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ABSTRACT 

Whether they occur due to natural triggers or human activities, landslides lead 

to loss of life and damages to properties which impact infrastructures, road networks 

and buildings. Landslide Susceptibility Map (LSM) provides the policy and decision 

makers with some valuable information. This study aims to detect landslide locations 

by using Sentinel-1 data, the only freely available online Radar imagery, and to map 

areas prone to landslide using a novel algorithm of AB-ADTree in Cameron 

Highlands, Pahang, Malaysia. A total of 152 landslide locations were detected by using 

integration of Interferometry Synthetic Aperture RADAR (InSAR) technique, Google 

Earth (GE) images and extensive field survey. However, 80% of the data were 

employed for training the machine learning algorithms and the remaining 20% for 

validation purposes. Seventeen triggering and conditioning factors, namely slope, 

aspect, elevation, distance to road, distance to river, proximity to fault, road density, 

river density, Normalized Difference Vegetation Index (NDVI), rainfall, land cover, 

lithology, soil types, curvature, profile curvature, Stream Power Index (SPI) and 

Topographic Wetness Index (TWI), were extracted from satellite imageries, digital 

elevation model (DEM), geological and soil maps. These factors were utilized to 

generate landslide susceptibility maps using Logistic Regression (LR) model, Logistic 

Model Tree (LMT), Random Forest (RF), Alternating Decision Tree (ADTree), 

Adaptive Boosting (AdaBoost) and a novel hybrid model from ADTree and AdaBoost 

models, namely AB-ADTree model. The validation was based on area under the ROC 

curve (AUC) and statistical measurements of Positive Predictive Value (PPV), 

Negative Predictive Value (NPV), sensitivity, specificity, accuracy and Root Mean 

Square Error (RMSE). The results showed that AUC was 90%, 92%, 88%, 59%, 96% 

and 94% for LR, LMT, RF, ADTree, AdaBoost and AB-ADTree algorithms, 

respectively. Non-parametric evaluations of the Friedman and Wilcoxon were also 

applied to assess the models’ performance: the findings revealed that ADTree is 

inferior to the other models used in this study. Using a handheld Global Positioning 

System (GPS), field study and validation were performed for almost 20% (30 

locations) of the detected landslide locations and the results revealed that the landslide 

locations were correctly detected. In conclusion, this study can be applicable for hazard 

mitigation purposes and regional planning.  
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ABSTRAK 

Sama ada tercetus secara semulajadi atau berlaku kerana aktiviti manusia, 

tanah runtuh membawa impak kepada kehilangan nyawa dan kerosakan besar kepada 

hartanah yang menjejaskan infrastuktur, jaringan jalanraya, bangunan, dan hartanah. 

Peta kecenderungan tanah runtuh (LSM) menyediakan pembuat polisi dan keputusan 

dengan beberapa informasi yang berharga. Kajian ini bertujuan untuk mengesan lokasi 

tanah runtuh dengan menggunakan data Sentinel-1 sebagai satu-satunya imej radar 

dalam talian secara percuma disamping untuk memetakan kawasan yang cenderung 

berlaku tanah runtuh menggunakan model AB-ADTree di Cameron Highlands, 

Pahang, Malaysia. Sejumlah 152 lokasi tanah runtuh dikesan menggunakan teknik 

integrasi RADAR bukaan interferometri (InSAR), imej Google Earth dan ukur 

lapangan yang menyeluruh. Walau bagaimanapun, 80% daripada data telah digunakan 

untuk melatih mesin algorithma dan baki 20% untuk tujuan pengesahan. Tujuh belas 

faktor pencetus dan penetap iaitu cerun, aspek, ketinggian, jarak ke jalan raya, jarak 

ke sungai, kehampiran ke gelinciran, kepadatan jalan, ketumpatan sungai, indeks 

normal tumbuh-tumbuhan  (NDVI), taburan hujan, litupan bumi, litologi, jenis tanah, 

kelengkungan, kelengkungan profil, indeks kuasa aliran (SPI) dan indeks kelembapan 

