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Abstract: An intelligent vehicle must face a wide variety of situations ranging from safe and
comfortable to more aggressive ones. Smooth maneuvers are adequately addressed by means of linear
control, whereas more aggressive maneuvers are tackled by nonlinear techniques. Likewise, there
exist intermediate scenarios where the required responses are smooth but constrained in some way
(rise time, settling time, overshoot). Due to the existence of the fundamental linear limitations, which
impose restrictions on the attainable time-domain and frequency-domain performance, linear systems
cannot provide smoothness while operating in compliance with the previous restrictions. For this
reason, this article aims to explore the effects of reset control on the alleviation of these limitations
for a lane change maneuver under a set of demanding design conditions to guarantee a suitable
ride quality and a swift response. To this end, several reset strategies are considered, determining
the best reset condition to apply as well as the magnitude thereto. Concerning the reset condition
that triggers the reset action, three strategies are considered: zero crossing of the controller input,
fixed reset band and variable reset band. As far as the magnitude of the reset action is concerned,
a full-reset technique is compared to a Lyapunov-based error minimization method to calculate the
optimal reset percentage. The base linear controller subject to the reset action is searched via genetic
algorithms. The proposed controllers are validated by means of CarSim.
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1. Introduction

Advancements within the autonomous driving field lead to improvements in many aspects of
our lifestyles related to transport systems such as road safety, traffic congestion, transit efficiency
and reduction of fuel consumption. As far as road safety is concerned, distracted driving, speeding
and drowsy driving are among the leading causes of accident rate. According to the World Health
Organization (WHO), road injuries constitute one of the main global causes of death. Concerned with
this disastrous occurrence, autonomous vehicles must be endowed with an extensive set of capabilities
to provide absolute functionality in the face of the wide variety of situations they confront. In this
way, human errors can be minimized, reducing as a result the motor vehicle fatality rate. According to
some forecasts, the ever-growing independence, accuracy and effectiveness of autonomous vehicles
will lead to, by the end of this decade, limited availability of automated driving functions. It is also
expected that, by 2040, autonomous vehicles will be endowed with a broad variety of highly automated
functions [1]. Among those functions, there are many which have already been implemented, and are
continuously being enhanced, such as Pedestrian Detection (PD), Automatic Cruise Control (ACC),
Lane Departure Warning (LDW), Lane Keeping Assist (LKA) and Lane Change Assist (LCA), to name
a few ones. All of these functions are part of more complex systems that are closely linked and must
work together.
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Two of these automated driving functions, lane keeping and lane changing, have been thoroughly
studied due to its paramount importance for a self-driving intelligent vehicle, as it is evinced by
the numerous articles existing in the literature. In addition to being fully operational for critical
situations where safety is at risk, autonomous vehicles must be able to move in compliance with a set
of comfort requirements. A great variety of control techniques are employed to that end. For example,
in [2], a Model Predictive Control (MPC) approach is employed for controlling an active front steering
system in an autonomous vehicle. Ni et al. [3] also explore the use of MPC techniques to solve the
problem of autonomously driving a vehicle along a desired path on highway scenarios. Likewise,
Jalalmaab et al. [4] employ MPC for highway path planning with time-varying safety constraints and
a collision avoidance system. MPC exhibits an excellent performance in lateral control, especially,
for aggressive maneuvers where actuator constraints concerning the physical limits (amplitude and
slew rate limits) increase in importance [5]. To the contrary, when faced with a smooth maneuver,
MPC does not achieve its full potential and behaves like a linear controller. In fact, for linear plants and
quadratic cost functions (optimized without the need of reaching the limits), the resulting MPC control
is linear. A different control approach is investigated in [6] where an overtaking system for autonomous
vehicles equipped with path-tracking and lane-change capabilities is implemented by means of fuzzy
control. In [7], an automated lane-keeping system is presented. A fuzzy gain scheduling is employed
to tune the steering controller. In [8], the authors provide an analytic approach for the systematic
development of sliding mode controllers (SMC) that produce a smooth lane change suitable for use
in an Automated Highway System. Imine et al. [9] develop an active steering assistance system for
heavy vehicles to prevent lane departure. The control approach is based on a sliding-mode observer
and the super-twisting algorithm. Hahn et al. [10] introduce a new two-degrees-of-freedom control
structure consisting of a linear controller and a nonlinear model based disturbance compensation for
an evasive preventive pedestrian protection system. Wang et al. [11] present a robust output–feedback
vehicle lateral motion control strategy considering network-induced delay and tire force saturation.
Linear techniques are also employed to tackle lateral control. For instance, in [12], a lane keeping
system consisting of a PI controller is combined with the use of active disturbance rejection control
(ADRC) to guarantee robustness against vehicle uncertainties and external disturbances. Son et al. [13]
present a linear quadratic state feedback regulator for a lane-keeping control strategy with predictive
virtual lanes. Authors in [14] develop a nested PID steering control method to perform lane keeping
by regulating yaw rate and the lateral offset errors. Likewise, Guldner et al. [15] design a PD steering
compensator integrated with a second order lead-compensator. Taylor et al. [16] study several linear
regulators for lane keeping: a lead-lag control law, full-state linear controller and an input–output
linearizing law. In [17], the authors provide a review of different control techniques for lateral motion
control. Namely, H∞, adaptive, fuzzy and PID control. From the technical literature, it can be concluded
that linear approaches are convenient for smooth maneuvers where the main magnitudes of the vehicle
do not take extreme values. Chapter 4 of monograph [18] contains an exhaustive review of methods
for lane keeping and lane change maneuvers, including both linear and nonlinear methods, as well as
an extensive list of bibliographic references.

Although there is a wide diversity of techniques for lateral motion control, the variety of situations
to which the vehicle is confronted is also very large, and ranges from safe and comfortable situations
to intermediate and highly risky maneuvers. The objective of this paper is to study reset control
techniques, not merely because they have not been previously applied but mainly because it is believed
that there exists a missing gap in the current literature. Smooth maneuvers are satisfactorily addressed
by linear control, whereas extreme maneuvers are tackled by special nonlinear techniques (MPC,
SMC, etc.). However, there are intermediate scenarios where the required responses are smooth,
but constrained in some way (rise time, settling time, overshoot). Due to the smoothness required for
those intermediate scenarios, linear techniques are good candidates. The key point concerning them is
the existence of fundamental linear limitations (particular restrictions on the achievable time-domain
and frequency-domain performance). These limitations could be alleviated by specially targeted
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techniques (reset control) without the need of employing methods (MPC, SMC) better suited for more
aggressive, constrained or uncertain scenarios.

A reset controller is merely a conventional regulator endowed with a reset mechanism which
is a strategy that resets to zero (or to a certain percentage) one or several of the controller states,
provided that a certain condition is met. The event that triggers the resetting action is usually the
zero-crossing of the controller input, although other choices are possible as well. The first existent
record in the state of the art concerning reset control is included in the influential work of J. Clegg
published in 1958 [19]. In this article, Clegg demonstrated the advantages of reset control compared
to linear control and developed what is known as Clegg Integrator (CI). This study was motivated
by the following issue. An integrator can be considered to have two delays. The first of them is the
time required for the output to reach a certain setpoint after an input signal is applied. The second
delay is the time required for the system to get to zero once the input signal goes to zero. This delay
does not serve any useful purpose and, in fact, its effect is destabilizing. If the output of the integrator
could be taken to zero whenever the input goes to zero, the stability of the system would be improved.
This can be achieved by resetting to zero the integrator once its input goes to zero. This is exactly what
a Clegg’s Integrator does. In this way, the integrator is reversed to zero immediately after the desired
output is achieved. In spite of its advantages, Clegg’s contribution went unnoticed until the early
1970s, when its study was tackled by Horowitz’s research group [20,21]. In these articles, Horowitz
highlighted how reset control helps to overcome the well-known fundamental limitations, which affect
linear systems [22,23]. After Horowitz’s research was published, the study of reset control was once
again discontinued until the late 1990s. Thereafter, the number of research groups interested in this
type of control has proliferated significantly.

