
ABSTRACT

Title of dissertation: FLOW CONTROL IN WIRELESS
AD-HOC NETWORKS

Georgios Papageorgiou,
Doctor of Philosophy, 2009

Dissertation directed by: Professor John S. Baras,
Department of Electrical and
Computer Engineering

We are interested in maximizing the Transmission Control Protocol (TCP) through-

put between two nodes in a single cell wireless ad-hoc network. For this, we follow a

cross-layer approach by first developing an analytical model that captures the effect of

the wireless channel and the MAC layer to TCP. The analytical model gives the time evo-

lution of the TCP window size which is described by a stochastic differential equation

driven by a point process. The point process represents the arrival of acknowledgments

sent by the TCP receiver to the sender as part of the self-regulating mechanism of the

flow control protocol. Through this point process we achieve a cross-layer integration

between the physical layer, the MAC layer and TCP. The intervals between successive

points describe how the packet drops at the wireless channel and the delays because of re-

transmission at the MAC layer affect the window size at the TCP layer. We fully describe

the statistical behavior of the point process by computing first the p.d.f. for the inter-

arrival intervals and then the compensator and the intensity of the process parametrized

by the quantities that describe the MAC layer and the wireless channel.



To achieve analytical tractability we concentrate on the pure (unslotted) Aloha for

the MAC layer and the Gilbert-Elliott model for the channel. Although the Aloha protocol

is simpler than the more popular IEEE 802.11 protocol, it still exhibits the same exponen-

tial backoff mechanism which is a key factor for the performance of TCP in a wireless

network. Moreover, another reason to study the Aloha protocol is that the protocol and

its variants gain popularity as they are used in many of today’s wireless networks.

Using the analytical model for the TCP window size evolution, we try to increase

the TCP throughput between two nodes in a single cell network. We want to achieve

this by implicitly informing the TCP sender of the network conditions. We impose this

additional constraint so we can achieve compatibility between the standard TCP and the

optimized version. This allows the operation of both protocol stacks in the same network.

We pose the optimization problem as an optimal stopping problem. For each packet

transmitted by the TCP sender to the network, an optimal time instance has to be com-

puted in the absence of an acknowledgment for this packet. This time instance indicates

when a timeout has to be declared for the packet. In the absence of an acknowledg-

ment, if the sender waits long for declaring a timeout, the network is underutilized. If

the sender declares a timeout soon, it minimizes the transmission rate. Because of the

analytical intractability of the optimal stopping time problem, we follow a Markov chain

approximation method to solve the problem numerically.
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Chapter 1

Introduction

This chapter serves as an introduction to the rest of the thesis, by providing the

motivation for the current work. Moreover, it introduces the problems that are addressed

and the approach and tools used to solve these problems.

1.1 Motivation

Wireless ad-hoc networks had been used until recently in military applications and

also in emergency situations where the nature of the situation does not allow the deploy-

ment and usage of a communication infrastructure, e.g. physical destruction, etc. In

the recent years however, wireless ad-hoc networks have become quite popular and are

widely used for commercial applications. New standards have been introduced (IEEE

802.11, Bluetooth, etc.) that helped to increase the popularity of Wireless Local Area

Networks (WLAN’s), which is one class of ad-hoc networks. Presently, there is also an

increasing interest for sensor networks, not only for military purposes but also for com-

mercial use.

Key features of wireless ad-hoc networks include the lack of infrastructure, the need

to operate under energy constraints, the fact that each node in the network operates both

as a host and as a router (i.e. a node is responsible to relay information not destined to

it to other nodes in the network), mobility and the physical characteristics of the wireless
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channel. Such features yield the design and implementation of a wireless ad-hoc network,

a non trivial task. The study of ad-hoc networks has also unveiled the need to diverge

from the paradigm of layering. Since the early days of packet networking, the designers

of such networks have been following a “divide-and-conquer” approach in defining and

implementing the various functions necessary for the operation of the network. Related

operations are grouped together forming a layer and each layer is treated as a black box

with a very well and formally-defined interface. Although this approach makes the control

and maintenance of networks easier, it fails to reveal the dependencies among quantities

that exist in different layers, thus causing suboptimal performance.

In a wireless ad-hoc network it makes sense to consider a cross-layer (i.e. vertical

across the protocol stack) integration, especially among the lower layers of the protocol

stack: physical, Medium Access Control (MAC), network, transport, since these are the

layers that participate the most during a packet exchange both from a hop-by-hop and an

end-to-end point of view. Nevertheless, inter-dependencies can be found even between

the upper and lower layers, e.g. depending on the specific characteristics of the wireless

channel (physical layer) different source coding (application layer) and channel coding

(link layer) schemes can be used to adapt to available bandwidth, fading, latency, etc.

Another example where the dependency of one layer to another is evident is related to

power control. Traditionally, power control was treated as a physical layer characteristic.

Most of the schemes that were developed in the context of power control aimed to adjust

the transmitting power of a node in order to maximize the signal to noise and interference

ratio subject to the channel characteristics (fading, interference, noise). In a wireless ad-

hoc network however, the power level at which a node is transmitting defines not only the
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interference this node is creating to other nodes but also what nodes in the network are

immediately accessible (one-hop away). Thus, power control determines the connectivity

of the wireless ad-hoc network and in consequence it affects how packets are routed in

the network (network layer).

An example which is more relevant to the current work and makes the need for

layer coupling even more obvious is the operation of the Transmission Control Protocol

(TCP) over a wireless network. The main functionality of TCP is to control the rate of

information sent from a host node to the network. At the same time TCP controls the

number of outstanding packets, i.e. packets whose receipt has not been acknowledged

by the destination. This is done by using a window based mechanism. In the event

of a packet loss, TCP assumes congestion exists in the network and abruptly reduces its

window size. Although such an assumption is reasonable in the case of the Internet where

most of the packet losses are due to buffer overflow, it is not always true for a wireless

environment. On wireless links a packet may be lost because of errors at the channel. A

simple reaction in this case would had been the retransmission of the lost packet. But TCP

cannot distinguish between the two cases and reacts to the packet loss because of errors

on the channel as if it were caused by congestion. This results to the under-utilization of

the channel since the end host is forced to send packets in the network with a lower rate.

1.2 Problems Addressed and Approach

The problem that is explored in this thesis is that of maximizing the TCP throughput

for a connection between two nodes in a wireless ad-hoc network. It is known that TCP
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is impaired by performance degradation in a wireless network and the main reason for

this is the inherent assumption that a packet loss is due to congestion in the network. In a

wireless network however, it is possible that packets are dropped because of bad channel

quality (e.g. fading). In such a case, the reaction of TCP, which is to reduce the sending

rate of data, does not solve the problem it only makes things worse.

Instead of explicitly informing the TCP sender of the nature of a packet loss, our

approach to the problem is to inform the sender implicitly. We impose this constraint be-

cause we want to keep any changes to the TCP protocol stack to a minimum. By keeping

protocol changes small and only local to the TCP sender, we can achieve compatibility

between the TCP protocol stack optimized for a wireless node and the standard TCP pro-

tocol stack operating on a host in the Internet. This can lead to an easier adoption of the

new scheme.

In our approach, the implicit notification the TCP sender receives regarding the

condition of the network and the possible cause of a packet drop is achieved through

the feedback mechanism of acknowledgments (or the lack of them). In more detail, we

assume the TCP sender and receiver are one hop away and thus there can be no congestion

in intermediate queues. In addition, we assume the MAC mechanism is that of unslotted

Aloha. The choice of unslotted Aloha allows for tractability in the analysis, since our

focus is on the dynamics of the system, rather than the average behavior. Moreover, Aloha

captures the behavior of the backoff machinery that is present in more popular wireless

networks such as IEEE 802.11 systems. Finally, we model the effects of the physical layer

using a two-state Markov chain where a packet is lost or not with probability 1 depending

on the state of this chain.
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Using this model and results from [17,34], we are able to describe the TCP window

size evolution using a stochastic differential equation driven by a point process. The

driving point process describes the arrival of acknowledgments to the TCP sender and its

intensity is given as a function of the parameters that describe the unslotted Aloha and

the Markov chain for the physical layer. Thus, a cross-layer (i.e. vertical across layers)

integration is achieved through the protocol stack on the wireless node.

Using the stochastic differential equation that describes the evolution of the win-

dow size, we try to pose an optimization problem. The objective is to maximize the TCP

throughput with constraints that come from the stochastic differential equation. The prob-

lem can be posed as an optimal stopping problem where the TCP sender needs to choose

the optimal time to declare a timeout event in the absence of a received acknowledgment

for a packet that has been sent to the network. This is because at any point in time, the

TCP sender can either continue waiting to receive an acknowledgment or since an ac-

knowledgment has not been received, declare a timeout and retransmit the packet. The

first choice incurs delays and leaves the connection idle and thus decreases the throughput.

In the event of a received acknowledgment, the TCP sender can resume operation from

the stopping point without having to minimize its window size and begin from slow-start

again. The second choice minimizes the time the connection is kept idle, at the expense

of using the connection with a small sending rate, since a timeout event is declared and

the TCP sender has to switch to the slow-start mode of operation minimizing at the same

time its window size.

Because of analytical intractability for this optimal stopping problem, and moti-

vated by the approximation method of Kushner [28–31] we choose to approximate the
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original problem with a discrete time version, by appropriately defining a Markov chain

and solving a dynamic programming problem on that Markov chain.