(TWI) topografi diekstak dari pada imej satelit, model ketinggian berdigit (DEM), peta 

geologi dan tanah. Faktor-faktor ini digunakan untuk menjana peta kecenderungan 

tanah runtuh menggunakan model regresi logistik (LR), model logistik pokok (LMT), 

hutan rawak (RF), pokok keputusan berselang (ADTree), meningkatkan penyesuaian 

(AdaBoost) dan model hibrid baru daripada model-model ADTree dan AdaBoost iaitu 

model AB-ADTree. Pengesahan adalah berdasarkan keluasan di bawah lengkung 

ROC (AUC) dan pengukuran statistik bagi nilai ramalan positif (PPV), nilai ramalan 

negatif (NPV), kepekaan, pengkhususan, ketepatan, dan ralat punca punca kuasa dua 

min (RMSE). Hasil kajian menunjukkan bahawa AUC adalah 90%, 92%, 88%, 59%, 

96% dan 94% masing-masing bagi algoritma LR, LMT, RF, ADTree, AdaBoost dan 

AB-ADTree. Penilaian bukan parametrik Friedman dan Wilcoxon juga digunakan 

untuk menilai prestasi model, dimana hasil dapatan menunjukkan bahawa ADTree 

adalah lebih rendah daripada model lain yang digunakan dalam kajian ini. Dengan 

menggunakan sistem penentududukan sejagat (GPS) pegangan tangan, kajian 

lapangan dan pengesahan dilakukan kepada hampir 20% (30 lokasi) dari lokasi tanah 

runtuh yang dikesan dan hasil kajian menunjukkan lokasi-lokasi tanah runtuh telah 

dikesan dengan betul. Sebagai kesimpulan, kajian ini boleh digunakan bagi tujuan 

pengurangan malapetaka dan perancangan serantau.  
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1 

 

CHAPTER 1  

 

 

INTRODUCTION  

1.1 Background of Study 

Landslide includes various kind of slope movements, such as rock falls, slips, 

mud flows, debris flows, and etc. (Varnes, 1978; Cruden, 1991; Malamud et al., 2004; 

Shahabi et al., 2012a; Shahabi et al., 2012b; Hungr et al., 2014; Hermanns, 2016; 

Cruden, 2017; Sassa et al., 2018). However, it is a complex disaster, which triggered 

mainly by mining, earthquakes, heavy rainfall, volcanoes, snowmelt, and many more 

(Petley et al., 2005; Shahabi et al., 2012c; Shahabi et al., 2013; Hungr et al., 2014; 

Hermanns, 2016; Cruden, 2017; Mansor et al., 2018). Additionally, refer to the 

worldwide notification, landslide falls into the third type of natural disaster category 

(McClelland et al., 1997; Zillman, 1999; Mansor et al., 2004; Hungr et al., 2014; 

Lollino et al., 2016; Mărgărint & Niculiţă, 2017; Turner, 2018).  

Concern with the manmade actions or the natural conditions, landslides have 

produced multiple economic and human losses across the globe, which sometimes 

claimed up to 20000 lives and millions of dollars of damages to properties and human 

settlements (Schuster & Fleming, 1986; Guzzetti, 2000; Mansor et al., 2007; Hungr et 

al., 2014; Shahabi & Hashim, 2015; Lollino et al., 2016; Mărgărint & Niculiţă, 2017; 

Turner, 2018). Table 1.1 shows statistics of the occurred destructive landslides in some 

landslide prone countries from the date 26 Oct 1954 until the date 9 January 2018.  

Table 1.1: The distractive occurred landslides around the world (1954-2018) 

(Wikipedia, 2018a) 

No. Date Place Casualties 

1 26 Oct 1954 Amalfi Coast, Italy 300 

2 8 Jul 1958 Lituya Bay, Alaska, United States 22 

3 10 Jan 1962 Ranrahirca, Peru 4,000 – 5,000 

4 9 Oct 1963 Longarone, Italy 2,000 

5 28 Mar 1965 El Cobre, Chile 200+ 

6 21 Oct 1966 Aberfan, Wales 144 
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7 18 Mar 1967 Caraguatatuba, Brazil 120 