A remarkable recent proposal is the PI + CI [24], which combines the benefits of a PI controller
with those provided by the use of a Clegg Integrator. In recent years, several authors have analyzed the
behavior of systems with different reset strategies. One of the first variations studied was the addition
of a fixed reset band. This strategy is comprised of a reset mechanism that resets the state(s) of the
controller whenever the error signal enters a fixed band. This technique results in being especially
beneficial in systems with time delays [25]. The main drawback with a fixed band is that the controller
is especially designed for a particular reference (or disturbance). The use of a variable reset band is
also studied, this being used for overcoming the influence of dominant time delays over the reset
action as reported in [26,27]. A comprehensive monograph on reset control can be found in [28] where
different kinds of applications and techniques are included.

As mentioned above, linear systems are affected by what are known as the fundamental
limitations. On the contrary, reset systems are known to be unaffected by these restrictions.
Considering that tuning a linear controller is relatively straightforward and that linear regulators are
especially appropriate for smooth maneuvers, endowing a linear regulator with extra capabilities
may be a good alternative to take advantage of the simplicity of a linear regulator while improving
its design by incorporating a reset mechanism. The objective of this work is to explore the potential
of reset control for a lane change maneuver. To that end, different reset strategies are considered
in order to demonstrate which of those yields the best results. As far as the magnitude of the reset
action is concerned, a Lyapunov-based ISE (integral square error) minimization method, described
in [27] and adapted to the vehicle model, is used to calculate the optimal reset percentage. A full-reset
technique is also studied. Concerning the reset condition that triggers the reset action, three strategies
are considered: Zero crossing of the controller input, fixed reset band and variable reset band.
The regulators originated from combining all these strategies are assessed in terms of robustness
in the presence of parametric uncertainties and external disturbances, performance and fulfillment of
the design requirements. Adequate design specifications are selected to provide a comfortable response
that implies appropriate values of acceleration and jerk. One contribution of this paper consists of
guaranteeing comfort while performing a fast lane change by means of a special arrangement of the
system that allows direct control over the jerk regardless of the controller employed. It must be noted
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that, in this work, since the study is focused on the possibilities of reset control, a simple straight-road
scenario as well as a step-like input are considered for all the controllers studied. The proposed control
technique applied in a low level module could be combined with a more sophisticated technique at a
higher level module, which manage the trajectory generation.

To verify the advantages of the proposed method, the reset controllers are compared with two
other regulators, an LQR (linear-quadratic regulator), tuned by using Bryson’s rule [29] and a composite
nonlinear feedback controller (CNF). CNF is a composite nonlinear control technique that is comprised
of a linear and a nonlinear control law directly connected without any switching elements. It was first
conceived by Lin et al. in [30] for the tracking control of linear systems subject to saturation in the
actuation signal. This method leverages the fast responses of systems with small damping ratios and
small overshoots for systems with large damping ratios. The general idea of the method consists of
first designing a linear control law capable of yielding a closed-loop system with a small damping
ratio. The nonlinear feedback law aims to provide an increase in the damping ratio of the closed-loop
system as its output approaches the target reference to reduce the overshoot produced by the linear
part. The CNF controller used for comparison is adapted from [31], where it is used for path following.

CarSim (Version 2017, Mechanical Simulation Corporation, Ann Arbor, MI, USA) is employed to
validate the feasibility of the proposed reset controllers since it is deemed a standard in the automotive
industry. CarSim is used for analyzing vehicle dynamics and assessing performance and it is endowed
with a large database of vehicles and automotive elements. Due to its highly reliable models, CarSim
is widely used as seen in numerous publications [32–34].

This article is organized as follows. In Section 2, the model used for the lane change maneuver is
introduced. Then, Section 3 contains all the considerations taken into account for the design of the
controllers. After that, some validation results are included in Section 4 and, finally, the conclusions
are presented in Section 5.

2. Dynamic Model

2.1. Description of the Model

A dynamic bicycle model was employed to model a vehicle before a lane change in a highway.
A schematic depiction of the maneuver can be seen in Figure 1. The bicycle denomination has as its
source the fact that, as in a bicycle, the model works with the assumption that only two wheels are
present, one in the center of each of the two wheel axles. A representation of the bicycle model can be
seen in Figure 2.

Figure 1. Lane change maneuver.

A detailed description of the whole model and all the intermediate steps and assumptions made
to obtain the model can be found in [35]. The parameters included in the resulting linearized model
are: vehicle mass (M), yaw inertia (Iz), cornering stiffness of the front wheels (C f ), cornering stiffness
of the rear wheels (Cr), wheel angle (δ), distance from the front axle to C.G. (l f ) and distance from
the rear axle to C.G. (lr). The space-state representation of the model (Equation (1)) can be seen in
Equations (2) and (3):
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ẋ(t) = Ax(t) + Bu(t),
y(t) = Cx(t) + Du(t),

(1)
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where Y and ψ are the lateral position and orientation of the car, respectively. The coefficients aij are
defined as:
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Figure 2. Physical dimensions of the vehicle.

This model can be particularized for this case study, with a particular longitudinal speed (vx)
and the characteristic dimensions of the vehicle, as it can be seen in Table 1. The cornering stiffness
coefficient was identified with CarSim. As introduced in Section 1, CarSim is a software considered to
be a standard in the automotive industry, used by several manufacturers during the design stage of
their vehicles for validation purposes.

Table 1. Parametric variation of a Sedan-D 2017.

Parameter Description Empty Car Loaded Car Units

l f Distance from the front axle to C.G. 1.11 1.25 m
lr Distance from the rear axle to C.G. 1.67 1.53 m
M Mass of the vehicle 1370 1770 kg
Iz Momentum of Inertia of the vehicle 2315 2535 kg m2

Remark 1. As usual in most vehicle control studies, the justifications for using a linearized model are based on
the small-angle approximations (sin(δ) = tan(δ) = δ and cos(δ) = 1) in the force and momentum balances in
the dynamic model and are also justified by the linear approximation of ground adherence forces, given by the
cornering coefficients C f and Cr.
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2.2. Identification of the Model

The vehicle modeled in this work is a Sedan-D Class, a 4-door utility vehicle with 6-speed
automatic transmission, 150 kW engine and R17 215/55 tires.

In order to get the value for the cornering stiffness coefficient, a well-posed experiment for the
identification must be employed. In this case, an open-loop experiment is used. For this plant, the input
is the steering angle of both front wheels (δ) and the output corresponds to the lateral position of the
center of gravity of the vehicle. To increase the accuracy of the identification, a chirp input signal
with a low amplitude is selected (see Figure 3). The test is divided in three time intervals where the
frequency of the input signal is different for each interval. Thus, the frequency wi is used for the time
interval ti, being ωi = {1, 1.5, 2} rad/s and ti = {[0, 18.75), [18.75, 44), [44, 60)} s. The amplitude of the
signal is in the range of 10−3 radians to guarantee small angles of δ.

In this work, the identification of the cornering stiffness coefficients (C f and Cr) is performed
assuming that both coefficients are equivalent, the tires are equal and the traveling speed is kept
constant at 25 m/s. In these conditions, the value of the cornering stiffness obtained is 103,340 N/rad.
The responses of both the identified plant and CarSim are very similar, as it can be seen in Figure 4.
If the output of the plant is processed and the ramp of the response is removed, the variation of the
output signal around zero is obtained (see Figure 5). The difference between the model and CarSim
data exhibits a low error for this experiment as depicted in Figure 6.
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Figure 3. Input signal to CarSim.
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Figure 4. Open-loop responses of the CarSim plant and the identified model.
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Figure 5. Open-loop responses of the CarSim plant and the identified model without the ramp.
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Figure 6. Square mean error between the dynamic model and CarSim data versus cornering stiffness.

If the system is represented by its open-loop transfer function for 25 m/s, Equation (5) is obtained.
As it can be observed, the plant P(s) has two poles in the origin, and it also has two complex conjugate
poles and two complex conjugate zeros:

P(s) =
150.9s2 + 2501s + 3.774× 104

s4 + 26.43s3 + 216.5s2 . (5)

2.3. Model Uncertainty

Uncertainties must be taken into account due to the influence they have over the response of
the vehicle since they cannot be included in the model. Examples of these uncertainties are internal
parameters of the model that are not perfectly identified or changes in the total weight of the vehicle.