1.3 Contributions of the Thesis

Because of its importance and popularity, TCP has been analyzed frequently under

different assumptions and for different communication environments (i.e. Internet, wire-

less, satellite networks) and the related literature is extensive (see for example [3,4,9–12,

18–20, 23, 26, 27, 32, 33, 37, 39, 44–47, 55].

The vast majority of the literature, concentrates on the average behavior of TCP,

generally ignoring in most of the cases the dynamic evolution of quantities such as the

window size. Even when the dynamics of TCP are studied, the round-trip time of pack-

ets are typically constant and are not associated with the layers below TCP such as the

physical layer, the MAC or the routing. In Chapter 2 of this thesis we develop a sim-

ple stochastic differential equation that describes the evolution of the window size. The

equation is driven by a point process that represents the sequence of acknowledgments

arriving to the TCP sender. The statistical properties of this point process are described

in terms of quantities that relate to the MAC layer and the channel.

Previous work on the analysis of TCP concentrates on the congestion avoidance

part of the protocol ignoring the slow-start phase. Typically, this is justified by the fact

that in the Internet, most of the packet losses happen because of buffer overflow and

these losses are detected at the TCP sender by the duplicate acknowledgment mechanism.

When this happens, the TCP sender starts operating in the congestion avoidance phase.
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But, if TCP operates over a wireless network, packet losses may also occur due to poor

channel quality. If a burst of packets is lost the duplicate acknowledgment mechanism

does not work and thus a timeout is declared. In such a case the sender switches to the

slow-start phase. Thus, it is important to analyze the timeout mechanism of TCP and try

to associate its performance with the underlying wireless medium.

Building on the work of Chapter 2 we develop a framework that allows the designer

of a wireless network to properly tune and optimize the timeout mechanism of TCP in

order to increase the throughput of the network. This approach is presented in Chapter 3

of the thesis.

7



Chapter 2

Cross-layer Integration between TCP and Aloha

In this chapter the interaction between the Additive-Increase, Multiplicative-Decrease

(AIMD) algorithm of the Transmission Control Protocol (TCP) and the random access

channel is investigated. In particular, we examine the effect of the Medium Access Con-

trol (MAC) and the physical layer on the window size evolution of TCP. The problem of

coupling the window size evolution of TCP with a random access channel is addressed

using point processes.

2.1 Introduction

TCP is very popular in wired networks and is also used in the first generation of

many wireless networks. Thus, it is important to investigate its performance over a wire-

less communication environment. In a wireless environment the characteristics of com-

munication are quite different compared to those of a wired environment, yielding the

existing layering approach of protocols inefficient. It is believed that a closer intercon-

nection between various layers in the protocol stack of a mobile node would allow for

a better utilization of the wireless network. One aspect of this cross-layer integration

should include the flow-control, which is an end-to-end function, and access control of

the shared wireless channel, an operation which is local to each mobile node. The in-

tegration of flow-control with Medium Access Control would prevent a data source in a
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mobile node from overloading the network and hence, decrease its overall performance.

In this chapter, we consider the window-based mechanism of flow-control of TCP

on top of an Aloha-based MAC protocol. All nodes in the network are in hearing distance

from each other, thus the hidden terminal problem does not exist. The characteristics

of the physical channel are captured through the use of a simple two-state Markov pro-

cess. Aloha is chosen as the MAC protocol since it provides a very simple channel access

mechanism and also because it captures in a simple way the random waiting time before

retransmission present in many other random access protocols. Moreover, various forms

of the Aloha protocol are in use today in most of the current digital cellular networks,

increasing the interest for this protocol [5–8, 35, 38]. In this chapter we attempt to de-

velop a simple, yet complete TCP model for a wireless communications environment that

captures the behavior of TCP in such an environment. To this end, we consider a single

persistent TCP connection over one wireless hop, i.e. the TCP sender and the TCP re-

ceiver are one hop away. Because of this, no buffering is performed in any intermediate

node, and thus, the round-trip time (RTT) consists mainly of the delay incurred by the

MAC in its effort to successfully transmit the packet. Since we are interested in exam-

ining the effect of timeouts due to MAC and the physical layer, we assume the forward

channel (i.e. the channel from the TCP sender to the receiver) to be ideal, in the sense

that there are no packet losses. Thus, there are no duplicate acknowledgments (ACKs)

received at the TCP sender. The same situation, i.e. detection of packet losses through

timeouts rather than duplicate acknowledgments, arises in the case where the bandwidth-

delay product is small [4]. Timeout events are produced because of ACK losses in the

backward channel (from the TCP receiver to the TCP sender). In the backward channel
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the MAC layer introduces delays and thus increases the RTTs, while the physical layer is

responsible for ACK losses.

Due to the great importance of TCP in the Internet, various models of it have been

developed. These models try to capture the operation of the main mechanisms of TCP

and to give insights on how these mechanisms can be improved in order to fine-tune TCP

under various networking environments.

Low, Paganini and Doyle [36] study TCP from a control theory point of view in the

case of the Internet. They interpret TCP as an optimal controller optimizing specific utility

functions at equilibrium and also look at the dynamics of TCP employing linear models to

exhibit stability limitations. Their analytical model incorporates general dynamic models

for rate control at the source and for pricing at each link. The main assumption is that

each source has access to the aggregate price (i.e. congestion indication) of all links in

its route. Under the assumption of constant round-trip time and not considering at all the

slow-start phase of TCP or timeouts, they are able to provide the utility functions that

TCP-Reno and TCP-Vegas are implicitly using. Although this was one of the first works

to show that TCP is maximizing certain utility functions, its applicability to the wireless

ad-hoc networks is questionable. The main reason for this is the absence of the notion of

links in such networks, and thus the interpretation of them as price producers.

In [40] Mascolo et al. propose sender-side modifications to TCP to improve the

throughput especially over wireless links. They call the new flavor TCP Westwood

(TCPW). The key point in their work is the introduction of bandwidth estimation at the

sender and appropriate adjustments for the window size and the slow-start threshold after

a packet loss is detected, either by a duplicate acknowledgment or a timeout. They aim
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for end-to-end extensions of TCP rather than “localized” solutions where packet inspec-

tion and/or interception is required at specific points in the network (e.g. base stations).

An issue not addressed in [40] but investigated in the current work, relates to cases where

the bottleneck link is in the reverse direction from the receiver to the sender. In such

cases, the bottleneck link needs to be shared in a fair manner between data packets and

acknowledgment packets.

Bansal et al. [11] study the performance of TCP in a multi-hop, wireless network

such that of IEEE 802.11. They focus simultaneously on two performance metrics: en-

ergy efficiency and TCP session throughput. The motivation to explore these two metrics

comes from the fact that they are both important to the operation of a wireless network but

also that behave differently with respect to the transmission range, and hence the number

of hops traversed in a communication path. A short transmission range increases the num-

ber of hops in a communication path, but at the same time decreases the overall energy

consumption for the end-to-end communication. Thus, minimal energy consumption fa-

vors a short transmission range. On the other hand, it is well known [41,47] that the TCP

throughput of a session is inversely proportional to the round-trip time (i.e. the number

of hops traversed by the TCP session) and the square root of the packet loss rate. This

means that a trade off needs to take place in order to achieve good performance for both

these metrics. In [11] it is shown that a smaller transmission range is beneficial from an

energy perspective up to a point, but it comes with a cost associated with the TCP session

goodput.

Abouzeid, Roy and Azizoglou [1] also investigate the performance of TCP over

a wireless link. In their work phenomena relevant to fading are considered as well as
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queuing. More specifically, they consider a TCP connection where one end is a server in

the wired network and the other end resides on a wireless node. The communication path

includes one wireless hop and a series of wired links. In their analysis they consider a two-

state continuous time Markov chain that models the wireless link behavior and provides

for the packet losses because of fading on the channel. Along with packet losses because

of the wireless link, they include in their analysis packet losses associated with queuing.

Another novelty of their work is the consideration of variable round-trip times and of

timeouts, an issue which is almost always neglected in similar studies of TCP. On the other

hand, they do not include the effect of the MAC layer to the performance of TCP. Their

observations include the fact that timeouts (that are frequent in a wireless communication

environment) may cause underutilization of TCP for periods of time much longer than the

time the channel is in a “bad” state because of fading. They suggest that a modification

to the exponential backoff algorithm and sampling the channel can improve performance,

but they do not provide any guidelines to this direction. Based on their model, they point

out that it is always recommended to use a higher packet size for a given fading rate,

unlike what some earlier work has suggested.

An extensive amount of work has also been performed regarding the analysis and

modeling of MAC and especially IEEE 802.11. In his seminal work Bianchi [16] consid-

ers saturated users with ideal (no channel losses) and homogeneous (equal physical data

rate) channel conditions with no hidden terminals. He develops a model for the analysis

of the DCF scheme in both basic packet transmission and RTS/CTS transmission mech-

anisms. Using this model he provides a throughput performance evaluation of the DCF

scheme. In [52], Sharma et al. consider the same problem but they use a more general
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approach. They compute again the throughput of the network and provide a justification

for the assumptions used in [16].

Tobagi et al. [25, 43] develop a model where blocking and interference are taken

into account. In [43] they compute throughput of one hop connections and every node

can transmit to a single node. In [25] the model is extended for the case of one single path

in the network and is explained that the same methodology can by used to model multiple

paths as long as there is no common node between the paths.

In [13,14], Baras et al., develop and evaluate a new method for estimating and opti-

mizing various performance metrics for multi-hop wireless networks, including MANETs.

