driver out of all truck operations. This would serve 
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the business model of mobility services because driverless heavy-trucks would operate at increased 

labor efficiency [48]. The goal of this research is to reach level 2-3 of tractor-trailer platoons. 

One of the impacts on autonomous trucks is the human driver. In reference to the Bureau 

of Labor Statistics (BLS), currently in the U.S. there is approximately 3 million truck drivers on 

national highways [66]. Automation creates a concern for drivers in the trucking business to lose 

their current jobs. A study made by the international transport forum (ITF) projected that in the 

U.S and Europe one million truck drivers are expected to lose their jobs by 2030 as result of the 

development of advanced autonomous trucks [67]. 

 

3.4. Highway Evasive Maneuver Scenario  

 Fig. 3.11 represents the scenario considered for an evasive maneuver situation for a tractor-

trailer platoon to change lanes and avoid an obstacle in the highway. With the assumption that the 

truck is very close to the obstacle and does not have enough time to apply the brakes, it would be 

safer to depart the lane and be on the center of the lane after the maneuver is completed. It is also 

assumed that the technologies and sensors from the platooning operation are provided to the control 

algorithm. 

 Departing a lane safely is critical in an emergency situation especially when travelling at 

highway speeds and thus a fast time response is also important to avoid collisions. Furthermore, 

any improvement in the time response is crucial in the automotive industry. 
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Fig. 3.11. Evasive maneuver scenario to avoid an obstacle. 

 

 

The professional truck driver modeling is based on the study in [71] where 91 lane changes 

were observed. The average time for the tractor alone to depart a lane was 6.8 seconds and the 

fastest time was 4.04 seconds while the slowest time was 12 seconds. Furthermore, the average 

time for the tractor-trailer combined to depart a lane in the study was 7.7 seconds, with a fastest 

time of 4.7 seconds and the slowest time was 13.3 seconds. Providing an improvement over the 

skilled driver is one of goals of this research. 
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Chapter 4: Fractional Order Control 

 

4.1 Introduction to Fractional Calculus  

4.1.1 Fractional calculus background  

            Fractional calculus (FC) dates to the beginning stages of classical calculus. Newton and 

Leibniz applied symbols to represent different orders of derivatives to a function y(x). The notation 

by Netwon were y′(x), y′′(x), y′′′(x), …, whereas, Leibniz presented the symbol dn
y(x)

dxn
  where 𝑛 

is a positive integer [74]. In 1695, a letter from the mathematician L’Hopital was sent to Leibniz 

questioning the meaning of 𝑛 =
1

2
. Leibniz responded, “…thus it follows that d

1

2 x will be equal to 

x√dx ∶ x
2

 , an apparent paradox , from which one useful consequences will be drawn” [83]. This 

answer was reflected as the creation of fractional calculus [74]. 

            The research community started concentrating on theoretical aspects in that past 60 years. 

Historic reviews on fractional calculus development can be obtained in [74, 83]. In the period after 

the 1960’s the engineering fields started extending research on fractional calculus, where Pudlubny 

suggested applications of fractional order PID controller [74, 84]. Oustaloup introduced a 

fractional order robust controller scheme for automotive suspension applications.  This was a 

significant step for the development of non-integer controllers for industry applications [85, 86].  

              Fractional calculus is being used in many academic and industrial fields such as digital 

signal processing [88], bioengineering [89], electronic circuits [90], physics [91], chemistry [92] 

and economic transactions [93]. Thus, the use of factional controllers in industry is likely to greatly 

improve the overall system performance by providing increased precision, performance and 

energy utilization [73, 78]. 
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     To demonstrate the concept of fractional calculus, Fig. 4.1 shows the concept of fractional 

differential and integrals. For classical integer calculus, a given function 𝑓can be integrated or 

differentiated for several times, but is limited to only the solid circular dots of the number line.  

For fractional order calculus, this idea can be extended to contain any of the points on the number 

line for differentiation and integration. 

 
Fig. 4.1. Number line to demonstrate the concept of integral-differentials of fractional calculus. 

 

 

4.1.2 Theoretical background and definitions  

 

FC is a generalized concept to fractional (non-integer) order of integral and differential 

basic operator 𝐷𝑡
𝛼

𝑎 , where α denotes the fractional order, 𝑡 and α are the limits of the opration as 

shown in the following unified definition in (4.1) [73, 74]. 

𝐷𝑡
𝛼

𝑎 = {

𝑑𝛼

𝑑𝑡𝛼
                𝑅(𝛼) > 0,

1                     𝑅(𝛼) = 0,

∫ (𝑑𝑡)−𝛼      𝑅(𝛼) < 0.
𝑡

𝑎

                                               (4.1)                                                       

Additionally,  α is the operation order and it is generally assumed that α ϵ R, whereas α can also 

be a complex number.  
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A fractional order plant is a more realistic method to derive a mathematical model because 

most physical processes when examined in detail possess fractional order characteristics [75]. 

Several definitions of FO differentials and integrals can be found in the literature and further details 

can found in [89]. In the following section, three of the most commonly used definitions of a 

fractional differential and integral will be briefly described. Michele Caputos defines the derivative 

of a function 𝑓(𝑡) with respect to time as the following [74]: 

I. Caputo definition for fractional differentiation 

𝐷𝑡
𝛼𝑓(𝑡) =

1

𝛵(𝑚−𝛼)
∫

𝑓𝑚(𝜏)

(𝑡−𝜏)𝛼+1−𝑚

𝑡

0
𝑑𝜏.                                (4.2)                                                           

Where m = 𝛼 is an integer and Γ is the Gamma function. 

II. Caputo fractional order integral definition 

𝐷𝑡
−𝛼𝑓(𝑡) =

1

𝛵(𝛼)
∫

𝑓(𝜏)

(𝑡−𝜏)−𝛼+1

𝑡

0
𝑑𝜏       (4.3)      

Aleksey Lenikov and Anton Grunwald, the Czech Republic and Russian mathematicians define 

fractional calculus integration and differentiation as the following 

III. Grunwald-Lenikov fractional definition  

       𝐷𝑡
𝛼

𝑎 𝑓(𝑡) = lim
𝑥→0

1

𝑥𝛼
∑ (−1)𝑖
[
𝑡−𝑎

𝑥
]

𝑖=0
(
𝛼
𝑖
) 𝑓(𝑡 − 𝑖𝑥).                (4.4)  

Where  [.] is the integer part and x is the step size 

      (−1)𝑗 (
𝛼
𝑖
) =

(−1)𝑗 Γ(α+1)

Γ(j+1)Γ(α−j+1)
 .             (4.5)                   

with the assumption that the function 𝑦(𝑡) = 0, when 𝑡 ≤ 𝑡0 and Γ is the Gamma function. 

A somewhat different definition is used by Georg Riemann and Jospeh Liouville. They 

define fractional calculus integration with the assumption that 𝑚 − 𝛼 <  𝛼 ≤ 𝑚  as the following: 

𝐷𝑡
𝛼

𝑎 𝑓(𝑡) =
1

Γ(𝑚−𝛼)
(
𝑑

𝑑𝑡
)𝑚 ∫

𝑓(𝜏)

(𝑡−𝜏)𝛼+1−𝑚

𝑡

a
𝑑𝜏,                       (4.6)                                                              
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where 𝛤 is the Gamma function, and the power for the term (𝑡 − 𝜏) is ensured not to be less than 

the value -1. 

IV. Riemann-Liouville fractional integral definition  

𝐷𝑡
−𝛼𝑓(𝑡) =

1

𝛵(𝛼)
∫

𝑓(𝜏)

(𝑡−𝜏)−𝛼+1

𝑡

0
𝑑𝜏            (4.7)  

Equation (4.7) can be simplified to 𝐷𝑡
−𝛼𝑓(𝑡) when 0 <  𝛼 < 1. It can be observed that the 

definition of fractional order integrals of Riemann-Liouville and Caputo are identical. The 

fractional differentiation of the R-L definition is based on the fractional integration. 

V. Riemann-Liouville fractional differential definition  

𝐷𝑡
𝛼𝑓(𝑡) =  

𝑑

𝑑𝑡
[𝐷𝑡
−1+𝛼𝑓(𝑡)].        (4.8) 

Some of the Fractional differentials and integrals critical properties are [82] 

 If 𝑓(𝑡) is an analytical function of the variable𝑡, then the fractional derivative of 

the operator 𝐷𝑡
𝛼𝑓(𝑡) is also an analytical function of 𝑡 and 𝛼. 

 As 𝛼 = 𝑚, where 𝑚 is of integer order, 𝐷𝑡
𝛼𝑓(𝑡) provides an identical solution of 

the integer differential and integral.  

 In the condition 𝛼 = 0, then 𝐷𝑡
𝛼𝑓(𝑡) is the identity operator (𝐷𝑡

𝛼𝑓(𝑡) = 𝑓(𝑡)). 

 The fractional differentials and integrals are linearly operated, thus this expression 

can be held:   𝐷𝑡
𝛼(𝜆1𝑓(𝑡) + 𝜆2𝑔(𝑡)) = 𝜆1𝐷𝑡

𝛼𝑓(𝑡) + 𝜆2𝐷𝑡
𝛼𝑔(𝑡).          (4.9) 

 The FO integration of an arbitrary order would hold the additive index law 

 𝐷𝑡
𝛼  𝐷𝑡

𝛽
𝑓(𝑡) =   𝐷𝑡

𝛽
𝐷𝑡
𝛼𝑓(𝑡) = 𝐷𝑡

𝛼+𝛽
𝑓(𝑡)    (4.10) 
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4.1.3 Critical functions of FC 

1.  Gamma Function 

Γ(z) can be expressed as follows: 

Γ(z) = ∫ 𝑒−𝑢𝑢𝑧−1𝑑𝑢
∞

0
, ∀𝑧 ∈ ℝ     (4.11) 

Thus, this function is an extension of the fractional non-integer numbers. Equation (4.9) converges 

in the right half planeℝ𝑒(𝑧) > 0, then the following is given 

Γ(x + iy) = ∫ 𝑒−𝑡𝑡𝑥−1+𝑖𝑦𝑑𝑡 = ∫ 𝑒−𝑡𝑡𝑥−1𝑒𝑖𝑦 log(𝑡)𝑑𝑡
∞

0

∞

0

 

    = ∫ 𝑒−𝑡𝑡𝑥−1[cos(𝑦 log(𝑡)) + 𝑖 sin(𝑦 log(𝑡))]𝑑𝑡.
∞

0
    (4.12) 

2.  Beta Function 

The definition of the beta function is expressed as follows: 

𝐵(𝑝, 𝑞) = ∫ (1 − 𝑢)𝑝−1𝑢𝑞−1𝑑𝑢
1

0
,   𝑝, 𝑞 ∈ ℝ    (4.13) 

The gamma and beta functions can be related as follows 

𝐵(𝑝, 𝑞) =
Γ(p) Γ(q)

Γ(p+q)
= 𝐵(𝑞, 𝑝),        𝑝, 𝑞 ∈ ℝ    (4.14) 

3.  Mittag-Leffler Function (ML) 

The ML is commonly used to solve FO differential equations, the one parameter ML could 

be defined as: 

𝐸𝛼(𝑧) = ∑
𝑧𝑘

Γ(αk+1)

∞
𝑘=0 ,   𝛼 > 0     (4.15) 

 

ML function can be reduced to an exponential function for 𝛼 = 0. ML two parameter functions 

can be expressed as: 

𝐸𝛼,𝛽(𝑧) = ∑
𝑧𝑘

Γ(αk+β)

∞
𝑘=0 ,   𝛼 > 0, 𝛽 > 0.    (4.16) 
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The relation between (4.15) and (4.16) is  

 𝐸𝛼,1(𝑧) = ∑
𝑧𝑘

Γ(αk+1)
= 𝐸𝛼(𝑧)

∞
𝑘=0 .       (4.17) 

For variations in equation (4.16), 

𝐸1,1(𝑧) = ∑
𝑧𝑘

Γ(k+1)
= ∑

𝑧𝑘

k!
= 𝑒𝑧∞

𝑘=0
∞
𝑘=0     (4.18) 

                                        𝐸1,2(𝑧) = ∑
𝑧𝑘

Γ(k+2)
= ∑

𝑧𝑘

(k+1)!
=
1

𝑧
∑

𝑧𝑘+1

(k+1)!
=
𝑒𝑧−1

𝑧

∞
𝑘=0

∞
𝑘=0

∞
𝑘=0  .   (4.19) 

A general expression can be  

𝐸1,𝑛(𝑧) =
1

𝑧(−1+𝑛)
[𝑒𝑧 − ∑

𝑧𝑘

k!

𝑛−2
𝑘=0 ].     (4.20) 

4.  Miller-Ross Function (MR) 

The MR function is defined as  

𝜉𝑧(𝑣, 𝑎) = ∑
𝑎𝑘𝑧𝑘+𝑣

Γ(v+k+1)

∞
𝑘=0 .      (4.21) 

The expression to relate (4.21) with the ML equation (4.16) is 

𝜉𝑧(𝑣, 𝑎) = 𝑧
𝑣𝐸1,𝑣+1(𝑎𝑧)      (4.22) 

Several cases for MR functions and the relationship for the ML equivalence is given by 

 𝜉𝑧(0,1) = 𝐸1(𝑧) = 𝐸1,1(𝑧) = 𝑒
𝑧,     (4.23) 

𝜉𝑧(0, 𝑎) = 𝐸1(𝑎𝑧) = 𝐸1,1(𝑎𝑧) = 𝑒
𝑎𝑧,    (4.23) 

𝜉𝑧(𝛽 − 1,0) = 𝑧
𝛽−1𝐸1,𝛽(0) =

𝑧𝛽−1

Γ(β)
.     (4.24) 

4.1.4 Fractional order Laplace transformations  

In feedback control applications, the Laplace integral transform is essential for most design 

methods. The Laplace transform is not only restricted to integer order functions, it also can be used 

for non-integer order functions.  𝐹(𝑠) a function of the complex variable 𝑠 is the Laplace transform 

of the original function 𝑓(𝑡) given by [73, 74] 
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𝐿 [𝑓(𝑡)] = ∫ 𝑒−𝑠𝑡
∞

0
𝑓(𝑡)𝑑𝑡 =  𝐹(𝑠),      (4.25)  

where 𝐿 [𝑓(𝑡)] denotes the Laplace transform of the function 𝑓(𝑡). Typically, the nth order 

differential can be retrieved from  

𝐿[ 𝑑
𝑛

𝑑𝑡𝑛
 𝑓(𝑡)] =  𝑠𝑛𝐹(𝑠) − 𝐹(𝑠) − ∑ 𝑠𝑛−𝑘𝑛

𝑘=1  𝑓(−1+𝑘)(0).   (4.26) 

When all the differential values and the origin values of 𝑓(𝑡) are null, then (4.25) can be simplified 

to the following: 

𝐿[ 𝑑
𝑛

𝑑𝑡𝑛
 𝑓(𝑡)] =  𝑠𝑛𝐹(𝑠) .      (4.27) 

The properties expressed above are necessary to formulate the ODE into algebraic 

equations. The integral equation when it is assumed that the initial conditions are zero is 

𝐿 [∫ 𝑓(𝜏)𝑑𝜏
𝑡

0
] =  

𝐹(𝑠)

𝑠
 .       (4.28) 

For multiple integrals of 𝑓(𝑡) the Laplace transformation is 

𝐿 [∫ … ∫ 𝑓(𝜏)𝑑𝜏𝑛
𝑡

0

𝑡

0
] =  

𝐹(𝑠)

𝑠𝑛
.       (4.29) 

The function 𝑓(𝑡) could be retrieved from the Laplace transform through performing the 

inverse Laplace transformation of 𝐹(𝑠) as 

𝑓(𝑡) = 𝐿−1[𝐹(𝑠)] =
1

2𝜋𝑗
∫ 𝑒𝑠𝑡𝐹(𝑠)𝑑𝑠,
𝑗∞+𝑧

−𝑗∞+𝑧
     (4.30) 

where z is larger than the real segment of the poles of the given by F(s).  

With the assumption of zero initial conditions, the Laplace transformation of (4.4) can be 

expressed as: 

𝐿[𝐷𝛼] = 𝑠𝛼𝐹(𝑠)                 (4.31)          
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4.1.5 Fractional order calculus in the frequency and time domains 

A FOTF can be presented in the following form  

𝐺(𝑠) =  
𝑏𝑚𝑠

𝛽𝑚+ 𝑏𝑚−1𝑠
𝛽𝑚−1+⋯+ 𝑏0𝑠

𝛽0

𝑎𝑛𝑠𝛼𝑛+ 𝑎𝑛−1𝑠
𝛼𝑛−1+⋯+ 𝑎0𝑠

𝛼0
 𝑒−𝐿𝑠     (4.32) 

The frequency domain can be acquired through substituting 𝑠 = 𝑗𝑤 in (4.32). The outcome for 

the frequency 𝜔 ∈ (0;  ∞) can be calculated as 

𝑅(𝑗𝜔) =  
𝑏𝑚(𝑗𝜔)

𝛽𝑚+ 𝑏𝑚−1(𝑗𝜔)
𝛽𝑚−1+⋯+ 𝑏0(𝑗𝜔)

𝛽0

𝑎𝑛(𝑗𝜔)𝛼𝑛+ 𝑎𝑛−1(𝑗𝜔)
𝛼𝑛−1+⋯+ 𝑎0(𝑗𝜔)

𝛼0
 𝑒−𝐿(𝑗𝜔) ,    (4.33) 

Considering the relation for non-integer power 𝛼 ∈  ℝ of the imaginary unit 

𝑗𝛼 = cos(𝛼𝜋
2
) + 𝑗 sin(𝛼𝜋

2
)      (4.34)  

For the time domain, another result with involves some numerical calculation of the FO 

derivatives which is from the revised G-L definition (4.4) and can be re-written as follows 

   𝐷𝑡
𝛼

𝑎 𝑓(𝑡) = lim
𝑥→0

1

𝑥𝛼
 ∑ 𝑤𝑖

(𝛼)[
𝑡−𝑎

𝑥
]

𝑖=0
𝑓(𝑡 − 𝑖𝑥),               (4.35) 

where x is the step size and  (−1)𝑗 (
𝛼
𝑖
) can be evaluated recursively from  

   𝑤0
(𝛼)
= 1,𝑤𝑖

(𝛼)
= (1 −

1+𝛼

𝑖
)𝑤−1+𝑖

(𝛼)
 , 𝑖 = 1, 2, …    (4.36) 

To acquire a numerical result, the signal �̅�(𝑡) should first be acquired by using the expression 

given in (4.30), where 

  �̅�(𝑡) =  𝑏𝑚𝐷
𝛽𝑚 𝑢(𝑡) + 𝑏𝑚−1𝐷

𝛽𝑚−1  𝑢(𝑡) + ⋯+ 𝑏0 𝐷
𝛽0  𝑢(𝑡)   (4.37) 

The response time of the plant now could be found by applying: 

  𝑦(𝑡) =  
1

∑
𝑎𝑗

𝑥
𝛼𝑗

𝑛
𝑗=0

  [𝑢(𝑡) − ∑
𝑎𝑗

𝑥𝛼
𝑗   ∑ 𝑤𝑖

(𝛼)[
𝑡−𝑎

𝑥
]

𝑖=0
𝑓(𝑡 − 𝑖𝑥)𝑛

𝑗=0 ].    (4.38) 

The technique presented here is a fixed step technique, where the precision of the simulation is 

dependent on the size of the step [73]. 
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4.1.6. FO differential equations  

The fractional order description would be a more realistic procedure to define and model 

systems since real processes are typically fractional in [75]. For example, a fractional order (non-

integer) system corresponds to a lossy transmission line. Another example is heat conduction in a 

semi-infinite solid [77, 79].  

FO dynamical system can be expressed in terms of a FODE as [78]  

𝑎𝑛𝐷
𝑎𝑛 𝑦(𝑡) + 𝑎𝑛−1𝐷

𝑎𝑛−1  𝑦(𝑡) + ⋯+ 𝑎0𝐷
𝑎0𝑦(𝑡) 

   = 𝑏𝑚 𝐷
𝛽𝑚𝑢(𝑡) + 𝑏𝑚−1𝐷

𝛽𝑚−1𝑢(𝑡) + ⋯+ 𝑏0𝐷
𝛽0𝑢(𝑡),     (4.39) 

where𝛼𝑖, 𝛽𝑗(𝑖, 𝑗 = 1,2, … ) are arbitrary real numbers. The following equation is a fractional-order 

differential equation (FODE): 

D
1
2T(t)

Dt1/2
= Q(t)        (4.40) 

It can be clear that applying an IO differential equation (IODE) to model a system as in (4.30) 

would be less realistic from the actual system representation. Thus, a plant could be modelled as 

dynamical system by an FODE [79]. 

4.1.7. FO state-space representation   

 The FO operator can also be expressed in a state-space formation. A general FO LTI state-

space model can be expressed as [82]: 

       𝐷𝑡
𝛼𝑥(𝑡) = 𝐴𝑥(𝑡) + 𝐵𝑢(𝑡)0 ,                            (4.41) 

       𝑦(𝑡) = 𝐶𝑥(𝑡) + 𝐷𝑢(𝑡) ,                                   (4.42) 

where , 𝛼=[𝛼1, 𝛼2, 𝛼3, … , 𝛼𝑛] is the corresponding FO.  Thus, one could also convert the fractional 

order state space form to a fractional order TF with the following relationship:  

𝐺(𝑠) = 𝐶(𝑠𝛼𝐼 − 𝐴)−1𝐵 + 𝐷                        (4.43)                     

where 𝐺(𝑠), corresponds to the FOTF matrix with 𝑝𝑥1 dimension. 