The inaccuracies in the identification process of the model parameters can cause behavioral
divergences between the model and the real vehicle. On the other hand, there could be some variability
in other parameters such as the cornering stiffness that it is not linear out of a determinate range of
slip angle values. This uncertainty can be reduced by performing lane changes where the slip angle is
small all the time.



Sensors 2018, 18, 2204 8 of 35

As far as the mass variation of the vehicle is concerned, there may be changes in weight and load
distribution on the vehicle, which would result in the center of gravity being displaced and, as a result,
variations in the behavior of the vehicle.

In this work, the vehicle is considered to be fully loaded when it has five passengers with a weight
of 80 kg for each of them. These masses cause the movement of the center of gravity towards the rear
of the vehicle, so l f and lr are modified. This also results in a change of moment of inertia. In Table 1,
the reader can check the difference between the car empty and loaded. Figures 7 and 8 depict how the
distribution of masses aboard the car influences the location of the center of gravity.
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Figure 7. Initial empty car.
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Figure 8. Initial car with payload.

2.4. External Disturbance

Some external conditions to the model are considered in order to evaluate a real situation. In this
work, the main external disturbance to take into account is the wind action on the lateral face of the
vehicle while it changes from a lane to the other.

To study the system in terms of disturbance rejection, the gain of the system (closed-loop controller
and plant) must be calculated when an external force input is applied to the plant. The system is
described in Figure 9 where D(t) is the force produced by the wind on the vehicle. In this case, it is
assumed that the additional force affects only to Ẏ of the state vector and it is perfectly applied in the
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center of gravity of the vehicle, so it does not produce any momentum. The system used to calculate the
incidence of the wind in the trajectory of the vehicle is P′(s), and the system is defined by Equation (1)
with a different B matrix, B = [ 0 0 1/M 0]>, which adapts this force input and transforms it
into acceleration.

Input

Complete plant

Lateral position

 of the vehicle

Controller

C(s) P(s)

P'(s) (s)

Y

YR

Figure 9. Closed-loop system with disturbance.

By using the superposition theorem, the total output including the disturbance effect can be seen
in Equation (6). For the system in Figure 9 to present a good disturbance rejection, |C(s)| � 1 and
|C(s)P(s)| � 1 must hold. In that case, the gain of YD(s)/D(s) is almost zero, and the effect of the
disturbance is negligible:

Y(s) = YR(s) + YD(s). (6)

If the action of the wind is a constant force, the system can be studied for low frequencies and
then the gain of the closed-loop system faced with disturbance can be calculated with Equation (7).
It represents the position deviation in meters for each unit of force in Newtons. Disturbance rejection
is considered due to the important effect that it could have on the controlled system, although it can be
effectively counteracted by a correct design of the controller C(s):∣∣∣∣YD(s)D(s)

∣∣∣∣ = ∣∣∣∣ P′(s)
1 + C(s)P(s)

∣∣∣∣
s=jω=0

. (7)

3. Control

This section provides a thorough description of all the particulars considered for the adopted
control approach. First, Section 3.1 is devoted to the introduction of all the concepts concerning reset
control, which is required to understand the development of the control solution proposed for the
maneuver at issue. Next, Section 3.2 presents the design requirements considered in order for the
end system to operate comfortably. One of these design objectives that involves limiting jerk and
acceleration required the vehicle model to be transformed into a double integrator plant by means
of a prefilter. Assuming a prefect prefiltering, Section 3.3 focuses on how the base linear controller
was obtained and the different reset techniques studied. Section 3.4 covers those details concerning
the design of the linear-quadratic regulator as well as the CNF controller for the maneuver under
discussion. Finally, in Section 3.5, the outcome of all the controllers is presented and compared.

3.1. Reset Control

As mentioned previously, the objective of this work is to explore the potential of reset control for a
lane change maneuver. This kind of controller behaves like a linear compensator until the reset action
takes place. The reset condition (the event that triggers the reset action) is usually the zero-crossing of
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the controller input, even though other choices are possible. The linear controller to which the reset
mechanism is applied is known as base linear controller (BLC):

ẋr(t) = Arx(t) + Bre(t), i f e(t) 6= 0,

xr(t+) = Aρx(t), i f e(t) = 0,

u(t) = Crxr(t) + Dre(t).

(8)

Equation (8) defines a reset controller with an input e(t) and an output u(t), where x(t) ∈ IRn is
the state vector, Ar, Br, Cr and Dr are the system matrices and Aρ is a diagonal matrix whose values
vary depending on whether a full or partial reset is applied. In a full reset controller, all of its states are
affected by the reset action, whereas, in a partial reset compensator, only a subset of them are affected.
A variable known as reset percentage and denoted as pr is used to adjust the magnitude of the reset
action so, for a full reset controller, Aρ is a matrix with (1− pr) in all its diagonal elements. On the other
hand, for a partial reset compensator, Aρ has as many diagonal elements equal to 1− pr as there are
reset states, having ones in all the diagonal remaining elements. Hereinafter, when the term full reset is
employed to designate a controller, it will refer to a compensator whose states are fully reset, that is to
say, with a pr equal to one, regardless of the number of states affected by the reset mechanism.

The first line in Equation (8) describes the continuous dynamics known as flow mode. The second
one defines the discrete or impulsive dynamics, known as jump mode, due to the fact that, whenever
the error crosses zero (e(t+k = 0)), the controller state jumps from x(t−k ) to x(t+k ) = (1− pr)x(t−k ).

As previously mentioned, typically, the condition which triggers the reset mechanism is the
zero-crossing of the controller input, and, while it is true that this type of compensator can outperform a
well-tuned linear controller, frequently, in control practice, the compensator implementation is done by
using a reset band. The use of a reset band may yield better results in terms of stability and performance
as noted in [25] for systems with time-delays. Chapter 5 of monograph [28] contains a complete and
detailed justification of how a reset band can contribute to enhancing reset control systems.

A general description of a reset control system with a reset band is given by the following
impulsive differential equation:

ẋr(t) = Arx(t) + Bre(t) (e(t), ė(t)), /∈ Bδ,

xr(t+) = Aρx(t), (e(t), ė(t)) ∈ Bδ,

u(t) = Crxr(t) + Dre(t),

(9)

where the reset surface Bδ is given by Bδ = {(x, y) ∈ IR2|(x = −δ ∧ y > 0) ∨ (x = δ ∧ y < 0)}, δ being
some non-negative real number. In this way, the controller states are reset every time its input enters
the reset band. Normally, the reset band surface will consist of two reset lines B+

δ and B−δ , as show in
Figure 10. A standard reset compensator is obtained if δ = 0.

A variable reset band implies that, at every reset instant, the band value may not be the same.
In general, the band value is calculated by a combination of the error and its derivative as seen in the
following equation:

h
de
dt

+ e(t) = 0, (10)

where h is a parameter that can be selected at will by the designer. This reset condition leads to the
following state-space arrangement of Equation (11):

ẋr(t) = Arx(t) + Bre(t), (e(t), ė(t)) /∈ Bv
h ,

xr(t+) = Aρx(t), (e(t), ė(t)) ∈ Bv
h ,

u(t) = Crxr(t) + Dre(t),

(11)
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where the variable reset band surface Bv
h is given by Bv

h = {(e(t), ė(t)) ∈ IR2|hė(t)+ e(t) = 0}. The reset
surface is a continuous function of the error signal, as it can be seen in Figure 11. If h = 0, a standard
compensator with reset action triggered by a zero-crossing is obtained.

B-
�

B+
�

-

e(t)
.

e(t)

Figure 10. Fixed reset band surface.

e(t)

e(t)
.

Figure 11. Variable reset band surface.

3.2. Design Requirements

Ride quality or ride comfort refers to the feeling that passengers get while the car is moving.
Acceleration and its time derivative, jerk, affect ride quality in a prominent manner so that high
values of acceleration or jerk can cause discomfort even during short periods of time. For that reason,
setting restrictions on magnitude of acceleration and jerk is strictly necessary to guarantee comfort to
the vehicle occupants. Limit values vary between different studies, but they fall within the same range.
According to [36], the vehicle acceleration must be limited to a maximum value of 2 m/s2 and the jerk
to 0.9 m/s3, both in absolute value.