They introduce an approximate (throughput) loss model that couples the physical, MAC

and routing layers effects. The model provides quantitative statistical relations between

the loss parameters that are used to characterize multiuser interference and physical path

conditions on the one hand and the traffic rates between origin-destination pairs on the

other. The model takes into account effects of the hidden nodes, scheduling algorithms,

IEEE 802.11 MAC and PHY layer transmission failures and finite packet transmission re-

tries at the MAC layer in arbitrary network topologies where multiple paths share nodes.

They apply Automatic Differentiation (AD) to these implicit performance models, and

develop a methodology for sensitivity analysis, parameter optimization and trade-off anal-

ysis for key wireless protocols.

In [18, 19], Bruno et al. consider the interplay between the TCP dynamics and the

IEEE 802.11 access method. They present a simple closed-form expression of the per-

connection TCP throughput as a function of the average duration of collisions, the average

backoff period and the TCP packet size.
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The research efforts mentioned above compute averages for the various quantities of

interest. Our approach differs from them in that we try to directly analyze and model the

dynamics of TCP and more specifically the window size evolution parametrized by quan-

tities relevant to the MAC layer and the wireless channel. Because of the complexities

of IEEE 802.11 considering for the MAC layer yield the analysis intractable. Instead, we

choose to consider the Aloha protocol which provides for a more tractable MAC model

but which at the same time exhibits the exponential backoff periods that is also part of

IEEE 802.11.

2.2 Model Description

The flow-control mechanism of TCP is modeled according to the AIMD paradigm.

Two quantities are defined, the TCP window size W and the slow-start threshold S. The

window sizeW in the sender changes dynamically based on the reception of acknowledg-

ments (ACKs). During normal operation of the protocol, where no packet losses occur,

the arrival of an acknowledgment causes the increase of the window size. An acknowledg-

ment is sent from the receiver to the sender every time a TCP packet is correctly received

by the receiver. An acknowledgment is cumulative in the sense that by sending an ac-

knowledgment packet, the receiver acknowledges that all the packets sent by the sender

with sequence number less than the number indicated in the ACK packet were correctly

received. In the case where a packet from a series of packets is lost, the receiver produces

acknowledgments for every packet that is correctly received after the lost packet. Each

of these ACKs acknowledges that packets before the lost one are correctly received but
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Figure 2.1: The Gilbert-Elliott model.

there is still one packet missing.

If the current window size is less than the slow-start threshold, then TCP is in the

slow-start phase and Wnew = Wcur + 1 each time an acknowledgment is received, oth-

erwise TCP is in the congestion avoidance phase and Wnew = Wcur + 1 per round-trip

time. The latter suggests that the increase in the window size is according to Wnew =

Wcur + 1/Wcur for every received acknowledgment. TCP assumes a packet has been

lost either by receiving three duplicate ACKs for a specific packet, or by a timeout. In

both cases it is assumed by TCP that the packet was lost because of congestion in the

network. In the first case though, since the network is able to deliver packets to the final

destination the congestion cannot be severe, so TCP reacts less aggressively. Particularly,

the slow-start threshold is updated by taking half the value of the current window size,

Snew = Wcur/2, and Wnew = Snew. Thus, after the arrival of three duplicate acknowl-

edgments, TCP enters the congestion avoidance phase. The second case implies a severe

congestion in the network, so TCP reacts aggressively by setting Snew = Wcur/2, and

Wnew = 1. This reaction causes TCP to enter the slow-start phase.

The packet loss model associated with the wireless channel can be described by

a continuous time Markov chain with two states as shown in Fig. 2.1 and known as the

Gilbert-Elliott model [21,22] which is frequently used in the literature [1,24,42,56]. One

state corresponds to the channel being “good”, i.e. packets are not lost w.p. 1, and the
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other state corresponds to the channel being “bad” having as an effect packet losses w.p.

1. The transition rate from the “bad” to the “good” state is λbg and the transition rate from

the “good” to the “bad” state is λgb.

The MAC layer model assumed in this work is based on the pure Aloha mech-

anism [2, 15, 51]. In pure Aloha, if a packet transmission overlaps at all with that of

another packet, then the transmission is unsuccessful for all the packets that participated

in the collision. A packet that failed to be transmitted successfully is retransmitted after

a random delay. It is assumed that this delay is a random variable following the exponen-

tial distribution with mean 1/λret and it is independent of any previous delays. It is also

assumed that a feedback is immediately available to the nodes informing them about the

successful or unsuccessful transmission of a packet.

If the new arrivals to the system are Poisson with rate λ, and the number of nodes

that have packets that participated in a collision (backlog) is n, then the initiation times

of attempted transmissions follow a time-varying Poisson distribution with rate G(n) =

λ+ nλret. In this setting the probability of a successful transmission of a packet is,

pmac = e−2G(n)Tp (2.1)

where Tp = L/C is the transmission time of the packet of constant length L bits over the

wireless channel of capacity C bps. We assume that each node is capable of estimating

the number n of nodes with which it competes for bandwidth and therefore can estimate

the probability of successful transmission pmac.

The problem attempted to be solved then is to increase the TCP performance based

on the models described above. Usually the approach taken is to change the way TCP
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Figure 2.2: System model.

operates by either changing the finite state machine of the protocol or introducing new

fields in the TCP header. In contrast to that, our approach keeps to a minimum any

required changes to TCP, so that compatibility with the standard TCP implementations

can be achieved.

The poor performance of TCP over wireless stems from the fact that TCP cannot

distinguish between packet losses due to congestion and packet losses due to poor channel

quality. As a result treats all packet losses as if they happen because of the congestion in

the network. The TCP sender sets a timeout period for each packet sent to the network.

If no acknowledgment for this particular packet is received during this period, the packet

is considered lost. Each packet is delayed in the MAC layer because of collisions and

probably is lost in the physical layer because of the poor channel quality.

In this chapter we attempt to develop a simple model for the window size evolution

of TCP which incorporates the dependencies from the MAC and the physical layers.

2.3 Analysis

In this section we give the mathematical models that describe the operation of each

of the layers involved in our analysis. In the following we assume there exists a complete

probability space (Ω,F , P ). A representation of the system is given in Fig. 2.2.
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2.3.1 Physical Layer

We elaborate on the model for the Physical layer that was briefly introduced in

Section 2.2. We define the continuous time Markov chain P = (Pt)t≥0 with a state space

P = {0, 1}. When Pt = 0, it means the channel is in the “bad” state and the transmitted

packet is dropped w.p. 1, when Pt = 1, it means the channel is in the “good” state and

the transmission of the packet is successful w.p. 1. As was mentioned in Section 2.2,

the transition rates from “bad” to “good” and from “good” to “bad” are λbg and λgb,

respectively. Then, the transition probabilities for the chain in a small time interval h > 0

can be given by:

p00(h) = 1− λbgh+ o(h), p01(h) = λbgh+ o(h)

p10(h) = λgbh+ o(h), p11(h) = 1− λgbh+ o(h)

where o(h) is such that limh→0
o(h)
h

= 0.

In Appendix A.1 we compute the probability p0(t) the chain is in the “bad” state at

time t to be:

p0(t) =
λgb

λbg + λgb
+

(
p0(0)− λgb

λbg + λgb

)
e−(λbg+λgb)t (2.2)

for t ≥ 0 and some initial probabilities p0(0) and p1(0) for the chain to be in the “bad”

and the “good” state respectively, at time t = 0.

Since p0(t) + p1(t) = 1 for all t ≥ 0, we also have:

p1(t) =
λbg

λbg + λgb
+

(
p1(0)− λbg

λbg + λgb

)
e−(λbg+λgb)t (2.3)

for t ≥ 0. The stationary distribution for the Markov chain corresponds to the case where

t ↑ ∞ in (2.2) and (2.3). The stationary probabilities πb, πg of being in the “bad” and the
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“good” states respectively, are:

πb = lim
t→∞

p0(t) =
λgb

λbg + λgb
(2.4a)

πg = lim
t→∞

p1(t) =
λbg

λbg + λgb
(2.4b)

In Appendix A.1 we also prove that the waiting time Ti, i ∈ P in each state is

exponentially distributed and more specifically,

P{T0 ≥ t} = e−λbgt, t ≥ 0 (2.5a)

P{T1 ≥ t} = e−λgbt, t ≥ 0 (2.5b)

As was mentioned in Section 2.1 we focus on the effect of the MAC and the physical

layer on the timeout mechanism of TCP. Thus, we assume the physical channel (PHY-

FW) in the forward direction to be ideal. This means that Mt and MMAC
t are indistin-

guishable and there are no duplicate ACKs produced at the TCP receiver. Assuming that

the Markov chain that describes the physical layer operates in the stationary regime, then

the effect of the physical layer (PHY-BW) in the backward direction is described by (2.4)

and (2.5). In particular, the process N = (Nt)t≥0 in Fig. 2.2 is a thinned version of the

point process NMAC = (NMAC
t )t≥0 and this thinning is done with the stationary probabil-

ity πg the channel is in the good state, given by (2.4b).

2.3.2 MAC Layer

In this section we give a more detailed description of the MAC layer model that we

use in our analysis. In this chapter we consider the pure Aloha protocol. Each packet i

is successfully transmitted (i.e. without any collisions at the MAC layer) with probability

19



pmac that is given by (2.1) and the transmission time in this case will be constant and

equal to Tp = L/C as was mentioned in Section 2.2. A collision happens with probability

1 − pmac and the packet has to wait a random time that is exponentially distributed with

mean 1/λret. At the end of this time period another transmission is attempted. If there

is another collision the packet has to wait again for some time which is exponentially

distributed with mean 1/λret and is independent of any previous waiting periods. Since

pmac > 0, the packet will eventually be transmitted successfully.

