24,405 research outputs found

    TCP smart framing: a segmentation algorithm to reduce TCP latency

    Get PDF
    TCP Smart Framing, or TCP-SF for short, enables the Fast Retransmit/Recovery algorithms even when the congestion window is small. Without modifying the TCP congestion control based on the additive-increase/multiplicative-decrease paradigm, TCP-SF adopts a novel segmentation algorithm: while Classic TCP always tries to send full-sized segments, a TCP-SF source adopts a more flexible segmentation algorithm to try and always have a number of in-flight segments larger than 3 so as to enable Fast Recovery. We motivate this choice by real traffic measurements, which indicate that today's traffic is populated by short-lived flows, whose only means to recover from a packet loss is by triggering a Retransmission Timeout. The key idea of TCP-SF can be implemented on top of any TCP flavor, from Tahoe to SACK, and requires modifications to the server TCP stack only, and can be easily coupled with recent TCP enhancements. The performance of the proposed TCP modification were studied by means of simulations, live measurements and an analytical model. In addition, the analytical model we have devised has a general scope, making it a valid tool for TCP performance evaluation in the small window region. Improvements are remarkable under several buffer management schemes, and maximized by byte-oriented schemes

    Mobile Networking

    Get PDF
    We point out the different performance problems that need to be addressed when considering mobility in IP networks. We also define the reference architecture and present a framework to classify the different solutions for mobility management in IP networks. The performance of the major candidate micro-mobility solutions is evaluated for both real-time (UDP) and data (TCP) traffic through simulation and by means of an analytical model. Using these models we compare the performance of different mobility management schemes for different data and real-time services and the network resources that are needed for it. We point out the problems of TCP in wireless environments and review some proposed enhancements to TCP that aim at improving TCP performance. We make a detailed study of how some of micro-mobility protocols namely Cellular IP, Hawaii and Hierarchical Mobile IP affect the behavior of TCP and their interaction with the MAC layer. We investigate the impact of handoffs on TCP by means of simulation traces that show the evolution of segments and acknowledgments during handoffs.Publicad

    Stochastic Models of TCP Flows over 802 11 WLANs

    Get PDF
    This technical report develops an analytical framework to model the interaction between TCP and 802:11 MAC protocol over a WLAN, when concurrent TCP downlink and uplink connections are active. Assuming a TCP advertised window equal to one, we formulate a Markov model to characterize the dynamic network contention level, de ned as the expected number of wireless stations having at least a frame to transmit. Exploiting the stochastic characterization of the dynamic contention level induced by the TCP ow control, we develop an accurate model of the MAC protocol behavior to evaluate the TCP throughput performance. Comparison with simulation results validates the model, which provides the analytical basis for the optimization of the system performance. In particular, we prove that using a TCP advertised window equal to one ensures a fair access to the TCP ows of the channel bandwidth, irrespective of the number of TCP downlink or uplink connections. Moreover, we show that the aggregate TCP throughput is almost independent of the number of wireless stations in the network

    Performance Modelling and Measurements of TCP Transfer Throughput in 802.11based WLANs

    Get PDF
    The growing popularity of the 802.11 standard for building local wireless networks has generated an extensive literature on the performance modelling of its MAC protocol. However, most of the available studies focus on the throughput analysis in saturation conditions, while very little has been done on investigating the interactions between the 802.11 MAC protocol and closed-loop transport protocols such as TCP. This paper addresses this issue by developing an analytical model to compute the stationary probability distribution of the number of backlogged nodes in a WLAN in the presence of persistent TCP-controlled download and upload data transfers. By embedding the network backlog distribution in the MAC protocol modelling, we can precisely estimate the throughput performance of TCP connections. A large set of experiments conducted in a real network validates the model correctness for a wide range of configurations. A particular emphasis is devoted to investigate and explain the TCP fairness characteristics. Our analytical model and the supporting experimental outcomes demonstrate that using default settings for the capacity of devices\u27 output queues provides a fair allocation of channel bandwidth to the TCP connections, independently of the number of downstream and upstream flows. Furthermore, we show that the TCP total throughput does not degrade by increasing the number of wireless stations

    Flow Control in Wireless Ad-hoc Networks

    Get PDF
    We are interested in maximizing the Transmission Control Protocol (TCP) throughput between two nodes in a single cell wireless ad-hoc network. For this, we follow a cross-layer approach by first developing an analytical model that captures the effect of the wireless channel and the MAC layer to TCP. The analytical model gives the time evolution of the TCP window size which is described by a stochastic differential equation driven by a point process. The point process represents the arrival of acknowledgments sent by the TCP receiver to the sender as part of the self-regulating mechanism of the flow control protocol. Through this point process we achieve a cross-layer integration between the physical layer, the MAC layer and TCP. The intervals between successive points describe how the packet drops at the wireless channel and the delays because of retransmission at the MAC layer affect the window size at the TCP layer. We fully describe the statistical behavior of the point process by computing first the p.d.f. for the inter-arrival intervals and then the compensator and the intensity of the process parametrized by the quantities that describe the MAC layer and the wireless channel. To achieve analytical tractability we concentrate on the pure (unslotted) Aloha for the MAC layer and the Gilbert-Elliott model for the channel. Although the Aloha protocol is simpler than the more popular IEEE 802.11 protocol, it still exhibits the same exponential backoff mechanism which is a key factor for the performance of TCP in a wireless network. Moreover, another reason to study the Aloha protocol is that the protocol and its variants gain popularity as they are used in many of today's wireless networks. Using the analytical model for the TCP window size evolution, we try to increase the TCP throughput between two nodes in a single cell network. We want to achieve this by implicitly informing the TCP sender of the network conditions. We impose this additional constraint so we can achieve compatibility between the standard TCP and the optimized version. This allows the operation of both protocol stacks in the same network. We pose the optimization problem as an optimal stopping problem. For each packet transmitted by the TCP sender to the network, an optimal time instance has to be computed in the absence of an acknowledgment for this packet. This time instance indicates when a timeout has to be declared for the packet. In the absence of an acknowledgment, if the sender waits long for declaring a timeout, the network is underutilized. If the sender declares a timeout soon, it minimizes the transmission rate. Because of the analytical intractability of the optimal stopping time problem, we follow a Markov chain approximation method to solve the problem numerically