Due to the aforementioned restrictions, the reset instants must be carefully overseen in order
not to surpass the limits of acceleration and jerk since, at those particular moments, the jumps in
the controller states are critical and may lead to a poor ride quality resulting in discomfort for the
passengers. For that reason, during the controller design, a method was conceived to directly restrict
the value of jerk every time a reset action occurs. Firstly, for this method to work, it was necessary to
convert the dynamic model into a double integrator. On account of this, a prefilter has to be employed
for a pole-zero cancellation. It must be noted that, by confining the jerk magnitude to finite values,
the resulting acceleration will also be bounded.
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The parametric uncertainty that there exists in every vehicle, due to the wide variety of different
situations they encounter, makes the use of a single prefilter unfeasible for every possible situation.
The way through which the parametric variation affects the model was studied to help to devise
the best alternative for prefiltering the plant. Every possible variation of the model parameters was
considered to be restricted to the values in Table 2. In order for the vehicle to be fully operational,
for any given longitudinal velocity, a prefilter would have to be obtained and included in a lookup
table. To reduce the size of this table, instead of having to calculate a prefilter for one particular velocity,
each and every one of them will be calculated to be operational for a small interval of velocities ranging
1 m/s. Therefore, if the vehicle accelerates while changing lanes and exceeds its range of operation,
the prefilter will be replaced by the most convenient one in terms of velocity. In any case, to exemplify
the method, the main lane change maneuver that is considered in Section 4 was chosen to operate at
25 m/s. The longitudinal velocity of the vehicle is considered to be kept constant during the maneuver
by a different control loop whose study is out of the scope of this paper.

Table 2. Variation of the model parameters.

Parameter Minimum Value Maximum Value Units

l f 1.11 1.25 m
lr 1.53 1.67 m
M 1370 1770 kg
Iz 2315 2535 kg m2

C f , Cr 88,000 112,000 N/rad

A random parametric sweep, using the values from Table 2, was performed to obtain a realistic
set of vehicle plants that could be used to obtain a fine prefilter. Since a pole/zero is deemed to be
adequately canceled if the zero/pole employed for its elimination is located within a circle with a radius
equivalent to the 20% of the total distance existent from the origin of coordinates to the zero/pole,
the best way to ensure a good cancellation of all the possible plants is to place the zero/poles of the
prefilter at a point equivalent to the arithmetic mean of the cloud of points obtained by the parametric
sweep. The gain of the prefilter is obtained through the same way, its value being the inverse of
the arithmetic mean of all the different plant gains. As an example, Figure 12 has a depiction of the
zero-pole positions (black dots) and the surrounding areas of cancellation for a randomly generated
parametric sweep for a longitudinal velocity ranging from 24.5 to 25.5 m/s.

Even though it is true that the core of the validation section is focused on a lane change at a
constant velocity, in order to demonstrate the feasibility of the method for a speed changing maneuver,
more prefilters are fixed. These are included in Table 3.

Using the final base linear controller, with the following realization a1s+a0
s2+a3s+a2 and whose design

is explained in Section 3.3, the randomly generated plants, prefiltered by using the arithmetic mean
of the scattered clouds of zero-poles and gains of the plant, are compared to the system resulting
from combining the controller with a double integrator. In this way, the effectiveness of the prefilter
can be graphically confirmed in terms of the output of the system, the lateral position of the vehicle.
After inspecting the outcome presented in Figure 13, it can be concluded that assuming a zero-pole
cancellation for a particular velocity is convenient. Figure 14 depicts the equivalent system of a perfect
zero-pole cancellation.



Sensors 2018, 18, 2204 13 of 35

Table 3. Prefilters.

Interval of Velocities Prefilter

[24.5, 25.5) 0.0078272 s2+23.27s+164.5
s2+14.68s+228.9

[25.5, 26.5) 0.0078364 s2+22.38s+154.7
s2+14.13s+229

[26.5, 27.5) 0.0078278 s2+21.54s+145.6
s2+13.57s+228.6

[27.5, 28.5) 0.007813 s2+20.81s+138.5
s2+13.12s+229

[28.5, 29.5) 0.0077736 s2+20.16s+132.3
s2+12.7s+229.5

[29.5, 30.5) 0.0077933 s2+19.43s+125.2
s2+12.23s+228.8

Figure 12. Pole-zero map for a randomly generated parametric sweep of the vehicle model.

Figure 13. Comparison between the controller loops of the prefiltered and the ideal plant.
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k (s2 + c s + d)

s2 + a s + b k (s2 + c s + d)
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1

s2

Figure 14. Equivalence of a perfectly prefiltered system.

As stated before, by using a double integrator, it is possible to limit the jerk at the reset instants.
This is achieved by conveniently reorganizing the states of the resultant system, which consists of
a controller and a double integrator. The new distribution of the system states allows for the reset
action to be directly applied to the jerk state in order not to exceed the comfort boundary. This new
arrangement of the system will be hereinafter referred to as canonical form. Equation (12) shows
its state-space representation and it is equivalent to Ẋ = AX + Bu. As it can be seen, the system
has been changed to one whose states are the lateral position and its time derivatives (x1 = position,
x2 = velocity, x3 = acceleration and x4 = jerk):

ẋ1

ẋ2

ẋ3

ẋ4

 =


0 1 0 0
0 0 1 0
0 0 0 1
−a0 −a1 −a2 −a3




x1

x2

x3

x4

+


0
0
0
1

 re f . (12)

The fact needs to be taken into consideration that, in order for the canonical form to be equivalent
to the system in Figure 14, the initial condition of the reset integrator has to be adapted to obtain a
response equal to that of the original system. Figure 15 shows a representation of the canonical form
where it can be appreciated that the reset action is directly applied to the jerk state, as reported above.

x1x4 x31
s

a3

1
s

a2

a1

a0

Ref

Reset

Condition
x0

x(tk
+)

1
s

1
s

x2

Initial condition = ref*a1

Figure 15. Canonical form.

The comfort limit imposes the maximum variation of the reset state in order to not impoverish
ride quality. If after resetting the state, x4(t+k ) exceeds the maximum allowed jerk, pr will be limited
as indicated in Equation (13). As far as acceleration is concerned, although it is not directly limited,
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by obtaining a good base linear controller, with a sufficiently smooth response, the vehicle will
operate far from the comfort boundaries. Therefore, whenever a reset action occurs, only jerk but
not acceleration will be at risk of exceeding the comfort limits. Likewise, yaw rate is not directly
limited due to the fact that the imposed comfort requirements combined with limitations on rise time,
settling time and overshoot will confine the values of this magnitude in a safe range of operation.
The results in the following sections confirm that this approach gives rise in practice to acceptable
ranges of acceleration and yaw rate:{

pr = 1− (0.9/x4(t−k )), x4(t+k ) > 0.9,

pr = 1 + (0.9/x4(t−k )), x4(t+k ) < −0.9.
(13)

Other design requirements are overshoot, rise time, settling time and disturbance rejection. Lateral
position is allowed to reach a maximum equal to the width lane (3.5 m) plus an extra 0.75 m that
accounts for an overshoot of 21.45%. Settling time (2%) and rise time have been limited to 40 s and 5 s.
The rise time requirement is imposed indirectly by the restrictive acceleration and jerk requirements.
It must be noted that both acceleration and jerk requirements tend to make the system slower, whereas
the rise time limitation imposes a limit in order for the system not to be too slow. By getting to
a compromise between them, the system is fast enough without producing discomfort.

∣∣∣YD(s)
D(s)

∣∣∣ is
restricted to a maximum of 0.005 m/N all along the frequency domain. Although the controller
designed is not intended to work as a lane keeping compensator, guaranteeing a certain degree of
disturbance rejection was deemed necessary.

3.3. Design of the Reset Controllers

Due to the fact that there are several restrictive design requirements that have to be met, the base
linear controller is obtained by means of a genetic algorithm. This is a method for solving optimization
problems based on a natural selection process that imitates biological evolution. The ideas involved in
them were originally developed by Holland [37].

In general, a typical genetic algorithm may comprise the following elements [38]:

• a population of guesses of the solution to the problem,
• a way of assessing how good or bad the individual solutions within the population are,
• a method for mixing fragments of the better solutions in order to form, on average, better

solutions, and
• a mutator operator is employed for the genetic algorithm not to result in a permanent loss of

diversity within the solutions.