 

54 

 

 The FO continuous-time state space formation could also be discretized, which is expressed 

as [82] 

𝑥(𝑘 + 1) = (𝐴𝑇𝛼 + 𝐼)𝑥(𝑘)𝐵𝑇𝛼𝑢(𝑘), for 𝑘 = 0                    (4.44) 

𝑥(𝑘 + 1) = (𝐴𝑇𝛼 + 𝐼)𝑥(𝑘) − ∑ (−1)𝑞 (𝛼
𝑞
) 𝑥(𝐾 + 1 − 𝑞) + 𝐵𝑇𝛼𝑢(𝑘)𝑘+1

𝑞=2 , for𝑘 ≥ 1           (4.45) 

𝑦(𝑘) = 𝐶𝑥(𝑘) + 𝐷𝑢(𝑘)                 (4.46) 

 With the consideration of the FO system infinite memory, (4.44, 4.45 and (4.46) can be 

represented in an extended formation as  

      [

𝑥(𝑘 + 1)
𝑥(𝑘)

𝑥(𝑘 − 1)
⋮

] = �̅� [

𝑥(𝑘)
𝑥(𝑘 − 1)
𝑥(𝑘 − 2)

⋮

] 𝑋 + �̅�𝑢(𝑘)   (4.47) 

𝑦(𝑘) = 𝐶̅ [

𝑥(𝑘)
𝑥(𝑘 − 1)
𝑥(𝑘 − 2)

⋮

] + 𝐷𝑢(𝑘),     (4.48) 

where   �̅� = [

𝐴𝑇𝛼 + 𝛼𝐼 −𝐼(−1)2(𝛼
2
) −𝐼(−1)3(𝛼

3
) ⋯

𝐼 0 0 ⋯
0 𝐼 0 ⋯
⋮ ⋮ ⋮ ⋯

] , �̅� = [

𝐵𝑇𝛼

0
0
⋮

],   (4.49) 

𝐶̅ = [𝐶  0  0 … ].       (4.50) 

 

4.2 Fractional Order Control (FOC) 

4.2.1 Historical view 

The first introduction of an FO in a feedback loop was proposed by Bode, Then Manabe 

presented the transient and frequency domain responses of an FO integration and the control 

systems applications associated with it.  Then the TID control was suggested by Lurie. After that, 

Oustaloup presented the CRONE controller methodology. Podlubny introduced an FO control that 

is constructed by generalizing a typical PID controller in order to achieve an improved response 
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over the classical integer order PID method. The most commonly used FO controller in literature 

are the following [97, 98]: 

 FOPID controller. 

 CRONE controller. 

 Tilted proportional and integral (TID) controller. 

The TID control provides feedback using the classical IOPID controller where the proportional 

element of the IOPID controller is interchanged with a tilted element 𝑠
−1
𝑛 . This results in having a 

response more close to estimating an optimal response. 

The CRONE controller was introduced by Oustaloup. The term comes from the French 

acronym meaning fractional order robust control. The CRONE controller includes the frequency 

domain characteristics to demonstrate the effectives of the FO controller. Systems with time 

variations, unstable and with minimum/non-minimum phase could also be controlled with this type 

of a controller. Some examples for real-life applications using the CRONE control method include, 

automobiles suspension control and hydraulic actuator control [98]. 

4.2.2 Fractional order PI/PID controller 

The IOPID control, is one of the earliest developed control methods in control systems. 

Since the control structure and design techniques are straightforward and are simple to implement, 

this control strategy is very beneficial for industrial applications. Further, with the PID controller 

usually provides satisfactory results and the design technique don’t necessarily need exact 

information of the plant model. Consequently, it has become the most widely used controller 

method in the process industry [74]. 
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To demonstrate the control possibilities of using a fractional order 𝑃𝐼𝜆𝐷𝜇  in a graphical 

way, Fig. 4.2, shows the four control points of a conventional PID range control points of the 

quarter-plane defined by selecting the fractional order values [74]. 

 

    Fig. 4.2. Classical PID/FOPID. 

 

The differential equation of the fractional order 𝑃𝐼𝜆𝐷𝜇 control is given by 

𝑢(𝑡) = 𝐾𝑝𝑒(𝑡) +
𝐾𝑖

𝐷−𝜆
𝑒(𝑡) + 𝐾𝑑𝐷

𝜇𝑒(𝑡).                                     (4.51)                                                   

By applying a Laplace transformation to (4.51) with zero initial conditions, the TF of the fractional 

order version of this controller is 𝑃𝐼𝜆𝐷𝜇,  

𝐺𝑐(𝑠) = 𝐾𝑝 +
𝐾𝑖

𝑠𝜆
+ 𝐾𝑑𝑠

𝜇.                                             (4.52)                

As mentioned previously, these two additional two degrees of freedom 𝜆 and 𝜇 of the integrator 

and differentiator allow more flexibly to the designer to implement the controller and to meet the 

system requirements more accurately. 

Using a fractional order PID controller allows the user up to five parameters to tune, while 

for a fractional order PI or PD the user have four parameters to design. With 𝜆 = 1 and 𝜇 = 1 a 
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classical PID controller would be obtained. Hence with 𝜆 = 1 and 𝜇 = 0, a PI controller is acquired, 

while a PD controller is obtained when 𝜆 = 0 and 𝜇 = 1.                                                                                                      

  Fig. 4.4 displays a block diagram of a typical FO𝑃𝐼𝜆 control for a SISO system. Gc(s) is 

the fractional order controller given in terms of a transfer function as the following  

𝐺𝑐(𝑠) = 𝐾𝑝 +
𝐾𝑖

𝑠𝜆
 ,                                   (4.53)          

where the fractional order term is 𝜆.                                                                      

 

Fig. 4.3. Block diagram of a fractional order 𝑃𝐼𝜆 control. 

 

The additional adjustable parameter 𝜆 with the FOPI in contrast to the classical PI 

controller allows more flexibility to control the system and at the same time increases the control 

quality performance. As a comparison example, with FOPI, achieving closed-loop zero steady-

state error and reducing the amplification of high-frequency disturbances can be accomplished.  

When using the classical IOPI controller there is a phase lag of 90 degrees. Thus, the FOPI 

structure provides a diminished constant phase lag of 𝜆, which can introduce an improved transient 

dynamical response as opposed to the classical PI controller.  
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In regards to the large-frequency noise amplification, the magnitude Bode plot slope of the FOPI 

controller is smaller with 20 (1- 𝜆) dB/decibel. Further in this manner the IOPI controller would 

be most suited as the associated slope in the case of high-frequencies can be 0 dB/ decibel [74]. 

In control system theory a plant can be controlled by either IO or FO controller, whereas the plant 

could also be derived as a fractional or integer order. There are four different combinations to 

apply an FO control scheme [78]: 

a) IO plant with IO controller. 

b) IO plant with fractional order (FO) controller. 

c) FO plant with IO controller. 

d) FO plant with FO controller. 

In most cases the FO control would be applied to an ordinary linear or non-linear system to 

improve the system performance [96] .The focus of this research is to develop a linear FO 

controller applied to an IO plant corresponding to a semi-autonomous tractor-trailer with a FO 

controller. . 

For loop-shaping control with an FO controller, the Bode magnitude would be 20𝜆 

dB/decibel and no longer limited to the 20dB/decibel slope as in the case for classical integer order 

control, which can provide the controller more robustness [79]. Fig. 4.3, shows a Bode plot 

comparison of a PID and FOPID in the frequency domain. With the integer order PID the slope is 

limited to 20 dB, while, with a fractional order with  𝜆 = 0.5, the slope order would be 10 dB and 

5 dB with 𝜆 = 0.25, where 𝐾𝑝 = 𝐾𝑖=  𝐾𝑑= 1.  

In this example with additional tuning parameter 𝜆 and 𝜇 the controller can be better 

designed to meet the system specification and outperform the IO controller. When using the FO 
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controller it provides high robustness to gain and parameter variation. In contrast to IO controllers 

which require a more complex controller design to stabilize an uncertain system [80]. 

 

Fig. 4.4. Bode plot of a PID/FOPID controller. 

 

For the FO controller the system can be robust against gain variation along with the iso-

damping property related to the overshoot of the system being independent of the gains. Hence, 

for a given linear plant this would translate to an uncompensated (open loop) phase being nearly 

flat for the Bode plot. This would imply that, the derivative of the phase in respect to the frequency 

is null at a defined frequency range acknowledged as the tangent frequency 𝑤𝑐. Further, the Iso-

damping property can be expressed in a mathematical term as [82]: 
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𝑑∠𝐺(𝑠)

𝑑𝑠
| = 0,       (4.54) 

or otherwise as    ∠
𝑑𝐺(𝑠)

𝑑𝑠
| = ∠𝐺(𝑠)|.      (4.55) 

where, 𝑠 = 𝑗𝑤𝑐. The Nyquist plot of the uncompensated (open-loop) plant would tangentially hit 

the sensitivity circle at the tangent frequency when this condition is guaranteed. With this 

condition, the Bode phase graph locally indicates that the plant provides robustness against 

changes occurring in the system gains [82].    

4.2.3 Introductory example: FOC of passenger vehicles 

As an initial investigation of fractional order control, this dissertation considers a 𝑃𝐼𝜆𝐷𝜇 

controller function. In Fig. 4.5 a block diagram of a fractional order 𝑃𝐼𝜆𝐷𝜇 controller for a single 

input single output (SISO) system is presented. Gc(s) is the fractional order controller given in 

terms of a transfer function as the following: 

𝐺𝑐(𝑠) = 𝐾𝑝 +
𝐾𝑖

𝑠𝜆
+ 𝐾𝑑𝑠

𝜇.                         (4.56)                         

With the additional adjustable parameters 𝜆 and 𝜇 (which are fractional powers) allows more 

flexibility to control the system and at the same time would increase the control quality. More 

demonstration of fractional calculus and FO control will be explained later in Chapter 4 of this 

dissertation. 

Simulation results are presented in Figs. (4.6-4.8), which demonstrate the robustness of 

applying this control scheme as compared to a classical PID control. Thus, the vehicle position 

with different speed, mass and rear/front cornering stiffness is improved with the fractional order 

controller.  
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    Table 1. Passenger vehicle parameters. 

Symbol Description Value 

𝑚 Vehicle total mass 1480 kg 

𝐼𝑧 Yaw inertia moment 2350 kg 𝑚2 

𝑙𝑓 Distance of CG from front axle 1.05 m 

𝐼𝑟 Distance of CG from rear axle 1.63 m 

𝐶𝑓 Front tire cornering stiffness 67500 N/rad 

𝐶𝑟 Rear tire cornering stiffness 47500 N/rad 

 

The results for a passenger vehicle is implemented by applying a step response to the lateral 

position of the passenger vehicle model traveling at a speed of 55 mph and 80 mph. Results show 

meeting a specification of an overshoot of less than 5% and a settling time below 2 seconds. Hence, 

the IOPID control is established and then compared to the FOPID controller. Furthermore, the 

comparison is done in both time and frequency domain for the integer and non-integer control 

design. 

 

Fig. 4.5. Block diagram of a fractional order 𝑃𝐼𝜆𝐷𝜇 control. 
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The passenger vehicle parameters are provided in Table 1. Fig. 4.6 and Fig. 4.7 shows the step 

response of lateral position of the vehicle while travelling at a speed of 55 mph and 80 mph of the 

linearized system. Fig. 4.8 shows the step response while doubling the vehicle mass of the linear 

system.  

 

Fig. 4.6. Step response of the lateral displacement at 55 mph. 
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Fig. 4.7. Step response of the lateral displacement at 80 mph. 
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Fig. 4.8. Step response of the lateral displacement with varying the vehicle mass. 

 

 

 Also for verification of the passenger vehicle nonlinear model, the fractional order controller 

is implemented to the nonlinear model, Fig. 4.9 displays the lateral position of the vehicle while 

travelling at a speed of 80 mph. Fig. 4.10 and Fig. 4.11 shows the vehicle position while varying 

the vehicle mass and the vehicle front tire stiffness respectively. 
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Fig. 4.9. Step response of the lateral displacement at 80 mph of nonlinear vehicle model. 

 

 

Fig. 4.10. Step response of the lateral displacement with mass variation of nonlinear model. 
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Fig. 4.11. Step response of the lateral displacement with varying 𝐶𝑟 of nonlinear model. 

 

 

 

Table 2 presents a summary of applying PID/FOPID to five different cases of varying the 

system parameters such as speed, mass, rear (𝐶𝑟) and front (𝐶𝑓)  cornering stiffness. The frequency 

domain analysis demonstrates the robustness of applying a fractional order controller to a system 

with uncertainty. The stability margins of the system is improved as compared to the IOPID 

controller. Cases 4 and 5 are when the system becomes non-minimum phase. The controller was 

designed with the following parameters: 

𝐾𝑃 = 7.68, 𝐾𝑖 = 6.71, 𝐾𝑑 = 2.2, 𝜆 = 0.5 and 𝜇 = 1.25. 
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    Table 2. Passenger vehicle parameter variation.  

 

Vehicle Case 1 Case 2 Case 3 Case 4 Case 5 

Mass 1480    Kg 1480    Kg 2960    Kg 1480    Kg 1480     Kg 

Speed 24.6    m/s 35.7     m/s 24.6     m/s 24.6     m/s 24.6     m/s 

𝐶𝑟 47500 N/rad 47500 N/rad 47500 N/rad 32500 N/rad 32500 N/rad 

𝐶𝑓 67500 N/rad 67500 N/rad 67500 N/rad 67500 N/rad 70000 N/rad 

Controller --- --- --- --- --- 

PID  phase 

margin 
89.7° 89.1° 85.1° 89.8° 89.8° 

FOPID phase 

margin 𝜆 =
0.5, 𝜇 = 1.25 

113° 113° 112° 113° 113° 

FOPID phase 

margin. 𝜆 =
0.5, 𝜇 = 1.5 

135° 135° 135° 135° 135° 

 

  

4.3 FO 𝑷𝑰𝝀 Control Motivation  

Control systems could contain the FO dynamical plant and a FO controller. Nevertheless, 

in control engineering it is more frequent in practice to regard only the FO controller which is 

owed to the fact that the system model could already have been acquired as a conventional IO 

model [79]. Further, FO control is being explored and investigated in many research fields such as 

electrical circuits, signal processing, chemical processes and bioengineering. Thus, FC has been 

discovered to be particularly beneficial in systems theory and automatic controls [73, 85, 87].  

Little research exists for applying this control scheme for lateral stability of passenger 

vehicles [4, 12]. In particular no current research as of today exists for applying this control scheme 

for lateral stability for tractor-trailers system. FC would be highly beneficial for this application 
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since it has many advantages over integer control methods.  FO control of nonlinear systems can 

alleviate the limitations of IO control algorithm [73]. 

FO𝑃𝐼𝜆 control could attain improved control performance compared to the IOPI controller 

and can be integrated into existing PI control loops [73-78]. It has been shown in previous studies 

that the extra degree of freedom introduced by the fractional integrator males it possible to further 

enhance the performance of the classical PI controller [79].   Also with the fractional integrator 

operator 𝜆, the system can be robust against gain variation along with the iso-damping property 

that is related to the overshoot of the system being practically independent of the gains [82]. 

With an FO controller for IO plants there would be more flexibility in altering the gain and 

phase margin characteristics [78]. Furthermore, applying a fractional order 𝑃𝐼𝜆  control for a 

dynamic system provides [73-74, 78] 

• Fast time response and improved control quality of the dynamical system. 

• Reduced percentage of overshoot and settling time. 

• Improved output disturbance rejection to the system. 

• Decreased steady state error. 

• More flexibility to the designer with the additional degree of freedom 𝜆. 

For the tractor-trailer system with highway lane departures corresponding to tracking a 

ramp input requires an integrator with a higher power than one in order to provide accurate steady-

state tracking. Thus with the integrator order between 1 and 2 one would expect that a fractional 

number can be found that provides minimized tracking errors for the steering system. This research 

develops a method to determine an optimal value for the FOPI controller leads to improved 

performance compared to an integer order PI controller. 
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4.4 Approximation to Fractional Order Operators 

4.4.1 Oustaloups’s recursive filer approximation  

The Oustaloup recursive filter approximation method is well established in literature to 

approximate a fractional order differentiator [73, 79]. The filter can be written as the following: 

 𝐺𝑓(𝑠) = 𝐾∏
𝑠+𝑤𝑘

𝑠+𝑤𝑘

𝑁
𝑘=−𝑁        (4.57) 

where the gain, zero and pole can be determined from 

𝑤𝑘 = 𝑤𝑏 ∗ 𝑤𝑢

(𝛼−1+2∗𝑘)

𝑁 , 𝑤𝑘
′ = 𝑤𝑏 ∗ 𝑤𝑢

(−𝛼−1+2∗𝑘)

𝑁 ,    (4.58) 

𝑤𝑢 = √
𝑤ℎ

𝑤𝑏
, 𝐾 = 𝑤ℎ

𝛼,        (4.59)  

for 𝑘=1, 2…, N in the frequency range (𝑤𝑏; 𝑤ℎ) 

The Oustaloup filter can be implemented in the following procedure [97]: 

a) Select the fractional value 𝛼, choose the order of approximation N, then select the upper 

and lower frequency range 𝑤𝑏, 𝑤ℎ respectively. 

b) From equation (4.59) 𝑤𝑢 and K can be computed, then from (4.58) 𝑤𝑘 and 𝑤𝑘
′  can be 

obtained. 

c) The Oustaloup filter 𝐺𝑓(𝑠) is then created from (4.57). 

A bode plot comparison between different order of approximation for the Oustaloup filter is 

displayed in Fig. 4.12, where the fractional order operator 
1

𝑠0.5
 is approximated with 𝑤𝑏=0.001 and 

𝑤ℎ= 1000, for N=1,2 and 5. As can be seen in Fig. 4.12, the higher the order of approximation the 

more accurate the fractional order is approximated as the ripple is tends to be reduced as the order 

is increased. 
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Fig. 4.12. Bode diagram for different orders of Oustaloup approximation for  
1

𝑠0.5
 . 

4.4.2 Refined Oustaloup filter  

The refined Oustaloup filter provides a better approximation and can be introduced by [81]:  

𝑠𝛼  (
𝑑𝑤ℎ

𝑏
)
𝛼

(
𝑑𝑠2+𝑏𝑤ℎ𝑠

𝑑(1−𝛼)𝑠2+𝑏𝑤ℎ𝑠+𝑑𝛼
) 𝐾∏

𝑠+𝑤′𝑘

𝑠+𝑤𝑘

𝑁
𝑘=1  ,     (4.60)  

where 

𝑤′𝑘 = 𝑤𝑏 ∗ 𝑤𝑢

(𝛼−1+2∗𝑘)

𝑁 , 𝑤𝑘 = 𝑤𝑏 ∗ 𝑤𝑢

(−𝛼−1+2∗𝑘)

𝑁  ,   𝐾 = 𝑤ℎ
𝛼.     (4.61)  

Noting that 𝛼 order should satisfy 𝛼 ∈ (0,1)  hence through experimental examination the  

weighting factors should be selected as b = 10 and d = 9  in order to obtain a good result for the 
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synthesis approximation [79]. A bode plot comparison between different order of approximation 

for the modified Oustaloup filter is presented in Fig. 4.13, where the fractional order operator 
1

𝑠0.5
 

is approximated with 𝑤𝑏=0.001 and 𝑤ℎ= 1000 for N=1,2 and 5. Also, similarly the higher the 

order of approximation the more accurate the fractional order is approximated as the ripple is 

reduced for the higher order approximation. 

 

Fig. 4.13. Bode diagram for different orders of the refined Oustaloup approximation for 
1

𝑠0.5
 . 

 

For this research the Oustaloup approximation method is applied to implement the integrator in 

FO controller for a tractor-trailer system. 
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4.5 Discrete Time Realization  

The discrete-time realization is typically favoured over continues time, because it can be 

easily applied and updated using digital electronics. Two strategies are considered for discrete-

time realization: direct and indirect. For indirect approaches, the frequency domain fit in the 

continuous-time case is achieved followed by the discretization of the transfer function 𝑠. There 

are additional frequency domain fitting techniques that could also be implemented, however, they 

lack a guarantee of stability for the minimum phase discretization.  

Direct techniques attempts to provide a constant phase of the FO element directly in the 

frequency domain. Some of the approaches include Tustin operator fractional expansion, Euler 

operator power series expansion and numerical integral techniques.  

These methods for discretizing the factional operator 𝑠𝛼 are in infinite impulse response 

(IIR) form. Yet there are other techniques to acquire the FO differential in finite impulse response 

(FIR) form. Applying this technique might reduce the efficiency to approximate the FO operator 

𝑠𝛼 because of the large order of this type of filter. Further, a direct method is typically preferred 

over an indirect method for digital realization [82, 96].   

 4.5.1 Direct discretization techniques 

For discretization, two stages should be considered in order to obtain the discretized 

function of an FO differential. First, selecting an appropriate producing function is critical as this 

defines the discrete FO differential𝑠 = 𝑤𝑧−1. The generalized form is typically considered [99]: 

𝑤𝑧−1 = 
1−𝑧−1

𝛽𝑇(𝛾+(1−𝛾)𝑧−1)
 ,                                     (4.62) 

where 𝛽 is a tuned parameter of the gain, 𝑇 is the period sample and 𝛾 is the phase parameter. The 

frequently applied methods to generate a function for discretizing are presented in Table 4. These 
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producing functions can be acquired from (4.62) in consideration of the gain and phase tuning 

parameters in Table 3. 

Table 3 The tuning parameters 𝛽 and 𝛾. 

Methods F. Euler Tustin Al-Aaoui B. Euler Implicit Adams 

𝛽        1 ---        ---      --- --- 

𝛾        0    0.5 7
8⁄        1 1.5 

 

The second procedure is approximating the irrational formula with a finite order 

expression. To achieve this, two of the mathematical techniques, PSE and continuous fractional 

expansion (CFE), can be used.  PSE and CFE can be expressed as follows [99]: 

𝐷
+
−𝑣(𝑧) ≈ 𝐶𝐹𝐸[𝑤(𝑧−1)𝑣] or 𝐷

+
−𝑣(𝑧) ≈ 𝑃𝑆𝐸[𝑤(𝑧−1)𝑣]      (4.63) 

 

Table 4 Discrete-time conversion rules. 

