5 research outputs found

    Procjena planiranja mreža šumskih putova u osjetljivim klizištima pomoću GIS baziranih multikriterijskih pristupa odlučivanju na Ihsangazi vododjelnici, Sjeverna Turska

    Get PDF
    Forest roads are one of the fundamental infrastructures in carrying out forestry activities and services. According to FAO, approximately 20 percent of the world’s forest lands are covered mountain forests. Since forests are generally located also in mountainous areas with steep slope in Turkey, difficulties experienced in these mountainous conditions render the provision of services difficult while increasing the costs. The aim of this study is to evaluate forest road planning alternatives which are to be developed in landslide sensitive mountainous areas based on the Landslide Susceptibility Mapping (LSM). For this purpose, a total of 12 models were generated with different multi-criteria decision making (MCDM) approaches including Modified Analytical Hierarchy Process (M-AHP), Fuzzy Inference System (FIS), and Logistic Regression (LR). As a result of the study, the best model was Model 3 obtained with LR approach (area under the curve (AUC)=76.6%) value followed by LR-Model 4 (AUC=75.7%) and FIS-Model 4 (AUC=73.4%). Model 3 (AUC=71%) was the most successful M-AHP approach. Consequently, the application of these methods will provide an advantage in making more accurate and more rational decisions during road network planning in landslide sensitive forest areas.Šumske ceste jedna su od temeljnih infrastruktura u obavljanju šumarskih djelatnosti i usluga. Budući da su šume općenito smještene u planinskim područjima sa strmim nagibom u Turskoj, teškoće koje se događaju u ovim planinskim uvjetima povećavaju troškove. Cilj ove studije je procijeniti alternative planiranja šumskih cesta koje će se razvijati u planinskim područjima koja se nalaze na osjetljivim klizištima, na  temelju mapiranja mapa osjetljivosti na terenu (LSM). U tu svrhu generirano je ukupno 12 modela s različitim pristupima višestrukog odlučivanja (MCDM), uključujući Modificirani analitički hijerarhijski proces (M-AHP), Fuzz sustav (FIS) i logističku regresiju (LR). Kao rezultat studije, najbolji model bio je Model 3 dobiven uz LR pristup (područje ispod krivulje (AUC) = 76,6%), a zatim LR-Model 4 (AUC = 75,7%) i FIS-Model 4 (AUC = 73.4%). Model 3 (AUC = 71%) bio je najuspješniji M-AHP pristup. Slijedom toga, primjena ovih metoda pružit će prednost u donošenju točnijih i racionalnih odluka tijekom planiranja cestovne mreže u osjetljivim šumskim područjima

    Landslide susceptibility mapping using remote sensing data and geographic information system-based algorithms

    Get PDF
    Whether they occur due to natural triggers or human activities, landslides lead to loss of life and damages to properties which impact infrastructures, road networks and buildings. Landslide Susceptibility Map (LSM) provides the policy and decision makers with some valuable information. This study aims to detect landslide locations by using Sentinel-1 data, the only freely available online Radar imagery, and to map areas prone to landslide using a novel algorithm of AB-ADTree in Cameron Highlands, Pahang, Malaysia. A total of 152 landslide locations were detected by using integration of Interferometry Synthetic Aperture RADAR (InSAR) technique, Google Earth (GE) images and extensive field survey. However, 80% of the data were employed for training the machine learning algorithms and the remaining 20% for validation purposes. Seventeen triggering and conditioning factors, namely slope, aspect, elevation, distance to road, distance to river, proximity to fault, road density, river density, Normalized Difference Vegetation Index (NDVI), rainfall, land cover, lithology, soil types, curvature, profile curvature, Stream Power Index (SPI) and Topographic Wetness Index (TWI), were extracted from satellite imageries, digital elevation model (DEM), geological and soil maps. These factors were utilized to generate landslide susceptibility maps using Logistic Regression (LR) model, Logistic Model Tree (LMT), Random Forest (RF), Alternating Decision Tree (ADTree), Adaptive Boosting (AdaBoost) and a novel hybrid model from ADTree and AdaBoost models, namely AB-ADTree model. The validation was based on area under the ROC curve (AUC) and statistical measurements of Positive Predictive Value (PPV), Negative Predictive Value (NPV), sensitivity, specificity, accuracy and Root Mean Square Error (RMSE). The results showed that AUC was 90%, 92%, 88%, 59%, 96% and 94% for LR, LMT, RF, ADTree, AdaBoost and AB-ADTree algorithms, respectively. Non-parametric evaluations of the Friedman and Wilcoxon were also applied to assess the models’ performance: the findings revealed that ADTree is inferior to the other models used in this study. Using a handheld Global Positioning System (GPS), field study and validation were performed for almost 20% (30 locations) of the detected landslide locations and the results revealed that the landslide locations were correctly detected. In conclusion, this study can be applicable for hazard mitigation purposes and regional planning