In the case at issue, each member of the population consists of four parameters or genes which
are the coefficients of the controller (a0, a1, a2 and a3) as in Equation (14). This controller structure
was chosen since it is the simplest realization to which a reset mechanism could be applied without
directly resetting the actuation signal, which would produce jumps in the acceleration and, as a result,
extreme jerk. For that reason, a second pole was added to the minimum resettable realization:

C(s) =
a1s + a0

s2 + a3s + a2
. (14)

In this way, each individual represents a controller. In order to determine the suitability of
each one, a fitness function is employed. This expression combines performance information of the
system formed by combining each individual controller with the double integrator plant. Acceleration,
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jerk, overshoot, settling time, rise time and disturbance rejection are included in the fitness function.
Each one of them is normalized and then weighted as it is reflected in the following equation:

FFGA = w1

max
∣∣∣YD
D

∣∣∣
0.005

+ w2
maxacel

2
+ w3

maxjerk

0.9
+ w4

OS
21.45

+ w5
ts

40
+ w6

tr

5
, (15)

where maxacel is the maximum magnitude of lateral acceleration, maxjerk is the maximum magnitude of

lateral jerk, OS overshoot, tr rise time, ts settling time and max
∣∣∣YD
D

∣∣∣ the maximum gain of the referred
transfer function. wi is the weight of each variable, all of them are calculated assuming a perfect
pole-zero cancellation so the double integrator plant is used in the genetic algorithm. Therefore, the
base linear controller only have to be computed once and it can be used for other velocities due to the
homogenizing effect of the prefilter. To compute max

∣∣∣YD
D

∣∣∣, P′(s) in Equation (7) is calculated for the
vehicle without any additional load and traveling at 25 m/s.

The implementation is done by using Matlab Optimization Toolbox and consists of the
following steps:

1. A populations of size 50 is randomly initialized within the lower and upper bounds of a0, a1, a2

and a3.
2. Each member of the current population is scored by computing its fitness value from

Equation (15).
3. Five percent of the individuals with the lowest fitness are chosen as elite and directly pass to the

next generation. These are known as elite children.
4. Eighty percent of the remaining 95% of the descendant generation is obtained by combining the

genes of a pair of parents. These are known as crossover children.
5. The rest of the specimens to complete the new generation are created by introducing random

changes, or mutations, to a single parent. These are known as mutation children.

In each iteration, a different individual of the population is simulated and the parameters of OS,
tr and ts are obtained. At the same time, the acceleration and jerk values are calculated as well as
the disturbance rejection of the system. Next, all the values are introduced in the fitness function to
evaluate the candidate. The computational cost of each iteration obtained has an average of 150 ms
and the stopping criterion selected is the function tolerance, whereby the value of fitness function
decreases less than 10−6. In addition, the maximum number of iterations is set to 100 × number of
variable = 400.

A base linear controller does not present the best attainable features for a lineal controller, nor is
it conceived to have them. OS and ts are assigned a fewer weight (w4 and w5) in the fitting function
since there is room for the reset action to correct the maneuver performance back to operational range.
Equation (16) contains the base linear controller found by the genetic algorithm. The system formed
by this regulator and the double integrator plant have an overall response that adjusts to the comfort
limits, rise time and disturbance rejection. By contrast, ts and OS maximum allowed thresholds
are exceeded:

C(s)BLC =
0.2571s + 0.0683

s2 + 1.8379s + 1.4872
. (16)

To conclude whether the usage of reset control is convenient and advantageous over using linear
regulation, a comparison must be established under fair conditions. This means that the reset controller
must be compared with a linear one presenting good design characteristics. The problem is that finding
a favorable linear regulator is not feasible because disturbance rejection imposes a maximum on
slowness of the system, which is counterproductive for OS, acceleration and jerk. Therefore, getting a
linear controller in compliance with all the design requirements is not possible since Equation (17) [39]
holds for any linear controller similar in form as the one described in Equation (14) in a closed-loop
with a double integrator plant, which fit the disturbance rejection specification. As a consequence, if the
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system conformed by the controller and the double integrator plant presents a positive or negative
error, it will have to compensate for it by changing the error sign to reduce the cumulative term.
Figure 16 shows graphically the implications of that limitation. Area A1 is positive; thus, a second
area with the opposite sign is required at least to decrease

∫
e(t). Since A2 is bigger than A1, the error

switches signs once again. These fluctuations continue until
∫

e(t) = 0. Since a reset system is not
restricted by Equation (17) it can exhibit a time response as the one represented in Figure 17 where the
sum of the areas is greater than zero: ∫ ∞

0
e(t)dt = 0. (17)

In addition to the previous limitation on the time domain, there are also restrictions on the
frequency domain. Particularly, a linear system with a relative degree of its open-loop transfer function
equal to or greater than two and none of its poles in the right-half plane, as it is the case for a double
integrator plant, is subject to the following expression known as Bode’s Integral Formula [40]:∫ ∞

0
log |S(jω)|dω = 0, (18)

where S(jω) is the sensitivity function. This equation shows that, if sensitivity is suppressed at
some frequency range, it is increased at some other range. This is known as the waterbed effect.
Figure 18 shows a representation of the sensitivity function for different frequencies. As it can be seen,
both colored areas must be equal to satisfy Equation (18). It must be noted that the upper area will
equalize the lower one when w tend to infinity. Figure 19 shows the sensitivity function of a reset
system. As it can be seen, the reset system is not restricted by Equation (18).
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Figure 16. Error of a system formed by a linear controller with a double integrator plant.
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Figure 17. Error of a system formed by a reset controller with a double integrator plant.

Ai=0

Figure 18. Sensitivity function of a linear system.

Ai<0

A

Figure 19. Sensitivity function of a reset system.

Since it is not possible to obtain a linear regulator that satisfies all the design criteria, all that can be
expected is to fit the requirements separately. For instance, a controller with the following coefficients
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a0 = 0.0001, a1 = 0.2006, a2 = 0.8169 and a3 = 1.2624 produces a response with adequate values
of jerk, acceleration, OS, ts, tr but slow dynamics, leading to a poor robustness against disturbances.
Due to the slow dynamics imposed by the controller, the system takes a large amount of time to take∫

e(t) to zero.
In contrast to a linear regulator, a system endowed with a reset mechanism is not subjected to the

fundamental linear limitations. In a reset controller, it is possible to adjust the reset percentage and
strategy to yield a lane change meeting all the design specifications. Three different reset strategies are
compared, which are zero-crossing of the reset action, fixed-reset band and variable reset band. As far
as reset percentage is concerned, full reset (pr = 0) is compared to an error-minimization method
introduced in [27]. At every reset instant, the optimal pr in terms of ISE minimization is calculated,
which is, in turn, based on H2-norm minimization. For a function E ∈ R(s), the H2-norm is defined as

||E||2 =

√
1

2π

∫ ∞

−∞
|E(jω)|2dω. (19)

Considering that, at any reset instant, the error is given by

Ek(s) = C(sI − A)−1x(t+k ), (20)

where x(t+k ) = (1− pr)x(tk), it can be concluded that its H2-norm is

||Ek||22 = x(t+k )
>Lx(t+k ), (21)

where L is the observability Gramian matrix, which is obtained from the following Lyapunov equation

A>L + LA + C>C = 0. (22)

The previous Lyapunov equation has a unique solution if the eigenvalues α1, α2, ..., αn of A> and
β1, β2, ..., βn of A satisfy that αi + β j 6= 0 for all pairs (i, j). If that condition is violated, there is not
solution to the equation or it is not unique. For that reason, the system cannot use a non-autonomous
realization to calculate the optimal pr for a step input since the resulting A matrix would have one
pole at the origin caused by the step input. Consequently, an autonomous realization of the system is
required. By adapting the canonical form described in Equation (12) and Figure 15, an autonomous
equivalent system with Equations (23) and (24) can be easily obtained. Figure 20 shows a depiction of
the system where no input is present:

ẋ1

ẋ2

ẋ3

ẋ4

 =


0 1 0 0
0 0 1 0
0 0 0 1
−a0 −a1 −a2 −a3




x1

x2

x3

x4

 , (23)

y =
[

1 0 0 0
] 

x1

x2

x3

x4

 . (24)
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Figure 20. Canonical form of the autonomous system.