8 31 May 1970 Yungay, Peru 22,000+ 

9 18 Mar 1971 Chungar, Peru 400–600 

10 Apr 1974 Junín Region, Peru 450 

11 18 May 1980 Washington, United States 57 

12 13 Nov 1985 Tolima Department, Colombia 23,000 

13 28 Jul 1987 Valtellina, Lombardy, Italian Alps 29 

14 30 Jul 1997 Thredbo, New South Wales, Australia 18 

15 14–16 Dec 1999 Vargas, Venezuela 30,000 

16 12 Jul 2000 Mumbai, India 78 

17 9 Nov 2001 Amboori, Kerala, India 40 

18 26 Mar 2004 Mount Bawakaraeng, Indonesia 32 

19 10 Jan 2005 California, United States 10 

20 17 Feb 2006 Southern Leyte, Philippines 1,126 

21 11 Jun 2007 Chittagong, Bangladesh 123 

22 6 Sep 2008 Cairo, Egypt 119 

23 9 Aug 2009 Siaolin Village, Kaohsiung, Taiwan 439–600 

24 4 Jan 2010 Attabad, Gilgit-Baltistan, Pakistan 20 

25 20 Feb 2010 Madeira Island, Portugal 42 

26 1 Mar 2010 Bududa District, Uganda 100-300 

27 10 May 2010 Saint-Jude, Quebec 4 

28 8 Aug 2010 Gansu, China 1,287 

29 16 Jun 2013 Kedarnath, Uttarakhand, India 5,700 

30 22 Mar 2014 Oso, Washington, United States 43 

31 2 May 2014 Argo District, Afghanistan 350-500 

32 30 Jul 2014 Pune district, Maharashtra, India 136 

33 2 Aug 2014 Sindhupalchok District, Nepal 156+ 

34 20 Aug 2014 Hiroshima Prefecture, Japan 74 

35 29 Oct 2014 Badulla District, Sri Lanka 16+ 

36 13 Dec 2014 Jemblung village, Java, Indonesia 93 

37 23 Apr 2015 Badakhshan Province, Afghanistan 52 

38 28 Apr 2015 Salvador, Bahia, Brazil 14 

39 18 May 2015 Antioquia Department Colombia 83 

40 1 October 2015 Guatemala Department, Guatemala 280 

41 13 November 2015 Lidong Village, Zhejiang, China 38 

42 2 April 2017 Mocoa, Colombia 329+ 

43 12 June 2017 Rangamati, Bangladesh 152 

44 14 August 2017 Freetown, Sierra Leone 1,141+ 

45 9 January 2018 California, United States 20 

Landslide leads to mass displacement of the earth materials. It happens in a 

variety of material, such as debris and rocks, which moves at different rates from one 

mm/year to tens of m/second (Varnes, 1978; Cruden, 1991; Hungr et al., 2014; 

Hermanns, 2016). However, topples, falls, flows, slides and spreads are various kind 

of movements (Malamud et al., 2004; Couture, 2011; Hungr et al., 2014; Mărgărint & 

Niculiţă, 2017). Moreover, based on activity, landslide can be divided into variety of 

stages ranging from dormant to active (Varnes, 1978; Hungr et al., 2014; Hermanns, 

2016; Sassa et al., 2018). Besides, it can be progressive, retrogressive and advancing, 

which moving along curved or flat surfaces (Cruden & Varnes, 1996; Hungr et al., 

2001; Hungr et al., 2014; Cruden, 2017). Additionally, refer to the depth of occurrence 
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it can be shallow or deep seated (Binaghi et al., 1998; Gritzner et al., 2001; Gorsevski 

et al., 2003; Abella & Van Westen, 2008; Sassa et al., 2018). 

One of the most common applications of satellite imageries is landslide 

inventory. In term of physical situation of the study area, the optical, multi-spectral 

and RADAR (Radio detection and ranging) systems should be acquired (Van Westen 

et al., 2008; Shahabi et al., 2012a; Yang et al., 2017; Tien Bui et al., 2018). In addition, 

identification and extraction of information related to landslide analysis from satellite 

imagery, can facilitate landslide risk analysis (McDermid & Franklin, 1995; Shahabi 

et al., 2012b; Pradhan et al., 2014; Tien Bui et al., 2018). It is also worth mentioning 

that, landslide susceptibility analysis is the best way to warn individuals, properties, 

populations, and environmentalists from the risks that may face with in near or remote 

future (Corominas et al., 2014; Shahabi & Hashim, 2015; Pradhan & Sameen, 2017).  

Nowadays, due to a turning point in the commercial systems, application of 

Geographical Information System (GIS) for landslide susceptibility assessment has 

been increasingly raised (Bai et al., 2011; Bonham-Carter, 2014; Quattrochi et al., 

2017; Tien Bui et al., 2018). Environmental modeling using Remote Sensing (RS) and 

GIS is an outstanding area of interest for many researchers across the globe (Lillesand 

et al., 2004; Lillesand et al., 2014). However, findings to date confirmed that these 

indispensable technologies play a great role in the sustainable management, risk 

assessment and global environmental changes (Lillesand et al., 2014; Maghsoudi et 

al., 2017; Quattrochi et al., 2017). Moreover, GIS is an applicable and useful tool for 

spatial analysis of multi-dimensional phenomenon like landslide (Carrara et al., 1991; 

Van Westen et al., 2006; Kainthura et al., 2015; Tien Bui et al., 2018).  