Methods 𝒔 → 𝒛 conversion Taylor series 

Backward-difference 

(Euler) 

𝑠𝑣  ≈  [
1 − 𝑧−1

𝑇
]𝑣 (

1

𝑇
) [1 − 𝑣𝑧−1 +

𝑣(𝑣−1)

2!
𝑧−2 +⋯] 

Trapezoidal (Tustin) 
𝑠𝑣 ≈ [

2(1 − 𝑧−1)

𝑇(1 + 𝑧−1)
] 𝑣 

(
2

𝑇
) [1 − 2𝑣𝑧−1 + 2𝑣2𝑧−2 +⋯] 

Al-Alaoui 

𝑠𝑣  ≈  [
8(1 − 𝑧−1)

7𝑇(1 +
𝑧−1

7 )
]𝑣 

 

             --- 

Simpson 
𝑠𝑣 ≈ [

3(1 − 𝑧−1)(1 + 𝑧−1

𝑇(1 + 4𝑧−1 + 𝑧−2)
] 𝑣 

(
3

𝑇
) [1 − 4𝑣𝑧−1 + 2𝑣(4𝑣 + 3)𝑧−2 +⋯] 
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4.5.2 Indirect discretization techniques 

For indirect discretization, there are two steps. Step one, the TF 𝑠𝑣 can be approximated 

by a rational TF using a continues approximation method. Next, by substituting 𝑠 in the function, 

the discretized function can be acquired as: 

𝑠𝑣  ≈  
𝑃𝑛(𝑠)

𝑄𝑚(𝑠)
 
𝑠=𝑤𝑧−1

⇒     𝑠𝑣 ≈ 𝐺(𝑧)     (4.64) 

For example, in [100], 𝑠𝑣 was approximated using the Oustaloup technique initially and then the 

discrete approximation was obtained by substituting 𝑠 in the following:  

𝑠 =  
(𝛼+1)(𝑧−1)

𝑇(𝑧+𝛼)
,      (4.65)  

where the sample period is 𝑇 and the weight element is within the closed interval [0,1]. For any 

irrational continuous TF, this procedure is typically used. The frequency response can be acquired 

by substituting𝑧 =  𝑒𝑗𝑤𝑡. Next, the impulse response can be acquired by applying an inverted FFT 

to the prior computed frequencies.  From the impulse response the approximation for the TF is 

retrieved by applying a Steiglitz-McBride method, which can be expressed as: 

𝐺𝑧−1 = 
𝑎0+𝑎1𝑧

−1+⋯+𝑎𝑛𝑧
−𝑁

𝑏0+𝑏1𝑧−1+⋯+𝑏𝑛𝑧−𝑛
.      (4.66)  

where the approximation order is 𝑛. 

4.5.3 Digital implementation 

The procedure for implementing a digital FO TF is first to obtain the finite change relationship by 

the discretization technique presented in section above. Next, the FOTF can applied to a digital 

device such as an FPGA or DSP. Thus, implanting this controller scheme on an embedded devices, 

the following should be considered [73]: 

 The memory size limits 

 Computational abilities restrictions  
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 The performance limitations 

 A digital discrete-time implementation of an FOPI control can be given as the following: 

 𝐻𝑃𝐼𝜆  (𝑧) = 𝐾𝑝 + 𝐾𝑖𝐻𝐼
−𝜆(𝑧).      (4.67)                

Where, 𝐻𝐼
−𝜆(𝑧) is the approximated discretization of the FO integral term of the order 𝜆. 𝐾𝑝 and 

𝐾𝑖 are the gains of the parallel formation of the control algorithm. 

 For digital realization, typically the controller technique could be based on the canonical 

form of an IIR filter defined as the following: 

𝐹(𝑧−1) =
𝑢(𝑧−1)

𝑒(𝑧−1)
= 

𝑏0+𝑏1𝑧
−1+⋯+𝑏𝑀𝑧

−𝑀

𝑎0+𝑎1𝑧−1+⋯+𝑎𝑁𝑧−𝑁
 .    (4.68) 

 The FO controller having the form of an IIR filter could likewise be implemented using an 

FPGA or DSP. Fig. 4.14 shows a block diagram of a canonical implementation of the direct form, 

where u(k) and e(k) are the output and input  [78]. 

                

Fig. 4.14. Canonical IIR filter representation 
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 For this research the FO controller would be approximated using the Oustaloup 

approximation method, and then discretized for real-time digital implantation for the tractor-trailer 

system. Choosing the order of approximation is critical in order to provide high accuracy for the 

fractional order controller approximation.  
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Chapter 5: FO State Feedback Control 

 

5.1 State Feedback Control  

 Control system design is often expressed in terms of a reference signal 𝑟(𝑡) and system plant 

𝐺(𝑡) are provided. The input 𝑢(𝑡) of the plant is a controlled actuator input that is configured by 

the system design and the output of the plant is 𝑦(𝑡). The objective is to design a feedback control 

system in order that the output of the plant 𝑦(𝑡) will track the reference signal 𝑟(𝑡) as closely as 

possible. 

 If the actuating signal 𝑢(𝑡) depends only on the reference signal and is independent of the 

system output, then the system is referred to as operating in open-loop control. If the actuating 

signal is dependent on both the reference signal and the plant output (i.e., employs feedback), then 

the system is defined to be operating in a closed-loop mode. Open-loop control is not able to 

compensate for parametric variability and external disturbances and therefore most control systems 

are operated in a closed-loop mode [96, 102].  

 A block diagram for a typical state feedback representation is displayed in Fig. 5.1. The 

feedback vector 𝐾𝑝, can improve the stability characteristics of the system. To select 𝐾𝑝 several 

design methods exit in the literature that provide the designer number of options in meeting the 

design requirements.   
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Fig. 5.1. State feedback system. 

 

Consider the single variable state equation  

      �̇� = 𝐴𝑥 + 𝐵𝑢, 𝑦 = 𝐶𝑥         (5.1)  

 A system such as (5.1) is defined to be controllable if given any initial condition for the state 

vector 𝑥0, then there exists an input 𝑢(𝑡) such that the systems state can be driven to zero in finite 

time. It can be shown that for linear time-invariant systems that controllability is equivalent to 

being able to use state-feedback to arbitrarily assign the closed-loop system poles [102]. The 

augmented tractor-trailer system in (3.76) can be shown to be completely controllable [68]. 

Consequently, the control input for the full state-feedback becomes:  

    𝑢 = 𝑟 − 𝑘𝑥 = 𝑟 − [𝑘𝑝1  𝑘𝑝2…𝑘𝑝𝑛]𝑥 = 𝑟 − ∑ 𝑘𝑝𝑗𝑥𝑗
𝑛
𝑗=1        (5.2)  

  where the elements of the feedback vector 𝑘 are real-valued constants. By substituting 

equation (5.2) into equation (5.1) 

          �̇� = (𝐴 − 𝐵𝑘)𝑥 + 𝐵𝑟,     𝑦 = 𝐶𝑥       (5.3)  
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 With appropriate selection of 𝑘, then an asymptotically stable matrix can be acquired 

 (𝐴 − 𝐵𝑘) with eigenvalues that can be assigned by the control system designer. 

5.1.1 State feedback with proportional gain 

 For the tractor-trailer system it is critical for the controller to track the desired lane position for 

an emergency lane departure in a highway. State feedback control with proportional gain is 

illustrated with a block diagram in Fig. 5.2, where, 𝐾𝑝 is a scalar proportional gain and 𝐾 is the 

feedback gain vector. With the tractor-trailer travelling at a constant highway speed 70 mph, the 

open-loop transfer function for the tractor trailer system used in this research can be expressed as 

[104]: 

𝐺0(𝑠) =
110.4𝑠4+3174𝑠3+49960𝑠2+59800𝑠+158700

𝑠6+34.32𝑠5+395.8𝑠4+523.9𝑠3+1292𝑠2
      (5.4) 

 

 It is noted that (5.4) is a type 2 system, i.e., it contains a factor of 1 𝑠2⁄ . A conventional state-

feedback control law for the tractor-trailer system 

     𝑢 = r − 𝑘1𝑣1 − 𝑘2𝑟1 − 𝑘3𝑟2 − 𝑘4 𝜓 − 𝑘5𝑥5 − 𝑘𝑝𝑥6.     (5.5) 

where 𝑥5, and 𝑥6represent the yaw angle and the lateral position. 

 The system tracking will need to be adequate for performing the platooning operations 

described in Chapter 3. In particular, the type 2 as in (5.4) system with full-state feedback (5.5) 

will have a steady-state error to a ramp input command. This will create conditions where one of 

the following trucks may collide with an obstacle even though the lead vehicle may have properly 

responded in avoiding the object. 
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Fig. 5.2. Full state feedback with proportional gain. 

 

 As an initial assessment of the closed-loop system behavior, root locus analysis for the 

open-loop system with only output feedback was examined. In this case, 𝑢 = 𝑟 − 𝑘𝑝𝑦 and the 

associated root locus is the set of solutions to  1 + 𝑘𝑝𝐺0(𝑠) = 0 for 𝑘𝑝 ≥ 0. The root locus plot 

is shown in Fig. 5.3. Of particular significance is that the tractor-trailer becomes unstable for 

small values of output feedback in the range of 0 < 𝑘𝑝 < 8.2. For larger values of 𝑘𝑝the tractor-

trailer system is stable, however the real-component of the dominant poles asymptotically 

converge to -0.014 and thereby limit the decay rate of the closed-loop system to disturbances and 

input changes Consequently, the tractor-trailer system requires state-feedback to achieve 

adequate transient response during platooning operations. 

Table 5 provides the eigen-values for the open-loop system (5.4) and the closed-loop 

system with the LQR control with a speed of 70 mph. 
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Fig. 5.3. Root-locus for the tractor-trailer system. 

 

Table 5 Eigen-values for the system in (5.4). 

Open-loop Closed loop 

0 -162.56 

0 -10.17 

-0.57 + 1.82i -3.9 + j3.8 

-0.57 – 1.82i -3.9 - j3.8 

-16.6 + 8.9i -0.56 +j1.7 

-16.6 – 8.9i -0.56 -j1.7 
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 It is noted that the open-loop system is type 2 and therefore the system is dominated by the two 

poles located at the origin of the s-plane. The use of pole placement for the remaining non-zero 

poles are needed primarily to shape the transient response by compensating for zeros in (5.4). 

Considerable insight can be obtained by considering a reduced-order model of the tractor-trailer 

system by only conserving the dominant poles. A Bode plot comparison between the full order 

truck dynamics (5.4) and a double integrator (reduced tractor-trailer model) is shown in Fig. 5.4. 

As can be seen the difference is mainly in the phase plot associated with the poles and zeros that 

are associated with the state equations derived in inertial reference frame coordinates in (3.63). 

 

Fig. 5.4. Bode plot comparison for the truck TF and a double integrator TF. 
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 To examine the system for the tractor-trailer for tracking, Fig. 5.5, shows a step response for 

the tractor-trailer system with state feedback, where the gains were obtained using the LQR 

method.  

 

Fig. 5.5. Step response with state feedback with proportional gain for the tractor-trailer system. 

 

 To examine the system ramp input tracking for an evasive lane departure the response is 

compared to the desired lane change reference input shown in Fig. 5.6 for a constant highway 

speed of 70 mph. As can be seen in the in Fig. 5.6, it shows a steady-state constant ramp error that 

is unacceptable for platooning operations. As previously mentioned, this is a consequence of (5.4) 

being a type 2 system. The steady-state ramp error can be reduced by adding additional integrator 
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to the controller [102] to create a type 3 system. The mean squared error (MSE) for the lane change 

error is computed to be MSE=1.72. Fig. 5.7 displays lane error response for this system type. The 

effects of increasing the system type to greater than 3 will be examined in section 5.1.2, where it 

will be found that the MSE can reduced by increasing the system type to be greater than 3. 

 

 

Fig. 5.6. Lane position with SFB with type 2 system. 



 

85 

 

 

Fig. 5.7. Lane error with type 2 system. 

 

5.1.2 State feedback with integer order integral action  

 The transfer function and state equation established for the tractor-trailer will vary for multiple 

reasons such as environment, aging or road variations. In order to provide robustness in tracking 

platooning commands and minimizing disturbances due to road and wind conditions, the 

controlled system integrator can be added to the state feedback in order to increase the system type 

as shown in Fig. 5.8. [94, 96]. 

Consider plant representing the tractor-trailer as 

      �̇� = 𝐴𝑥 + 𝐵𝑢, 𝑦 = 𝐶𝑥         (5.6)  
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With the plant being completely controllable. The TF of the system can be written as: 

      𝐺𝑝(𝑠) = 𝐶(𝑠𝐼 − 𝐴)
−1𝐵        (5.7)  

Where s is the Laplace variable.  

 

Fig. 5.8. Full state feedback with integral action. 

 

 The internal controller adds a state variable 𝑥𝑖, and the corresponding augmented state vector 

is [𝑥′𝑥𝑖]′ . From Fig. 5.8, we have the following 

      �̇�𝑖 = 𝑟 − 𝑦 = 𝑟 − 𝐶𝑥,         (5.8) 

  

Where the control law is  

      𝑢 = −𝐾𝑝𝑥 − 𝐾𝑖 𝑥𝑖 + 𝑟,        (5.9) 

     

where 𝑥𝑖 is the integral of the lane position error 𝑒 = 𝑟 − 𝑦. 

The control law u is expressed as: 

      𝑢 = [𝑘𝑝 𝑘𝑖] [
𝑥
𝑥𝑖
] + 𝑟,       (5.10) 

  

Now by combing equations (5.6) and (5.9) we have the following: 
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     [
�̇�
�̇�𝑖
] = [

𝐴 0
−𝐶 0

] [
𝑥
𝑥𝑖
]+[
𝐵
0
] 𝑢(𝑡)+[

0
1
] 𝑟(𝑡).     (5.11)  

 The closed-loop system must be asymptotically stable such that 𝑥(∞), 𝑥𝑖(∞) and 𝑢(∞) are 

bounded. In steady-state the system should achieve �̇�𝑖(𝑡) = 0 and have 𝑦(∞) = 𝑟 for ramp input 

commands. For steady-state conditions the following can be given 

     [
�̇�(∞)
�̇�𝑖(∞)

] = [
𝐴 0
−𝐶 0

] [
𝑥(∞)
𝑥𝑖(∞)

]+[
𝐵
0
] 𝑢(∞)+[

0
1
] 𝑟(∞),    (5.12)  

where 𝑟(∞) = 𝑟(𝑡) = 𝑟 for 𝑡 > 0. By subtracting (5.12) from (5.11) we have 

    [
�̇� − �̇�(∞)
�̇�𝑖 − �̇�𝑖(∞)

] = [
𝐴 0
−𝐶 0

] [
𝑥 − 𝑥(∞)
𝑥𝑖 − 𝑥𝑖(∞)

]+[
𝐵
0
] [𝑢(𝑡) − 𝑢(∞)],   (5.13) 

By defining: 

        𝑥 − 𝑥(∞) = 𝑥𝑒(𝑡),      (5.14) 

       𝑥𝑖 − 𝑥𝑖(∞) = 𝑥𝑖𝑒(𝑡),      (5.15) 

       𝑢(𝑡) − 𝑢(∞) = 𝑢𝑒(𝑡),     (5.16) 

Then the expression above can be re-written as follows 

      [
�̇�𝑒(𝑡)
�̇�𝑖(𝑡)

] = [
𝐴 0
−𝐶 0

] [
𝑥𝑒(𝑡)
𝑥𝑖𝑒(𝑡)

]+[
𝐵
0
] 𝑢𝑒(𝑡),    (5.17) 

where,      𝑢𝑒(𝑡) = −𝐾𝑥𝑒(𝑡) + 𝐾𝑖 𝑥𝑖𝑒(𝑡),     (5.18) 

Defining the added (𝑛 + 1) error vector 𝑒(𝑡) 

      𝑒(𝑡) = [
𝑥𝑒(𝑡)
𝑥𝑖𝑒(𝑡)

] = (𝑛 + 1),      (5.19) 

Then equation (5.17) can be re-written as 

       �̇� = �̂�𝑒 + �̂�𝑢𝑒.      (5.20) 

The state error equation can be retrieved by replacing (5.18) in (5.19) resulting in 

       �̇� = (�̂�𝑒 + �̂��̂�)𝑒.      (5.21) 
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 One of the techniques to obtain the state feedback gains along with the additional integral gain 

constant term,  is using a pole placement method if the desired eigen-values for the closed loop 

system are specified [93, 95]. In situations where the state variables cannot be measured directly, 

then a state estimator (observer) is needed to obtain these measurements for feedback. 

  We can assume that a constant disturbance 𝑤 with unknown magnitude is added to the 

input of the plant. By modifying equation (5.6) the state equation becomes:  

      �̇� = 𝐴𝑥 + 𝐵𝑢 + 𝐹𝑤, 𝑦 = 𝐶𝑥      (5.22)  

where,  ∈  ℝ𝑛𝑥𝑛 , 𝐵 ∈  ℝ𝑛𝑥1, 𝐹 ∈  ℝ𝑛𝑥1 and 𝐶 ∈  ℝ1𝑥𝑛 are the given plant matrices. 

𝑥 ∈  ℝ𝑛 is the state vector, 𝑢 ∈  ℝ is the control input, 𝑤 ∈  ℝ is the disturbance input and 

 𝑦 ∈ ℝ is the output.   

 

 The closed-loop response can be written as: 

 

      [
�̇�
�̇�𝑖
] = [

𝐴 − 𝐵𝐾𝑝 𝐵𝐾𝑖
−𝐶 0

] [
𝑥
𝑥𝑖
]+[
0
1
] r +[

𝐹
0
]𝑤    (5.23)  

 

      𝑦 = [𝐶 0] [
𝑥
𝑥𝑖
]        (5.24) 

    

Which illustrates the system in Fig. 5.9.    

 

 
Fig. 5.9. State feedback with disturbance and integral action. 
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 Thus, by increasing the system order to type 3, as shown in Fig. 5.9, the tractor-trailer ramp 

tracking can be improved for the lane changes. With the tractor-trailer travelling at a constant 

highway speed of 70 mph, the closed-loop tractor-trailer system transfer function with the added 

integrator can be expressed as: 

𝐺1(𝑠) =
110.4𝑠5+3174𝑠4+49960𝑠3+59800𝑠2+158700𝑠

𝑠7+182.6𝑠6+3400𝑠5+24980𝑠4+99890𝑠3+158700𝑠2+270300𝑠+158700
   (5.25) 

 

With the additional integrator, the control law for the tractor-trailer system becomes as follows: 

    𝑢 = r − 𝑘1𝑣1 − 𝑘2𝑟1 − 𝑘3𝑟2 − 𝑘4 𝜓 − 𝑘5φ+ 𝑘𝑖 y +
𝑘7

𝑠
𝑥7. (5.26) 

 The step response using (5.26) is shown in Fig. 5.10. To compare the ramp tracking for a 

double lane change, Fig. 5.11 displays a comparison between the desired lane reference input and 

the state feedback with integral action. As can be seen in Fig. 5.11, the system tracking is improved 

compared to the previous state-feedback system (5.4) without the added integrator. The MSE for 

the lane error is computed to MSE= 0.3719, which is significantly reduced from the MSE = 1.72 

found for the controller in (5.4). 

The tracking can also be further improved by adding higher order integrals in order to 

further increase the system type. However, there are some tradeoffs to consider when designing 

for a tractor-trailer system. For example, the system lateral acceleration tends to increase for higher 

orders of the integral term. This leads to concerns that the tractor-trailer may reach a rollover 

condition if the system type is increased beyond a certain point. These trade-offs will be explored 

in Section 5.2.2, where it is found that an optimal system type can be obtained which provides an 

optimal trade-off between path tracking error verses a safety margin to avoid a rollover condition. 

Table 6 shows the eigen-values for the open-loop system and the closed-loop system with the truck 
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travelling at a speed of 70 mph for a type 3 system. Fig. 5.12 shows the lane error response for the 

type 3 system response. 

 

     Table 6 Eigen-values with type 3 system. 

Open-loop Closed loop 

0 -162.56 

0 -10.17 

-0.57 + 1.82i -3.9 + j3.8 

-0.57 – 1.82i -3.9 - j3.8 

-16.6 + 8.9i -0.56 +j1.7 

-16.6 – 8.9i -0.56 -j1.7j 

0 -10 

 

 

Fig. 5.10. Step response with SFB with integral action for the tractor-trailer system. 
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Fig. 5.11. Lane position with SFB with single integral controller. 

 

Fig. 5.12. Lane error with integral controller. 
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5.1.3 State feedback with integer order double integrator action 

 To examine the tractor-trailer system ramp input tracking for higher order controller integrals, 

the system is further modified with a second controller integrator. With the tractor-trailer travelling 

at a constant highway speed of 70 mph, the closed-loop tractor-trailer system transfer function 

with the added double integrator can be expressed as: 

𝐺2(𝑠) =
110.4𝑠6+3174𝑠5+49960𝑠4+59800𝑠3+158700𝑠2

𝑠8+183.6𝑠7+3533𝑠6+27490𝑠5+11890𝑠4+268100𝑠3+429500𝑠2+386200𝑠+158700
           (5.27) 

 

thus with this system type the control law for the tractor-trailer now can be represented  as:  

𝑢 = r − 𝑘1𝑣1 − 𝑘2𝑟1 − 𝑘3𝑟2 − 𝑘4 𝜓 − 𝑘5𝑥5 + 𝑘𝑝𝑥6 + 
𝑘7

𝑠
𝑥7 +

𝑘8

𝑠2
𝑥8.    (5.28) 

 

Table 7, presents the eigen-value comparison for the open-loop and closed-loop tractor-

trailer system with the second order integral controller. 

 

                Table 7 Eigen-value comparison with a double integrator. 

Open-loop Closed loop 

0 -162.56 

0 -10.17 

-0.57 + 1.82i -3.9 + 3.8i 

-0.57 – 1.82i -3.9 - 3.8i 

-16.6 + 8.9i -0.87 + 0.5i 

-16.6 – 8.9i -0.87 - 0.5i 

0 -0.54 + 1.7i 

0 -0.54 - 1.7i 

 

 A step response with the double integrator added is displayed in Fig. 5.13. As can be seen with 

the higher order integral controller the overshoot and settling time is improved as compared to the 

system with a single integrator. 
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 The tracking for the tractor-trailer ramp input with the integral controller of order 2 is compared 

to the desired reference lane change as shown in Fig. 5.14, the tracking has improved for the system 

as compared to the lower order of the integral term as demonstrated earlier for (5.4) and (5.25) . 

Hence, the system with the double integrator controller has MSE= 0.19, which continues the trend 

in reducing the ramp error as the controller integral terms are increased.  Fig. 5.15 displays the 

lane error the ramp input. It is also noted that the rapid rise and decrease in the ramp error is also 

indicative of increasing instantaneous lateral accelerations, thereby indicating that there may be an 

optimal value of the controller integral order that yields reduced tracking errors but maintains 

adequate margin to avoid a rollover condition (i.e., maintain peak lateral acceleration to be less 

than 0.50 g). 

 

Fig. 5.13. Ramp response with state feedback with double integral action. 
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Fig. 5.14. Lane position with SFB with a double integrator. 
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Fig. 5.15. Lane error response with a double integral controller. 

  

 To summarize the effects of the order of the controller integer terms on the tracking error, Fig. 

5.16 shows a comparison for a step response for controller integrator orders from 0-5. Selecting 

the order of the controller integration should account for the associated lateral accelerations that 

are indicative of a rollover as well as excessive articulation angles that are a precursor to a 

jackknife event. This research considers the question that an optimal controller integration order 

may lie between discrete integer values. This would then necessitate the use of a fractional order 

integrator. Methods to determine the optimal and possible fractional order integer controller is 

investigated in Section 5.2. 
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Fig. 5.16. Lane error comparison between different integrator orders from 1 to 5. 