Once L is found and Equation (21) is also solved, the exact pr, which minimizes the ISE, can be
calculated. In order to calculate the optimal pr analytically, Equation (21) is rearranged as shown in
Equation (25). Equation (26) can be readily obtained from the previous equivalences:

ISE = ||Ek||22 =
[

x1(t+k ) x2(t+k ) x3(t+k ) x4(t+k )
] 

L11 L12 L13 L14

L21 L22 L23 L24

L31 L32 L33 L34

L41 L42 L43 L44




x1(t+k )
x2(t+k )
x3(t+k )
x4(t+k )


=
[

u> x4(t+k )
] [ L1 L2

L>2 L44

] [
u

x4(t+k )

]
,

(25)

ISE = u>L1u + 2u>L2x4(t+k ) + L44x2
4(t

+
k ) = αx2

4(t
+
k ) + βx4(t+k ) + γ, (26)

where α = L44, β = 2u>L2 and γ = u>L1u, all of them numbers. Therefore, as it can be seen, the
integral quadratic error is equal to a function depending on x4. The value of x4 that minimizes the ISE
is in Equation (27):

x4(t+k ) =
−β

2α
=
−u>L2

L44
=

x1(t+k )L14 + x2(t+k )L24 + x3(t+k )L34

L44
. (27)

Replacing x4(t+k ) = (1 − pr)x4(t−k ) and knowing that x1, x2 and x3 are not reset leads to
Equation (28) where the optimal pr can be seen:

pr =
x1(t−k )L14 + x2(t−k )L24 + x3(t−k )L34 + x4(t−k )L44

x4(t−k )L44
. (28)

The previous equation is computed at every consecutive reset instant resulting in an optimal
pr sequence in terms of ISE. Combining this error minimization method with the canonical form
guarantees the compliance of all the design requirements while reducing the error and enhancing the
system output as a result. Equation (29) shows the computed value of L for a system formed by the
controller introduced in Equation (16) and a double integrator plant:

L =


6.2634 16.4957 16.5091 7.3234

16.4957 100.0142 122.0803 64.1608
16.5091 122.0803 153.1333 82.0887
7.3234 64.1608 82.0887 44.6647

 . (29)
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Whenever the reset action is triggered, Equation (30) is used to calculate the optimal pr:

pr =
x1(t−k )7.3234 + x2(t−k )64.1608 + x3(t−k )82.0887 + x4(t−k )44.6647

x4(t−k )44.6647
, (30)

where x1(t−k ), x2(t−k ), x3(t−k ) and x4(t−k ) are the lateral position and its time derivatives (x1 = position,
x2 = velocity, x3 = acceleration and x4 = jerk) just before the reset action is applied.

3.4. LQR and CNF Controllers

As stated in the introductory section, the designed reset controllers were compared with an LQR
and a CNF regulator. The LQR works on the basis of a perfect pole-zero cancellation hence the double
integrator plant was considered. Two other integrators are connected to the prefiltered plant to create a
system with four states being the lateral position and its time derivatives (x1 = position, x2 = velocity,
x3 = acceleration and x4 = jerk). In this way, by applying Bryson’s law, the maximum values of
the states can be enclosed to match the design specifications. The final arrangement of the system is
equivalent to the one described in Figure 15 where a0, a1, a2 and a3 are now replaced by k1, k2, k3 and
k4. Equation (31) defines the transfer function of the closed-loop system whose structure is identical to
the system formed by the base linear controller and the double integrator plant:

LQRCL =
k2s + k1

s4 + k4s3 + k3s2 + k2s + k1
. (31)

An LQR cannot produce a controller capable of meeting the design specifications all at once due
to the fundamental limitations that affect linear systems. Therefore, the controller found by using this
method (K = [0.00026 0.2619 0.8183 1.2793]) was adjusted to fulfill as many design requirements as
possible. Acceleration, jerk, settling time, rise time and overshoot are restricted to their design ranges,
whereas disturbance rejection exceeds the maximum allowed by far. This can be easily derived by
computing the closed-loop poles and zeros. There is one small zero at −k1/k2 canceled by a small
pole close to the origin. Since the LQR step response is restricted by the balance of error areas in
Figure 16, the only way for an LQR to approach the step response of the reset control is to produce
a certain type of slow hidden response, after the first zero-crossing, which is the main drawback of
linear quadratic control.

Regarding the CNF regulator, it is based on the work developed in [31]. This paper investigated the
use of CNF for the path following control problem for four-wheel independently actuated autonomous
ground vehicles. Since the case study at issue differs from the one in [31], some adaptations had
to be made. First, due to the fact that the control approach proposed in this work is conceived to
be operational in a straight road section, the curvature term of Equation (9) in [31] is zero. Second,
instead of considering two control signals as [31], this paper considers only δ.

Figure 21 contains a schematic depiction of the CNF regulator coupled with the plant of the
vehicle. There are two distinguishable zones. A block marked as uL + uN which will be referred,
hereinafter, as the internal loop and the rest of the blocks, excluding the plant, which will be referred
as the external loop.
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Figure 21. Schematic depiction of the CNF controller.

As mentioned in Section 1, CNF is a composite nonlinear control technique consisting of a linear
and a nonlinear control law directly connected. Both the lineal and the nonlinear feedback laws are
represented in Equations (32) and (33), respectively:

uL = F

[
ψ

vy

]
+ Gr + Gr ṙ, (32)

uN = ρ(r, x)B>P

[[
ψ

vy

]
− Ḡr

]
, (33)

where F, G, Gr, ρ and P are defined in [31]. r is equal to ψ̇d, this being the desired yaw rate and it is
equal to −k2(ψ + k1y). vy is not equivalent to dy

dt , which is, however, equal to vx sin(ψ) + vy cos(ψ).
To simplify the comparison and facilitate the design, it is assumed that vy is measured and Gr = 0.

The total control actuation signal is the result of adding the linear and the nonlinear parts as
showed in Equation (34). This control law is particularized for a vehicle traveling at a longitudinal
velocity of 25 m/s and without extra loads:

u = −1.6295ψ + 0.6050vy + 2.0699ψ̇d − 3e−100|ψ̇d−ψ|
[

0.5923 0.7235
] [[ ψ

vy

]
−
[

1
−0.4247

]
ψ̇d

]
. (34)

As it can be seen in Figure 22, the yaw rate is perfectly tracked. Since the internal loop
(u = uL + uN) presents such fast dynamics, the whole system depicted in Figure 21 can be
approximated by the open-loop transfer function in Equation (35):

CNFOL =
k1k2(vx + cs)

s2 + k2s
, (35)

where vx is the longitudinal velocity of the vehicle and c can be obtained from the following equation:[
1
c

]
= −(A + BF)−1BG. (36)

From the previous transfer function, k1 and k2 can be readily tuned to obtain a convenient response
in an approximate manner (k1 = 0.0175 and k2 = 0.4968). The complete system is simulated to test
the performance of both internal and external loops connected together. The result of this simulation
presents some issues concerning acceleration and jerk at the beginning of the maneuver. As soon as
the vehicle initiates the maneuver, the acceleration produced by the control system is steep enough to
produce unbounded jerk.

Acceleration and jerk can be restricted to its optimal range, in terms of comfort by filtering the error
signal to attenuate them at the beginning of the maneuver. From Equation (35), this filtering would be
achieved by means of using an intermediate first-order filter that is represented in Equation (37) by
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k3
S+k3

. This method has some disadvantages regarding the dynamics of the resulting system. Ideally,
k3 should be chosen to filter the initial peaks and to have an effect as little as possible on the CNF setup.
In order for the filter to accommodate jerk to the comfort zone, its value would have to be so small
that the resulting system would have a slow pole producing, as a result, high values of settling and
rise time. k3 was finally selected at 0.35 as an intermediate solution. Even though it is true that the
resulting system does not meet the comfort requirements, it at least produces bounded values of jerk:

CNF =
k3

s + k3

k1k2(vx + cs)
s2 + k2s

. (37)
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Figure 22. ψ̇d and ψ̇.