GIS, is an effective space to analyze, assess and manages a huge amount of 

information at the same time (Carrara, 1983; Carrara et al., 1991; Ahmad & Samad, 

2010; Ahmad et al., 2013; Leonardi et al., 2016; Hashim et al., 2017). Progresses in 

the GIS-based applications have made it easy to work on the spatial and geographical 

data (Kainthura et al., 2015). Using GIS, numerous methods for Landslide 

Susceptibility Mapping (LSM) have been suggested in the recent studies (Tien-Sze et 

al., 2013; Dou et al., 2015; Bui et al., 2016a; Tien Bui et al., 2018). Furthermore, it is 
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a powerful technology for integrating different types of data at once (Pradhan et al., 

2014; Pradhan & Kim, 2016; Rawat et al., 2016; Quattrochi et al., 2017; Weng et al., 

2018). 

Integration of RS and GIS is an efficient technique for LSM (Shahabi, 2015; 

Youssef et al., 2016; Yang et al., 2017; Weng et al., 2018). Various algorithms have 

been applied to assess landslide prone areas using these two valuable techniques 

(Bulmer, 2002; Lee, 2013; Dahal, 2014; Youssef et al., 2015a; Youssef et al., 2015b). 

At the same time, RS technologies provide coverage of a large region at high frequency 

(Lillesand et al., 2014; Weng et al., 2018). However, they have been used to provide 

suitable landslide information to policy and decision makers during a disaster period 

(Metternicht et al., 2005; Zhao et al., 2017). Generally, RS is an applicable source of 

gaining information about the earth surface without any physical contact with 

(Lillesand et al., 2014; Yang et al., 2017; Weng et al., 2018). 

Landslide inventory can be done through a number of approaches, ranging 

from manual image interpretation, field survey, historical reports, interferometry 

studies or even a combination of different techniques (Van Westen et al., 2008; 

Pradhan & Lee, 2009; Shahabi et al., 2012a; Shahabi et al., 2012b; Pradhan, 2013; 

Shirzadi et al., 2017; P. Chen et al., 2018). Images for deformation and change 

detection studies must be acquired before and after the events, such as landslide, 

earthquake, and volcanoes (Mickovski & Van Beek, 2006; Gad-el-Hak, 2008; Pradhan 

et al., 2010a; Shirzadi et al., 2017; Chen et al., 2018a; Chen et al., 2018b; Chen et al., 

2018c). 

Needless to say, the longer the wavelength, the more the backscatter will be, 

and the shorter the wavelength, the more the details will be (Curlander & McDonough, 

1991; Attema et al., 2007; Jakowatz et al., 2012; Chan & Chu, 2016; Woodhouse, 

2017; Villano et al., 2018). However, synthetic aperture RADAR systems, are valuable 

tools for detecting landslide locations in the tropical regions (Berens, 2006; Arikawa 

et al., 2010; Elhefhawy & Ismail, 2015; Barber et al., 2016; Woodhouse, 2017; Villano 

et al., 2018), such as Sentinel-1 satellite data in C-band with 5.7 cm wavelength. 

Furthermore, landslide detection depends greatly on variety of elements, including 
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vegetation coverage, physical situation of the study area, spatial resolution, technical 

characteristics of satellite images, and size of landslides. For example, for vegetated 

area Synthetic Aperture Radar (SAR) imagery is more applicable, because it can 

penetrate through vegetation and predict landslides ranging from small to big scales 

(Cheney & Borden, 2008; Amin, 2016; Barber et al., 2016; Stumpf et al., 2017). 

1.2 Statement of Problem 

Landslide is a highly destructive phenomenon especially when it occurs next 

to the human settlements and infrastructures. Every year many people loss their 

properties and even their lives because of this natural disaster, which has significant 

impact on the local and global economy as well (Mansor et al., 2004; Mansor et al., 

2007; Thiery et al., 2007; Pradhan & Buchroithner, 2010; Shahabi, 2015; Pradhan & 

Kim, 2016; Abdulwahid & Pradhan, 2017; Chen et al., 2018a). With remarkable 

impacts on residential areas, topographic relief, landslide trigger a major natural 

hazard in many mountainous areas (Shahabi & Hashim, 2015; Calvello et al., 2016; 

Chen et al., 2017b; Stumpf et al., 2017). However, real time monitoring of landslides 

is defined as a complicated process (Shahabi et al., 2012a; Tay et al., 2014; Bhatta & 

Thangadurai, 2016; Tien Bui et al., 2018). But, these phenomenon are very hazardous 

motions, which sometimes move tons of materials that threaten human life in landslide 

prone areas (Chen et al., 2017c; Mikoš et al., 2017; Chen et al., 2018a). Since, only 

25% of Malaysia is mountains, therefore Malaysia cannot be defined as a mountainous 

territory, however the slope failures are a common disaster in the most parts of the 

country (Othman et al., 2012). Landslide in Malaysia is not a new phenomenon and 

vary from small scale to large scale (Murakmi et al., 2014). 