 

5.1.4 Linear quadratic regulators  

 

The feedback controller gain of a given system can be obtained by optimizing a quadratic 

cost function as an alternative approach of selecting the closed loop eigenvalue locations of the 

system in order to achieve closed-loop performance requirements. In mechanical and electrical 

systems, quadratic cost functions account for the energy associated with the state variables. Thus 

minimizing a quadratic cost function defined in terms of errors in state variable such as velocity, 

forces, voltages and currents translates into an energy and power constraint on the system. 

Consequently, linear quadratic regulator (LQR) design is often used in electrical and mechanical 
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systems by providing a method of designing closed-loop control system that are specified based 

on physical constraints [94,95]. However, the solution to LQR design problems can be numerically 

challenging. In this research, well-established numerical methods employed by the Mathworks 

Corp, In Matlab is used to solve the LQR problems. Fig. 5.17 presents a block diagram of an 

optimal regulator system. Given a multi-input linear system  

�̇� = 𝐴𝑥 + 𝐵𝑢,  where, 𝑥 ∈  ℝ𝑛𝑥𝑛𝑛, 𝑢 ∈  ℝ𝑚     (5.29) 

The matrix K of the optimal controller 

𝑢(𝑡) = −𝐾𝑥(𝑡).      (5.30)  

 

Fig. 5.17. Optimal regulator system. 

 

The problem of minimizing the quadric performance index 

J =  ∫ (𝑥𝑇
∞

ts
Qx x + 𝑢

𝑇Qr u) dt.            (5.31) 
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Where Qr > 0 and Qx ≥ 0 are both symmetric and positive (semi-definite) with appropriate 

dimension matrices. Hence, choosing the weights 𝑄𝑥 and Qr of the LQR problem is critical for the 

design process, thus by ensuring  Qr > 0 and Qx ≥ 0 this would guarantee that a solution exists. 

If the undetermined element of K is known by minimizing the performance index, then 𝑢(𝑡) =

−𝐾𝑥(𝑡) is an optimal approach for any initial state 𝑥(0). In order to obtain a solution to the LQR 

problem, the control law is given in the following form  

𝑢 =  𝑄𝑟
−1 𝐵𝑇𝑃𝑥.                  (5.32)  

Where P ∈ ℝ𝑛𝑥𝑛 is a positive definite, symmetric matrix which satisfies the following equation: 

𝑃𝐴 + 𝐴𝑇𝑃 − 𝑃𝐵𝑄𝑟
−1𝐵𝑇𝑃 + 𝑄𝑥 = 0.     (5.33)  

Equation (5.33) is called the Algebraic Riccati Equation (ARE). To obtain a solution for ARE, the 

design procedure can be listed as [94] 

a) Compute (5.33) for 𝑃( positive definite). Then the system should have all the Eigen-values 

in the LHP with (A-BK) having negative real parts so that the system is stable. 

b) Set 𝐾 = 𝑇−1(𝑇∗)
−1
𝐵𝑃 = Qr

−1𝐵𝑃. The result is a value for K that is the optimal solution 

to (5.31). 

The state-feedback control law for a closed loop system becomes 

�̇� = (A − BK)x.        (5.34) 

 

5.2 Proposed Controller Scheme 

 The proposed controller method for this research; is a fractional order 𝑃𝐼𝜆 with full state 

feedback with integral action control. This scheme would allow eliminating the steady state errors 

associated with plant, and to meet the system specification more accurately with the fractional 

integral term as opposed to the classical integer integral. Thus, determining the suitable integrator 
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and proportional state feedback gains can be quite complicated, especially for the tractor-trailer 

system. Hence, the feedback law is added in order to compensate for the deviations and disturbance 

occurring in the system. 

 A block diagram of the proposed full state feedback with a FOPI controller, is provided in Fig. 

5.18. This typology would be applied the tractor-trailer non-linear model, where the fractional term 

(𝜆) is added to the state feedback controller. 

 

 

Fig. 5.18. Closed loop scheme with a fractional order PI and state feedback controllers.  

 

From the state feedback diagram presented in Fig. 5.18, the states are assumed to be 

available to the control algorithm and would be measured from currently available commercial 

sensors on trucks, thus the lateral position (𝑦∗) would be measured from an image sensor and GPS, 

while 𝑣1̇, 𝑟1 and 𝑟2 would be measured from an accelerometer and a gyroscope sensors respectively 

(𝑧). The articulation angle �̇� is the difference in the yaw rates of the tractor and trailer (𝑟1 − 𝑟2). 
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 As an alternative of adding a classical IO integral (1 𝑠⁄ ) , a FO integrator(1
𝑠𝜆⁄
) is considered, 

which would eliminate the system steady-state error by providing lane position tracking control..  

 In Fig. 5.16 a comparison between different integer orders from 0 to 5, is shown. It can be seen 

that choosing a 𝜆 order less than 1, would not provide enough tracking for a ramp input for the 

tractor-trailer system, while selecting a 𝜆 value higher than 1 and lower than 2 (in between with a 

fractional order), would be a preferred choice since, 𝜆 with order equal to 2 would provide slight 

improved tracking, but at the same time degrade the truck performance in terms of the lateral 

acceleration and articulation angle.  

 With 𝜆=1, there would be good tracking as compared to 𝜆 less than 1, and also when 𝜆=1 the 

truck performance does not degrade in terms of the lateral acceleration and the articulation angle 

for an evasive maneuver situation.  

 By choosing a fractional order value for the integrator between 1 and 2, this would provide an 

improved solution for tracking a ramp input for the tractor-trailer system and at the same time not 

degrade the system performance for the articulation angle and the lateral acceleration for the truck 

in case of an emergency lane departure during platoon operation on a highway. 

 The controller is designed first for the tractor-trailer linear system and then the linear controller 

is evaluated on the non-linear dynamics presented in equations (3.10)-(3.15). The controller was 

designed with a constant forward speed of 70 mph, in accordance with the average maximum 

highway speeds in the U.S. 

 Tables 8 and 9 present an eigen-value analysis for the open-loop and closed-loop tractor trailer 

system with an LQR controller for various highway speeds of 60, 70 and 80 mph. As the tractor-

trailer system eigen-values are shifted more toward the LHP during low speeds and shifted more 
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toward the right for higher speeds, this indicates the tractor-trailer stability margins are reduced as 

the vehicle speed is increased. 

 

Table 8 System eigen-values without control for different speeds. 

 

60 mph 70 mph 80 mph 

0 0 0 

0 0 0 

-0.66 + j1.8 -0.57 + j1.8 -0.5 + j1.8 

-0.66 – j1.8 -0.57 – j1.8 -0.5 – j1.8 

-19.38 + j6.64 -16.6 + j8.9 -14.5 + j10.07 

-19.38 – j6.64 -16.6 – j8.9 -14.5 – j10.07 

0 0 0 

0 0 0 

 

Table 9 System eigen-values with LQR control for different speeds. 

 

60 mph 70 mph 80 mph 

-163.32 -162.56 -161.8 

-10.93 -10.17 -12.6 

-3.92 + j3.4 -3.9 + j3.8 -3.3 + j3.5 

-23.9 - j3.4 -3.9 - j3.8 -3.3 - j3.5 

-0.62 + j1.7 -0.87 + j0.5 -0.87 + j0.5 

-062 – j1.7 -0.87 - j0.5 -0.87 - j0.5 

-0.87 + j0.5 -0.54 + j1.7 -0.5 + j1.7 

-0.87 - j5 -0.54 - j1.7 -0.5 - j1.7 
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5.2.1 State feedback with fractional higher order integral action 

The benefits of including the fractional integrator in the feedback system is primarily for 

providing improved ramp input tacking performance by eliminating the steady state error for the 

tractor-trailer system for an evasive manoeuvring situation. With a fractional order integral an 

optimal value can be obtained, which can provide the optimal tracking performance and at the 

same time minimize the affect occurring on other aspects of the tractor-trailer stability such as, the 

articulation angle deflection and lateral acceleration increases. 

 The block diagram for the proposed controller method displayed in Fig. 5.18 can be 

represented given an LTI system as: 

       �̇� = 𝐴𝑥 + 𝐵𝑢, 𝑦 = 𝐶𝑥      (5.35) 

where the control law can be formed as 

       𝑢 = −𝐾𝑝𝑥 + 𝐾𝑖𝑥𝑖      (5.36) 

where       

        �̇�𝑖 = 𝑟 − 𝐶𝑥𝑖       (5.37) 

�̇�𝑖 is the tacking error integral and 𝑟 is the reference input signal, which is trackable by 𝑦. The 

control law can be expressed with introducing the state vector 𝑋 = [
𝑥
𝑥𝑖
] 

       𝑢 = [−𝐾𝑝   𝐾𝑖] 𝑋      (5.37) 

 For active stability control of the tractor-trailer representation, the system matrix can be 

expressed as 

�̇� = (A − B�̂� ) x      (5.38)  

 The state-space matrices A and B representing the tractor-trailer are given in Chapter 3. With 

the additional added state matrix (below) are completely controllable 
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       [
𝐴 𝐵
−𝐶 0

]       (5.39) 

The state error equation is   

       �̇� = �̂�𝑒 + �̂�𝑢𝑒       (5.40) 

 With the tractor-trailer travelling at a constant highway speed of 70 mph, the tractor trailer 

open-loop system with the system parameters given in Table 10 and the added yaw angle and 

lateral position described in Chapter 3 (3.76), thus the is system is given as 

𝐴 =

[
 
 
 
 
 
−6.95 −29.98 −3.12 10.04 0 0
5.42 −25.77 1.54 −4.96 0 0
= 1.29 2.73 −1.61 5.16 0 0
0 1 −1 0 0 0
0 1 0 0 0 0
1 0 0 0 31.3 0]

 
 
 
 
 

,               (5.41) 

  

 

𝐵 =

[
 
 
 
 
 
110.39
118.12
1.042
0
0
0 ]

 
 
 
 
 

,       (5.42) 

 

 

      𝐶 =  [0 0 0 0 0 1].     (5.43) 

 

5.2.2 Optimal fractional order integrator selection 

 The previous section has shown that adding an integrator term to the state feedback control 

algorithm would provide increased lane position tracking for the tractor-trailer system for a ramp 

input (lane change). Selecting a fractional integrator order value in between type 1 and type 2 

controller can provide improved lane position tracking and at the same time degraded lateral 

acceleration and articulation angle performance for the tractor-trailer system. 

 Having a fractional order integral term, in between the integral order type1 and type 2 would 

provide optimal performance for the tractor-trailer stability margin for an evasive maneuver. Fig. 
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19, displays a comparison between different integrator orders for the lane position error 

corresponding to a ramp input for the tractor-trailer system.  

  Finding an optimal fractional integrator value is obtained in this research, by minimizing 

the performance index in terms of the lane position with the tractor lateral acceleration and the 

lane position with the articulation stability. Fig. 5.20 shows the performance index relationship 

between the lane position error and the tractor lateral acceleration. This relationship indicates that 

the optimal value for the fractional order integrator is near 𝜆=1.4 can provide the best lane tracking 

for a ramp input, while also indicating that increasing the order of the fractional integrator tends 

to increase the lateral acceleration of the tractor. 

 

 

Fig. 5.19. Lane position error comparison for different integrator order.  
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 Fig. 5.21, show the performance index relationship between the lane position error and the 

articulation angle degree, as indicated in the relationship graph the optimal value for the fractional 

order value that provides the good lane tracking and articulation stability is near 𝜆=1.4, and 

similarly to the relationship in Fig. 5.21. It is observed that increasing the fractional order value 

would decrease the stability margin of the articulation angle and improve the lane tracking. 

 

 

Fig. 5.20. Performance index relationship for lane position error with tractor lateral acceleration. 
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Fig. 5.21. Performance index relationship for lane position error with the articulation angle. 

  

 For the tractor-trailer system, providing a reduced lane tracking errors for a ramp input (i.e., 

lane change) and also increased stability margin in terms of the articulation angle and the lateral 

acceleration of tractor is critical for safety design. This is based on the situation for a highway 

evasive maneuver where the truck should complete rapid lane change departure and be in the center 

of the adjacent lane after the maneuver is completed. Thus, selecting a 𝜆=1.4 value, for the 

particular truck parameters considered in the research provides a solution for this requirement. For 

a different set of tractor-trailer parameters then the particular ramp following and acceleration 

responses will be different. However, all articulated vehicles have similar structural characteristics 

such that one would expect that the optimal value 𝜆 would still fall into a similar range. 
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5.2.3 FO controller approximation  

 The fractional order controller term (1 𝑠0.4⁄ ), is first approximated using the Oustaloup method 

presented earlier in Section 4.4. This approximation is done in order to implement the controller 

for a real-time embedded system for the tractor-trailer system. Choosing the order of the 

approximation that provides the best accuracy for the fractional controller is based on the 

frequency response analysis for different orders of the Oustaloup approximation shown in Fig. 

4.12. The order selected for the approximation is N=5, with the fractional order integral 𝛼 = -0.4, 

the lower approximation frequency 𝑤𝑏= 10−3 rad/sec, and the lower approximation frequency 

𝑤ℎ=102 rad/sec, 𝑤𝑢 = √
𝑤ℎ

𝑤𝑏
 = 316.23 and 𝐾 = 𝑤ℎ

𝛼= 0.16. The gain, zero and pole determined then 

to be 

      𝑤𝑘 = 𝑤𝑏 ∗ 𝑤𝑢

(𝛼−1+2∗𝑘)

𝑁 , 𝑤𝑘
′ = 𝑤𝑏 ∗ 𝑤𝑢

(−𝛼−1+2∗𝑘)

𝑁 .    (5.44) 

The continuous Oustaloup filter TF can be found from  

      �̂�(𝑠) = 𝑤ℎ
𝛼 (𝑠−𝜔−𝑞

′ )(𝑠−𝜔−𝑞+1
′ )…(s−𝜔𝑞

′ )

(𝑠−𝜔−𝑞)(𝑠−𝜔−𝑞+1)…(𝑠−𝜔𝑞)
.     (5.45) 

where 𝑘 = {−𝑞,−𝑞 + 1,… ,0, … , 𝑞 − 1,1}. 

 The filter would approximate the FO order 𝑠𝛼 ≈ �̂�(𝑠), and hence the TF approximation of 

the FO controller (1 𝑠0.4⁄ ), is computed as: 

�̂�(𝑠) = 
0.16𝑠5+8.83𝑠4+44.68𝑠3+22.4𝑠2+1.1𝑠+0.005

𝑠5+22.17𝑠4+44.68𝑠3+8.9𝑠2+0.18𝑠+0.0003
 ,   (5.46) 

where,  

      �̂�(𝑠) = 𝐾𝐺1(𝑠)𝐺2(𝑠)𝐺3(𝑠)𝐺4(𝑠)𝐺5(𝑠).    (5.47) 

       𝐺1(𝑠) =
𝑠+0.5

𝑠+0.199
 ,      (5.48) 

       𝐺2(𝑠) =
𝑠+5.01

𝑠+1.99
 ,      (5.49) 
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       𝐺3(𝑠) =
𝑠+50.12

𝑠+19.95
 ,      (5.50) 

        𝐺4(𝑠) =
𝑠+501.2

𝑠+199.5
 ,        (5.51) 

       𝐺5(𝑠) =
𝑠+5012

𝑠+1995
 .      (5.52) 

The Bode plot of the approximated FO controller is displayed in Fig. 5.22. 

 

Fig. 5.22. Bode plot of the approximated FO controller �̂�(𝑠). 

 

 The state space realization of the factional order controller can also be approximated to an 

integer order space representation. With order of approximation order N = 5, by applying the 

following algorithm [73,74] 
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𝐹𝑜𝑟 𝑛 = 1: 5
a(n) = z(n) − p(n)

b(n) = z(n) − p(n)

𝑐(𝑛) = 1
𝑑(𝑛) = 1 }

 
 

 
 

      (5.53)  

  where z and p are the zeros and poles of the system. The state space realization can be 

obtained from the following: 

     A =  

[
 
 
 
 
a(1) 0 0 0
b(2) a(2) 0 0
b(3) b(3) a(3) 0
b(4) b(4) b(4) a(4)
𝑏(5) 𝑏(5) 𝑏(5) 𝑏(5)

 0
 0
 0
 0
𝑎(5)]

 
 
 
 

,     (5.54) 

      𝐵 = 𝐾

[
 
 
 
 
𝑏(1)
𝑏(2)
𝑏(3)
𝑏(4)
𝑏(5)]

 
 
 
 

,                                                              (5.55) 

𝐶 = [1 1 1 1 1], 𝐷 =  [𝐾].                                         (5.56) 

 

  with 𝛼 = −0.4, and 𝐾 = 𝑤ℎ
𝛼= 0.16, the state space approximation can be obtained as 

     A =  

[
 
 
 
 
−0.002 0 0 0
0.03 −0.02 0 0
0.31 0.31 −0.2 0
3.1 3.02 3.02 −2
30.17 30.17 30.17 30.17

 0
 0
 0
 0
−20]

 
 
 
 

,                       (5.57) 

      𝐵 =

[
 
 
 
 
0.00048
0.0048
0.048
0.48
4.78 ]

 
 
 
 

,                                                            (5.58) 

𝐶 = [1 1 1 1 1], 𝐷 =  [0.16].                                     (5.59) 

 

The Bode plot for the approximated FO controller in in state space is shown in Fig. 5.23. 

where selecting N=5 provides a good approximation of the fractional order controller, while 

maintaining a low order of the controller approximation as opposed to selecting a higher order 
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approximation, which would make the system difficult to implement with an automotive digital 

device such as an FPGA or DSP. It was demonstrated previously that a low order such as, N=1, 

would provide more ripple as illustrated in the bode plot in Fig. 4. 12. 

 

Fig. 5.23. Bode plot of the approximated FO controller in state space. 

 

 With FO controller in the specified frequency range, the ripple amount in the phase response 

could as well be obtained [73]. Thus, the approximated FO controller could also be discretized in 

order to be applied on embedded devices. The state space approximation can discretized 

since�̇�(𝑡) = lim
𝑇→0

𝑥(𝑡+𝑇)−𝑥(𝑡)

𝑇
. 

 



 

111 

 

 Hence the continuous time can be approximated as [96]: 

      𝑥(𝑡 + 𝑇) = 𝑥(𝑡) + 𝐴𝑥(𝑡)𝑇 + 𝐵𝑢(𝑡)𝑇,     (5.60) 

then,     𝑥[𝐾 + 1] = 𝐴𝑑𝑥[𝑘] + 𝐵𝑑𝑢[𝑘],      (5.61) 

      y[k]=𝐶𝑑𝑥[𝑘] + 𝐷𝑑𝑢[𝑘].       (5.62) 

with 

       𝐴𝑑 = 𝑒
𝐴𝑇 ,  𝐵𝑑 = 𝐴

−1(𝐴𝑑 − 𝐼)𝐵, 𝐶𝑑 = 𝐶, 𝐷𝑑 = 𝐷.      (5.63) 

The continuous system can be discretized with T=0.01 as follows: 

       𝐴𝑑 = 

[
 
 
 
 
1 0 0 0

0.0003 0.1 0 0
0.003 0.003 0.1 0
0.03 0.03 0.03 0.98
0.28 0.28 0.28    0.27   

 

  0
  0
  0
  0
0.82]

 
 
 
 

,              (5.64) 

                            𝐵𝑑 =

[
 
 
 
 
0
0

0.0005
0.0047
0.04 ]

 
 
 
 

,                                                                       (5.65)       

 𝐶𝑑 = [1 1 1 1 1], 𝐷𝑑 = [0.16].                (5.66)           

    

 The approximated FO controller 𝑠𝛼 ≈ �̂�(𝑠), in equation (5.46), discrete-time equivalent can 

also be obtained for embedded devices implementation. With the sampling interval 𝑇𝑠 provided, 

then the high frequency 𝑤ℎ can be set as 𝑤ℎ =
2

𝑇𝑠 
. By considering the zero-pole equivalent match 

technique for discretizing the continuous time TF , as the follows is used for mapping the poles a 

and zeros [73, 103]: 

       𝑧 = 𝑒𝑠𝑇𝑠 ,       (5.67) 

where 𝑠 referes to the poles and zeros, thus, for each 𝑘 in equation (5.44) 

      𝜃𝑘
′ = 𝑒−𝑇𝑠𝜔𝑘

′
, 𝜃𝑘 = 𝑒

−𝑇𝑠𝜔𝑘,                 (5.68) 
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 The approximated FO controller in equation (5.46), can be discretized and thus expressed as: 

𝐻(𝑧) = 𝑘𝑧
(𝑧−𝜃−𝑞

′ )(𝑧−𝜃−𝑞+1
′ )…(𝑧−𝜃𝑞

′ )

(𝑧−𝜃−𝑞)(𝑧−𝜃−𝑞+1)(𝑧−𝜃𝑞)
,                (5.69) 

where      𝑘𝑧 =
𝑤ℎ
𝛼

|𝐻(𝑒𝑗𝜔𝑢𝑇𝑠)|
,                  (5.70) 

 The discrete-time realization of the fractional order controller with a sampling time equal to 

0.01 seconds, can be computed as: 

H(z) = 
0.19𝑧5−0.84𝑧4+1.53𝑧3−1.34𝑧2+0.62𝑧+0.11

𝑧5−4.8𝑧4+9.2𝑧3−8.8𝑧2+4.2𝑧−0.8
.     (5.71) 

For digital realization the controller technique could be based on the canonical form of an 

IIR filter as presented earlier in Section 4.5.3. 

5.2.4 Controller design for tractor-trailer dynamics 

 The fractional order linear controller was designed for the tractor-trailer small angle 

approximation, and then implemented on the truck nonlinear dynamics. The fractional order 

integrator order was selected based on the optimal value for tracking a ramp input for the tractor-

trailer for a lane departure. Thus a performance index was evaluated to acquire the optimal FO 

value, where the lane position error with the truck lateral acceleration and the articulation angle 

were considered for the selection optimal design presented in Section 5.2.2.  