3.5. Simulation Results

This section is dedicated to the comparison of all the reset strategies mentioned in the previous
section as well as two other controllers based on linear-quadratic control and composite nonlinear
feedback control. For the following simulations, a perfect pole-zero cancellation is assumed and,
therefore, neither prefilters nor complete plants are used but the double integrator. This prerequisite
holds for all the reset controllers and the linear-quadratic regulator. The CNF regulator, however,
was designed for the complete model so the system is not guaranteed to operate correctly for any
conditions differing from those taking into account in the design of the controller.

Firstly, results from the reset controllers are compared separately to determine which of the reset
strategies present better responses. Figure 23 shows the lateral position, velocity, acceleration and
jerk of the lane change maneuver for each of the six reset regulators compared together with the base
linear controller. For the fixed reset band controllers, the band is set to 0.31 and, for the variable reset
band regulators, the band is set to 1.27. Both values were selected by design convenience based on
simulation results.

In view of the information collected in Table 4 and the results depicted in Figure 23, it can be
firmly concluded that those controllers that employ the ISE minimization method outperform those
endowed with a full reset action, regardless of the reset strategy. Among the regulators using the
minimization technique, it is difficult to discern which one is the best since two of them present very
similar responses (fixed and variable reset band controllers).
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Table 4. Simulation characteristics of the controllers.

Controller ISE
∫

e(t) tr (s) ts2% (s) 0S (%)

Base linear controller 66.768 0 3.704 57.365 58.088
Zero-crossing and full reset 69.169 −0.274 3.704 57.937 59.793
Fixed reset band and full reset 73.071 −1.213 3.697 57.721 63.309
Variable reset band and full reset 72.248 −0.711 3.699 58.002 62.191
Zero-crossing and optimal reset 35.902 9.786 3.703 17.975 22.215
Fixed reset band and optimal reset 34.009 12.257 3.844 9.266 2.425
Variable reset band and optimal reset 34.003 12.097 3.814 9.866 3.208
Linear-quadratic regulator 31.913 0 3.582 10.389 8.157
Composite nonlinear feedback controller 47.595 15.766 4.911 14.825 9.721
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Figure 23. Position, velocity, acceleration and jerk for different reset controllers in simulation.

Two of the reset controllers meet all the design criteria so only them are compared together with
the linear-quadratic and the CNF regulators in Figure 24. As stated in Section 3.4, none of the two
alternative controllers fully satisfy all the design specifications. The linear-quadratic regulator lacks
an adequate disturbance rejection ratio surpassing by far the design criterion set at max

∣∣∣YD
D

∣∣∣ = 0.005.
The main problem with this controller is the hidden slow dynamics commented in Section 3.4. The main
reason for this problem is that LQR (as any other linear control) is affected by the error area restriction
in Figure 16, which only nonlinear controllers are able to overcome. The CNF controller exhibits
good performance, but, in the form presented in [31], it is restricted to the internal loop (yaw rate
control), which has an excellent performance, as seen in Figure 22. The solution proposed in [31] for
the external loop, based on gains k1 and k2, is purely linear and does not exploit the full potentials on
CNF. Another advantage of [31] is the use of a nested cascade structure that takes full advantage of
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gyroscope yaw rate measurements. Future work could consider an extension of [31] that also includes
CNF in the external loop.

0 5 10 15 20 25 30 35 40
Time (seconds)

0

0.5

1

1.5

2

2.5

3

3.5

4

La
te

ra
l p

os
iti

on
 (m

)

Fixed reset band and optimal reset
Variable reset band and optimal reset
LQR
CNF

0 5 10 15 20 25 30 35 40
Time (seconds)

-0.2

0

0.2

0.4

0.6

0.8

1

La
te

ra
l v

el
oc

ity
 (m

/s
)

Fixed reset band and optimal reset
Variable reset band and optimal reset
LQR
CNF

0 5 10 15 20 25 30 35 40
Time (seconds)

-0.4

-0.3

-0.2

-0.1

0

0.1

0.2

0.3

0.4

0.5

La
te

ra
l a

cc
el

er
at

io
n 

(m
/s

2 )

Fixed reset band and optimal reset
Variable reset band and optimal reset
LQR
CNF

0 5 10 15 20 25 30 35 40
Time (seconds)

-4

-2

0

2

4

6

8
La

te
ra

l j
er

k 
(m

/s
3 )

Base linear controller
Variable reset band and optimal reset
LQR
CNF

Figure 24. Position, velocity, acceleration and jerk for the following controllers: variable reset band and
optimal reset, fixed reset band and optimal reset, linear-quadratic and CNF.

Even though this work focuses on a lane change from a control perspective at low level, it may be
of interest to test the responses of the reset controllers for a variable input just as it would be in a more
realistic scenario. Only those reset strategies meeting all the design criteria are tested for a variable
input. In this case, a sine wave of period 40 s is chosen as the input. In Figure 25, it can be seen how
a variable reset band controller can adapt better to a varying input as opposed to a fixed reset band
controller that is designed to work with a particular input reference.

As mentioned previously, in addition to constraints on the time domain, linear systems also
exhibit restrictions on the frequency domain. Endowing a linear controller with a reset strategy may
redound to improvements on the frequency response of the system. It can be concluded from Figure 26
that using a variable reset band with optimal reset yields a controller with an enhanced frequency
response. The base linear controller presents a maximum around 0.26 rad/s, whereas the reset
controller attenuates that peak. Computing the sum of the areas of the estimated sensitivity function
in the reset case produces a value different from zero −0.0550, the positive area being equivalent to
34.42% of the negative area. This is due to the fact that the BLC is restricted by Equation (18) while the
reset controller is not, for this reason a suppression of the sensitivity function at some frequency range
does not necessarily imply an increment in other frequencies.
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Figure 25. Variable input.
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Figure 26. Sensitivity functions.

4. Validation

In this section, the experiments described in Section 3.5 are performed with the help of CarSim
Simulation Software. A closed-loop system is proposed based on the system depicted in Figure 14,
but, instead of using a double integrator, this plant is replaced by CarSim.

The system is tested for a longitudinal speed of 25 m/s and using the prefilter represented in
Table 3. The control arrangement selected is based on the canonical system shown in Figure 20 and
controller (16) is used. As it was mentioned before, this canonical form is selected because the jerk of
the vehicle can be limited.

The system indicated in Figure 27 results from combining controller, prefilter and real plant
(CarSim) as shown in the control scheme of Figure 20. This is the setup used to perform the experiments
in validation. It must be taken into account that the real car, CarSim, is not perfectly prefiltered as it
occurs in the theoretical approach, Figure 14 of Section 3.2. There exist uncertainties and differences
between model and real car and, therefore, the plant is slightly different to a double integrator.

The states of the system are x1 = position, x2 = velocity, x3 = acceleration, x4 = jerk. As it can
be seen, the states x1 and x2 are taken from CarSim software directly instead of getting them from
integrator blocks. The states x3 and x4 are part of the controller, being this last state, x4, the selected
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state to be reset to a different value every time the reset condition is reached, as it was explained in
Section 3.1.

x1

x4

x2

x31
s

a3

1
s

a2

a1

a0

k (s2 + c s + d)

s2 + a s + b

CarSim

 

Ref

prefilter

Reset

Condition
x0

x(tk)
+

Initial condition = ref*a1

Figure 27. System used for validation.

4.1. Comparison of the Control Strategies

Firstly, a comparison of all the reset control strategies studied in Section 3 is presented. As it can
be observed in Figure 28 and Table 5, the response of the car is very similar to the results presented in
Section 3.5 for the different experiments. Some differences exist between the response of the system
obtained with CarSim and the response obtained in simulation (Figure 23) because a real plant with
a prefilter is introduced. Anyway, the controller designed for a double integrator plant behaves
correctly in CarSim, obtaining a reasonable response.
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Figure 28. Position, velocity, acceleration and jerk for different reset strategies in CarSim.
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Table 5. Validation characteristics of the controllers.

Controller ISE
∫

e(t) tr (s) ts2% (s) 0S (%)

Base linear controller 73.185 −0.400 3.704 72.509 62.234
Zero-crossing and full reset 76.041 −0.724 3.699 73.465 64.290
Fixed reset band and full reset 80.814 −1.294 3.695 73.105 67.679
Variable reset band and full reset 79.151 −1.105 3.691 73.708 66.753
Zero-crossing and optimal reset 38.598 9.823 3.725 19.117 25.397
Fixed reset band and optimal reset 36.130 12.452 3.808 24.452 6.340
Variable reset band and optimal reset 36.087 11.964 3.799 13.749 6.866

The controller must satisfy high performance specifications such as short rise time, short settling
time, low values of acceleration and jerk in lateral displacement and low overshoot. Due to these
restrictive specifications, it was concluded that the best controller is the one endowed with a variable
band and optimal reset percentage, which meets all the specifications required by design.