    Changement de masse des glaciers à l’échelle mondiale par analyse spatiotemporelle de modèles numériques de terrain

    Get PDF
    Les glaciers de la planète rétrécissent rapidement, et produisent des impacts qui s'étendent de la hausse du niveau de la mer et la modification des risques cryosphériques jusqu'au changement de disponibilité en eau douce. Malgré des avancées significatives durant l'ère satellitaire, l'observation des changements de masse des glaciers est encore entravée par une couverture partielle des estimations de télédétection, et par une faible contrainte sur les erreurs des évaluations associées. Dans cette thèse, nous présentons une estimation mondiale et résolue des changements de masse des glaciers basée sur l'analyse spatio-temporelle de modèles numériques de terrain. Nous développons d'abord des méthodes de statistiques spatio-temporelles pour évaluer l'exactitude et la précision des modèles numériques de terrain, et pour estimer des séries temporelles de l'altitude de surface des glaciers. En particulier, nous introduisons un cadre spatial non stationnaire pour estimer et propager des corrélations spatiales multi-échelles dans les incertitudes d'estimations géospatiales. Nous générons ensuite des modèles numériques de terrain massivement à partir de deux décennies d'archives d'images optiques stéréo couvrant les glaciers du monde entier. À partir de ceux-ci, nous estimons des séries temporelles d'altitude de surface pour tous les glaciers de la Terre à une résolution de 100,m sur la période 2000--2019. En intégrant ces séries temporelles en changements de volume et de masse, nous révélons une accélération significative de la perte de masse des glaciers à l'échelle mondiale, ainsi que des réponses régionalement distinctes qui reflètent des changements décennaux de conditions climatiques. En utilisant une grande quantité de données indépendantes et de haute précision, nous démontrons la validité de notre analyse pour produire des incertitudes robustes et cohérentes à différentes échelles de la structure spatio-temporelle de nos estimations. Nous espérons que nos méthodes favorisent des analyses spatio-temporelles robustes, en particulier pour identifier les sources de biais et d'incertitudes dans les études géospatiales. En outre, nous nous attendons à ce que nos estimations permettent de mieux comprendre les facteurs qui régissent le changement des glaciers et d'étendre nos capacités de prévision de ces changements à toutes échelles. Ces prédictions sont nécessaires à la conception de politiques adaptatives sur l'atténuation des impacts de la cryosphère dans le contexte du changement climatique.The world's glaciers are shrinking rapidly, with impacts ranging from global sea-level rise and changes in freshwater availability to the alteration of cryospheric hazards. Despite significant advances during the satellite era, the monitoring of the mass changes of glaciers is still hampered by a fragmented coverage of remote sensing estimations and a poor constraint of the errors in related assessments. In this thesis, we present a globally complete and resolved estimate of glacier mass changes by spatiotemporal analysis of digital elevation models. We first develop methods based on spatiotemporal statistics to assess the accuracy and precision of digital elevation models, and to estimate time series of glacier surface elevation. In particular, we introduce a non-stationary spatial framework to estimate and propagate multi-scale spatial correlations in uncertainties of geospatial estimates. We then massively generate digital elevation models from two decades of stereo optical archives covering glaciers worldwide. From those, we estimate time series of surface elevation for all of Earth's glaciers at a resolution of 100,m during 2000--2019. Integrating these time series into volume and mass changes, we identify a significant acceleration of global glacier mass loss, as well as regionally-contrasted responses that mirror decadal changes in climatic conditions. Using a large amount of independent, high-precision data, we demonstrate the validity of our analysis to yield robust and consistent uncertainties at different scales of the spatiotemporal structure of our estimates. We expect our methods to foster robust spatiotemporal analyses, in particular to identify sources of biases and uncertainties in geospatial assessments. Furthermore, we anticipate our estimates to advance the understanding of the drivers that govern glacier change, and to extend our capabilities of predicting these changes at all scales. Such predictions are critically needed to design adaptive policies on the mitigation of cryospheric impacts in the context of climate change
    corecore