Since each packet transmission happens independently of any transmissions of pre-

vious packets, if we define DMAC
i to be the service time (the time from the moment the

packet goes to the head of the queue until it is successfully transmitted) of packet i in

the MAC layer, then the random variables {DMAC
i , i = 1, 2, . . . } form an i.i.d. se-

quence represented by the generic random variable DMAC . We know that it is always true

DMAC ≥ Tp. In particular,

DMAC = Tp +
K∑
j=1

Xj

where {Xj, j = 1, 2, . . . , K} are i.i.d. exponentially distributed random variables with

mean 1/λret, and K is a geometrically distributed random variable with parameter pmac,

such that

P{K = k} = pmac(1− pmac)k, k = 0, 1, 2, . . .

In Appendix A.2 we show that the characteristic function of the random variable DMAC

is given by

E
[
eisD

MAC
]

= pmac e
isTp + (1− pmac) λretpmac

λretpmac − is e
isTp (2.6)
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From (2.6) we immediately get the p.d.f. of the random variable DMAC to be

fDMAC (t) = pmacδ(t− Tp) + pmac(1− pmac)λrete−λretpmac·
(
t−Tp
)
u0(t− Tp) (2.7)

for t ≥ 0, where u0(·) is the Heaviside function:

u0(t) =


0, t ≤ 0

1, t > 0

The times between successful packet transmissions at the MAC layer (assuming

there are always packets to be transmitted) are independent and distributed according

to (2.7), forming a renewal process. If we define the corresponding point process to be

{TMAC
n , n = 0, 1, . . . }, with TMAC

0 = 0 P -a.s., then

TMAC

n = DMAC

1 + · · ·+DMAC

n (2.8)

where DMAC
1 , . . . , DMAC

n are i.i.d. random variables with p.d.f. given by (2.7) and

DMAC

i = Tp +

Ki∑
j=1

Xj, i = 1, 2, . . . , n

where Ki is geometrically distributed with parameter pmac and Xj is exponentially dis-

tributed with parameter λret. Then,

TMAC

n = nTp +

K1∑
j=1

Xj + · · ·+
Kn∑
j=1

Xj

= nTp +
K∑
j=1

Xj (2.9)

where K is the sum of n i.i.d. geometrically distributed random variables with parameter

pmac. It is shown in Appendix A.3 that the random variable K has a negative binomial

distribution with parameters n and pmac,

P{K = k} =

(
n+ k − 1

k

)
pnmac(1− pmac)k
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for k = 0, 1, . . . . Regarding
∑K

j=1Xj:

E
[
eis

PK
j=1Xj

]
=

+∞∑
k=0

(
E
[
eisX1

])k (n+ k − 1

k

)
pnmac(1− pmac)k

=

(
λretpmac − ipmacs
λretpmac − is

)n
= pnmac

n∑
k=0

(
n

k

)(
1− pmac
pmac

)k (
λretpmac

λretpmac − is
)k

(2.10)

which means that

fPK
j=1Xj

(t) = pnmacδ(t)

+ pnmac

n∑
k=1

(
n

k

)(
1− pmac
pmac

)k
(λretpmac)

k

(k − 1)!
tk−1e−λretpmact (2.11)

for t ≥ 0. From (2.9) and (2.11), the p.d.f. for TMAC
n is computed

fTMAC
n

(t) = fPK
j=1Xj

(t− nTp)

= pnmacδ(t− nTp)

+ pnmac

n∑
k=1

(
n

k

)(
1− pmac
pmac

)k
(λretpmac)

k

(k − 1)!
(t− nTp)k−1e−λretpmac(t−nTp)

(2.12)

for t ≥ nTp.

We define the counting process NMAC = (NMAC
t )t≥0 that corresponds to the point

process {TMAC
n , n = 0, 1, . . . },

NMAC

t =
∞∑
i=1

1[TMAC

n ≤ t] , t ≥ 0 (2.13)

where 1[·] is the indicator function. Although the sequence {TMAC
n+1 −TMAC

n , n = 0, 1, . . . }

is an i.i.d. sequence defining a renewal process, the counting processNMAC does not have

stationary and independent increments because of the fact that Tp > 0. We define the
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history of the NMAC process as the right continuous filtration FMAC = (FNMAC

t )t≥0, such

that,

FNMAC

t = σ{NMAC

s , s ≤ t} = σ{TMAC

NMAC
s

, s ≤ t}

To compute theFNMAC

t −compensatorNt of theNMAC process, we define the conditional

distribution functions:

F1(t) = P{TMAC

1 ≤ t}

Fi(t) = P{TMAC

i ≤ t | TMAC

i−1 , . . . , TMAC

1 }, i ≥ 2

From (2.8) we have that

TMAC

1 = DMAC

1 , P -a.s.

and using (2.7) we compute the conditional distribution F1(·) and the corresponding p.d.f.

f1(·):

f1(t) = pmacδ(t− Tp) + pmac(1− pmac)λrete−λretpmac·
(
t−Tp
)
u0(t− Tp)

and

F1(t) =


0, t < Tp

pmac + (1− pmac)
(

1− e−λretpmac
(
t−Tp
))
, t ≥ Tp

From (2.8) we notice that

TMAC

i = TMAC

i−1 +DMAC

i , i ≥ 2

thus,

Fi(t) = P{DMAC

i ≤ t− TMAC

i−1 | TMAC

i−1 }, i ≥ 2
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Using (2.7) we get the conditional distribution Fi(·) and the corresponding p.d.f. fi(·),

i ≥ 2:

fi(t) = pmacδ(t− TMAC

i−1 − Tp)

+ pmac(1− pmac)λrete−λretpmac·
(
t−TMAC

i−1 −Tp
)
u0(t− TMAC

i−1 − Tp)

and

Fi(t) =


0, t < TMAC

i−1 + Tp

pmac + (1− pmac)e−λretpmac
(
t−TMAC

i−1 −Tp
))
, t ≥ TMAC

i−1 + Tp

We proceed by defining

Λ
(i)
t =

∫ t∧TMAC
i

0

dFi(u)

1− Fi(u−)

=

∫ t∧TMAC
i

0

fi(u)

1− Fi(u−)
du, i ≥ 1

Then,

Λ
(1)
t =


0, 0 ≤ t < Tp

λretpmac
(
t ∧ T1 − Tp

)
, Tp ≤ t

and

Λ
(i)
t =


0, 0 ≤ t < TMAC

i−1 + Tp

λretpmac
(
t ∧ Ti − TMAC

i−1 − Tp
)
, TMAC

i−1 + Tp ≤ t

for i ≥ 2. From [17, T7 Theorem, p.61] and [34, Theorem 18.2, p.270] theFNMAC

t −compensator

Λt of the NMAC process is given by

ΛMAC

t =
∑
i≥1

Λ
(i)
t
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and using Λ
(i)
t , i ≥ 1 computed above, we have

ΛMAC

t =


λretpmac

(
TMAC
i − iTp

)
, TMAC

i ≤ t < TMAC
i + Tp

λretpmact− (i+ 1)λretpmacTp, TMAC
i + Tp ≤ t < TMAC

i+1

(2.14)

The FNMAC

t −intensity λMAC
t can be computed directly from (2.14) to be:

λMAC

t =


0, TMAC

i ≤ t < TMAC
i + Tp

λretpmac, TMAC
i + Tp ≤ t < TMAC

i+1

(2.15)

2.3.3 Transport Layer

To describe the evolution of the window size, two stochastic processesW = (Wt)t≥0

and H = (Ht)t≥0 are defined, where Wt is the window size of the TCP flow, and Ht is

the corresponding slow-start threshold at time t.

2.3.3.1 Underlying Point Processes

Given the description in Section 2.2, there exist two underlying strictly increasing

sequences of random variables representing two point processes:

• for the arrival of acknowledgments {Tn, n = 0, 1, . . . } with T0 = 0, P -a.s. and

intensity λt > 0, and

• for the timeout events {Sn, n = 0, 1, . . . } with S0 = 0, P -a.s. and intensity µt > 0.

The point process {Tn, n = 0, 1, . . . } represents the arrival of acknowledgments at

the TCP sender, and is closely related to the MAC and the physical layer. With the as-

sumption that there are always acknowledgments waiting transmission at the MAC layer
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at the TCP receiver side, it was shown in Section 2.3.2 that the successful (i.e. without

collisions) transmissions of acknowledgments at the MAC layer form a renewal process.

The assumption that there are always acknowledgments at the receiver side waiting

for transmission at the MAC layer is a strong one. The ramification of this assumption

is two fold: (i) we underestimate the inter-ack time intervals, and (ii) we decouple the

forward and backward channel in the sense that any delays introduced to the data packet

transmission times by the MAC layer in the forward channel are not preserved in the

acknowledgment point process in the backward channel.

Those acknowledgments that survived collisions at the MAC layer are subject to

the quality of the physical layer. Thus, each of these acknowledgments is successfully

received at the TCP sender with probability πg that is given by (2.4b) and this happens

independently of the operation of the MAC layer (thinning of the point process), assuming

the Markov chain that represents the physical layer operates at the stationary regime.

If FN = (FNt )t≥0 is the right continuous filtration that represents the history of the

point process {Tn, n = 0, 1, . . . }, then the FN -intensity λt of the process is

λt = πgλ
MAC

t (2.16)

where πg is given by (2.4b) and λMAC
t is given by (2.15).

