116 research outputs found

    SDN/NFV-enabled satellite communications networks: opportunities, scenarios and challenges

    Get PDF
    In the context of next generation 5G networks, the satellite industry is clearly committed to revisit and revamp the role of satellite communications. As major drivers in the evolution of (terrestrial) fixed and mobile networks, Software Defined Networking (SDN) and Network Function Virtualisation (NFV) technologies are also being positioned as central technology enablers towards improved and more flexible integration of satellite and terrestrial segments, providing satellite network further service innovation and business agility by advanced network resources management techniques. Through the analysis of scenarios and use cases, this paper provides a description of the benefits that SDN/NFV technologies can bring into satellite communications towards 5G. Three scenarios are presented and analysed to delineate different potential improvement areas pursued through the introduction of SDN/NFV technologies in the satellite ground segment domain. Within each scenario, a number of use cases are developed to gain further insight into specific capabilities and to identify the technical challenges stemming from them.Peer ReviewedPostprint (author's final draft

    Infrastructure as a service: exploring network access control challenges

    Get PDF
    Cloud Computing Infrastructure as a Service (IaaS) is a great model for outsourcing IT infrastructure. It is built to offer fascinating features to support business development, such as elasticity, multi-tenancy, configurability and dynamicity. However, IaaS faces security challenges on account of its flexible nature. For this article, we studied the IaaS characteristics and investigated their related security challenges. We then elaborated these security challenges by exploring the security threats on live virtual machine migration as it is one of the main IaaS operations. We found that proper access control techniques and models are a critical element in enhancing IaaS and mitigating the identified security threats. Therefore, we investigated and contrasted the implemented and the proposed firewall architectures in IaaS as a firewall is a basic security appliance that enforces access control. We also explored and contrasted the proposed access control models in the IaaS. It was found that the traditional firewalls and access control models were not sufficient for IaaS. Therefore, there is a need to develop a proper access control model and enforcement techniques to mitigate IaaS security threats. Based on the security research trend and the results obtained in this articles exploration, we endorse an IaaS access control system built on a computational intelligent approach

    Building an Emulation Environment for Cyber Security Analyses of Complex Networked Systems

    Full text link
    Computer networks are undergoing a phenomenal growth, driven by the rapidly increasing number of nodes constituting the networks. At the same time, the number of security threats on Internet and intranet networks is constantly growing, and the testing and experimentation of cyber defense solutions requires the availability of separate, test environments that best emulate the complexity of a real system. Such environments support the deployment and monitoring of complex mission-driven network scenarios, thus enabling the study of cyber defense strategies under real and controllable traffic and attack scenarios. In this paper, we propose a methodology that makes use of a combination of techniques of network and security assessment, and the use of cloud technologies to build an emulation environment with adjustable degree of affinity with respect to actual reference networks or planned systems. As a byproduct, starting from a specific study case, we collected a dataset consisting of complete network traces comprising benign and malicious traffic, which is feature-rich and publicly available

    A survey of denial-of-service and distributed denial of service attacks and defenses in cloud computing

    Get PDF
    Cloud Computing is a computingmodel that allows ubiquitous, convenient and on-demand access to a shared pool of highly configurable resources (e.g., networks, servers, storage, applications and services). Denial-of-Service (DoS) and Distributed Denial-of-Service (DDoS) attacks are serious threats to the Cloud services’ availability due to numerous new vulnerabilities introduced by the nature of the Cloud, such as multi-tenancy and resource sharing. In this paper, new types of DoS and DDoS attacks in Cloud Computing are explored, especially the XML-DoS and HTTP-DoS attacks, and some possible detection and mitigation techniques are examined. This survey also provides an overview of the existing defense solutions and investigates the experiments and metrics that are usually designed and used to evaluate their performance, which is helpful for the future research in the domain