Cameron Highlands has experienced millions of dollars of damages to 

economic activities and settlements caused by landslides (Nichol & Wong, 2005; 

Nichol et al., 2006; Abdulwahid & Pradhan, 2017). Because of landslides, the total 

economic losses in the study area have been estimated at about US $1 billion between 

the years 1973 to the year 2007 (Nichol et al., 2006). However, because of the cloudy 

and rainy weather conditions, which are dominated in the region almost whole year 
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and also the dense vegetation coverage, landslide inventory and susceptibility mapping 

by far is difficult in the study area. But, using RADAR imagery technique these 

problems can be addressed to a great extent (Cheney & Borden, 2008; Jakowatz et al., 

2012; Amin, 2016; Hong et al., 2017a; Hong et al., 2017b; Pham & Prakash, 2018). 

SAR technique can easily penetrate into the trees and vegetation coverage, not blocked 

by the clouds, and work day and nights (Pettinato et al., 2013; Elhefhawy & Ismail, 

2015; Hashim et al., 2017; Zhu et al., 2018). It is worth mentioning that, C-band 

satellite imageries with shorter wavelength (5.7 cm) rather than L-band (24 cm) cannot 

penetrate through thick trunk and branches of trees, but are able to penetrate into the 

thin vegetation (Jebur et al., 2014a; Hashim et al., 2017). Additionally, the C-band 

imagery has a wavelength similar to size of the small-scale vegetation, such as crop 

structure, foliage, and canopies, therefore SAR images at C-band are dependent on the 

variation of these features (Berens, 2006). 

In order to save human lives and also to avoid negative effects on the regional 

and national economies, detecting the areas with high risks is vital in landslide warning 

systems (Pradhan & Kim, 2016; Chen et al., 2017d). Landslide susceptibility models, 

can support and boost the spatial planning and decisions focused on mitigating 

landslide hazards (Mansor et al., 2007; Goetz et al., 2015; Nicu, 2017; Sharma & 

Mahajan, 2018). Inevitably, landslide is one of the current natural hazard problems in 

most Malaysian regions and also is a significant obstacle to progress in many parts of 

the country. According to Star report (2008), in the years 2006, 2008 and 2009, the 

heavy rainfall have triggered thee destructive landslides in many parts of Peninsular 

Malaysia, which cost millions of dollars of damages to properties and claimed many 

lives (Biswajeet & Saro, 2007; Pradhan & Lee, 2009; Sezer et al., 2011). Besides, the 

landslide-induced damages have been regularly experienced, because of the little 

consideration about these problems in the slope management and the land cover 

planning (Song et al., 2012; Elmahdy et al., 2016; Behnia & Blais-Stevens, 2018). In 

addition, landslide in Malaysia is mostly triggered by rainfalls, which result in failure 

of the rock surfaces along joint, cleavage and fracture (Pradhan & Lee, 2010). 

According to the United Nations Economic and Social Commission for Asia 

and the Pacific (UNESCAP) alongside flood, storms and extreme temperature, 
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landslide is one of the top four disasters, which result in loses and fatalities in many 

parts of the globe (Kalimuthu et al., 2015; Pradhan & Kim, 2016; Pham et al., 2017). 

Unlike the other aforementioned disasters, which are mainly caused by the natural 

factors, landslide also can be controlled by human activities (Kalimuthu et al., 2015; 

Mansor et al., 2018). In November 2014, landslide in Cameron Highlands caused 

damages to 20 houses, 20 vehicles and also 5 people lose their life, at the same time a 

similar event occurred in the year 2013, which claimed 4 lives and over 100 houses 

were completely demolished (Samy et al., 2014; Hong et al., 2015b; Chan & Chu, 

2016).  