For each packet sent to the network, TCP expects an acknowledgment back from the

receiver acknowledging the receipt of the packet. In the case of poor channel quality such

an acknowledgment may be lost. If the TCP sender does not receive the acknowledgment

in certain amount of time it will assume the packet was not properly received by the

receiver and will retransmit it, minimizing at the same time its window size and in effect

26



the throughput of the connection. In a wireless network though an acknowledgment may

experience delays because of the MAC and the collisions that take place when accessing

the channel. Thus, the TCP sender should not be anxious declaring a timeout and in effect

minimizing the sending rate to the network. On the other hand, the more the TCP sender

is waiting for the arrival of an acknowledgment, the more the connection remains idle

resulting in performance degradation.

2.3.3.2 The Slow-Start Threshold Process H = (Ht)t≥0

Based on the point processes defined above, the stochastic processH that represents

the slow-start threshold in TCP is given by:

H0 = h, P -a.s.

(2.17)

Ht = h+
∞∑
n=1

1[Sn ≤ t] ∆HSn , t > 0

where h is given. The sample paths of H defined by (2.17) are piecewise constant and

right continuous with left limits (càdlàg process). The magnitude of each jump at the

points of the process {Sn, n = 1, 2, . . . } is given by

∆HSn = HSn −HS−n

= HSn −HSn−1

= max

{
2,
W−
Sn

2

}
− W−

Sn−1

2

=


1
2

(
W−
Sn
−W−

Sn−1

)
, if W−

Sn
≥ 4

2− W−
Sn−1

2
, otherwise
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for n = 2, 3, . . . , and

∆HS1 = HS1 −HS−1

= HS1 −HS0

= max

{
2,
W−
S1

2

}
−HS0

=


W−
S1

2
− h, if W−

S1
≥ 4

2− h, otherwise

and it is zero for all the other time instances.

2.3.3.3 The Window Size Process W = (Wt)t≥0

As was described in Section 2.2, the window size evolution is driven by the two

point processes {Tn, n = 0, 1, . . . }, and {Sn, n = 0, 1, . . . }.

During the slow-start phase the window size is increased by 1 for every received

acknowledgment. Define the counting process N = (Nt)t≥0 that is associated with the

point process {Tn, n = 0, 1, . . . } and counts the received acknowledgments:

Nt =
∞∑
i=1

1[Tn ≤ t] , t ≥ 0

Then, in the slow-start phase the window size evolves according to

Wt = W0 +Nt, t ≥ 0 (2.18)

where W0 is given. As was described in Section 2.2 the evolution of the window size in

congestion avoidance phase is more conservative compared to the case of the slow-start

phase. Based on that description the window size evolution in the congestion avoidance
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phase is described by

dWt =
1

Wt

dNt, t ≥ 0 (2.19)

The continuous time evolution of the window size is characterized by (2.18) and (2.19) for

slow-start and congestion avoidance respectively. It starts in the slow-start phase and if

there are no timeouts it switches to the congestion avoidance phase whenever the window

size Wt becomes larger than the slow-start threshold Ht. Whenever the window size

Wt reaches its maximum allowable value Wmax, it remains to this value. In any case,

whenever a timeout occurs, TCP switches to slow-start and sets the window size to its

minimum value W0:

WSn = W0, n = 1, 2, . . .

and the window size evolves according to (2.18). To summarize, the window size evolu-

tion is described by:

dWt =


dNt, Wt < Ht

1
Wt
dNt, Wt ≥ Ht

WSn = W0, n = 1, 2, . . . (2.20)

W0 ≤ Wt ≤ Wmax, t ≥ 0

Note that both processes W = (Wt)t≥0 and H = (Ht)t≥0 are fully observable by the TCP

sender (controller).
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2.4 Validation of the Model

We compare the analytical results given by (2.20) against ns-2 [54] simulations.

For the ns-2 simulations a detailed model of the pure (unslotted) Aloha protocol was

developed for the wireless network protocol stack. The wireless network is a single cell

where all nodes can hear each other. In all the experiments we establish a TCP Tahoe

connection between two wireless nodes. The TCP connection is used to serve a persistent

FTP transfer for the duration of each experiment. In the neighborhood of these nodes

there are pairs of nodes that exchange data packets over UDP connections that serve

CBR traffic. The CBR traffic provides the background traffic that contributes to packet

collisions at the MAC layer. Both TCP and UDP data packets are 1024 bytes long. Each

CBR connection has a rate of 64kbps and implements the ns-2 mechanism of random

perturbation of the packet transmission times. Moreover, we introduce random packet

losses that simulate packet errors due to fading and channel quality degradation. The

channel capacity in all experiments is 2Mbps.

In Fig. 2.3 the window size of the TCP Tahoe connection is shown for both the

analytical results given by (2.20) and the ns-2 simulation. The network consists of the two

nodes that participate in the TCP connection and 20 nodes that provide the background

traffic and thus the collisions at the MAC layer. In this scenario there are no packet

losses due to low channel quality and thus there are no timeout events at the TCP sender.

Because of that, the TCP sender starts in the slow-start mode of operation and when the

slow-start threshold is reached it switches to the slower regime of congestion avoidance.

The mean exponential backoff duration for the MAC is 0.1sec.
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Figure 2.3: Window size evolution in the absence of channel losses (22 nodes).

Similarly, Fig. 2.4 shows the window size for the analytical as well as the simulation

results. In this case, the background traffic is created by 40 nodes. As before, there are no

channel errors but there are timeouts because of packet losses due to multiple collisions

at the MAC layer.

In Fig. 2.5 the window size is shown for the same network of 22 nodes but in

the presence of packet losses due to channel quality degradation. The mean exponential

backoff duration after a collision is 0.1sec. In this experiment, the transition rates between

the two states of the Markov chain that models the channel losses are λgb = 1 and λbg = 2.

From (2.5a) and (2.5b) we can then compute the expected duration of each state (and thus

the effect of channel losses to the data exchange) to be

E[T0] =
1

λbg
= 0.5 sec
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Figure 2.4: Window size evolution in the absence of channel losses (42 nodes).

E[T1] =
1

λgb
= 1 sec

The scenario in Fig. 2.6 is for a network of 42 nodes. The mean exponential backoff

duration is 0.1sec and the transition rates for the Markov chain are λgb = 0.1 and λbg = 1

giving mean durations for the ”bad” and the ”good” state E[T0] = 1 sec and E[T1] =

10 sec respectively.
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Figure 2.5: Window size evolution with channel losses (22 nodes).
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Figure 2.6: Window size evolution in the absence of channel losses (44 nodes).
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Chapter 3

Optimal Timeout Mechanism of TCP over Aloha

This chapter presents an optimization problem that aims to maximize the through-

put of a Transmission Control Protocol (TCP) connection between two nodes in a wireless

ad-hoc network. More specifically, the setting is the one introduced in Chapter 2, where

a persistent TCP connection is established between two nodes that are one hop away in

a wireless unslotted Aloha network. The optimization is over the TCP timeout period,

i.e. the problem is to find the optimal waiting period before the TCP sender declares a

timeout event in the absence of a received acknowledgment for a transmitted packet. The

problem is formulated as an optimal stopping problem. In the absence of a tractable an-

alytical solution to the problem, a numerical method is proposed to achieve performance

improvement of the system.

3.1 Introduction

As was mentioned in Chapters 1 and 2, the performance of TCP over a wireless

network is poor. This is because the TCP sender assumes that the reason for a packet loss

is congestion in the network. Although this is a reasonable assumption for the Internet,

it might not be the case for wireless networks. The successful transmission of a packet

over a wireless channel depends on the channel quality. In wireless networks the channel

quality exhibits high variability and it often causes unrecoverable errors for the packet at
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the receiver. In these cases, the TCP receiver cannot acknowledge the received packet and

drops it. When packets are dropped due to bursts of errors introduced at the channel level,

the TCP sender declares a timeout in the absence of received acknowledgments. When

this happens, TCP enters the slow-start phase minimizing its window size, and thus its

throughput. Clearly, this is not the best remedy to the problem, since the lost packets are

dropped because of a temporary quality degradation at the channel and not because of

congestion.

The same situation arises when the channel affects the transmission of the acknowl-

edgments themselves. Typically, in the case of a bidirectional TCP connection, the ac-

knowledgments for the one direction are piggybacked onto the data packets to the opposite

direction. Hence, acknowledgments are subject to the effect of the channel as data pack-

ets do. Even in unidirectional TCP connections where the acknowledgments are sent to

the sender on their own, the bursty nature of the channel errors increases the probability

that more than three consecutive acknowledgments are lost and thus a data packet loss is

falsely detected at the TCP sender and a timeout is declared.

It makes sense then to try to maximize the TCP throughput by appropriately tuning

the timeout interval for each packet the TCP source sends to the network. This tun-

ing should take into consideration the parameters that characterize the operation of the

Medium Access Control (MAC) layer as well as the channel. In the setting considered

here, these parameters are the mean backoff time λret for unslotted Aloha and the proba-

bilities the wireless channel is in the “good” or the “bad” state, πg, πb respectively.

After a packet is sent to the network the TCP sender starts a timer which is set to

a value according to an estimate of the round-trip time (RTT). In general, in current TCP
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implementations this estimate does not take into account the fact that the communication

takes place over a wireless network and thus it considers any delays to be associated with

congestion. In a wireless environment however, especially in random access networks

such as the IEEE 802.11 or Aloha (as is the case here), packets are delayed because of

collisions and retransmissions at the MAC layer. If a packet is delayed because there is

heavy background traffic (i.e. traffic from or to nodes in the neighborhood of the TCP

sender or receiver), its acknowledgment might not reach the TCP sender before the expi-

ration of the timeout timer. Then, the TCP sender will declare a timeout, it will minimize

the window size and enter slow-start. This will happen even if there is no congestion be-

tween the TCP sender and receiver. In this case the TCP throughput is minimized without

any congestion being present in the network.