 The value of the factional order equal to 1.4 was selected, since it was found that this value 

can provide the optimal tracking performance for a lane change and at the same time the stability 

margin for the truck is increased in terms of the lateral acceleration and the articulation angle. Then 

fractional order controller is approximated as presented in the previous section. 
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 The tractor-trailer open-loop system with a double integrator is given as follows: 

  �̂� = [
𝐴 0
−𝐶 0

] =

[
 
 
 
 
 
 
 
−6.95 −29.98 −3.12 10.04 0 0 0 0
5.42 −25.77 1.54 −4.96 0 0 0 0
1.29 2.73 −1.61 5.16 0 0 0 0
0 1 −1 0 0 0 0 0
0 1 0 0 0 0 0 0
1 0 0 0 31.3 0 0 0
0 0 0 0 0 1 0 0
0 0 0 0 0 0 1 0]

 
 
 
 
 
 
 

,    (5.71) 

 

  `     �̂� = [
𝐵
0
] =

[
 
 
 
 
 
 
 
110.39
118.12
1.042
0
0
0
0
0 ]

 
 
 
 
 
 
 

,       (5.72) 

The control signal 

       𝑢 = 𝑟 − 𝐾𝑝𝑥 + 𝑘6𝑒 +
𝐾7

𝑠1
𝑒 +

𝐾8

𝑠𝜆
𝑒.    (5.73) 

where 

       𝐾𝑝 = [𝑘1 𝑘2 𝑘3 𝑘4 𝑘5 ].     (5.74) 

The system should be examined for controllability as the rank of matrix M is full rank and is 

equal to 8. 

𝑀 = [
𝐴 𝐵
−𝐶 0

] .      (5.75) 

The gain 𝐾𝑝 can be obtained by a linear quadric minimization method LQR, which minimizes the 

objective performance index in (5.31) is the solution to the algebraic Riccati equation 

       𝑃�̂� + �̂�𝑇𝑃 − 𝑃𝐵𝑄𝑟
−1�̂�𝑇𝑃 + 𝑄𝑥 = 0.    (5.76) 

This can be solved for 𝑃, and thus the control feedback matrix �̂� is obtained by 

�̂� =  Qr
−1 �̂�′𝑃.      (5.77) 
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The weighting matrices Qx and Qr in (5.76) are selected in order to ensure the system 

behaves with high stability margin 

Qx = 

[
 
 
 
 
 
 
 
1 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0
0 0 1 0 0 0 0 0
0 0 0 1 0 0 0 0
0 0 0 0 1 0 0 0
0 0 0 0 0 1 0 0
0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 1]

 
 
 
 
 
 
 

, Qr = 1.    (5.78) 

The weights are designed by considering the overall performance of the tractor-trailer 

system response through its operation for a high speed evasive manoeuvring. Eigen-values 

assessment is done for three different speed levels 60, 70 and 80 mph and the comparison is 

provided in Table 8-9 before applying the LQR controller and after the controller is implemented. 

To implement the LQR controller for the tractor-trailer system, the system states should be 

available for the control algorithm with measurement devices. Thus, these devices (sensor) are 

commercially available sensor on board for tractor-trailer in platooning operation, which include 

an image (optical) sensor, GPS, gyroscope and accelerometer sensors. These sensors can provide 

the measurements for the lateral position, yaw rates for the tractor and trailer.  

In circumstances these sensor can’t provide these measurements, other methods can be 

applied to obtain them such as, having an observer/Kalman filter. In the research, it is assumed 

that all the states area available to the control algorithm with suitable accuracy without the need of 

a state estimator (observer) to be included in the control design.  

After approximating the FO integrator, the LQR method is used to determine the feedback 

gains for the system, thus, using a convex incremental linear interpolation strategy with respect to 

the fractional order integrator value 𝜆. The convex method that was used can be expressed as: 

𝐶(𝑛) = (1 −  𝜆)𝐶0 + 𝜆𝐶1.      (5.79) 
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where 𝜆, is the fractional order term. Further, by applying the LQR controller between the 

controller type 1 and type 2 systems, the feedback gains for the system using the convex 

incremental equation in (5.79) are determined by the following equation: 

𝐾𝐹𝑂 = [(1 − |𝜆|)(𝐾𝐿𝑄𝑅1) + (|𝜆|)(𝐾𝐿𝑄𝑅2)].  (5.80) 

 

Where 𝜆 is the fractional order integrator,  𝐾𝐿𝑄𝑅1 corresponds to the LQR for the 7th order 

system, and 𝐾𝐿𝑄𝑅1 corresponds to the LQR for the 8th order system. 𝐾𝐹𝑂 is the resulting convex-

weighted interpolated feedback gain using (5.79). 

The control law for the active front steering then becomes: 

𝜏𝑎𝑓𝑠 = 𝑘1𝑣1 + 𝑘2𝑟1 + 𝑘3𝑟2 + 𝑘4 𝜓 + 𝑘5𝑥5 − 𝑘6𝑥6 −
𝑘7

𝑠
𝑥7 −

𝑘8

𝑠𝜆
𝑥8.   (5.81) 

 

The feedback gains [𝑘1, 𝑘2, 𝑘3, 𝑘4, 𝑘5, 𝑘6, 𝑘7, 𝑘8] are computed to be: 

𝑘1 = 0.26, 𝑘2 = 1.02, 𝑘3 = −0.18, 𝑘4 = −0.15, 𝑘5 = 12.42, 𝑘6 = 1.48, 𝑘7 = 1.53, 𝑘8 = 0.4. 
 

The feedback gain matrix 𝑘p would change the pole location of the system and 𝑘6, 𝑘7 and 

𝑘8 provides the lane position tracking by eliminating the steady state error of the tractor-trailer 

system. With the feedback gains determined, the closed loop system with the higher order integral 

action can be represented as: 

[
�̇�
�̇�𝑖
] = [

𝐴 − 𝐵𝐾𝑝 𝐵𝐾𝑖
−𝐶 0

] [
𝑥
𝑥𝑖
]+[
0
1
] r,     (5.82) 

      𝑦 = [𝐶 0] [
𝑥
𝑥𝑖
] + [0]𝑟.      (5.83)  

 

 

 

5.3 Linear Model Simulation 

Simulation results are presented for the tractor-trailer linear model using Matlab/Simulink. 

An evasive highway maneuvering scenario for tractor-trailer platoons is considered as shown in 

Fig 3.11. To achieve lateral stability the effectiveness of the proposed new FOSFB controller 
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scheme is evaluated. Hence, it is assumed that the tractor-trailer is travelling in a straight path 

before the evasive maneuver happens. In evaluating the dynamical performance of the system, the 

maximum settling time and overshoot are critical evaluation measurements. 

The equations considered for the high speed emergency evasive maneuver while the 

tractor-trailer is travelling at a constant speed of 70 mph are the following 

 𝑚1𝑎𝑦1 = 𝐹𝑦1𝑐𝑜𝑠𝛿 + 𝐹𝑥1𝑠𝑖𝑛𝛿 + 𝐹𝑦2 − 𝐹𝑦,                             (5.84)   

𝐼𝑧1𝑟1̇ = 𝑎1𝐹𝑦1𝑐𝑜𝑠𝛿 + 𝑎1𝐹𝑥1𝑠𝑖𝑛𝛿 − 𝑏1𝐹𝑦2 + 𝑑1𝐹𝑦,                  (5.85)    

𝑚2𝑎𝑦2 = 𝐹𝑦3 + 𝐹𝑦𝑐𝑜𝑠𝜓 + 𝐹𝑥𝑠𝑖𝑛𝜓,                                          (5.86)          

𝐼𝑧2𝑟2̇ = −𝑏2. 𝐹𝑦3 + 𝑒2(𝐹𝑦. 𝑐𝑜𝑠𝜓 + 𝐹𝑥 . 𝑠𝑖𝑛𝜓).                          (5.87)   

where the articulation joint angle is the change rate of the yaw angle for the tractor and trailer 

respectively. Table 10 shows the parameters of the tractor-trailer system. 

The proposed FOSFB controller was designed first for the linear model of the tractor-

trailer, then the linear controller is implemented to the nonlinear system model for verification and 

validation of the proposed control scheme. The controller was designed with the truck travelling 

at a constant speed of 70 mph in a highway in order to avoid a collision. The steering angle torque 

signal ( 𝜏𝑎𝑓𝑠 ) is controlled to provide the lateral stability. The Simulink model used to implement 

the proposed control for the tractor-trailer linear model is given in   . 

The fractional order state feedback controller block diagram shown in Fig. 5.27. The 

fractional order controller gains were selected, as explained in Section 5.2.  To summarize, the 

gains are computed to be: 

𝑘1 = 0.26, 𝑘2 = 1.02, 𝑘3 = −0.18, 𝑘4 = −0.15, 𝑘5 = 12.42, 𝑘6 = 1.48, 𝑘7 = 1.53, 𝑘8 = 0.4. 
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Fig. 5.24. Simulink for the linear tractor-trailer with FO state feedback. 

 

Fig. 5.25 displays the ramp-step desired lane change reference input. Where the goal of the 

controller is provide accurate lane position tracking for a ramp input (lane change maneuver) in 

order for the tractor-tractor to complete the evasive maneuver safely. Adding in integrator term to 

the system shows that the tracking is improved, and at the same time does not degrade the stability 

aspects for the tractor-trailer in terms of the articulation and the tractor velocity.  
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Fig. 5.25. Desired lane change reference input. 

 

Fig. 5.26 shows the driver predefined generated steering command, which emulates a 

human driver steering behavior. 

 

Fig. 5.26. Driver steering input command. 
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Table 10 Tractor-trailer parameters. 

𝑚1 5450      kg 𝐶1 630000     N/rad 𝑏1 2.0676  m 

𝑚2 27800    kg 𝐶2 1.84𝑥108  N/rad 𝑏2 2.3886  m  

𝐼𝑧1 9500      kg-𝑚2 𝐶3 600000     N/rad 𝑑1 0.8611  m   

𝐼𝑧2 200000  kg-𝑚2 𝐵𝜎 31.85        N-m-s/rad 𝑒2 7.3396  m 

𝐽𝑠 0.32        kg-𝑚2 𝑎1 1.7424      m 휀 0.92       m/s 

 

 

Fig. 5.27. FOPI state-feedback controller typology applied to the linear system. 

 

5.3.1 Linear model response for evasive single lane maneuver scenario  

This section provides the simulation results for a single lane change maneuver situation in 

a highway with 3.5 m lane change. To evaluate the steering response with the FO state feedback 

controller and a human driver. Fig. 5.28 displays the predefined truck driver steering angle, where 

the steering input is designed in order to emulate a human driver without any compensation in the 
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system in a manner to the study in [71]. In that study, 91 lane changes were conducted for truck 

drivers, and they averaged 7.6 sec. to finish the lane departure in the highway. Fig. 5.29 presents 

the steering angle input with the applied FOSFB controller scheme, noting that the steering 

response becomes faster with the fractional controller as compared to the human driver. 

 

 

Fig. 5.28. Steering angle input for the driver. 
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Fig. 5.29. Steering angle input with FOPI state feedback. 

 

 Fig. 5.30 displays the tractor-trailer response for a single lane change in an evasive 

maneuver situation to avoid an obstacle, while travelling at a highway speed of 70 mph. A 

comparison is shown between the professional truck driver responses, the FOSFB response and 

the desired change lane response. It can be observed that with the proposed FO controller the lane 

tracking is significantly improved and that the response time is also improved by 20% compared 

to skilled truck driver. 

 With a the fractional order integrator 𝜆 =1.4, it is shown that it provides an optimal 

response for the tractor-trailer performance to complete the lane change safely and being in the 

center of the lane once the lane maneuver is completed in a prompt manner compared to a 

professional human driver. 
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Fig. 5.30.  Lane position with truck travelling at 70 mph speed compared to the driver. 

 

5.3.2 Linear model response for evasive double lane maneuver scenario  

The FOSFB controller is compared for the professional truck driver in the case that requires 

a double lane change at a highway speed of 70 mph. Fig. 5.31 shows the predefined steering angle 

input for the truck driver, which is designed to emulate a human driver steering behavior. Fig. 5.32 

demonstrations the steering angle input with the FOSFB controller, as can be seen the response is 

faster than the human truck driver. The amplitude for the steering input is increased with FOSFB, 

which is expected for achieving the fast time response for the tractor-trailer to change lanes during 

an emergency situation. 
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Fig. 5.31. Steering angle input for the driver. 

 

 

Fig. 5.32. Steering angle input with FOPI state feedback. 
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Fig. 5.33 presents the tractor-trailer response for a double lane change in an evasive 

maneuver situation to avoid an obstacle, while travelling at a highway speed of 70 mph. A 

comparison is shown between the professional truck driver and the response with the FOSFB. 

With the proposed FO controller the lane position tracking is improved and the response time is 

also enhanced compared to truck driver for the 7 meter highway lane change situation. 

 

Fig. 5.33.  Lane position with truck travelling at 70 mph speed compared to the driver. 

 

5.3.3 Linear model response for an evasive maneuver scenario with different speeds 

The controller is also evaluated for the case when the truck is travelling at different 

highways speeds. Fig. 5.34, displays the tractor-trailer travelling at three different highway speeds 

60 mph, 70 mph and 80 mph.  
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With the FOSFB controller the response time is marginally improved at higher speeds. At 

lower speeds the time response for the single lane change is slightly degraded. Fig. 5.35 shows the 

steering angle input for these three different highway speeds with the FOSFB as the steering angle 

is a little increase for the low speed. Figs. 5.36-38 displays the tractor lateral position, articulation 

angle and the trailer yaw rate for the different highway speeds, as can be observed from the 

articulation angle response, the tractor-trailer stability would marginally start to improve with the 

lower speed as opposed to the higher speed. 

 

 

Fig. 5.34.  Lane position response for different highway speeds. 
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Fig. 5.35. Steering angle input with FOPI state feedback with different highway speeds. 

 

 

Fig. 5.36. Tractor lateral position with FOPI state feedback. 
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Fig. 5.37. Articulation angle for different speeds. 

 

 

Fig. 5.38. Trailer yaw rate for different speeds. 
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5.3.4 Linear model response for the trailer partial load and over-load by 50%  

To evaluate the controller with different loading conditions while attempting a single lane 

evasive maneuver scenario, the trailer cargo load is decreased by 50% (𝑚2 = 13900 kg) and also 

an over-load case is examined when the trailer load is increased by 50% (𝑚2 = 41700 kg). Fig. 

5.39 and Fig. 5.40 shows lane position response the articulation angle for the varying load 

conditions. As can be seen, when the trailer is partially loaded, the tractor-trailer performance 

would marginally decrease in terms of the articulation angle stability and the lane position tracking. 

 

Fig. 5.39.  Lane position for a single lane change with different loading conditions. 
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Fig. 5.40.  Articulation angle for a single lane change with different loading conditions. 

 

5.3.5 Linear model response for tire stiffness variation  

The FOSFB is evaluated under tire stiffness variation for the tractor-trailer system.  Fig. 

5.41 shows the lane position response with varying the truck tire cornering stiffness parameter  𝑐1, 

by a 50% increase and decrease, Fig. 5.41 demonstrates the controller effectiveness to the tire 

stiffness variation, where the lane position response is quite the same for the three cases. 

As Fig. 5.42 displays the articulation angle response with the tire stiffness variation of 50%. 

As the results also confirms the controller robustness to the tire stiffness parameter variation as 

there nearly no change in the articulation angle response for the three different cases. 
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Fig. 5.41. Lane position for a single lane change with varying 𝑐1. 
 

 

Fig. 5.42. Articulation angel of tractor-trailer with varying 𝑐1. 
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 This Chapter presented the tractor-trailer linear model response with the applied fractional 

order state feedback controller. It demonstrated that the controller improved performance for 

tracking the lane position while attempting an evasive maneuver scenario and providing a fast lane 

change time response as compared a professional truck driver. The controller was also evaluated 

for different cases, such as, varying the speed, load and tire stiffness for the tractor-trailer, while 

attempting the evasive lane change.  

In Chapter 6, for verification of the designed fractional order controller, the tractor-trailer 

nonlinear system is examined, with the proposed FO controller. 
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Chapter 6: Nonlinear Model Simulation Results  

 

 

 

6.1 Nonlinear Model Simulation  

 In this Chapter, to verify the linear controller for the tractor-trailer system, simulation 

results using Matlab/Simulink are provided. As mentioned previously the proposed fractional 

order state feedback controller was designed first with the small angle approximation and applied 

to the linear tractor-trailer system and then implemented to the highly nonlinear tractor-trailer 

model. Thus, the pre-defined steering inputs for the professional truck drivers are measured in an 

open-loop means without any correction by the driver, and thus agreeing to the study presented in 

[71], which examined real road testing for a trained truck driver attempting a lane change 

departure. 

Furthermore, the professional truck driver time response to change lanes for an emergency 

evasive maneuver scenario is compared to the proposed fractional order control strategy. The 

controller is also evaluated for the nonlinear dynamics for different circumstances, such as, load, 

speed, tire stiffness variation to the tractor-trailer parameters, also including a case for wind 

disturbance rejection by applying a wind side force acting on the trailer. 

The equations considered for the high speed emergency evasive maneuver while tractor-

trailer is travelling at a constant speed of 70 mph are the following: 

𝑣1̇ =  − 𝑢1𝑟1 +  
1

𝑚1
(𝐹𝑦1 𝑐𝑜𝑠𝛿 + 𝐹𝑥1 𝑠𝑖𝑛𝛿 + 𝐹𝑦2 − 𝐹𝑦),          (6.1) 

𝑟1̇ =
1

𝐼𝑧1
(𝑎1𝐹𝑦1 𝑐𝑜𝑠𝛿 + 𝑎1𝐹𝑥1 𝑠𝑖𝑛𝛿 − 𝑏1𝐹𝑦2 + 𝑑1𝐹𝑦),              (6.2) 

𝑣2̇ =  − 𝑢2𝑟2 +  
1

𝑚2
(𝐹𝑦3 + 𝐹𝑦𝑐𝑜𝑠𝜓 + 𝐹𝑥𝑠𝑖𝑛𝜓),                      (6.3) 

�̇�2 =
1

𝐼𝑧2
(−𝑏2𝐹𝑦3 + 𝑒2(𝐹𝑦 𝑐𝑜𝑠𝜓 + 𝐹𝑥  𝑠𝑖𝑛𝜓)).                           (6.4) 
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Where the articulation angle is the change rate of the yaw angle for the tractor and trailer 

respectively. The steering equation of the system can expressed as:  

𝐽𝑠�̈�=−𝐵𝑠�̇� − 𝐾𝑠𝛼1+𝜏ℎ𝑤+𝜏𝑎𝑓𝑠       (6.5) 

Where, 

𝛼1= 𝛿 −
𝑣1+𝑎1𝑟1

𝑢1
        (6.6) 

With the small angle approximation to the tractor-trailer nonlinear equations, the system 

was linearized and the FOPI state-feedback controller was developed, thus, then the linear 

controller was applied to the highly non-linear system, as demonstrated in Fig. 6.1, where the 

proposed controller typology is illustrated in the block diagram. The description of the controller 

design and gain selection including the method to choose the fractional order integral are provided 

in the previous Chapter.   

 

Fig. 6.1. Proposed control scheme for nonlinear tractor-trailer model. 
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The nonlinear model system equations were implemented in Simulink in order to confirm 

and validated the FO state feedback controller, the tractor-trailer nonlinear model with FOSFB (C. 

code) version can be found in the Appendix. 

 

6.1.1 Tractor-trailer with FOSFB control for different highway speeds 

 

Fig. 6.2, displays the steering angle of truck with the applied FO state feedback control for 

different speed levels of 60, 70, and 80 mph. Fig. 6.3 shows the lane position response for a single 

lane change for these three different speeds, thus as the controller was designed with a constant 

highway speed of 70 mph.  For a lower speed of 60 mph the response would slightly degrade, as 

the response time would slightly improve for a higher speed of 80 mph. Figs. 6.4-6.6 displays the 

tractor lateral position, lateral velocity and yaw rate for these three different speeds for the lane 

change of 3.5 meters. 
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Fig. 6.2. Steering angle with different speeds with FO control. 

 
Fig. 6.3. Lane position for different highways speeds for a single lane change. 
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Fig. 6.4.  Truck lateral position with different velocities for a single lane change. 

 

Fig. 6.5.  Tractor lateral velocity with different speeds for a single lane change. 
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Fig. 6.6.  Tractor yaw rate with different velocities for a single lane change. 

 

The trailer yaw for different highways is presented in Fig. 6.7 as the yaw would increase 

as the speed goes up and would decrease as the speed goes down. Fig. 6.8 shows the articulation 

angle for the different speeds, hence as the speed goes down for example at 60 mph the articulation 

angle stability would tend to increase as opposite to when the speed is increased for example at 80 

mph, where the stability would decrease for the articulation angle for single highway lane change. 
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Fig. 6.7.  Trailer yaw rate with different velocities for a single lane change. 
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Fig. 6.8. Articulation angle for different velocities for a single lane change. 

 

6.1.2 Evasive maneuver scenario comparison between the driver and FOSFB control for a single 

lane change 

 In Fig. 6.9, the steering angle input for the professional truck driver, which is predefined 

and obtained without any compensation (open-loop) in order emulate a human driver steering 

input. While Fig. 6.10, shows the steering angle with the applied FOSFB controller, thus it can 

been seen that the response time with the FOSFB controller is faster as compared to the skilled 

driver response. 
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Fig. 6.9. Steering angle input for the driver for a single lane change. 

  

 

Fig. 6.10. Steering angle with FO state feedback for a single lane change. 
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With the truck travelling at a highway speed of 70 mph the response time for single lane 

change is compared to two different professional drivers and the proposed fractional order 

controller with the desired lane change position as displayed in Fig. 6.11, thus the results confirm 

that with the FOSFB controller the lane position is improved with faster time response and the 

tracking for the desired lane is also improved as compared to the professional truck driver.  

Furthermore, Fig. 6.11, shows that the professional truck driver takes about 7.5 sec. in order 

to finish the lane departure, while with the proposed fractional order controller it would take 6 sec. 

to complete the lane departure. Hence this result confirm one of the objectives of this research to 

outperform a professional truck driver for an evasive highway maneuver scenario to avoid an 

obstacle with a 20% time response improvement to change lanes safely. Thus the time response 

improvement is critical for avoiding a collision quickly and provides improved safety operation 

for the tractor-trailer in the highways. 

 

 
Fig. 6.11.  Lane position comparison between the driver and FOSFB for a single lane change. 
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6.1.3 Evasive maneuver scenario comparison between the driver and FOSFB for a double lane 

change 

     The tractor-trailer system is simulated for a double lane change case, where similarly to single 

lane change the professional driver steering input is pre-defined and is designed based on the 

uncompensated system in order to emulate a human driver, Figs. 12-13 demonstrations the steering 

input for the driver and with FOSFB respectively.  

 

Fig. 6.12. Steering angle input for the driver for a double lane change. 
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Fig. 6.13. Steering angle with FO state feedback. 

