25 research outputs found

    Models and Heuristics for the Flow-Refuelling Location Problem

    Get PDF
    Purpose of this paper: Firstly, the paper serves as an overview of the emerging field of flow-refuelling location, which mainly occurs in the context of locating alternative-fuel (hydrogen, electric, liquefied natural gas and hybrid) vehicle refuelling stations. We aim to review and explain models and solution approaches, with a particular focus on mathematical programming formulations. Secondly, we propose a new heuristic for this problem and investigate its performance. Design/methodology/approach: The subject scope of this paper is the flow-refuelling location model (FRLM). While in most location problems demand arises at customer locations, in so-called flow-capturing models it is associated with journeys (origin-destination pairs). What makes the FRLM even more challenging is that due to the limited driving range of alternative-fuel vehicles, more than one facility may be required to satisfy the demand of a journey. There are currently very few such refuelling stations, but ambitious plans exist for massive development – making this an especially ripe time for researchers to investigate this problem. There already exists a body of work on this problem; however different authors make different model assumptions, making comparison difficult. For example, in some models facilities must lie on the shortest route from origin to destination, while in others detours are allowed. We aim to highlight difference in models in our review. Our proposed methodology is built on the idea of solving the relaxation of the mixed-integer linear programming formulation of the problem, identifying promising variables, fixing their values and solving the resulting (so-called restricted) problems optimally. It is somewhat similar to Kernel Search which has recently gained popularity. We also use a parallel computing strategy to simultaneously solve a number of restricted problems with less computation effort for large-sized instances. Findings: Our experimental results show that the proposed heuristic can find optimal solutions in a reasonable amount of time, outperforming other heuristics from the literature. Value: We believe the paper is of value to both academics and practitioners. The review should help researchers new to this field to orient themselves in the maze of different problem versions, while helping practitioners identify models and approaches applicable to their particular problem. The heuristic proposed can be directly used by practitioners; we hope it will spark further works on this area of logistics but also on other optimisation problems where Kernel Search type methods can be applied. Research limitations: This being the first paper applying a restricted-subproblem approach to this problem it is necessarily limited in scope. Applying a traditional Kernel Search method would be an interesting next step. The proposed heuristic should also be extended to cover for more than just one FRLM model: certainly the capacitated FRLM, the FRLM with deviation, the fixed-charge FRLM and the multi-period FRLM should be investigated. Practical implications: Our work adds to a body of research that can inform decisionmakers at governmental or international level on strategic decisions relating to the establishment or development of alternative-fuel refuelling station networks

    How many fast-charging stations do we need along European highways?

    Get PDF
    For a successful market take-up of plug-in electric vehicles, fast-charging stations along the highway network play a significant role. This paper provides results from a first study on estimating the minimum number of fast-charging stations along the European highway network of selected countries (i.e., France, Germany, the Benelux countries, Switzerland, Austria, Denmark, the Czech Republic, and Poland) and gives an estimate on their future profitability. The combination of a comprehensive dataset of passenger car trips in Europe and an efficient arc-coverpath-cover flow-refueling location model allows generating results for such a comprehensive transnational highway network for the first time. Besides the minimum number of required fastcharging stations which results from the applied flow-refueling location model (FRLM), an estimation of their profitability as well as some country-specific results are also identified. According to these results the operation of fast-charging stations along the highway will be attractive in 2030 because the number of customers per day and their willingness to pay for a charge is high compared to inner-city charging stations. Their location-specific workloads as well as revenues differ significantly and a careful selection of locations is decisive for their economic operation

    Planning of feeding station installment for electric urban public mass-transportation system

    Get PDF
    During the last few decades, environmental impact of the fossil fuel-based transportation infrastructure has led to renewed interest in electric transportation infrastructure, especially in urban public mass-transportation sector. Generally, electric buses have several beneficial features compared with their petroleum-based counterparts, e.g., higher energy efficiency, no release of air pollutants, and less noise pollution. However, in the traditional implementation of electric bus transportation system, catenary wires are usually the undesired byproduct which is the one of the primary causes of visual pollution in urban cities. In this paper, we will introduce a revolutionary "catenary-free" and high-capacity electric bus transportation system proposed by the demonstrator TOSA (TPG-OPI-SIG-ABB) that will run between Palexo and Geneva Airport in Switzerland. One of the main challenges in the project is to bring up a cost optimal feeding stations installation plan for the citywide bus transportation network. The complexity of the problem comes from the simultaneous consideration of the decisions such as the power capacity for the batteries in the buses, the locations and types of feeding stations, the feasible power of chargers, and whether to include additional electric storage devices for feeding stations or not, etc. To solve the problem, we develop a mixed integer linear programming mathematical model (called myTOSA) and test it through a preliminary study where only a depot and a bus line are included. Important insights from the test case will be drawn and we will also describe how to extend the model for future studies

    Driver-aware charging infrastructure design

    Full text link
    Public charging infrastructure plays a crucial role in the context of electrifying the private mobility sector in particular for urban regions. Against this background, we develop a new mathematical model for the optimal placement of public charging stations for electric vehicles in cities. While existing approaches strongly aggregate traffic information or are only applicable to small instances, we formulate the problem as a specific combinatorial optimization problem that incorporates individual demand and temporal interactions of drivers, exact positioning of charging stations, as well as various charging speeds, and realistic charging curves. We show that the problem can be naturally cast as an integer program that, together with different reformulation techniques, can be efficiently solved for large instances. More specifically, we show that our approach can compute optimal placements of charging stations for instances based on traffic data for cities with up to 600 000600\,000 inhabitants and future electrification rates of up to 15%15\%

    Hydrogen refueling station networks for heavy-duty vehicles in future power systems

    Get PDF
    A potential solution to reduce greenhouse gas (GHG) emissions in the transport sector is to use alternatively fueled vehicles (AFV). Heavy-duty vehicles (HDV) emit a large share of GHG emissions in the transport sector and are therefore the subject of growing attention from global regulators. Fuel cell and green hydrogen technologies are a promising option to decarbonize HDVs, as their fast refueling and long vehicle ranges are consistent with current logistic operational requirements. Moreover, the application of green hydrogen in transport could enable more effective integration of renewable energies (RE) across different energy sectors. This paper explores the interplay between HDV Hydrogen Refueling Stations (HRS) that produce hydrogen locally and the power system by combining an infrastructure location planning model and an electricity system optimization model that takes grid expansion options into account. Two scenarios – one sizing refueling stations to support the power system and one sizing them independently of it – are assessed regarding their impacts on the total annual electricity system costs, regional RE integration and the levelized cost of hydrogen (LCOH). The impacts are calculated based on locational marginal pricing for 2050. Depending on the integration scenario, we find average LCOH of between 4.83 euro/kg and 5.36 euro/kg, for which nodal electricity prices are the main determining factor as well as a strong difference in LCOH between north and south Germany. Adding HDV-HRS incurs power transmission expansion as well as higher power supply costs as the total power demand increases. From a system perspective, investing in HDV-HRS in symbiosis with the power system rather than independently promises cost savings of around seven billion euros per annum. We therefore conclude that the co-optimization of multiple energy sectors is important for investment planning and has the potential to exploit synergies
    corecore