Consider the situation from the point of view of the TCP sender. In the current

TCP implementations the TCP sender at some point sends a packet and starts the timeout

timer. If no acknowledgment is received for that packet when the timer expires, the TCP

sender declares a timeout and enters slow-start. The TCP sender has no way to know

the exact cause for the lack of a received acknowledgment and it always assumes there

is congestion in the network. If we want to maximize the TCP performance we need to

incorporate in the timeout mechanism some information regarding the wireless medium.

Consider again the situation where the TCP sender sends a packet to the network and waits

for an acknowledgment. There are two reasons for an acknowledgment to be delayed.

Either there is congestion in the network or the packet is delayed because of collisions

and retransmissions at the MAC layer. In the first case the TCP sender would have liked

to declare immediately a timeout and enter slow-start and thus minimize the traffic that is
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sent to the network in order to compensate for the congestion. In the second case however,

a timeout event is not the best thing to do because the cause of the delay is the MAC layer

and not congestion at the transport layer. In this case the TCP sender would have liked

to wait and let the MAC layer resolve the collision. Then, the received acknowledgment

would trigger the transmission of packets from the current state of the TCP sender and

thus no performance decrease would be observed regarding the TCP throughput.

It is clear then, that the TCP sender has to choose between two different actions in

the absence of a received acknowledgment. Either stop the waiting period and enter slow-

start (by essentially declaring a timeout), or continue waiting for the acknowledgment,

hoping that it is delayed at the MAC layer and not because of congestion. Thus, an

optimal stopping problem can be defined. The solution to this problem provides the TCP

sender with the optimal timeout period in order to increase its throughput.

3.2 Problem Formulation

The setting is the same as in Chapter 2. We assume there exists a complete proba-

bility space (Ω,F , P ). We consider a wireless network where the MAC layer is unslotted

(pure) Aloha. Each node in the network can hear the transmissions from any other node

(single cell). We model the wireless channel as a two-state continuous time Markov chain.

One state corresponds to the case the channel is “good”, i.e. the packets are not lost w.p.

1, and the other state corresponds to the case the channel is “bad” which means the trans-

mitted packets are lost w.p. 1. The transition rate from the “bad” to the “good” state is

λbg and the transition rate from the “good” to the “bad” state is λgb.
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In the unslotted Aloha protocol a packet is immediately transmitted to the network.

If this transmission overlaps with another packet transmission from another node, then

there is a collision and neither of the packets are received by the corresponding receivers,

and have to be retransmitted. To avoid another collision, the nodes that participated in the

collision have to delay their retransmission for an exponentially distributed random inter-

val. The mean of this exponential distribution is the same for all nodes and is denoted by

1/λret. Moreover, this randomly selected interval is independent of any possible previous

delays at each node and across nodes.

We focus on a TCP connection between two nodes in the network that are one hop

away. We assume this is a persistent TCP connection which implies that the sender has

always packets to send. If Wt is the TCP window size at the sender at time t, we can

define a stochastic process W = (Wt)t≥0 that evolves according to the dynamics of the

TCP protocol and affected by the MAC layer and the wireless channel.

In Section 2.3 of Chapter 2 we provided Eq. (2.20) which is a stochastic differential

equation that describes the evolution of the window size as this evolution is driven by a

point process that represents the arrival of acknowledgments from the TCP receiver to the

TCP sender. More specifically, we have:

dWt =


dNt, Wt < Ht

1
Wt
dNt, Wt ≥ Ht

WSn = W0, n = 1, 2, . . . (3.1)

W0 ≤ Wt ≤ Wmax, t ≥ 0

where H = (Ht)t≥0 is the process that describes the slow-start threshold and is given
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by (2.17). W0 and Wmax are the initial (minimum) and maximum values of the window

size, and {Sn, n = 0, 1, . . . } is the sequence of the time instances a timeout event is

declared by the TCP sender. The stochastic process N = (Nt)t≥0 is the counting process

that corresponds to the point process {TMAC
n , n = 0, 1, 2, . . . } that represents the arrival of

acknowledgments at the TCP sender. If FN = (FNt )t≥0 is the right continuous filtration

that represents the history of this point process, it was shown in Section 2.3.3 of Chapter 2

that the FN -intensity λt of the process is

λt =
λbg

λbg + λgb
λMAC

t (3.2)

where

λMAC

t =


0, TMAC

i ≤ t < TMAC
i + Tp

λretpmac, TMAC
i + Tp ≤ t < TMAC

i+1

(3.3)

and Tp = L/C is the transmission time of the packet of constant length L bits over the

wireless channel of capacity C bps, and pmac is the probability of a successful transmis-

sion of a packet for unslotted Aloha given by (2.1)

As was mentioned in Section 3.1 we want to increase the TCP throughput by com-

puting the optimal timeout period τ for the TCP sender to declare a timeout. This can

be formulated as an optimal stopping time problem in the probability space (Ω,F , P ). If

FTCP = (FTCP
t )t≥0 is the right continuous filtration that represents the history of events

observed by the TCP sender we want to find the optimal FTCP -stopping time τ such that

J(w, τ ;h) = Ew

[∫ τ

0

e−βtk(Wt;h)dt+ e−βτg(Wτ ;h)

]
(3.4)

is maximized over τ , for β > 0, where Ew [·] represents the expected value conditioned

on the event that the initial value of the process W is w and the slow-start threshold is h.
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The value h of the slow-start threshold remains constant for the duration of the timeout

period and it only affects the size of the window if an acknowledgment is received. The

value function V (·;h) for the problem can then be defined as:

V (w;h) = sup
τ
J(w, τ ;h) (3.5)

Notice that the two filtrations, FN and FTCP are equal since the TCP sender observes

the arrival of acknowledgments. Moreover, the arrival of acknowledgments dictates the

evolution of the process W = (Wt)t≥0.

3.3 Hamilton-Jacobi-Bellman (HJB) Equation

Let B denote the optimal stopping set, i.e. the process stops when the set B is

reached for the first time. Then, the equation satisfied by the value function V (·;h) is

known as the Hamilton-Jacobi-Bellman (HJB) equation and is [31, 49]:
LV (w;h)− βV (w;h) + k(w;h) = 0, w 6∈ B

V (w;h) = g(w;h), w ∈ B
(3.6)

where L is the infinitesimal generator of the process W defined on a function f : < → <

as:

Lf(x) = lim
t↓0

Ex [f(Wt)]− f(x)

t
(3.7)

To see the validity of (3.6) take ∆ > 0 and small, and for convenience, drop the

parameter h from all the expressions in the following. Suppose that at some point the

system is at state w. At that moment we can either stop or continue the process. The gain
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from stopping the process is g(w), which means that

V (w) = g(w)

for w ∈ B, the stopping set. If the decision is to continue, the value function takes the

value

V (w) = Ew

[∫ τ

0

e−βtk(Wt) dt

]
, for w 6∈ B

In this case we have:

V (w) = Ew

[∫ τ∧∆

0

e−βtk(Wt) dt+

∫ τ

∆

e−βtk(Wt) dt · 1[τ > ∆]

]
= Ew

[∫ τ∧∆

0

e−βtk(Wt) dt+ e−β∆

∫ τ

∆

e−β(t−∆)k(Wt) dt · 1[τ > ∆]

]
= Ew

[∫ ∆

0

e−βtk(Wt) dt+

∫ τ

0

e−βtk(Wt) dt · 1[τ ≤ ∆]

]
+ Ew

[
e−β∆

∫ τ

∆

e−β(t−∆)k(Wt) dt · 1[τ > ∆]

]
= Ew

[∫ ∆

0

e−βtk(Wt) dt+

∫ τ

0

e−βtk(Wt) dt · 1[τ ≤ ∆]

]
+ Ew

[
e−β∆ · EW∆

[∫ τ

∆

e−β(t−∆)k(Wt) dt · 1[τ > ∆]

]]

where 1[·] is the indicator function. But

V (W∆) = EW∆

[∫ τ

∆

e−β(t−∆)k(Wt) dt · 1[τ > ∆]

]

Then, the equation for the value function becomes

V (w) = Ew

[∫ ∆

0

e−βtk(Wt) dt

]
+ Ew

[∫ τ

0

e−βtk(Wt) dt · 1[τ ≤ ∆]

]
+ e−β∆Ew [V (W∆)]
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Add and subtract Ew [V (W∆)] to get

0 = Ew [V (W∆)]− V (w) +
(
e−β∆ − 1

)
Ew [V (W∆)] + Ew

[∫ ∆

0

e−βtk(Wt) dt

]
+ Ew

[∫ τ

0

e−βtk(Wt) dt · 1[τ ≤ ∆]

]

Divide both sides by ∆:

0 =
1

∆

(
Ew [V (W∆)]− V (w)

)
+
e−β∆ − 1

∆
Ew [V (W∆)] +

1

∆
Ew

[∫ ∆

0

e−βtk(Wt) dt

]
+

1

∆
Ew

[∫ τ

0

e−βtk(Wt) dt · 1[τ ≤ ∆]

]

Letting ∆ ↓ 0:

0 = LV (w)− βV (w) + k(w)

Moreover, whenever

LV (w)− βV (w) + k(w) = g(w)

it does not matter whether we stop or continue since this has no effect on the total gain.