Nowadays, the best and fast method for hazard studies, including mass 

movement, is to use remotely sensed data, by which a lot of data can be mapped and 

used for hazard studies. However, many researches have pointed out that ancillary 

data, such as soil and vegetation index (McKean et al., 1991), geological information 

(Shahabi et al., 2012a), topographic data (McKean & Roering, 2004), rainfall data 

(Samy et al., 2014), and textural information (Shih & Schowengerdt, 1983), increase 

the accuracy of geomorphic mapping. As a matter of fact, Normalized Difference 

Vegetation Index (NDVI), aspect, elevation, slope, land cover, distance to road, 

proximity to river, lithology, distance to fault, rainfall, soil types, Stream Power Index 

(SPI), Sediment Transport Index (STI), Topographic Wetness Index (TWI), landform, 

Topographic Roughness Index (TRI), and many more, are factors affecting landslide 

and must be considered in landslide susceptibility assessments (Pham et al., 2016; Tien 

Bui et al., 2016; Chen et al., 2017d; Tien Bui et al., 2018). 

The most common way of getting information about landslide is inventory 

mapping using satellite imagery, aerial photographs, field investigation, historical 

reports, and etc. (Rib & Liang, 1978; Mollard & Janes, 1984; Sezer et al., 2011; 

Nefeslioglu et al., 2012; Shahabi et al., 2013; Hong et al., 2015a; Vasu & Lee, 2016; 

Hemasinghe et al., 2018). Even if these methods are useful for landslide inventory, but 

they have some certain disadvantages. Remote sensing data are either expensive or 

unavailable for many areas through-out the world (Brardinoni et al., 2003; Brardinoni 

& Church, 2004; Wang et al., 2009; Marjanović et al., 2011; Trigila et al., 2015; 

Quraishi et al., 2017; Soma & Kubota, 2018). Moreover, using old images are less 
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accurate and also do not cover new events. Unavailability of data on a special date of 

the landslide event makes it hard to detect and assess landslides exactly (Van Westen 

et al., 2006). Furthermore, for the regions, which are located in the vegetated and 

tropical areas, SAR image is an effective and applicable tool to detect the occurred 

deformations.  

Despite a considerable advancement in our knowledge related to the instability 

mechanisms (Corominas et al., 2014), decreasing the impact of landslide is still an 

unsolved problem for many policy and decision makers worldwide. However, with a 

precise landslide inventory model, the exact places of occurred landslides can be 

detected. Detection of landslide locations and their scar extent is often a challenging 

and time consuming issue (Lin et al., 2016; Lee et al., 2017). In Cameron Highlands, 

natural hazards, such as landslides, flash floods and mass movements fall under the 

top great social concerns (Pradhan & Lee, 2010; Tien Bui et al., 2018).  

Because of the land clearing for housing, hotels, and plantation the study area 

is undergoing rapid development and changing, which resulted in erosion and landslide 

(Pradhan & Lee, 2010; Matori et al., 2012; Mohammadi et al., 2018b; Tien Bui et al., 

2018). The study area is one of the tourist attractive places and plantation fields in 

Malaysia, where landslide prevention is highly essential for the economy of Malaysia. 

However, this is a great issue that need to be addressed to a great extent. In this study 

a few old methods, such as Logistic Regression (LR), Logistic Model Tree (LMT), 

Random Forest (RF) and two recently introduced models of Alternating Decision Tree 

(ADTree) and Adaptive Boosting (AdaBoost) learning ensemble technique as well as 

a novel hybrid artificial intelligence approach based on AdaBoost and ADTree 

algorithms namely; “AB-ADTree” were employed to map susceptible areas to 

landslides in the study area. In this study, for the first time Sentinel-1 satellite imagery, 

as the only RADAR imagery online for free was used for the application of landslide 

inventory and creation of Digital Elevation Model (DEM) in Cameron Highlands. 

Besides, in this study for the first time Google Earth images were applied for landslide 

detection in the study area. A new model of AB-ADTree for landslide susceptibility, 

is another issue that this study solved, because the previous models used in the study 

area were overused and old. 
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1.3 Objectives of Study 

The aim of the study is to detect landslide locations and also to map areas prone 

to landslides in a part of Cameron Highlands, Pahang, Malaysia. The objectives of this 

work are listed as follows:  

I. To create a 10 meter cell size DEM (from which many layers can be extracted) 

using Interferometry Synthetic Aperture RADAR (InSAR) technique and 

Sentinel-1 imagery as the only RADAR imagery available online for free. 

II. To apply a novel combination method of Sentinel-1 and Landsat-8 satellite 

imageries and also combination of different algorithms of Maximum 

Likelihood (ML), Minimum Distance (MD), Artificial Neural Network 

(ANN), Support Vector Machine (SVM), and Spectral Angle Mapper (SAM) 

by using Decision Tree (DT) model, for generating land cover map of the study 

area as one of the important layers for application of landslide susceptibility 

mapping in the study area. 