 

 Fig. 6.14 shows the double lane position response for the driver and with the FOSFB, thus 

as can been the tracking for the desired lane position and the time response is improved with the 

proposed controller to complete the double lane change as compared to driver one and two in Fig. 

6.14. 
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Fig. 6.14.  Lane position comparison between the driver and FOSFB for a double lane change. 

 

 

6.1.4 Evasive maneuver scenario with the trailer partially loaded and over-loaded 

      The controller is also examined under different loading conditions. This section shows the 

tractor-trailer response when the trailer is properly loaded, partially loaded and overloaded by a 

variation of 50%. Fig. 6.15, displays the steering input for these different loading condition. Fig. 

6.16 displays the lane position for different loading conditions on the trailer, thus as can been with 

the FOSFB controller the truck can perform the single lane change safely. Figs. 6.17-6.18 below, 

presented the trailer yaw and the articulation angle for different loading condition for a single lane 

change, as can observed the trailer yaw rate would tend decrease when the trailer is partially loaded 

and increased at the time the trailer is overloaded properly load, also the articulation angle 

satiability would tend to decrease when the trailer is overload and increase at the time the trailer is 

partially loaded.  
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Fig. 6.15. Steering angle for different loading condition of the trailer. 

 

 

Fig. 6.16. Lane position of the tractor with different loading condition of the trailer. 
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Fig. 6.17. Trailer yaw rate for different loading conditions. 

 

Fig. 6.18. Articulation angle for different loading conditions. 
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6.1.5 FOSFB control with tire stiffness variation 

To show the robustness of the controller, the front tire cornering stiffness 𝑐1 is varied for 

the truck by an increase and decrease of 50% from the initial value. Fig. 6.19, presents two different 

cases of the lateral position of the truck while increasing and decreasing the tire stiffness. The 

results show very similar response to converge at 6 seconds, which confirm the robustness against 

tire stiffness variation. Fig. 6.20, shows the articulation response for varying the tire stiffness, 

which also demonstrated the controller robustness. 

 

 

Fig. 6.19. Lateral position of tractor-trailer with varying 𝑐1. 
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Fig. 6.20. Articulation angel of tractor-trailer with varying 𝑐1. 
 

 

6.1.6 Wind disturbance rejection (in the same direction) with FOSFB   

 

While effects of the lateral wind disturbances have been also examined under different 

conditions. As the effects of a side-wind guest acting on the same direction of the trailer while 

travelling at a speed of 70 mph is examined, thus by adding a positive step disturbance input to 

equation (6.3). Fig. 6.21 and Fig. 6.22 displays the steering input and the lane position response 

for the tractor-trailer, as can be seen the truck would have a similar response for completing the 

lane change successfully with wind disturbance (in the same direction of the trailer) and without 

the wind-side disturbance.  
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Fig. 6.21. Steering angle with/without wind disturbance at 70 mph. 

 

 

 

Fig. 6.22. Lane position with/without wind disturbance for a single lane change. 
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The yaw rates for both tractor and trailer are displayed in Fig. 6.23 and Fig. 6.24, as the 

simulation results demonstrate the effect of the FOPI state feedback for minimizing the effect of 

wind guest acting on the trailer, as the trailer yaw rate is slightly increased with the wind acting on 

the same direction while attempting the single lane change. 

The tractor and trailer lateral velocity with wind side disturbance and without the wind 

disturbance are presented in Fig. 6.25 and Fig. 6.26, as the simulation results show nearly similar 

response for the lateral velocities, which, conforms the controller performance under side-wind 

disturbance acting on the same direction of the trailer, while performing a lane departure at a 

highway speed. 

 

 
Fig. 6.23. Yaw rate of tractor with/without wind disturbance for a single lane change. 
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Fig. 6.24. Yaw rate of trailer with/without wind disturbance for a single lane change. 

 

 

 
Fig. 6.25. Tractor lateral velocity with/without wind disturbance for a single lane change. 
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Fig. 6.26. Lateral velocity of the trailer with/without wind disturbance for a single lane change. 

 

 

6.1.7 Wind disturbance rejection (in the opposite direction) with FOSFB control 

 

 To further examine the case when a side-wind disturbance is occurring in the opposite 

direction of the trailer while attempting the evasive maneuver scenario for a single lane change, 

consequently by including a negative step input added to equation (6.3) for the trailer. Fig. 6.27 

and Fig. 6.28 shows the comparison on the steering angle and the lane position response for the 

tractor-trailer with the opposite side-wind disturbance and without the wind disturbance. Fig. 6.29- 

6.30 displays the tractor and trailer yaw rates, hence as the yaw rate of the trailer is marginally 

increased when there is the wind disturbance acting in the opposing direction of the trailer. 
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Fig. 6.27. Steering angle with/without wind disturbance in the opposite direction. 

 

 
Fig. 6.28. Lane position with/without wind disturbance in the opposite direction. 
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Fig. 6.29. Tractor yaw rate with/without wind disturbance in the opposite direction. 

 

 

 
Fig. 6.30. Trailer yaw rate with/without wind disturbance in the opposite direction. 
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 The tractor and trailer lateral velocities are displayed in Fig. 6.31 and Fig. 6.32, as the 

results shows that the tractor and trailer lateral velocity would marginally increase with the side-

wind force acting on the opposite direction of the trailer, while performing the highway single lane 

change. Hence, these results also confirm the FOSFB performance under side-wind disturbances 

acting on the trailer opposite direction, as the controller demonstrated the tractor-trailer can 

perform safety and reject side wind disturbance while travelling at a highway speed. 

 

 
Fig. 6.31. Tractor lateral velocity with/without wind disturbance in the opposite direction. 
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Fig. 6.32. Trailer lateral velocity with/without wind disturbance in the opposite direction. 

 

 

To conclude this Chapter, where the linear FO controller was applied to the tractor-trailer 

nonlinear dynamics, which demonstrate the effective of applying the FOSFB controller for the 

tractor-trailer lateral stability, thus with this new controller design the objective of this research is 

met by providing an improvement of 20% time response increase over a professional truck driver 

to changes lanes for an emergency situation, while another objective is met by demonstrating the 

robustness of the controller for tire stiffness and wind disturbance rejection. 

With the fractional order integral control, which included the additional tuning parameter 

𝜆 that allowed to meet the system requirements and improved the stability margin and response 

time of the tractor-trailer system. The implanted fractional order controller design would be a new 

contribution to this field as it has not been examined for this application in any research as of 

today, as only limited research existed for applying this controller scheme for the controlling the 
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lateral dynamics of passenger vehicle, while currently no research exists for implanting this 

controller for tractor-trailer platoons. Hence, in study it has been demonstrated that selecting an 

optimal fractional order integral value would provide an improved lane position tracking and time 

response for the tractor-trailer system for an emergency lane change situation and at the same time 

not degrading other aspects on the system i.e., the lateral acceleration and the articulation angle of 

the system. 
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Chapter 7: Conclusion and Future Work 

 

7.1 Conclusion 

 This section provide a short summary of the work and the findings of this research. A 

model for a passenger vehicle was presented based on the “bicycle model”. Then this model was 

extended to model a larger system such as a 3-axle tractor-trailer system, where, the linear and 

non-linear model for the tractor-trailer system has been analyzed in this dissertation. A highway 

evasive maneuver scenario was presented, where a new controller design based on fractional 

calculus: a fractional order state feedback controller was implemented to improve the lateral 

stability of tractor-trailers in platooning for an emergency lane change.  

The concept of active front steering was presented, which can deliver an additional 

independent steer angle element to the input of the driver that continuously modify the varying 

steer relation, as this ratio is increased for slow speeds and is decreased for high speeds. The tractor 

trailer system was controlled through the AFS technique, where the controller design was based 

on the linear tractor-trailer system, and then the controller was implemented to the highly nonlinear 

model. 

Tractor-trailer platooning technology and the benefits of this operation for heavy 

commercial articulated vehicles was demonstrated, as this technology is more likely to be fully 

available for commercial heavy vehicles first on the market due to the prime advantages it can 

provide for the trucking industry and public safety as opposed to passenger vehicles. Hence the 

major benefits of the platooning operation include, energy saving, decreased cost for shipping 

companies, improved safety measurements on the road, reduced traffic congestions and reduced 

workload on truck drivers. 
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The tractor-trailer system was analyzed with state feedback controller with only a 

proportional gain and adding an integrator in the system, as the benefits for adding the integrator 

term were discussed where the tracking would significantly be improved for tracking a ramp input 

as the order of the integrator would increase. 

The proposed FOPI state feedback controller design was based on the tractor-trailer 

travelling at a speed of 70 mph, since it is the average highway speed in U.S. highways, where the 

LQR method was used to obtained the gain values for the state feedback with a higher order 

fractional integral action, and the a method for choosing the fractional order integrator was 

presented. 

The selection of the optimal fractional order integrator term was based on minimizing the 

performance index relationship in terms of the tractor-trailer lane position error with the tractor 

lateral acceleration and the articulation angle with the lane position error. As in was determined 

that the fractional order integral value equal to 1.4 is the optimal integral value that provides the 

enhanced lane position tracking for a ramp input and at the same time the stability margin for the 

tractor-trailer would increase in terms of the articulation angle. Hence for the tractor-trailer system 

it is critical to have a high stability margin for the lateral evasive maneuver situation in order to 

maintain the truck regulated during the lane change. 

The applied fractional order PI state feedback control scheme through AFS was evaluated 

with several conditions for an evasive highway lane departure to avoid an obstacle, with variation 

in the velocity, loading conditions on the trailer, tire cornering stiffens variation and wind 

disturbance acting on the same and opposite direction of the  trailer.  

The system with the FO controller improved the time response by 20% as compared to a 

professional truck driver, which is the main objective of this research. With the proposed controller 
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the tractor-trailer system would take 6 sec. to completed a lane change safely and being in the 

center of the lane after the maneuver is completed, while the skilled truck driver averages 7.6 sec. 

to fully complete the lane departure to avoid the an obstacle in a highway. 

Also, the benefits of applying the fractional order integrator as opposed to the classical 

order integrator were discussed, where with the additional integrator tuning parameter 𝜆, the 

robustness of the system lane position tracking can be increased, which cannot be obtained with 

an integer order integrator.  

 Several other conditions were also presented to confirm the controller robustness against 

system parameters variations. Simulation results confirmed the controller for maintaining stability 

for system disturbances such as, wind force disturbance occurring on the trailer and the variation 

of the tire cornering stiffness. 

 Applying a fractional order controller for this application is a new contribution to the field 

as this controller has not been implemented for this system as of today and it will open many new 

research investigations on fractional order controllers, especially for automated systems. Thus, the 

fractional integral control has demonstrated the effectiveness of using a small order power for the 

integrator in order to achieve a higher stability margin and a fast time response for an evasive 

maneuver circumstance.  

 

7.2 Future work 

For future work, the proposed control algorithm can implemented for a real time simulation 

for a hardware in the loop implantation as this type of fractional order controller for this application 

has not been implanted as of today in real time. Thus, modeling this type of system as a fractional 
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order model will be highly beneficial since the trailer-trailer model will be more accurately molded 

as compared to an integer-order modeling and thus providing more accurate results.  

Also another improvement in terms of energy consumption besides the platooning 

operation, is that the controller scheme can be applied for electric (hybrid) tractor-trailers platoons 

for increased green technologies and reduced emissions. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

162 

 

8 References 

 

[1]   E. Chao, J. Rosen, P. Hu and R. Schmitt, “Freight facts and figures 2017,” U.S. department        

        of transpiration and Bureau of transportation statistics, 2017. 

 

[2]   S. Tsugawa, S. Jeschke and S. Shladovers,”A review of Truck Platooning projects for    

       energy savings,” IEEE Trans. on intelligent vehicles, vol.1, March 2016. 

 

[3]   J.Felez, “Control Design of an articulated truck with autonomous driving in an electrified     

        highway, IEEE 2018. 

 

[4]   Q. Li, G. Shi, J. Wei and Y. Lin, "Yaw stability control of active front steering with      

       fractional order PID controller," International Conference on Information Engineering and  

       Computer Science, Wuhan, pp.1-4, 2009. 

 

[5]   NHTSA national center of statistics and analysis, “Traffic safety facts for large trucks,”     

        NHTSA report DOT HS 812 497, 2018. 

 

[6]   U.S Department of Transportation Federal Highway Administration, Nov. 

 2017 [online].  Available: https://safety.fhwa.dot.gov/roadway_dept/ 

 

[7]   X. Diao, Y. Jin, L. Ma, S. Ding and H. Jiang, "Composite active front steering controller 

       design for vehicle system," IEEE Access, vol. 5, pp. 6697-6706, 2017. 

[8]   X. Jin, G. Yin and N. Chen, “Gain-scheduled robust control for lateral stability of four-  

       wheel -independent-drive electric vehicles via linear parameter-varying technique,”    

       Mechatronics, vol.30 , pp.286-296, 2015. 

 

[9]   S. Vempaty and Y. He, “A review of car trailer lateral stability control approaches,” SAE  

        technical paper, 2017. 

 

[10] B. Bandyopadhyay and S. Spurgeon, Advances in sliding model: concept, theory and    

       implementation, Springer, 2013. 

 

[11] R. McCann and A. Le, "Electric motor based steering for jackknife avoidance in large    

        trucks," IEEE Vehicle Power and Propulsion Conference, Issue 7-9 September, 2005. 

 

[12] H. Zhang and J. Wang, “Vehicle lateral dynamics control through AFS/DYC and robust  

       gain-scheduling approach,” IEEE Trans. on vehicular technology, Vol. 65, No. 1, Jan., 

       2016. 

   

[13] A. Riofrio, S. Sanz, M. L. Boada and B. L. Boada, “A LQR-based controller with  

        estimation of road bank for improving vehicle lateral and rollover stability via active    

        suspension,” Sensors,vol.17:10, Oct. 2017. 

 

 

 

https://safety.fhwa.dot.gov/roadway_dept/


 

163 

 

[14] S. Oreh, R. Kazemi and S. Azadi, “A sliding-mode controller for directional control of  

        articulated heavy vehicles,” Proceedings of the institute of mechanical engineers part d:  

        journal of automobile engineering, Vol. 228, No. 3, pp.245-262, 2014 

 

[15] S. Fergani, O. Sename and L. Dugard, “ An LPV/𝐻∞integrated vehicle dynamic controller,”  

        IEEE Trans. on vehicular technology, Vol. 65, No. 4, April, 2016. 

 

[16] J. Wang, M. Tomizuka, “Dynamic analyses and robust steering controller design for  

        automated lane guidance of heavy-duty vehicles,” Asian journal of control, Vol. 2, No. 3,  

        pp.140-154, 2008. 

 

[17] C. Ching-Yao and T. Han-Shue, “Feasibility analysis of steering control as a driver- 

        assistance function in collision situations,” IEEE Trans. Intell. Transp. Syst., vol. 2, no. 1,  

        pp. 1–9, Mar. 2001. 

 

[18] M. Nagai, M. Onda, and T. Katagiri, “Simulation of emergency obstacle avoidance  

       situations using genetic algorithm,” JSAE Rev., vol. 18, pp. 158– 160, 1997. 

 

[19] S. Vempaty, E. Lee and Y. He, “Model-reference based adaptive control for enhancing  

        lateral stability of car-trailer systems,” ASME international mechanical engineering congress 

        and exposition, transportation systems, Vol. 12, 2016. 

 

[20] L. Li, H. Wang,  J. Lian, X. Ding and W. Cao “ A lateral control method of intelligent  

        vehicle based on fuzzy neural network,” SAGE journals, advances in mechanical  

        engineering, Vol. 7, No. 1, 2015. 

 

[21] SAE level of automation available on https://www.nhtsa.gov/technology-   

        innovation/automated-vehicles-safety 

 

[22] US. Department of transportation, National Highway traffic safety Administration, "Critical  

        Reasons for crashes investigated in the national moto vehicle crash causation survey,”  

        February 2015. 

 

[23] D. Blower and J. Woodroofe, “Survey of the status of truck safety: Brazil, China, Australia      

       and United States,” The University of Michigan, transportation research institute, report No.  

       UMTRI-2012-13, May, 2012. 

 

[24] Y. Chen and J. Wang, "Personalized Vehicle Path Following Based on Robust Gain- 

         scheduling Control in Lane-changing and Left-turning Maneuvers," 2018 Annual American 

         Control Conference (ACC), Milwaukee, WI, 2018, pp. 4784-4789. 

 

[25] G. Meyer and S.Beiker, Road vehicle automation 5, Springer pp.149-162, 2019. 

 

 

https://www.nhtsa.gov/technology-%20%20%20%20%20%20%20%20%20%20innovation/automated-vehicles-safety
https://www.nhtsa.gov/technology-%20%20%20%20%20%20%20%20%20%20innovation/automated-vehicles-safety


 

164 

 

[26] S.Tsugawa,” An overview on an automated truck platoon within the energy ITS      

       project,” 7th IFAC symposium on advances in automotive control, vol. 46, no. 21, pp.41-46,  

       2013.  

 

[27] C. Chen and M. Tomizuka, “Lateral control of commercial heavy vehicles,” Vehicle system  

       dynamics, Vol.33, pp.391-420, 2000. 

 

[28] S. Li, G. Wang, B. Zhang, Z. Yu and G. Cui, “Vehicle stability control based on model                

       predictive control considering the changing trend of tire force over the prediction horizon,”  

       in IEEE Access, Vol. 7, pp.6677-6888, 2019. 

 

[29] R. Rajamani, Vehicle Dynamics and control. Switzerland: Springer, 2012. 

 

[30] S. Mammar and D. Koenig, ‘‘Vehicle handling improvement by active steering,’’ Vehicle  

        System Dynamics,International Journal of vehicle mechanics and mobility., vol. 38, no. 38,  

        pp 211–242, 2002. 

  

[31] P. Falconea, H. Tsengb, F. Borrellic, J. Asgarib, and D. Hrovatb, ‘‘MPC-based yaw and  

        lateral stabilization via active front steering and braking,’’ Vehicle System Dynamics,    

        International Journal of vehicle mechanics and mobility, vol. 46, no. S.1, pp. 611–628,  

        2008. 

 

[32]  J. Kasselmann and T. Keraned, “Adaptive steering,” Bendix Technical Journal, vol. 2,  

         pp.26-35, 1969. 

 

[33] A. Farazandeh, A. Ahmad and S. Rzkheja, “Braking and steering performance analysis of a  

        road vehicle with active independent front steering,” International Journal of heavy vehicle    

        systems, Vol. 22, No. 3, 2015. 

 

[34] X. Na and D. J. Cole, "Application of Open-Loop Stackelberg Equilibrium to Modeling a  

       Driver's Interaction with Vehicle Active Steering Control in Obstacle Avoidance," in IEEE  

       Transactions on Human-Machine Systems, vol. 47, no. 5, pp. 673-685, Oct. 2017. 

 

[35] C. March and T. Shim, ‘‘Integrated control of suspension and front steering to enhance  

       vehicle handling,’’ Proc. Inst. Mech. Eng. D J. Autom. Eng., vol. 221, no. 221, pp. 377–391,  

       2007. 

 

[36] X. Ma, P. Wong, J. Zhao and Z. Xie, “Cornering stability control for vehicles with active  

       front steering system using T-S fuzzy based sliding mode control strategy,” Mechanical  

       Systems and Signal Processing,Vol. 125, pp. 347-364 , 2019.  

 

[37] X. Huang, H. Zhang, G. Zhang and J. Wang, "Robust Weighted Gain-Scheduling H∞ Vehicle  

        Lateral Motion Control With Considerations of Steering System Backlash-Type Hysteresis,"  

        in IEEE Transactions on Control Systems Technology, vol. 22, no. 5, pp. 1740-1753, Sept.    

        2014. 

 



 

165 

 

[38] M. Nagai and M. Shino, ‘‘Study on integrated control of active front steer angle and direct  

       yaw moment,’’ JSAE Rev., vol. 23, no. 3, pp. 309–315, 2002. 

 

[39] S. Çağlar Baslamisli, İ. Emre Köse & G. Anlaş,” Gain-scheduled integrated active steering  

        and differential control for vehicle handling improvement,” Vehicle System  

        Dynamics, 47:1, 99-119, 2009 

 

[40] D. Odenthal, T. Bünte and J. Ackermann, "Nonlinear steering and braking control for  

        vehicle rollover avoidance," 1999 European Control Conference (ECC), Karlsruhe, 1999,  

        pp. 598-603. 

 

[41] Zhang, J.Y., Kim, J.W., Lee, K.B. and Kim, Y.B. “Development of an active front steering  

        (AFS) system with QFT control,” International Journal of Automotive Technology, 9(6), pp. 

        695-702, 2008. 

 

[42] S. Zheng et al., "Model predictive control based vehicle stability control via active front  

        steering," 2017 Chinese Automation Congress (CAC), Jinan, 2017, pp. 4660-4665. 

 

[43] Koehn, P. and Eckrich, M. (2004) Active steering–the BMW approach towards modern  

        steering technology, SAE Technical Paper no. 2004-01-1105. 

 

[44] R. McCann and S. Nguyen, “Jackknife avoidance in large trucking using active front  

        steering,” SAE Technical paper, 2004 

 

[45] A.Kumar and D.Kamble, “ An overview of active front steering system,”  International    

        Journal of  Scientific & Engineering Research, Vol  3,Issue 6, June, 2012. 

 

[46] Y. Xia, F. Pu, S. Li and Y. Gao, “Lateral path tracking control of autonomous land vehicle  

        based on ADRC and differential flatness,” IEEE Transactions on Industrial Electronics,  

        vol. 63, no. 5, pp. 3091-3099, May, 2016. 

 

[47] M. Brault, “Americans with disabilities: 2010 household economic studies,” United States  

        Census Bureau, July, 2012. 

 

[48] J. Zmud, F. Diaz, P. Lavieri, C. Bhat and R. Pendyala, Research to examine behavioral  

        Responses to automated vehicles, Road Vehicle Automation 5, 2019. 

 

[49] K. Bimbraw, “Autonomous cars: Past, present and future a review of the developments in  

        the last century, the present scenario and the expected future of autonomous vehicle  

        technology,” in Proc. Int. Conf. Informat. Control, Automat. Robot. (ICINCO), Colmar,  

        France, Jul. 2015, pp. 191–198. 

 

[50] K. Divakaral, A. Amadi and S. Razavi, “ A Cognitive Advanced Driver Assistance Systems  

        Architecture for Autonomous-Capable Electrified Vehicles,” IEEE Trans. On transportation  

        electrification, Vol. 5, No. 1, March 2019. 