In general, as it can be seen from the computation presented above, it is always true

that

V (w) ≥ g(w)

and it is V (w) = g(w) only when the process is stopped. Thus, the optimal strategy

is simple enough, we should stop whenever the condition V (w) = g(w) holds and this

happens for w ∈ B, the stopping set. The problem of solving the HJB equation (3.6)

using analytical methods is hard because the stopping set B is not known, but it is part of

the solution [49]. In probabilistic terms, Snell [53] has shown that the stochastic process

V (Wt) is the smallest supermartingale that dominates the process g(Wt). However, it is
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not easy to find this supermartingale using analytical methods and someone has to rely on

numerical methods for its computation.

It can also be shown [49] that the optimal stopping problem for a Markov process

X is equivalent to the problem of finding the smallest superharmonic function which

dominates a properly defined gain function on the state space of the Markov process X .

This connection can be seen through (3.6) which appears in both types of problems.

3.4 Preliminary Analysis for the Numerical Approximation

This section presents some results that will be needed for the numerical approxima-

tion to the optimal stopping problem.

3.4.1 Jump Process

In Section 2.3 of Chapter 2 we have defined the point process {TMAC
n , n = 0, 1, 2, . . . }

and the corresponding counting processN = (Nt)t≥0. The analysis in Chapter 2 provides

the FN -compensator Λt for N which is:

Λt =


πgλretpmac

(
TMAC
i − iTp

)
, TMAC

i ≤ t < TMAC
i + Tp

πgλretpmact− (i+ 1)πgλretpmacTp, TMAC
i + Tp ≤ t < TMAC

i+1

(3.8)

Because of the way this compensator was computed it is implied [17] that the process

M = (Mt)t≥0 defined as Mt = Nt − Λt for t ≥ 0, is an FN -martingale. That means that

for 0 ≤ s ≤ t it holds that:

E[Mt | Fs] = Ms ⇒
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E[E[Mt | Fs]] = E[Ms]⇒

E[Mt] = E[Ms]⇒

E[Mt] = E[M0] = 0, P -a.s. for all t ≥ 0

Then, we have that

0 = E[Mt] = E[Nt]− E[Λt]⇒ E[Nt] = E[Λt], t ≥ 0

To compute the value of E[Λt] we consider two cases:

Ti ≤ t < Ti + Tp: In this case Λt = πgλretpmac
(
TMAC
i − iTp

)
so we get:

E[Nt] = E[Λt]

= πgλretpmac
(
E[TMAC

i ]− iTp
)

= πgλretpmacE
[∑K

j=1Xj

]
, from (2.9)

= πgp
i
macS(i, pmac), see Appendix B.1

where S(i, p) =
∑i

k=0

(
i
k

)
k
(

p
1−p

)k
.

Ti + Tp ≤ t < Ti+1: In this case Λt = πgλretpmact− (i+ 1)πgλretpmacTp, so we have

E[Nt] = E[Λt] = πgλretpmact− (i+ 1)πgλretpmacTp

Notice that if we set Tp = 0, then

E
[
Nt

]
= πgλretpmact, t ≥ 0

and the process becomes a Poisson point process.
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If B(<) is the Borel σ-algebra on < and U ∈ B(<) such that 0 6∈ U (i.e. 0 does

not belong to the closure of U ), we can define the Poisson measure N : [0,∞)×B(<)→

{0, 1, 2, . . . } associated with the counting process N = (Nt)t≥0 as

N(t, U) =
∑

0<s≤t

1[∆Ns ∈ U ]

where ∆Ns = Ns −Ns− . The Poisson measure counts the number of jumps up to time t

that have size that belongs to U .

The Lévy measure ν : B(<)→ < is defined as

ν(U) = E
[
N(1, U)

]
for U ∈ B(<) and 0 6∈ U .

In our case, the Lévy measure for the counting process N = (Nt)t≥0 can be com-

puted as

ν(U) = E
[
N(1, U)

]
= E

[∑
0<s≤t 1[∆Ns ∈ U ]

]
= E

[
N1 · 1[jump size ∈ U ]

]
= E

[
N1

] · E[1[jump size ∈ U ]
]

where we used the fact that the time instances the jumps occur are independent of the

jump size. To compute E
[
N1

]
we assume that Tp < 1 which is always the case in real

wireless networks. Then,

E
[
N1

]
= πgλretpmac

(
1− Tp

)
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To compute E
[
1[jump size ∈ U ]

]
, recall that for the point process that corresponds to

N = (Nt)t≥0, the jumps are always of size 1. Thus,

E
[
1[jump size ∈ U ]

]
= P{1 ∈ U} = δ1(U)

where δx is the Dirac measure at x, such that for A ⊂ <

δx(A) =


1, if x ∈ A

0, if x 6∈ A

Then,

ν(U) = πgλretpmac ·
(
1− Tp

) · δ1(U)

for U ∈ B(<) and 0 6∈ U .

Now, we can rewrite the window size evolution of (3.1) as

Wt = W0 +

∫ t

0

∫
[0,∞)

q(Ws− , a;h) N(ds, da), t ≥ 0 (3.9)

where

q(w, a;h) =


a, if w < h (slow-start)

a
w
, if w ≥ h (congestion avoidance)

3.5 Numerical Approximation

Because of the analytical intractability of the optimal stopping problem introduced

in Section 3.2 we need to solve the problem numerically. Following Kushner’s Markov

chain approximation method [31], we proceed by discretizing the time and thus moving

from the original optimal stopping problem in continuous time to an equivalent problem

in discrete time. In discrete time, the evolution of the system is described by a Markov
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chain, with transition probabilities that can be computed from the original continuous

time dynamical system. We then formulate an optimal stopping time problem associated

with the Markov chain and solve the corresponding dynamic programming equation using

the value iteration method [50].

3.5.1 Markov Chain Approximation

The discretization of the time is based on the transmission time Tp of a packet. In

particular, we define the time increment δ to be

δ =
Tp
K

(3.10)

where K is a positive integer. For larger values of K, a smaller increment δ is defined and

as K increases to infinity, the discretization becomes finer.

The stochastic process W = (Wt)t≥0 that describes the evolution of the window

size takes values in the interval [W0,Wmax]. When TCP operates in the slow-start regime,

the window size takes values in the set of positive integers, and when TCP is in the conges-

tion avoidance phase the window size is a positive real number. For the optimal stopping

problem of the approximating Markov chain the window size does not need to be dis-

cretized. We only need to differentiate between the current value of the window size and

the value that the window size will take after a new acknowledgment is received or a max-

imum waiting time is reached. Therefore, we do not discretize the interval [W0,Wmax]

where the process W = (Wt)t≥0 takes its values.

Suppose at time t = t0 there is a jump to Wt0 = w for the original, continuous

time system (3.1) and the slow-start threshold Ht is h. We define the Markov chain that
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describes the evolution of the system given that at time t = t0 the size of the window is w.

We want to solve the optimal stopping problem for the Markov chain for any such initial

condition (w, t0).

The approximating Markov chain Xδ, h, t0, w = {Xδ, t0, w
n , n = 0, 1, . . . } that rep-

resents the evolution of the original, continuous time dynamical system (3.1) has a two

dimensional state space:

X δ, h, t0, w = [W0,Wmax]× {t0, t0 + δ, t0 + 2δ, . . . , t0 + (K +M + 1) · δ} (3.11)

where M is the number of time increments that we allow after the time t0 + Kδ before

we declare a timeout. Therefore, the parameter M defines an upper bound on the optimal

stopping time of our problem and assures that the algorithm that computes this stopping

time terminates.

In order to describe the transitions of the Markov chain Xδ, h, t0, w, suppose that

the chain is in the state (w, t0 + i · δ). For i = 0, 1, 2, . . . , (K − 1), the chain can only

move in time leaving the first component of the state unchanged. This is true because

in the original continuous time dynamical system (3.1) there is no new jump for a time

duration equal to Tp (the transmission time of a packet) after a jump (which we assumed it

happened at time t0). Thus, for i = 0, 1, 2, . . . , (K−1) the state that follows (w, t0 + i ·δ)

can only be (w, t0 + (i+ 1) · δ) and this transition happens with probability 1.

After time Tp = K · δ has elapsed from t0 a new jump may occur. If the Markov

chain Xδ, h, t0, w is in state (w, t0 +(K+j) ·δ) for j = 0, 1, 2, . . . , (K+M−1), there are

two different events that may happen, and thus two possible transitions out of this state

that represent these events.
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The first event represents a new jump of the original system (3.1). Thus the second

component of the state will increase by one to t0 + (K+ j+ 1) · δ and the first component

of the state will be a new window size w′. The value of w′ depends on whether TCP is

in slow-start (w < h) or congestion avoidance phase (w ≥ h). If TCP is in slow-start

phase, then w′ = w + 1, and if TCP is in congestion avoidance phase then w′ = w + 1
w

.

Such a transition indicates that a new acknowledgment has arrived at the TCP sender

which implies that there is no need to find a timeout interval, and thus solve the optimal

stopping problem. The transition from (w, t0 + (K + j) · δ) to (w′, t0 + (K + j + 1) · δ)

happens with probability pj that is computed from the p.d.f. (2.7) for DMAC . In this new

state the only transition that is allowed is to itself with probability 1.

The second event represents the fact that no new arrival (and thus jump) has oc-

curred. In this case, the first component of the next state remains the same and equal

to w, and the second component indicates the increase in time by the increment δ. The

transition from (w, t0 + (K + j) · δ) to (w, t0 + (K + j + 1) · δ) happens with probability

1− pj .

Finally, if the Markov chain is in the state (w, t0 + (K + M) · δ) it means that

the maximum allowed waiting period has been reached, therefore a timeout has to be

declared. This is indicated by a transition to (1, t0 + (K +M + 1) · δ) with probability 1.