III. To detect historical landslides using integration of InSAR technique, Google 

Earth (GE) images (for first time in the study area), and extensive field 

investigation.  

IV. To generate landslide susceptibility maps using Machine Learning Algorithms 

(MLAs) of LR, LMT, RF classifier, ADTree, AdaBoost, and a novel hybrid 

artificial intelligence approach based on AdaBoost and ADTree models 

namely; “AB-ADTree” model. 

1.4 Research Questions 

Concern with the objectives of the study, in order to see whether the researcher 

have achieved the objectives or not, the following questions should be answered: 
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I. Is Sentinel-1 satellite image appropriate for extracting DEM for the vegetated areas 

like Cameron Highlands? 

II. Is combination model of Landsat-8 and Sentinel-1 satellite imageries as well as the 

combination of different algorithms (ML, MD, SVM, SAM, and ANN models), 

can help to extract all land covers of the study area precisely? 

III. With regard to the tropical and the highly vegetated situation of Cameron 

Highlands, is the C-band imagery of Sentinel-1 can detect historical landslides?  

IV. Are LSM methods, including a novel hybrid model of AB-ADTree, can precisely 

map the landslide-prone areas in Cameron Highlands? 

1.5 Significance of Study 

Because of the topographical, climatic, and human conditions, the earthflows 

and mudflows are most existing types of slope failures in Cameron Highlands, 

Malaysia (Nichol & Wong, 2005; Nichol et al., 2006; Shahabi & Hashim, 2015; Tien 

Bui et al., 2018). Needless to say that the earthquakes are the major triggering factor 

in the occurrences of landslides, but according to Pradhan and Lee (2010), Malaysia is 

not a seismically active region, and landslides in Malaysia are mainly induced by the 

heavy rainfalls.  

The study area is mainly covered by the vegetation and florification rather than 

the dense forest (Mohammadi et al., 2019), therefore a C-band SAR satellite image, 

such as Sentinel-1, RADARSat-2, and ERS-2 are able to penetrate into the vegetation 

coverage and detect the landslide locations. With regard to this fact that most of SAR 

imageries are costly even for a few km2 (Curlander & McDonough, 1991; Eisenbeiß, 

2009; Robinson, 2018), therefore in this study the historical landslides were detected 

by the C-band Sentinel-1 satellite imageries supported by GE images and intensive 

field investigation. It is worth mentioning that Sentinel-1 is the only RADAR imagery 

online for free and it is the first time that this data is used for identifying the historical 

landslide in the study area. 
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Despite providing transparent calculation and also reasonable accuracy, the 

previous methods of LSMs have been overused and out of date. Therefore, it is highly 

necessary to explore new methods. In recent years, various MLAs have been 

developed, which are also known as advanced automatic inductive approaches 

(Cracknell & Reading, 2014). Even though application of these new MLAs has been 

examined for geoscience studies, including groundwater quant potential (Naghibi et 

al., 2017) and land subsidence (Pradhan et al., 2014), their application rarely used for 

landslide susceptibility studies. More recent years, machine learning ensembles and 

the hybrid methods have proven to be better than conventional methods in landslide 

studies (Hong et al., 2017a; Chen et al., 2018a). However, exploration of  ADTree and 

AdaBoost methods for the application of LSM has seldom been carried out before and 

the combination of these two algorithms is a novel attempt for LSM in this study. 

In this study 17 conditioning factors, including NDVI, proximity to roads, 

distance to river, proximity to faults, road density, river density, curvature, profile 

curvature, aspect, slope, elevation, land cover, rainfall, soil types, lithology, SPI, and 

TWI, were selected based on the other studies and applied for the application of 

landslide susceptibility assessment, which were extracted from different sources of 

DEM, satellite imageries, geological and soil maps. Overall, this study is significant 

in a number of ways: 

I. Applying a novel hybrid artificial intelligence approach based on AdaBoost and 

ADTree models namely; the “AB-ADTree” model. 

II. Integration of InSAR technique (Using Sentinel-1 data), GE image and extensive 

field investigation for landslide inventory. 

III. Using a novel combination model of Landsat-8 and Sentinel-1 imageries to extract 

the land covers of the study area. 

IV. Extracting a DEM (With 10 meter cell size) using Sentinel-1 satellite imagery.  

V. Extraction, digitization and preparation of all the 17 intrinsic and extrinsic 

parameters used in the study by the researcher. 
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 The findings can be useful and highly applicable for decision and policy 

makers in order to mitigate landslide occurrence and managing the effected regions. 