 



 

166 

 

[51] K. Bengler, K. Dietmayer, B. Farber, M. Maurer, C. Stiller, and H. Winner, “Three decades  

        of driver assistance systems: Review and future perspectives,” IEEE Intelligent.  

       Transpiration System Magzine, vol. 6, no. 4, pp. 6–22, Oct. 2014. 

 

[52] J. Zmud, I. Sener, C. Simek and P. Gigante, “ Who’s first: early adopters of self-driving  

        vehicles,” Texas A&M Transportation Institute, College station, 2018. 

 

[53] P. Lavieri, V. Garikapati, C. Bhat, R. Pendyala, S. Astroza and F. Dias, “Modeling  

        Individual preferences for ownership and sharing of autonomous vehicle technologies,”  

        Transp. Res Rec 2665:1-10, 2017. 

 

[54] Z. Lenkyseteme GmbH and S. Gmund, “Concept and functionality of active front steering  

       system,” SAE international, 2004. 

 

[55] S. Bin and J. PengKai, "The analysis and modeling of active front steering system," 2011  

        IEEE 2nd International Conference on Computing, Control and Industrial Engineering,      

        Wuhan, 2011, pp. 237-242. 

 

[56] R. Isermann, R. Mannale and K. Schmitt, “Collision-avoidance systems PRORETA:  

        Situation analysis and intervention control,” Control Engineering Practice, vol.20, pp.1236- 

        1246, 2012. 

 

[57] Felix Ammah-Tagoe, “Freight in America,” Research and Innovative Technology   

       Administration, Bureau of Transportation Statistics, Jan. 2006. 

 

[58] P. Gaspar, Z. Szabo, J. Bokor and B. Nemeth, Robust Control Design for Active Driver  

       Assistance Systems a Linear-Parameter-Varying Approach. Switzerland: Springer  

       International Publishing AG, 2017. 

 

[59] European Truck Platooning, 2016. Available [online] 

        https://www.eutruckplatooning.com/Press/Photos+Volvo/default.aspx 

  

[60] M. Lammert, B. Bugbee, Y. Hou and A. Mack, “Exploring telematics big data for truck                     

        platooning opportunities,” SAE Technical paper, DOI: 10.4271/2018-01-1083, 2018. 

 

[61] B.McAuliffe, M.Lammert, X. Lu and S. Shladover, “Influences on energy savings of heavy    

       trucks using cooperative adaptive cruise control,” SAE Technical paper, DOI:  

 10.4271/2018-01-1181, 2018. 

 

[62] S. Hoef, “Coordination of heavy-duty vehicles platooning,” Ph.D thesis, Department of   

        Electrical Engineering, KTH Royal Institute of  Technology, 2018. 

 

[63] Y.Sugimoto, S. Kuzumaki, SIP-adus an update on Japanese initives for automated driving   

        Road Vehicle Automation 5, Lecture notes in mobilty, 2019. 

 

 

https://www.eutruckplatooning.com/Press/Photos+Volvo/default.aspx


 

167 

 

[64] J. Engstrom, R. Bishop, S.Shadover, M. Murray and L. Rourke, “Deployment of automated       

        trucking: challenges and opportunities,” road vehicle automation 5, 2019. 

 

[65] Peloton overview of driver-assistive truck platooning, Illinois transportation and highway           

        engineering conference 2019, available[ online] 

    http://www.theconf.com/presentations/2019/Truck%20Platooning%20and%20Automation.pdf 

 

[66] Bureau of labor statistics “Occupational employment statistics: May, 2016 national   

        occupational employments and wage estimates United States,” 2017. 

 

[67] International transport forum, “Managing the transition on driverless road freight transport,   

        2017. 

 

[68] K. Recheru, “Gain scheduling of state feedback in articulated vehicles for jackknife     

       avoidance,” Master’s thesis, Department of Electrical Engineering, University of Arkansas,  

       2009. 

 

[69] NHTSA and DOT, Federal Motor Vehicle Safety Standards; Electronic Stability Control  

        System for Heavy Vehicles, Vol.80, No. 120, June, 2015. 

 

[70] J. Woodrooffe, D. Blower,T. Gordon, P. Green, B. Liu, and P. Sweatman, “Safety benefits  

        of stability control systems for tractor-semitrailers,” NHTSA  Technical Report, DOT HS  

        811 205, October, 2009.  

 

[71] R. Merala and K. White, “Tractor Semitrailer Left Turns and Lane Changes,” SAE  

        International, 2010. 

 

[72] Federal Motor Carrier Safety Administration, Publication No. FMCSA-RRA-07-017 

        https://www.fmcsa.dot.gov/safety/research-and-analysis/large-truck-crash-causation-study-   

        analysis-brief. 

 

[73] A. Tepljakov, Fractional-order Modeling and Control of Dynamic Systems. Switzerland.  

        Springer International Publishing AG, 2017. 

 

[74] D. Xue, Fractional-Order Control Systems Fundamentals and Numerical Implementations.  

        Berlin/Boston: De Gruyter, 2017. 

 

[75] P. J. Torvik and R. L. Bagley, “On the appearance of the fractional derivative in the  

        behavior of real materials,” Trans. Of the ASME, Vol. 51, No. 4, pp.294-298, 1984. 

 

[76] S. Karad, S. Chatterji and P. Suryawanshi, “ Performance Analysis of Fractional Order PID  

        Controller with the Conventional PID Controller for Bioreactor Control,” International  

        journal of scientific & engineering research, Vol. 3, No. 6, June-2012. 

 

[77] Podlubny, I., Kostial, I., Kacenak, M., Terpak, J.: Modeling of the Distribution of the Liquid   

        Iron Level in the Blast Furnace Hearth. METALURGIJA, vol. 40, no. 2, 2001, pp. 107–109.  

http://www.theconf.com/presentations/2019/Truck%20Platooning%20and%20Automation.pdf
https://www.fmcsa.dot.gov/safety/research-and-analysis/large-truck-crash-causation-study-analysis-brief
https://www.fmcsa.dot.gov/safety/research-and-analysis/large-truck-crash-causation-study-analysis-brief
http://public.srce.hr/metalurg/m2001.htm


 

168 

 

[78] Y. Chen, I. Petras and D. Xue, Fractional order control - A tutorial, American Control  

       Conference, St. Louis, MO, 2009, pp. 1397-1411. 

 

[79] D. Xue, Y. Chen and D. Atherton, Linear Feedback Control Analysis and Design with  

        MATLAB, SIAM publishing, 2007. 

 

[80] Y. Q. Chen,“Ubiquitous fractional order controls,” Proc. 2nd  IFAC Symp. Fract. Deriv.  

        Applicat. (FDA’06), Porto, Portugal, July 19–21, vol. 2, pp. 168–173, 2006. 

 

[81] D. Xue, C. Zhao and Y. Chen, “A Modified Approximation Method of Fractional Order  

        System,” International Conference on Mechatronics and Automation, Luoyang,  

        Henan, 2006, pp. 1043-1048. 

 

[82] I. Pan and S. Das, Intelligent Fractional Order Systems and Control: An Introduction.  

        Berlin Heidelberg: Springer, 2013. 

 

[83] K. Miller and B. Ross, An Introduction to the Fractional Calculus and Fractional  

        Differential Equations, Wiley, New York, 1993. 

 

[84] I. Podlubny, “Fractional order systems and 𝑃𝐼𝜆𝐷𝜇 controllers,” IEEE Trans. Automat.  

       Control, vol. 44, no.1, pp. 208-214, 1999. 

 

[85] A. Oustaloup, La Commande CRONE, Hermes , Paris, 1991. 

 

[86] A. Oustaloup, La Derivation non entire : theorie, synthese et applications, Hermes Paris,  

        1995. 

 

[87] I. Podlubny, “ Fractional differential equations: an introduction to fractional derivatives,  

        fractional differential equations, to methods of their solution and some of their  

        applications,” Academic Press, Vol. 198, 1999. 

 

[88] B. M. Vinagre, Y. Q. Chen, and I. Petráš, “Two direct Tustin discretization methods for  

        fractional-order differentiator/integrator,” Journal of the Franklin Institute, vol. 340, no. 5,  

        pp. 349–362, 2003. 

 

[89] R. Magin, Fractional Calculus in Bioengineering, Begell House Inc. Publishers, Redding,  

        2006. 

 

[90] T. Hartley, C. Lorenzo, and H. Qammer, “Chaos in a fractional order Chua’s system,” IEEE  

        Transactions on Circuits and Systems I: Fundamental Theory and Applications, vol. 42, no.  

        8, pp. 485–490, 1995. 

 

[91] R. Hilfer, Applications of Fractional Calculus in Physics, World Scientific, Singapore,  

        2000. 

 

 



 

169 

 

[92] K. Oldham and J. Spanier, The Fractional Calculus: Theory and Applications of  

       Differentiation and Integration to Arbitrary Order, Academic Press, New York, 1974. 

 

[93] A. W. Lo, “Long-term memory in stock market prices,” Econometrica, vol. 59, no. 5, pp. 1 

        279–1313, 1991. 

 

[94] K. Ogata,  Modren control engieering, 5th ed., Prentice hall, 2010. 

 

[95] K. Astrom and R. Murray, An Introduction to Scientists and Engineers, Princeton  

        University Press, 2008. 

 

[96] C. Chen, Linear System Theory and Design, 3rd ed., Oxford University Press, Inc., New  

        York, 1999. 

 

[97] C. Monje, Y. Chen, B. Vinagre, D. Xue and V. Feliu, Fractional-order Systems and  

       Controls; Fundamentals and Applications, Springer, 2010. 

 

[98] Y. Luo and Y. Chen, Fractional Order Motion Controls, John Wiley & Sons Ltd., UK,  

         2012. 

 

[99] A. Dastjerdi, B. Vinagre, Y. Chen and S. HoesseinNia, “Linear fractional order controller;  

        A survey in the frequency domain,” Annual Reviews in Control, vol. 47, pp.51-70, 2019. 

 

[100] S. Folea, R. Keyser, I. Biras, C. Muresan and C. Ionescu, “Discrete- time implementation  

          and experimental validation of a fractional order pd controller for vibration suppression in  

          airplane wings,” Acta Polytechnica Hungarica, Vol. 14, No. 1, pp.191-206, 2017. 

 

[101] M. Schnubel Automotive Suspension & Steering Systems, 6th Ed., Cengage learning,     

          Stamford, CT, USA., 2015. 

 

[102] R. Dorf and R. Bishop, Modren Control Systems, 12th ed., Prentice hall. 2008. 

 

[103] G. Franklin, M. Workman and D. Powell, Digital Control of Dynamic Systems, 3rd rd.,  

          Addison-Wesley Longman Publishing Inc., Boston, USA 1997. 

 

[104]  R. McCann and A. Le, "Gain Scheduling Control in Commercial Vehicles with 

Electrohydraulic Power Steering," SAE Int. J. Commer. Veh. 1(1):481-487, 2009. 

 

 

 

 

 

 

 

 

 



 

170 

 

Appendix 

 

 

This Section displays the generated c code for the applied FOSFB controller to the tractor-

trailer nonlinear dynamics. 

#include "NONlINEAR_TRUCK.h" 

#include "NONlINEAR_TRUCK_private.h" 

 

/* Block signals (default storage) */ 

B_NONlINEAR_TRUCK_T NONlINEAR_TRUCK_B; 

 

/* Continuous states */ 

X_NONlINEAR_TRUCK_T NONlINEAR_TRUCK_X; 

 

/* Block states (default storage) */ 

DW_NONlINEAR_TRUCK_T NONlINEAR_TRUCK_DW; 

 

/* Real-time model */ 

RT_MODEL_NONlINEAR_TRUCK_T NONlINEAR_TRUCK_M_; 

RT_MODEL_NONlINEAR_TRUCK_T *const NONlINEAR_TRUCK_M = 

&NONlINEAR_TRUCK_M_; 

 

/* 

 * Time delay interpolation routine 

 * 

 * The linear interpolation is performed using the formula: 

 * 

 *          (t2 - tMinusDelay)         (tMinusDelay - t1) 

 * u(t)  =  ----------------- * u1  +  ------------------- * u2 

 *              (t2 - t1)                  (t2 - t1) 

 */ 

real_T rt_TDelayInterpolate( 

  real_T tMinusDelay,                 /* tMinusDelay = currentSimTime - delay */ 

  real_T tStart, 

  real_T *tBuf, 

  real_T *uBuf, 

  int_T bufSz, 

  int_T *lastIdx, 

  int_T oldestIdx, 

  int_T newIdx, 

  real_T initOutput, 

  boolean_T discrete, 

  boolean_T minorStepAndTAtLastMajorOutput) 

{ 
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  int_T i; 

  real_T yout, t1, t2, u1, u2; 

 

  /* 

   * If there is only one data point in the buffer, this data point must be 

   * the t= 0 and tMinusDelay > t0, it ask for something unknown. The best 

   * guess if initial output as well 

   */ 

  if ((newIdx == 0) && (oldestIdx ==0 ) && (tMinusDelay > tStart)) 

    return initOutput; 

 

  /* 

   * If tMinusDelay is less than zero, should output initial value 

   */ 

  if (tMinusDelay <= tStart) 

    return initOutput; 

 

  /* For fixed buffer extrapolation: 

   * if tMinusDelay is small than the time at oldestIdx, if discrete, output 

   * tailptr value,  else use tailptr and tailptr+1 value to extrapolate 

   * It is also for fixed buffer. Note: The same condition can happen for transport delay block 

where 

   * use tStart and and t[tail] other than using t[tail] and t[tail+1]. 

   * See below 

   */ 

  if ((tMinusDelay <= tBuf[oldestIdx] ) ) { 

    if (discrete) { 

      return(uBuf[oldestIdx]); 

    } else { 

      int_T tempIdx= oldestIdx + 1; 

      if (oldestIdx == bufSz-1) 

        tempIdx = 0; 

      t1= tBuf[oldestIdx]; 

      t2= tBuf[tempIdx]; 

      u1= uBuf[oldestIdx]; 

      u2= uBuf[tempIdx]; 

      if (t2 == t1) { 

        if (tMinusDelay >= t2) { 

          yout = u2; 

        } else { 

          yout = u1; 

        } 

      } else { 

        real_T f1 = (t2-tMinusDelay) / (t2-t1); 

        real_T f2 = 1.0 - f1; 
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        /* 

         * Use Lagrange's interpolation formula.  Exact outputs at t1, t2. 

         */ 

        yout = f1*u1 + f2*u2; 

      } 

 

      return yout; 

    } 

  } 

 

  /* 

   * When block does not have direct feedthrough, we use the table of 

   * values to extrapolate off the end of the table for delays that are less 

   * than 0 (less then step size).  This is not completely accurate.  The 

   * chain of events is as follows for a given time t.  Major output - look 

   * in table.  Update - add entry to table.  Now, if we call the output at 

   * time t again, there is a new entry in the table. For very small delays, 

   * this means that we will have a different answer from the previous call 

   * to the output fcn at the same time t.  The following code prevents this 

   * from happening. 

   */ 

  if (minorStepAndTAtLastMajorOutput) { 

    /* pretend that the new entry has not been added to table */ 

    if (newIdx != 0) { 

      if (*lastIdx == newIdx) { 

        (*lastIdx)--; 

      } 

 

      newIdx--; 

    } else { 

      if (*lastIdx == newIdx) { 

        *lastIdx = bufSz-1; 

      } 

 

      newIdx = bufSz - 1; 

    } 

  } 

 

  i = *lastIdx; 

  if (tBuf[i] < tMinusDelay) { 

    /* Look forward starting at last index */ 

    while (tBuf[i] < tMinusDelay) { 

      /* May occur if the delay is less than step-size - extrapolate */ 

      if (i == newIdx) 

        break; 

      i = ( i < (bufSz-1) ) ? (i+1) : 0;/* move through buffer */ 
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    } 

  } else { 

    /* 

     * Look backwards starting at last index which can happen when the 

     * delay time increases. 

     */ 

    while (tBuf[i] >= tMinusDelay) { 

      /* 

       * Due to the entry condition at top of function, we 

       * should never hit the end. 

       */ 

      i = (i > 0) ? i-1 : (bufSz-1);   /* move through buffer */ 

    } 

 

    i = ( i < (bufSz-1) ) ? (i+1) : 0; 

  } 

 

  *lastIdx = i; 

  if (discrete) { 

    /* 

     * tempEps = 128 * eps; 

     * localEps = max(tempEps, tempEps*fabs(tBuf[i]))/2; 

     */ 

    double tempEps = (DBL_EPSILON) * 128.0; 

    double localEps = tempEps * fabs(tBuf[i]); 

    if (tempEps > localEps) { 

      localEps = tempEps; 

    } 

 

    localEps = localEps / 2.0; 

    if (tMinusDelay >= (tBuf[i] - localEps)) { 

      yout = uBuf[i]; 

    } else { 

      if (i == 0) { 

        yout = uBuf[bufSz-1]; 

      } else { 

        yout = uBuf[i-1]; 

      } 

    } 

  } else { 

    if (i == 0) { 

      t1 = tBuf[bufSz-1]; 

      u1 = uBuf[bufSz-1]; 

    } else { 

      t1 = tBuf[i-1]; 

      u1 = uBuf[i-1]; 
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    } 

 

    t2 = tBuf[i]; 

    u2 = uBuf[i]; 

    if (t2 == t1) { 

      if (tMinusDelay >= t2) { 

        yout = u2; 

      } else { 

        yout = u1; 

      } 

    } else { 

      real_T f1 = (t2-tMinusDelay) / (t2-t1); 

      real_T f2 = 1.0 - f1; 

 

      /* 

       * Use Lagrange's interpolation formula.  Exact outputs at t1, t2. 

       */ 

      yout = f1*u1 + f2*u2; 

    } 

  } 

 

  return(yout); 

} 

 

/* 

 * This function updates continuous states using the ODE4 fixed-step 

 * solver algorithm 

 */ 

static void rt_ertODEUpdateContinuousStates(RTWSolverInfo *si ) 

{ 

  time_T t = rtsiGetT(si); 

  time_T tnew = rtsiGetSolverStopTime(si); 

  time_T h = rtsiGetStepSize(si); 

  real_T *x = rtsiGetContStates(si); 

  ODE4_IntgData *id = (ODE4_IntgData *)rtsiGetSolverData(si); 

  real_T *y = id->y; 

  real_T *f0 = id->f[0]; 

  real_T *f1 = id->f[1]; 

  real_T *f2 = id->f[2]; 

  real_T *f3 = id->f[3]; 

  real_T temp; 

  int_T i; 

  int_T nXc = 18; 

  rtsiSetSimTimeStep(si,MINOR_TIME_STEP); 

 

  /* Save the state values at time t in y, we'll use x as ynew. */ 
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  (void) memcpy(y, x, 

                (uint_T)nXc*sizeof(real_T)); 

 

  /* Assumes that rtsiSetT and ModelOutputs are up-to-date */ 

  /* f0 = f(t,y) */ 

  rtsiSetdX(si, f0); 

  NONlINEAR_TRUCK_derivatives(); 

 

  /* f1 = f(t + (h/2), y + (h/2)*f0) */ 

  temp = 0.5 * h; 

  for (i = 0; i < nXc; i++) { 

    x[i] = y[i] + (temp*f0[i]); 

  } 

 

  rtsiSetT(si, t + temp); 

  rtsiSetdX(si, f1); 

  NONlINEAR_TRUCK_step(); 

  NONlINEAR_TRUCK_derivatives(); 

 

  /* f2 = f(t + (h/2), y + (h/2)*f1) */ 

  for (i = 0; i < nXc; i++) { 

    x[i] = y[i] + (temp*f1[i]); 

  } 

 

  rtsiSetdX(si, f2); 

  NONlINEAR_TRUCK_step(); 

  NONlINEAR_TRUCK_derivatives(); 

 

  /* f3 = f(t + h, y + h*f2) */ 

  for (i = 0; i < nXc; i++) { 

    x[i] = y[i] + (h*f2[i]); 

  } 

 

  rtsiSetT(si, tnew); 

  rtsiSetdX(si, f3); 

  NONlINEAR_TRUCK_step(); 

  NONlINEAR_TRUCK_derivatives(); 

 

  /* tnew = t + h 

     ynew = y + (h/6)*(f0 + 2*f1 + 2*f2 + 2*f3) */ 

  temp = h / 6.0; 

  for (i = 0; i < nXc; i++) { 

    x[i] = y[i] + temp*(f0[i] + 2.0*f1[i] + 2.0*f2[i] + f3[i]); 

  } 

 

  rtsiSetSimTimeStep(si,MAJOR_TIME_STEP); 
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} 

 

/* 

 * Output and update for atomic system: 

 *    '<S10>/Embedded MATLAB Function1' 

 *    '<S12>/Embedded MATLAB Function1' 

 */ 

void NONlINE_EmbeddedMATLABFunction1(real_T rtu_psi, real_T *rty_y) 

{ 

  *rty_y = cos(rtu_psi) * 0.00021945746155369283; 

} 

 

/* 

 * Output and update for atomic system: 

 *    '<S10>/Embedded MATLAB Function15' 

 *    '<S12>/Embedded MATLAB Function15' 

 */ 

void NONlIN_EmbeddedMATLABFunction15(real_T rtu_u1, real_T rtu_psi, real_T 

  rtu_v1, real_T rtu_v2, real_T rtu_r1, real_T rtu_r2, real_T rtu_Fy1, real_T 

  rtu_Fy2, real_T rtu_Fx1, real_T rtu_Fx2, real_T rtu_Fx3, real_T rtu_Fa1, 

  real_T rtu_Fa2, real_T rtu_delta, real_T *rty_y) 

{ 

  real_T tmp; 

  real_T tmp_0; 

  tmp = sin(rtu_psi); 

  tmp_0 = cos(rtu_psi); 

  *rty_y = (((((rtu_Fx1 * tmp * 2.5551434321583784E-5 + rtu_Fy1 * tmp_0 / 5450.0) 

               * sin(rtu_delta) + (rtu_Fy2 * 0.00037089785537421538 - rtu_r2 * 

    rtu_u1) * tmp) + (((rtu_Fa1 - rtu_Fx2) / 5450.0 - (rtu_r1 - rtu_r2) * 

                       (0.8611 * rtu_r1)) - rtu_r2 * rtu_v1) * tmp_0) + (rtu_Fy1 

              * tmp * 2.5551434321583784E-5 - rtu_Fx1 * tmp_0 / 5450.0) * cos 

             (rtu_delta)) - (rtu_Fa2 - rtu_Fx3) / 27800.0) + rtu_r2 * rtu_v2; 