    Towards Migrating Security Policies along with Virtual Machines in Cloud

    Get PDF
    Multi-tenancy and elasticity are important characteristics of every cloud. Multi-tenancy can be economical; however, it raises some security concerns. For example, contender companies may have Virtual Machines (VM) on the same server and have access to the same resources. There is always the possibility that one of them tries to get access to the opponent's data. In order to address these concerns, each tenant in the cloud should be secured separately and firewalls are one of the means that can help in that regard. Firewalls also protect virtual machines from the outside threats using access control lists and policies. On the other hand, virtual machines migrate frequently in an elastic cloud and this raises another apprehension about what happens to the security policies that are associated with the migrated virtual machine. In this thesis, we primarily contribute by proposing a novel framework that coordinates the mobility of the associated security policies along with the virtual machine in Software-Defined Networks (SDN). We then design and develop a prototype application called Migration Application (MigApp), based on our framework that moves security policies and coordinates virtual machine and security policy migration. MigApp runs on top of SDN controllers and uses a distributed messaging system in order to interact with virtual machine monitor and other MigApp instances. We integrate MigApp with Floodlight controller and evaluate our work through simulations. In addition, we prepare a test-bed for security testing in clouds that are based on traditional networks. We focus on virtual machine migration and use open-source utilities to equip this test-bed. We design an architecture based on GNS3 network emulator in order to provide a distributed testing environment. We then propose a virtual machine migration framework on Oracle VirtualBox; and finally, we enrich the security aspect of framework by adding firewall rule migration and security verification mechanisms into it

    Gestion de la sécurité des réseaux à l'aide d'un service innovant de Cloud Based Firewall

    Get PDF
    Cloud computing has evolved over the last decade from a simple storage service for more complex services, offering the software as a service (SaaS) platforms as a service (PaaS) and most recently the security as a service (SECaaS). In our work, we started with the simple idea to use the resources offered by the Cloud with a low financial cost to propose new architectures of security service. The security of virtual environments is a major issue for the deployment of the use of the Cloud. Unfortunately, these environments are composed of a set of already existing technologies used in a new way, many security solutions are only traditional reconditioned solutions to solve the Cloud and virtual networks security issues. The work done in this thesis is a response to the resource limitations of physical security devices such as firewalls and propose new security architectures consist of management of network security in the cloud-based services following Security as a Service model and propose novel architectures for managing these services. We took the initiative to propose a completely Cloud-Based architecture. The latter allows a cloud provider to provide firewalling service to its customers. It asks them to subscribe to the offer by guaranteeing treatment (analysis) with a capacity of bandwidth traffic with functional filtering rules and other proposed by the subscriber. The results demonstrated the ability of our architecture to manage and cope with network DDoS attacks and to increase analytical capacity by distributing traffic over multiple virtualLe Cloud Computing a évolué au cours de la dernière décennie, passant d’un simple service de stockage à des services plus complexes, en proposant le software comme service (SaaS), les plateformes comme service(PaaS) et très récemment la sécurité comme service (SECaaS).Dans notre travail, nous sommes partis de l'idée simple d'utiliser les ressources offertes par le Cloud avec un faible coût financier pour proposer des nouvelles architectures de service de sécurité.La sécurité des environnements virtuels est un sujet majeur pour le déploiement de l’usage du Cloud. Malheureusement, comme ces environnements sont composés d’un ensemble de technologies déjà existantes, utilisées d'une manière nouvelle, de nombreuses solutions sécuritaires ne sont que des solutions traditionnelles reconditionnées à la problématique Cloud et réseaux virtuels.Le travail effectué dans le cadre de cette thèse vient répondre à la limitation de ressources des équipements physiques de sécurité comme les Firewalls et a pour objectif de proposer de nouveaux services de sécurité composés d’architectures de gestion de la sécurité des réseaux dans le Cloud basé sur le modèle Security as a Service, ainsi que des architectures de management de ces services.Nous avons pris l’initiative de proposer une architecture totalement Cloud-Based. Cette dernière, permet à un Cloud provider de proposer un service de Firewalling à ses clients. Celui-ci leur demande de s’abonner à l’offre en leur garantissant le traitement (analyse) d’une capacité de bande-passante de trafic avec des règles de filtrages fonctionnelles et d’autres proposées par l’abonné.Les résultats obtenus ont démontré les aptitudes de nos architectures à gérer et à faire face à des attaques réseaux de type DDoS et à augmenter la capacité d’analyse en distribuant le trafic sur plusieurs pare-feu virtuels