In addition, this work can assist the locals to know about landslide-prone areas and 

also to know that to what extend their physical environment is stable. 

1.6 Scope of Study 

Due to the frequent occurrences of landslides, a part of Cameron Highlands 

surrounded by longitudes 101˚ 20’ 00’’E to 101˚ 27’ 10’’E and latitudes 4˚ 23’ 30’’ N 

to 4˚ 31’ 10’’ N (Geographic, WGS 84) was selected as the study area for the 

application of landslide susceptibility assessments. It is worth mentioning that the 

study area was extracted based on the first stream order of Ringlet River (Figure 1.1). 

The study area is undergoing rapid development of land clearing for housing, hotels, 

and plantation, which result in erosion and landslide (Pradhan et al., 2010b; Matori et 

al., 2012; Mohammadi et al., 2018b; Tien Bui et al., 2018; Mohammadi et al., 2019). 

Cameron Highlands is a unique district in Pahang State, Malaysia, where covers an 

area of 81.249 km2 and is located in the south western part of Cameron Highlands. 

Brinchang, Sungai Bertam, Tanah Rata, Habu, Taman Ringlet and Sungai Khazanah 

are the residential areas in the study area, therefore, this study can be helpful to the 

people to know that to what extend their environment is stable. 
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Figure 1.1: The geographical position of the study area 

1.6.1 Factors Used for LSMs 

There are many parameters that can be used for LSM. In this study, 17 

conditioning parameters, which include slope, aspect, elevation, distance to road, 

distance to river, proximity to fault, road density, river density, NDVI, rainfall, land 

cover, lithology, soil types, curvature, profile curvature, SPI and TWI were utilized for 

generating the LSMs. 

1.6.2 Models and Techniques  

Integration of InSAR technique, GE and extensive field survey were used for 

the application of landslide inventory. A set of the MLAs, including LR, LMT, RF, 

ADTree, AdaBoost learning ensemble technique, and a novel hybrid artificial 
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intelligence approach based on AdaBoost and ADTree models namely; “AB-ADTree” 

model were employed for LSM in this study. Like the landslide inventory InSAR 

technique was also used for creating a 10-m DEM. Land covers of the study area were 

extracted by using different algorithms of ML, MD, ANN, SVM, and SAM. Needless 

to say that there is always differences among different models, but the models used for 

land cover extraction can be used for LSMs as well. 

1.6.3 Software   

Sentinel Application Platform (SNAP), ArcGIS and SNAPHU software were 

employed for landslide inventory and creating the DEM. Statistical Package for the 

Social Sciences (SPSS), Waikato Environment for Knowledge Analysis (WEKA) and 

ArcGIS software were applied for generating LSMs. ArcGIS, SNAP and Environment 

for Visualizing Images (ENVI) software were utilized for producing maps of land 

cover of the study area. System for Automated Geoscientific Analyses (SAGA) 

software was applied for generating TWI and SPI layers in this study. 

1.6.4 Satellite Imageries  

There are several satellite imageries were used in this study. Sentinel-1 satellite 

imagery with the product type of Single Look Complex (SLC) and the sensor mode of 

Interferometry Wide Swath (IW) was applied for the application of landslide inventory 

and generating the DEM of the study area. While the product type of Ground Range 

Detected (GRD) and the sensor mode of IW was employed for the combination with 

Landsat-8 imagery for extracting the land covers of the study area. Landsat-7 was 

downloaded for generating the Land covers of the study area as well. Sentinel-2 

satellite data was acquired for extracting NDVI map of the study area.  
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1.7 Overview of the Thesis 

The structure of this thesis has been divided into five chapters. The description 

of each chapter is described as follows: 

Chapter 1 is about introduction of the study. The general idea of the study, the 

problem statement, the objectives, the research questions, the significance of study and 

the scope of the study have been presented in this chapter. 

Chapter 2 describes the previous studies on landslide detection and 

susceptibility mapping. The concepts, satellite imageries, models and theories have 

been included in this chapter as well. 

Chapter 3 is associated with the research methodology of the study. The 

research methodology of generating the layers, landslide inventory, DEM and LSMs, 

supported by the flowcharts, tables and figures have been explained in this chapter. 

Chapter 4 points out the result and analysis of this study. The findings of this 

study, including the accuracy assessment of each result, supported by figures and 

tables have been discussed in this chapter. 

Chapter 5 is about conclusion and recommendations of the study. The summary 

of the study is presented in this chapter. 
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