    Model based analysis of some high speed network issues

    Get PDF
    The study of complex problems in science and engineering today typically involves large scale data, huge number of large-scale scientific breakthroughs critically depends on large multi-disciplinary and geographically-dispersed research teams, where the high speed network becomes the integral part. To serve the ongoing bandwidth requirement and scalability of these networks, there has been a continuous evolution of different TCPs for high speed networks. Testing these protocols on a real network would be expensive, time consuming and more over not easily available to the researchers worldwide. Network simulation is well accepted and widely used method for performance evaluation, it is well known that packet-based simulators like NS2 and Opnet are not adequate in high speed also in large scale networks because of its inherent bottlenecks in terms of message overhead and execution time. In that case model based approach with the help of a set of coupled differential equations is preferred for simulations. This dissertation is focused on the key challenges on research and development of TCPs on high-speed network. To address these issues/challenges this thesis has three objectives: design an analytical simulation methodology; model behaviors of high speed networks and other components including TCP flows and queue using the analytical simulation method; analyze them and explore impacts and interrelationship among them. To decrease the simulation time and speed up the process of testing and development of high speed TCP, we present a scalable simulation methodology for high speed network. We present the fluid model equations for various high-speed TCP variants. With the help of these fluid model equations, the behavior of high-speed TCP variants under various scenarios and its effect on queue size variations are presented. High speed network is not feasible unless we understand effect of bottleneck buffer size on performance of these high-speed TCP variants. A fluid model is introduced to accommodate the new observations of synchronization and de-synchronization phenomena of packet losses at bottleneck link and a microscopic analysis is presented on different buffer sizes at drop-tail queuing scheme. The proposed model based methods promotes principal understanding of the future heterogeneous networks and accelerates protocol developments

    EvaluaciĂłn del rendimiento del servicio de videostreaming adaptativo en redes inalĂĄmbricas

    Get PDF
    YouTube Live is one of the most popular services on the Internet, enabling an easy streaming of a live video with acceptable video quality. Thus, understanding user´s perception of this service is of the utmost importance for network operators. The image Quality delivered and user videoplayback behavior on YouTube Live streaming are important keys to ensure an adequate Quality of Experience (QoE). In this paper, an analytical model, and stacked Bar Graph to estimate the QoE for encrypted YouTube Live service from packet-level data collected in the interfaces of a wireless network is presented. The inputs to the model are Transport Control Protocol (TCP)/Internet Protocol (IP) metrics, from which two Service Key Performance Indicators (S-KPIs) are estimated, namely video quality level (itag) and, videoplayback connection ratio. The model is developed with an experimental platform, consisting of a user terminal agent, a WiFi wireless network, a network-level emulator, a Mitmproxy and a probe software. Model assessment is carried out by comparing S-KPI estimates with measurements from the terminal agent under different network conditions introduced by the network emulator.Universidad de Målaga. Campus de Excelencia Internacional Andalucía Tech. Ministerio de Economía y Competitividad (Proyecto TEC2015-69982-R, UNMA13-1E-1864), y FEDER

    Modeling Network Coded TCP Throughput: A Simple Model and its Validation

    Full text link
    We analyze the performance of TCP and TCP with network coding (TCP/NC) in lossy wireless networks. We build upon the simple framework introduced by Padhye et al. and characterize the throughput behavior of classical TCP as well as TCP/NC as a function of erasure rate, round-trip time, maximum window size, and duration of the connection. Our analytical results show that network coding masks erasures and losses from TCP, thus preventing TCP's performance degradation in lossy networks, such as wireless networks. It is further seen that TCP/NC has significant throughput gains over TCP. In addition, we simulate TCP and TCP/NC to verify our analysis of the average throughput and the window evolution. Our analysis and simulation results show very close concordance and support that TCP/NC is robust against erasures. TCP/NC is not only able to increase its window size faster but also to maintain a large window size despite losses within the network, whereas TCP experiences window closing essentially because losses are mistakenly attributed to congestion.Comment: 9 pages, 12 figures, 1 table, submitted to IEEE INFOCOM 201

    An algorithm for controlling packet size in IEEE 802.16e networks

    Get PDF
    This paper proposes an algorithm to be used in IEEE 802.16e networks for adapting MAC PDU size to wireless channel behavior when ARQ is adopted at MAC layer. The algorithm is based on an analytical approach for dynamically evaluating the optimal packet size. The latter is derived from an expression of the ARQ protocol efficiency, obtained by exploiting a finite-state Markov error model which also takes into account Adaptive Modulation/Coding. The effectiveness of the designed algorithm in improving TCP performance has been evaluated
    • …
    corecore