    Promises and Challenges of Cloud Computing in Higher Education: A Practical Guide for Implementation

    Get PDF
    Dynamic education environment have forced universities to adopt state-of-the-art practices to optimize both the cost and operational efficiency of their information technology platform. Cloud Computing Technology (CCT) has emerged as a meaningful technology that could contribute to this optimization by providing infrastructure and software solutions for the whole IT needs of a university via Internet. It is predicted that 2017 will mark the rapid proliferation of educational institutions transitioning to the cloud-based computing technology. This study presents the main principles and potentials of the cloud, as applied to the world of education. It discusses potential strategic benefits of this technology in education, and highlights its evolving trends. Furthermore, this study highlights key adoption factors and illustrates some of the routs that might be taken to implement cloud technology in education. Finally, this study highlights successful implementations of cloud based technology in two universities, Bryant and Roger Williams

    Fog Computing: A Taxonomy, Survey and Future Directions

    Full text link
    In recent years, the number of Internet of Things (IoT) devices/sensors has increased to a great extent. To support the computational demand of real-time latency-sensitive applications of largely geo-distributed IoT devices/sensors, a new computing paradigm named "Fog computing" has been introduced. Generally, Fog computing resides closer to the IoT devices/sensors and extends the Cloud-based computing, storage and networking facilities. In this chapter, we comprehensively analyse the challenges in Fogs acting as an intermediate layer between IoT devices/ sensors and Cloud datacentres and review the current developments in this field. We present a taxonomy of Fog computing according to the identified challenges and its key features.We also map the existing works to the taxonomy in order to identify current research gaps in the area of Fog computing. Moreover, based on the observations, we propose future directions for research

    Distributed Firewall for IoT

    Get PDF
    Minimal local resources, lack of consistency in low level protocols and market pressures contribute to IoT devices being more vulnerable than traditional computing devices. These devices not only have a wide variety of processors and implementations, but they often serve different purposes and generate unique network traffic. Current IoT network security solutions fail to account for and handle both the scale at which IoT devices can be deployed and the heterogeneous nature of the traffic they produce. In order to accommodate these differences and improve on current solutions, we propose the implementation of a microsegmented firewall for IoT networks. Unlike traditional microsegmented architectures, which use a virtual management layer and hypervisors to manage, route, and filter the traffic from VMs, we propose the use of a cloud based management layer working in cooperation with fog node filters to manage end device traffic. The fog nodes act as the first hop from the IoT devices, filtering traffic according to the rules given to them by the management layer. This decreases packet filtering latency by distributing the computing load and limiting the number of hops packets make for processing. Meanwhile, having a singular management point gives network administrators the convenience of controlling all traffic flows at a moments notice as would be the case in a traditional SDN. As a result, this architecture promotes both the adaptability and scalability needed in IoT networks, all while securing traffic flows and minimizing latency

    A manifesto for future generation cloud computing: research directions for the next decade

    Get PDF
    The Cloud computing paradigm has revolutionised the computer science horizon during the past decade and has enabled the emergence of computing as the fifth utility. It has captured significant attention of academia, industries, and government bodies. Now, it has emerged as the backbone of modern economy by offering subscription-based services anytime, anywhere following a pay-as-you-go model. This has instigated (1) shorter establishment times for start-ups, (2) creation of scalable global enterprise applications, (3) better cost-to-value associativity for scientific and high performance computing applications, and (4) different invocation/execution models for pervasive and ubiquitous applications. The recent technological developments and paradigms such as serverless computing, software-defined networking, Internet of Things, and processing at network edge are creating new opportunities for Cloud computing. However, they are also posing several new challenges and creating the need for new approaches and research strategies, as well as the re-evaluation of the models that were developed to address issues such as scalability, elasticity, reliability, security, sustainability, and application models. The proposed manifesto addresses them by identifying the major open challenges in Cloud computing, emerging trends, and impact areas. It then offers research directions for the next decade, thus helping in the realisation of Future Generation Cloud Computing
    • …
    corecore