} 

 

/* 

 * Output and update for atomic system: 

 *    '<S10>/Embedded MATLAB Function16' 

 *    '<S12>/Embedded MATLAB Function16' 

 */ 

void NONlIN_EmbeddedMATLABFunction16(real_T rtu_Fy1, real_T rtu_Fy2, real_T 

  rtu_Fy3, real_T rtu_r1, real_T rtu_r2, real_T rtu_v1, real_T rtu_u1, real_T 

  rtu_psi, real_T rtu_Fx1, real_T rtu_Fx2, real_T rtu_Fa1, real_T rtu_delta, 

  real_T *rty_y) 

{ 

  real_T tmp; 

  real_T tmp_0; 
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  real_T tmp_1; 

  tmp = sin(rtu_psi); 

  tmp_0 = cos(rtu_psi); 

  tmp_1 = rtu_r2 * rtu_u1; 

  *rty_y = (((((((rtu_Fa1 - rtu_Fx2) / 5450.0 - rtu_r2 * rtu_v1) + (-rtu_r1 + 

    rtu_r2) * 0.8611 * rtu_r1) * tmp + (rtu_Fx1 * tmp_0 * -2.5551434321583784E-5 

    + tmp * rtu_Fy1 / 5450.0) * sin(rtu_delta)) + (-rtu_Fy2 * 

    0.00037089785537421538 + tmp_1) * tmp_0) + (rtu_Fy1 * tmp_0 * 

              -2.5551434321583784E-5 - tmp * rtu_Fx1 / 5450.0) * cos(rtu_delta)) 

            + rtu_Fy3 * -5.1685619778417252E-5) - tmp_1; 

} 

 

/* 

 * Output and update for atomic system: 

 *    '<S10>/Embedded MATLAB Function2' 

 *    '<S12>/Embedded MATLAB Function2' 

 */ 

void NONlINE_EmbeddedMATLABFunction2(real_T rtu_psi, real_T *rty_y) 

{ 

  *rty_y = cos(rtu_psi) * 0.00056685801919579811; 

} 

 

/* 

 * Output and update for atomic system: 

 *    '<S10>/Embedded MATLAB Function22' 

 *    '<S12>/Embedded MATLAB Function22' 

 */ 

void NONlIN_EmbeddedMATLABFunction22(real_T rtu_d11, real_T rtu_d22, real_T 

  rtu_d12, real_T rtu_d21, real_T *rty_y) 

{ 

  *rty_y = rtu_d22 * rtu_d11 - rtu_d12 * rtu_d21; 

} 

 

/* Model step function */ 

void NONlINEAR_TRUCK_step(void) 

{ 

  /* local block i/o variables */ 

  real_T rtb_TransportDelay2; 

  real_T rtb_TransportDelay1; 

  real_T rtb_TransportDelay; 

  real_T rtb_Gain3_c; 

  real_T rtb_Gain_j; 

  real_T rtb_Gain1_f; 

  real_T rtb_y_p; 

  real_T rtb_y_a; 

  real_T rtb_Integrator; 
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  real_T rtb_Add2; 

  real_T rtb_y_kl; 

  real_T rtb_y_d; 

  real_T rtb_y; 

  real_T rtb_y_g; 

  real_T rtb_y_el; 

  real_T rtb_y_en; 

  real_T tmp[5]; 

  int32_T i; 

  real_T Gain6_tmp; 

  real_T Gain6_tmp_0; 

  if (rtmIsMajorTimeStep(NONlINEAR_TRUCK_M)) { 

    /* set solver stop time */ 

    rtsiSetSolverStopTime(&NONlINEAR_TRUCK_M->solverInfo, 

                          ((NONlINEAR_TRUCK_M->Timing.clockTick0+1)* 

      NONlINEAR_TRUCK_M->Timing.stepSize0)); 

  }                                    /* end MajorTimeStep */ 

 

  /* Update absolute time of base rate at minor time step */ 

  if (rtmIsMinorTimeStep(NONlINEAR_TRUCK_M)) { 

    NONlINEAR_TRUCK_M->Timing.t[0] = rtsiGetT(&NONlINEAR_TRUCK_M-

>solverInfo); 

  } 

 

  /* Integrator: '<Root>/Integrator1' */ 

  NONlINEAR_TRUCK_B.Integrator1 = NONlINEAR_TRUCK_X.Integrator1_CSTATE; 

 

  /* Integrator: '<Root>/Integrator2' */ 

  NONlINEAR_TRUCK_B.Integrator2 = NONlINEAR_TRUCK_X.Integrator2_CSTATE; 

 

  /* SignalConversion: '<Root>/TmpSignal ConversionAtGain5Inport1' incorporates: 

   *  Integrator: '<Root>/Integrator3' 

   *  Integrator: '<Root>/Integrator5' 

   *  Integrator: '<Root>/Integrator6' 

   */ 

  tmp[0] = NONlINEAR_TRUCK_B.Integrator1; 

  tmp[1] = NONlINEAR_TRUCK_B.Integrator2; 

  tmp[2] = NONlINEAR_TRUCK_X.Integrator5_CSTATE; 

  tmp[3] = NONlINEAR_TRUCK_X.Integrator6_CSTATE; 

  tmp[4] = NONlINEAR_TRUCK_X.Integrator3_CSTATE; 

 

  /* Gain: '<Root>/Gain5' */ 

  rtb_y_p = 0.0; 

  for (i = 0; i < 5; i++) { 

    rtb_y_p += NONlINEAR_TRUCK_ConstP.Gain5_Gain[i] * tmp[i]; 

  } 
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  /* Integrator: '<Root>/Integrator10' */ 

  NONlINEAR_TRUCK_B.Integrator10 = NONlINEAR_TRUCK_X.Integrator10_CSTATE; 

 

  /* Step: '<S18>/Step' */ 

  if (NONlINEAR_TRUCK_M->Timing.t[0] < 0.0) { 

    rtb_y_d = 0.0; 

  } else { 

    rtb_y_d = 1.75; 

  } 

 

  /* End of Step: '<S18>/Step' */ 

 

  /* Product: '<S18>/Product' incorporates: 

   *  Clock: '<S18>/Clock' 

   */ 

  rtb_Integrator = rtb_y_d * NONlINEAR_TRUCK_M->Timing.t[0]; 

 

  /* Saturate: '<S7>/Saturation' */ 

  if (rtb_Integrator > 7.0) { 

    rtb_Integrator = 7.0; 

  } else { 

    if (rtb_Integrator < 0.0) { 

      rtb_Integrator = 0.0; 

    } 

  } 

 

  /* End of Saturate: '<S7>/Saturation' */ 

 

  /* Integrator: '<Root>/Integrator9' */ 

  rtb_y_a = NONlINEAR_TRUCK_X.Integrator9_CSTATE; 

 

  /* Sum: '<Root>/Sum6' incorporates: 

   *  Integrator: '<Root>/Integrator9' 

   */ 

  NONlINEAR_TRUCK_B.Sum6 = rtb_Integrator - 

NONlINEAR_TRUCK_X.Integrator9_CSTATE; 

 

  /* Sum: '<Root>/Sum10' incorporates: 

   *  Integrator: '<Root>/Integrator5' 

   */ 

  NONlINEAR_TRUCK_B.Sum10 = NONlINEAR_TRUCK_B.Integrator2 - 

    NONlINEAR_TRUCK_X.Integrator5_CSTATE; 

 

  /* Sum: '<Root>/Add2' incorporates: 

   *  Gain: '<Root>/Gain5' 
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   *  Gain: '<Root>/Integral Gain 1 ' 

   *  Gain: '<Root>/Integral Gain 2' 

   *  Gain: '<Root>/Proportional Gain ' 

   *  Gain: '<S1>/Gain' 

   *  Gain: '<S1>/Gain1' 

   *  Integrator: '<Root>/Integrator6' 

   *  StateSpace: '<S3>/Internal' 

   *  Sum: '<Root>/Sum5' 

   *  Sum: '<S1>/Add1' 

   */ 

  rtb_Add2 = ((((((((NONlINEAR_TRUCK_X.Internal_CSTATE[0] + 

                     NONlINEAR_TRUCK_X.Internal_CSTATE[1]) + 

                    NONlINEAR_TRUCK_X.Internal_CSTATE[2]) + 

                   NONlINEAR_TRUCK_X.Internal_CSTATE[3]) + 

                  NONlINEAR_TRUCK_X.Internal_CSTATE[4]) + 0.15848931924611132 * 

                 NONlINEAR_TRUCK_B.Integrator10) * 0.39999999999999986 + 

                1.4229544886448324 * NONlINEAR_TRUCK_B.Integrator10) + 

               1.4427847279115398 * NONlINEAR_TRUCK_B.Sum6) - rtb_y_p) + (0.0 * 

    NONlINEAR_TRUCK_X.Integrator6_CSTATE + -0.0 * NONlINEAR_TRUCK_B.Sum10); 

 

  /* MATLAB Function: '<S11>/Embedded MATLAB Function11' incorporates: 

   *  Constant: '<Root>/Constant' 

   */ 

  rtb_y_kl = (rtb_Add2 - (1.7424 * NONlINEAR_TRUCK_B.Integrator2 + 

    NONlINEAR_TRUCK_B.Integrator1) / 31.30001) * 630000.0; 

 

  /* MATLAB Function: '<S13>/Embedded MATLAB Function12' incorporates: 

   *  Constant: '<Root>/Constant' 

   */ 

  rtb_y_d = -(NONlINEAR_TRUCK_B.Integrator1 - 2.0676 * 

              NONlINEAR_TRUCK_B.Integrator2) / 31.30001 * 1.848E+6; 

 

  /* TransportDelay: '<Root>/Transport Delay2' */ 

  { 

    real_T **uBuffer = (real_T**) 

      &NONlINEAR_TRUCK_DW.TransportDelay2_PWORK.TUbufferPtrs[0]; 

    real_T **tBuffer = (real_T**) 

      &NONlINEAR_TRUCK_DW.TransportDelay2_PWORK.TUbufferPtrs[1]; 

    real_T simTime = NONlINEAR_TRUCK_M->Timing.t[0]; 

    real_T tMinusDelay = simTime - 0.25; 

    rtb_TransportDelay2 = rt_TDelayInterpolate( 

      tMinusDelay, 

      0.0, 

      *tBuffer, 

      *uBuffer, 

      NONlINEAR_TRUCK_DW.TransportDelay2_IWORK.CircularBufSize, 
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      &NONlINEAR_TRUCK_DW.TransportDelay2_IWORK.Last, 

      NONlINEAR_TRUCK_DW.TransportDelay2_IWORK.Tail, 

      NONlINEAR_TRUCK_DW.TransportDelay2_IWORK.Head, 

      0.0, 

      0, 

      0); 

  } 

 

  /* TransportDelay: '<Root>/Transport Delay1' */ 

  { 

    real_T **uBuffer = (real_T**) 

      &NONlINEAR_TRUCK_DW.TransportDelay1_PWORK.TUbufferPtrs[0]; 

    real_T **tBuffer = (real_T**) 

      &NONlINEAR_TRUCK_DW.TransportDelay1_PWORK.TUbufferPtrs[1]; 

    real_T simTime = NONlINEAR_TRUCK_M->Timing.t[0]; 

    real_T tMinusDelay = simTime - 0.25; 

    rtb_TransportDelay1 = rt_TDelayInterpolate( 

      tMinusDelay, 

      0.0, 

      *tBuffer, 

      *uBuffer, 

      NONlINEAR_TRUCK_DW.TransportDelay1_IWORK.CircularBufSize, 

      &NONlINEAR_TRUCK_DW.TransportDelay1_IWORK.Last, 

      NONlINEAR_TRUCK_DW.TransportDelay1_IWORK.Tail, 

      NONlINEAR_TRUCK_DW.TransportDelay1_IWORK.Head, 

      0.0, 

      0, 

      0); 

  } 

 

  /* TransportDelay: '<Root>/Transport Delay' */ 

  { 

    real_T **uBuffer = (real_T**) 

      &NONlINEAR_TRUCK_DW.TransportDelay_PWORK.TUbufferPtrs[0]; 

    real_T **tBuffer = (real_T**) 

      &NONlINEAR_TRUCK_DW.TransportDelay_PWORK.TUbufferPtrs[1]; 

    real_T simTime = NONlINEAR_TRUCK_M->Timing.t[0]; 

    real_T tMinusDelay = simTime - 0.45; 

    rtb_TransportDelay = rt_TDelayInterpolate( 

      tMinusDelay, 

      0.0, 

      *tBuffer, 

      *uBuffer, 

      NONlINEAR_TRUCK_DW.TransportDelay_IWORK.CircularBufSize, 

      &NONlINEAR_TRUCK_DW.TransportDelay_IWORK.Last, 

      NONlINEAR_TRUCK_DW.TransportDelay_IWORK.Tail, 
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      NONlINEAR_TRUCK_DW.TransportDelay_IWORK.Head, 

      0.0, 

      0, 

      0); 

  } 

 

  /* MATLAB Function: '<S12>/Embedded MATLAB Function15' incorporates: 

   *  Constant: '<Root>/Constant' 

   *  Integrator: '<Root>/Integrator4' 

   *  Integrator: '<Root>/Integrator5' 

   *  Integrator: '<Root>/Integrator6' 

   */ 

  NONlIN_EmbeddedMATLABFunction15(31.3, 

NONlINEAR_TRUCK_X.Integrator6_CSTATE, 

    NONlINEAR_TRUCK_B.Integrator1, NONlINEAR_TRUCK_X.Integrator4_CSTATE, 

    NONlINEAR_TRUCK_B.Integrator2, NONlINEAR_TRUCK_X.Integrator5_CSTATE, 

    rtb_y_kl, rtb_y_d, rtb_TransportDelay2, rtb_TransportDelay1, 

    rtb_TransportDelay, NONlINEAR_TRUCK_ConstB.Gain, 

    NONlINEAR_TRUCK_ConstB.Gain_d, rtb_Add2, &rtb_y_el); 

 

  /* MATLAB Function: '<S14>/Embedded MATLAB Function2' incorporates: 

   *  Constant: '<Root>/Constant' 

   *  Integrator: '<Root>/Integrator4' 

   *  Integrator: '<Root>/Integrator5' 

   */ 

  rtb_y = -(NONlINEAR_TRUCK_X.Integrator4_CSTATE - 2.3886 * 

            NONlINEAR_TRUCK_X.Integrator5_CSTATE) / 31.30001 * 600000.0; 

 

  /* MATLAB Function: '<S12>/Embedded MATLAB Function16' incorporates: 

   *  Constant: '<Root>/Constant' 

   *  Integrator: '<Root>/Integrator5' 

   *  Integrator: '<Root>/Integrator6' 

   */ 

  NONlIN_EmbeddedMATLABFunction16(rtb_y_kl, rtb_y_d, rtb_y, 

    NONlINEAR_TRUCK_B.Integrator2, NONlINEAR_TRUCK_X.Integrator5_CSTATE, 

    NONlINEAR_TRUCK_B.Integrator1, 31.3, NONlINEAR_TRUCK_X.Integrator6_CSTATE, 

    rtb_TransportDelay2, rtb_TransportDelay1, NONlINEAR_TRUCK_ConstB.Gain, 

    rtb_Add2, &rtb_y_p); 

 

  /* MATLAB Function: '<S12>/Embedded MATLAB Function1' incorporates: 

   *  Integrator: '<Root>/Integrator6' 

   */ 

  NONlINE_EmbeddedMATLABFunction1(NONlINEAR_TRUCK_X.Integrator6_CSTATE, 

    &rtb_y_en); 

 

  /* MATLAB Function: '<S12>/Embedded MATLAB Function5' incorporates: 
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   *  Integrator: '<Root>/Integrator6' 

   */ 

  rtb_y_g = NONlINEAR_TRUCK_X.Integrator6_CSTATE * 0.00048880610235369285; 

 

  /* MATLAB Function: '<S12>/Embedded MATLAB Function2' incorporates: 

   *  Integrator: '<Root>/Integrator6' 

   */ 

  NONlINE_EmbeddedMATLABFunction2(NONlINEAR_TRUCK_X.Integrator6_CSTATE, 

&rtb_y_a); 

 

  /* MATLAB Function: '<S12>/Embedded MATLAB Function22' incorporates: 

   *  Integrator: '<Root>/Integrator6' 

   *  MATLAB Function: '<S12>/Embedded MATLAB Function3' 

   */ 

  NONlIN_EmbeddedMATLABFunction22(rtb_y_en, rtb_y_a, 

    -NONlINEAR_TRUCK_X.Integrator6_CSTATE * 0.00029750937839579809, rtb_y_g, 

    &rtb_Integrator); 

 

  /* MATLAB Function: '<S12>/Embedded MATLAB Function20' */ 

  rtb_y_g = (rtb_y_g * rtb_y_el - rtb_y_en * rtb_y_p) / rtb_Integrator; 

 

  /* Product: '<Root>/Product12' incorporates: 

   *  Product: '<Root>/Product10' 

   *  Trigonometry: '<Root>/Trigonometric Function5' 

   */ 

  Gain6_tmp = cos(rtb_Add2) * rtb_y_kl; 

 

  /* Product: '<Root>/Product13' incorporates: 

   *  Product: '<Root>/Product11' 

   *  Trigonometry: '<Root>/Trigonometric Function6' 

   */ 

  Gain6_tmp_0 = rtb_TransportDelay2 * sin(rtb_Add2); 

 

  /* Gain: '<Root>/Gain6' incorporates: 

   *  Gain: '<Root>/Gain10' 

   *  Gain: '<Root>/Gain7' 

   *  Gain: '<Root>/Gain8' 

   *  Gain: '<Root>/Gain9' 

   *  Product: '<Root>/Product12' 

   *  Product: '<Root>/Product13' 

   *  Sum: '<Root>/Sum4' 

   */ 

  NONlINEAR_TRUCK_B.Gain6 = (((Gain6_tmp * 1.7424 + Gain6_tmp_0 * 1.7424) - 

    2.0676 * rtb_y_d) + 0.8611 * rtb_y_g) * 0.00010526315789473685; 

 

  /* MATLAB Function: '<S10>/Embedded MATLAB Function15' incorporates: 
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   *  Constant: '<Root>/Constant' 

   *  Integrator: '<Root>/Integrator4' 

   *  Integrator: '<Root>/Integrator5' 

   *  Integrator: '<Root>/Integrator6' 

   */ 

  NONlIN_EmbeddedMATLABFunction15(31.3, 

NONlINEAR_TRUCK_X.Integrator6_CSTATE, 

    NONlINEAR_TRUCK_B.Integrator1, NONlINEAR_TRUCK_X.Integrator4_CSTATE, 

    NONlINEAR_TRUCK_B.Integrator2, NONlINEAR_TRUCK_X.Integrator5_CSTATE, 

    rtb_y_kl, rtb_y_d, rtb_TransportDelay2, rtb_TransportDelay1, 

    rtb_TransportDelay, NONlINEAR_TRUCK_ConstB.Gain, 

    NONlINEAR_TRUCK_ConstB.Gain_d, rtb_Add2, &rtb_y_a); 

 

  /* MATLAB Function: '<S10>/Embedded MATLAB Function16' incorporates: 

   *  Constant: '<Root>/Constant' 

   *  Integrator: '<Root>/Integrator5' 

   *  Integrator: '<Root>/Integrator6' 

   */ 

  NONlIN_EmbeddedMATLABFunction16(rtb_y_kl, rtb_y_d, rtb_y, 

    NONlINEAR_TRUCK_B.Integrator2, NONlINEAR_TRUCK_X.Integrator5_CSTATE, 

    NONlINEAR_TRUCK_B.Integrator1, 31.3, NONlINEAR_TRUCK_X.Integrator6_CSTATE, 

    rtb_TransportDelay2, rtb_TransportDelay1, NONlINEAR_TRUCK_ConstB.Gain, 

    rtb_Add2, &rtb_Integrator); 

 

  /* MATLAB Function: '<S10>/Embedded MATLAB Function2' incorporates: 

   *  Integrator: '<Root>/Integrator6' 

   */ 

  NONlINE_EmbeddedMATLABFunction2(NONlINEAR_TRUCK_X.Integrator6_CSTATE, 

    &rtb_y_el); 

 

  /* MATLAB Function: '<S10>/Embedded MATLAB Function3' incorporates: 

   *  Integrator: '<Root>/Integrator6' 

   *  Trigonometry: '<Root>/Trigonometric Function10' 

   */ 

  rtb_Add2 = sin(NONlINEAR_TRUCK_X.Integrator6_CSTATE); 

  rtb_y_kl = -rtb_Add2 * 0.00029750937839579809; 

 

  /* MATLAB Function: '<S10>/Embedded MATLAB Function1' incorporates: 

   *  Integrator: '<Root>/Integrator6' 

   */ 

  NONlINE_EmbeddedMATLABFunction1(NONlINEAR_TRUCK_X.Integrator6_CSTATE, 

&rtb_y_p); 

 

  /* MATLAB Function: '<S10>/Embedded MATLAB Function22' incorporates: 

   *  Integrator: '<Root>/Integrator6' 

   *  MATLAB Function: '<S10>/Embedded MATLAB Function5' 
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   */ 

  NONlIN_EmbeddedMATLABFunction22(rtb_y_p, rtb_y_el, rtb_y_kl, sin 

    (NONlINEAR_TRUCK_X.Integrator6_CSTATE) * 0.00048880610235369285, &rtb_y_en); 

 

  /* Product: '<Root>/Product15' incorporates: 

   *  Integrator: '<Root>/Integrator6' 

   *  Product: '<Root>/Product6' 

   *  Trigonometry: '<Root>/Trigonometric Function9' 

   */ 

  rtb_y_p = rtb_y_g * cos(NONlINEAR_TRUCK_X.Integrator6_CSTATE); 

 

  /* Product: '<Root>/Product5' incorporates: 

   *  MATLAB Function: '<S10>/Embedded MATLAB Function21' 

   *  Product: '<Root>/Product7' 

   */ 

  rtb_Integrator = (-rtb_y_el * rtb_y_a + rtb_y_kl * rtb_Integrator) / rtb_y_en * 

    rtb_Add2; 

 

  /* Sum: '<Root>/Sum7' incorporates: 

   *  Constant: '<Root>/Constant' 

   *  Gain: '<Root>/Gain12' 

   *  Integrator: '<Root>/Integrator5' 

   *  Product: '<Root>/Product15' 

   *  Product: '<Root>/Product4' 

   *  Product: '<Root>/Product5' 

   *  Sum: '<Root>/Sum8' 

   */ 
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