Selecting the controller with optimal reset and variable band, other variables of the system can
be shown, as seen in Figure 29. In this case, the reset action is applied when the condition of the
variable band, with h = 1.27, is reached. The state x4 of the controller is reset, satisfying the jerk limit
of 0.9 m/s3. It must be noted that the real jerk of the vehicle is slightly different to the x4 state of the
controller, contrary to what happens in the theoretical approach.

0 10 20 30 40 50 60 70 80
Time (seconds)

-1

-0.5

0

0.5

1

1.5

2

2.5

3

3.5
Position error (m)
x4 state value

0 10 20 30 40 50 60 70 80
Time (seconds)

-0.015

-0.01

-0.005

0

0.005

0.01

0.015

0.02

0.025

0.03

0.035
Vehicle yaw (rad)
Vehicle yaw rate (rad/s)

0 10 20 30 40 50 60 70 80
Time (seconds)

-2.5

-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

2.5 ×10-3

Steer L1 wheel (rad)
Steer L2 wheel (rad)

0 10 20 30 40 50 60 70 80
Time (seconds)

-2.5

-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

2.5 ×10-3

α L1 wheel (rad)
α L2 wheel (rad)
α R1 wheel (rad)
α R2 wheel (rad)

Figure 29. Detail of the experiment for the controller with variable band and optimal reset in CarSim.
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The system input is the steering angle of the front wheels. In this case, the reset action does not
require excessive effort in the actuator, keeping the values in a low range. Since the slip angles are also
restricted to small absolute values, the assumptions made in the theoretical approach are confirmed.

As it was said in Section 3.2, a linear controller cannot satisfy all the design requirements at the
same time. If the controller is designed to be robust against disturbances, the requirements of low
acceleration and jerk cannot be satisfied. In addition, if it is designed with respect to the comfort limits,
it can satisfy other requirements but not all of them. Reset control allows for designing a robust system
at the same time that high performance as well as low overshoot is achieved.

The controller with variable band and optimal reset is used in the next experiments where the
controller will be tested against parametric uncertainties and external disturbances.

4.2. Validation of the Prefilters for Changing Longitudinal Velocity

Although the previous experiments were performed for a constant longitudinal velocity,
the maneuver can be done with a varying longitudinal speed. As the prefilter depends on the
velocity of the vehicle, this must be exchanged for each longitudinal velocity range. The transfer
functions employed are shown in Table 3, which have been calculated beforehand for the different
speed ranges considered.

In this experiment, a lane change maneuver is performed with an initial speed of 88.2 km/h
(24.5 m/s) with a uniform increase of velocity to a final value of 109.8 km/h (30.5 m/s), as it is shown
in Figure 30. The results obtained for the lane change maneuver with varying velocity are depicted in
Figure 31. Based on what has been observed, it can be concluded that switching the prefilter does not
affect the performance of the system and the prefiltered plant behaves as a double integrator, as it was
explained in Section 3.2.
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Figure 30. Variation of the longitudinal velocity in Carsim.
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Figure 31. Validation of the controller with variable band and optimal reset for varying longitudinal
velocity (88.2–109.8 km/h) in CarSim.

4.3. Response of the System for Parametric Uncertainties in the Model

The real car can present some differences with the identified model. The parametric uncertainties
inherent to the identification process or other kind of uncertainties may exist, such as changes in the
load of the car or its distribution. This section shows how the car behaves when it is loaded with more
weight, in particular, five passengers, as it was described in Section 2.3.

In this case, a car traveling at a speed of 90 km/h is selected and the passengers are distributed
as it is shown in Figure 8. In Figure 32, the comparison between the response (position, speed,
acceleration and jerk) of an empty and a loaded vehicle can be seen. Figure 33 shows other parameters.
The response of the loaded car is very similar to the response of the empty car, and this is mainly
due to the preciseness of the calculated prefilter, which reduces the influence of variability in the
model parameters.
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Figure 32. Validation of the controller with variable band and optimal reset with payload at 90 km/h
in CarSim.
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Figure 33. Detail of the experiments for the controller with variable band and optimal reset with
payload at 90 km/h in CarSim.

4.4. Response of the System to External Disturbances

In the next experiment, the effect on the vehicle of an external force is analyzed for the maneuver
under study. As mentioned above, although the main functionality of the controller is to provide a
swift and smooth lane change, the system must exhibit a certain degree of disturbance rejection for the
sake of safety. A lateral force representing the wind, which induces a deviation in the car position, can
be set in CarSim.

The controller was selected to produce small gains for the transfer function in Equation (7),
as described in Section 3.3. In the real system, the disturbance rejection gain is worse than the one
obtained with the theoretical approach because of the differences between model and real plant. Then,
it is necessary to test the real plant and specify the maximum value of overshoot in the maneuver that
the controller can handle.

The experiment is performed by establishing a wind force value on the right side of the vehicle,
where lane departure is more dangerous. The results of the experiment are shown in Figures 34 and 35.
For a controller with a variable reset band and optimal reset, the system has an overshoot of 0.24 m
without any disturbances (6.8%). Since the trajectory of the car has to be inside of the lane width
(4.25 m), the vehicle has 0.51 m left within the lane. In this case, the average force value admitted by
the controller is 36.4 N (see Figure 36). Thus, the gain of Equation (7), with a value of 0.014 m/N, is not
as good as the gain of the theoretical model. In any case, this is not considered a problem because,
as mentioned before, the compensator focuses on changing lane and it could be replaced by a lane
keeping controller as soon as the maneuver has been completed.
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Figure 34. Validation of the controller with variable band and optimal reset with an external disturbance
in CarSim.
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Figure 35. Detail of the experiment for the controller with variable band and optimal reset with an
external disturbance in CarSim.
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Figure 36. Wind force on the vehicle for the controller with variable band and optimal reset in CarSim.

5. Conclusions

In this work, various reset controllers were studied for a lane change maneuver under a set of
restrictive design specifications selected with the objective of ensuring ride quality at all times as
well as a swift response. On account of the comfort requirements, it was necessary to rearrange the
dynamical model employed to limit the jerk signal. To get to this realization, a prefiltering method was
conceived to homogenize the resulting system and make it independent of the maneuver conditions
with the exception of the longitudinal velocity, which is employed to adjust its design. Every prefilter
is restricted to an operational range of velocities where it is guaranteed to yield an accurate pole-zero
cancellation. This method could be used to readily extend its effectiveness over a wider range of
velocities by obtaining more prefilters. This way, the system would have to consult the corresponding
prefilter for each velocity in a lookup table. For the sake of simplicity and exemplification, a limited
group of prefilters was included in the paper.

The base linear controller was conveniently obtained via genetic algorithms for the system
resulting from combining the prefilter and the vehicle model, i.e., the double integrator plant. The use
of this optimization method did not produce any linear controller capable of satisfying all the design
requirement simultaneously.

Additionally, to increase confidence in the feasibility and applicability of the method, those reset
strategies that were selected to be the best in terms of design specifications and performance were also
compared with an LQR and a CNF controller. The linear-quadratic approach does present the same
fundamental limitations that the base linear controller so that meeting all the design requirements all
at once is not possible. Concerning the CNF control, while it is true that it presents some advantageous
characteristics, such as a perfect tracking of a varying yaw rate or a good transient performance, due to
the demanding scenario considered, this method had to be discarded.

Finally, it could be concluded that, by combining the calculation of pr by means of a
Lyapunov-based ISE minimization method and the use of a variable reset band together with the
limitation of the jerk signal, all the design specifications could be met. This was supported by the
simulations performed with CarSim, based on a high-fidelity virtual vehicle that includes all real
nonlinearities, which included the influence of parametric uncertainty, changing velocity and the effect
of external disturbances on the system. The previous simulations also demonstrated the accuracy of
the small-angle assumption considered for the linear models during the design part.
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