The two dimensional Markov chain Xδ, h, t0, w can be represented schematically as

in Fig. 3.1.
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Figure 3.1: The Markov chain approximation for the Optimal Stopping problem.

3.5.2 Transition Probabilities

To better represent the Markov chain Xδ, h, t0, w, we name each of the two dimen-

sional state of the chain as follows:

Si =
(
w, t0 + i · δ

)
, i = 0, 1, 2, . . . , (K +M)

Fj =
(
w′, t0 + (K + j) · δ

)
, j = 1, 2, . . . ,M (3.12)

R =
(

1, t0 + (K +M + 1) · δ
)

Using the representation of (3.12) the Markov chain Xδ, h, t0, w is shown in Fig. 3.2. The

transition probabilities can then be given as

• for i = 0, 1, 2, . . . , (K − 1),

Pr{Xδ, h, t0, w
n+1 = X | Xδ, h, t0, w

n = Si} =


1, if X = Si+1

0, otherwise

(3.13)
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Figure 3.2: The Markov chain approximation for the Optimal Stopping problem with

different state representation.

• for i = K, (K + 1), . . . , (K +M − 1),

Pr{Xδ, h, t0, w
n+1 = X | Xδ, h, t0, w

n = Si} =



1− pi−K , if X = Si+1

pi−K , if X = Fi−K+1

0, otherwise

(3.14)

• for i = K +M ,

Pr{Xδ, h, t0, w
n+1 = X | Xδ, h, t0, w

n = Si} =


1, if X = R

0, otherwise

(3.15)

• for i = 1, 2, . . . ,M ,

Pr{Xδ, h, t0, w
n+1 = X | Xδ, h, t0, w

n = Fi} =


1, if X = Fi

0, otherwise

(3.16)
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• and,

Pr{Xδ, h, t0, w
n+1 = X | Xδ, h, t0, w

n = R} =


1, if X = R

0, otherwise

(3.17)

The cardinality of the state space for the Markov chain Xδ, h, t0, w is K + 2M + 2. If we

order the states in the following manner:

(
S0, S1, . . . , SK+M , F1, F2, . . . , FM , R

)
(3.18)

then using the transition probabilities defined above we can write the (K + 2M + 2) ×

(K + 2M + 2) transition matrix Q(δ) for the Markov chain Xδ, h, t0, w in block form:

Q(δ) =



OK×1 IK OK×M OK×M OK×1

OM×1 OM×K IM − PM PM OM×1

0 O1×K O1×M O1×M 1

OM×1 OM×K OM×M IM OM×1

0 O1×K O1×M O1×M 1


(3.19)

where O·×· is the zero matrix, I· is the identity matrix and PM is a diagonal matrix with

the element at the ith diagonal position equal to pi:

PM =



p1 0 · · · 0 · · · 0 0

0 p2 · · · 0 · · · 0 0

...
... . . . ... · · · ...

...

0 0 · · · pi · · · 0 0

...
...

...
... . . . ...

...

0 0 · · · 0 · · · pM−1 0

0 0 · · · 0 · · · 0 pM



(3.20)
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As an example, for K = 2 and M = 3, the transition matrix Q(δ) becomes:

Q(δ) =



0 1 0 0 0 0 0 0 0 0

0 0 1 0 0 0 0 0 0 0

0 0 0 (1− p0) 0 0 p0 0 0 0

0 0 0 0 (1− p1) 0 0 p1 0 0

0 0 0 0 0 (1− p2) 0 0 p2 0

0 0 0 0 0 0 0 0 0 1

0 0 0 0 0 0 1 0 0 0

0 0 0 0 0 0 0 1 0 0

0 0 0 0 0 0 0 0 1 0

0 0 0 0 0 0 0 0 0 1



(3.21)

3.5.2.1 Computation of the Transition Probability pi

To compute the transition probabilities pi, i = 0, 1, . . . , (M − 1) we use the results

from Chapter 2. In Chapter 2 the random variable DMAC represents the time between two

successive packet transmissions at the MAC layer. The p.d.f. of DMAC is given by (2.7):

fDMAC (t) = pmacδ(t− Tp) + pmac(1− pmac)λrete−λretpmac·
(
t−Tp
)
u0(t− Tp) (3.22)

for t ≥ 0.

We first compute the probability:

Pr{DMAC > s} =

∫ ∞
s

fDMAC (t) dt

=

∫ ∞
s

(
pmacδ(t− Tp) + pmac(1− pmac)λrete−λretpmac·

(
t−Tp
)
u0(t− Tp)

)
dt
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=


1, 0 ≤ s ≤ T

(1− pmac)e−λretpmac·(s−Tp), s > T

(3.23)

For i = 0, 1, 2, . . . , we compute the probability qTp, δi = Pr
{
Tp + (i + 1)δ > DMAC >

Tp + iδ
}
q
Tp, δ
i =

∫ Tp+(i+1)δ

Tp+iδ

fDMAC (t) dt

=


1− (1− pmac)e−λretpmacδ, i = 0

(1− pmac)e−λretpmaciδ
(
1− e−λretpmacδ), i = 1, 2, . . .

(3.24)

Using (3.23) and (3.24) we compute the probability:

Pr
{
Tp + (i+ 1)δ > DMAC > Tp + iδ | DMAC > Tp + iδ

}

=
Pr
{
Tp + (i+ 1)δ > DMAC > Tp + iδ, DMAC > Tp + iδ

}
Pr
{
DMAC > Tp + iδ

}

=
Pr
{
Tp + (i+ 1)δ > DMAC > Tp + iδ

}
Pr
{
DMAC > Tp + iδ

}

=


1− (1− pmac)e−λretpmacδ, i = 0

1− e−λretpmacδ, i = 1, 2, . . .

(3.25)

Using (3.25) and taking into account the operation of the wireless channel, we can com-
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pute the transition probability pi:

pi = πg · Pr
{
Tp + (i+ 1)δ > DMAC > Tp + iδ | DMAC > Tp + iδ

}

=


πg ·

(
1− (1− pmac)e−λretpmacδ

)
, i = 0

πg ·
(

1− e−λretpmacδ
)
, i = 1, 2, . . . , (M − 1)

(3.26)

for i = 0, 1, 2, . . . , (M − 1), where πg is given by (2.4b):

πg =
λbg

λbg + λgb
(3.27)

3.5.3 Running and Final Rewards

The running reward k(·;h) is defined in such a way as to represent our unwilling-

ness to declare a timeout and thus minimize the window size. At the same time though

this unwillingness should be decreasing with time, since as time increases and no event

has occurred (no arrival of an acknowledgment) is an indication of bad channel quality.

This means that the chances of finally receiving an acknowledgment become smaller. On

the other hand, if we have already built a large window size we might be reluctant to

declare a timeout since declaring a timeout brings the window size to its minimum value.

Thus, the running reward k(·;h) is an increasing function of the current window size and

a decreasing function of the waiting time.

In case an acknowledgment has arrived and the Markov chainXδ, h, t0, w has moved

to an Fi, i = 1, 2, . . . ,M state, there is no need to declare a timeout and thus solve the

optimal stopping problem. Because of this, the running cost is 0 for these states.

If no acknowledgment has arrived and the maximum waiting time has been reached,

the Markov chainXδ, h, t0, w will move to stateR. When this transition happens a timeout
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is declared anyway, and no further action is needed. Hence, the running reward for the R

state is 0.

More precisely, the running reward is given by (3.28)

k(Si;h) =
w

Wmax

(
K +M + 1− i

)
αδ, i = 0, 1, 2, . . . , (K +M)

k(Fi;h) = 0, i = 1, 2, . . . ,M (3.28)

k(R;h) = 0

where α is a parameter that depends on whether the TCP sender is in the slow-start (w <

h) or the congestion avoidance phase (w ≥ h) and can be tuned based on the performance

we want to achieve through the optimization problem.

The final reward g(·;h) also depends on both components of the state of the Markov

chain Xδ, h, t0, w. For the states Si, i = 0, 1, 2, . . . , (K − 1), the final reward should be

0, since these states represent waiting time during transmission of a packet and thus no

event will occur with probability 1. For the rest of the Si, i = K, (K + 1), . . . , (K +M)

states, the final reward is defined to be an increasing function on both the window size

and the waiting time.

If an acknowledgment is received, and thus the Markov chain Xδ, h, t0, w moves to

an Fi, i = 1, 2, . . . ,M , state, the final reward depends on the new window size which

is different and depends on whether the TCP sender is in the slow-start (w < h) or the

congestion avoidance phase (w ≥ h).

Finally, the final reward for the state R depends on the maximum waiting time that

we allow before we declare a timeout.
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More specifically, the final reward g(·;h) is given by (3.29)

g(Si;h) = 0, i = 0, 1, . . . , (K − 1)

g(Si;h) =
w

Wmax

iα, i = K, (K + 1), . . . , (K +M)

(3.29)

g(Fi;h) =
w′

Wmax

(i+K)α, i = 1, 2, . . . ,M

g(R;h) = (K +M + 1)α

where α is as in the case of the running reward k(·).

3.5.4 Optimal Stopping and Dynamic Programming

The optimal stopping problem presented in Section 3.2 can now be posed on the

Markov chainXδ, h, t0, w. If Nδ is a stopping time for the approximating chain Xδ, h, t0, w,

we define the discounted reward according to (3.4) to be:

Jδ, h(x,Nδ) = Ex

[
Nδ−1∑
n=0

e−β t
δ
n · k(Xδ, h, t0, w

n ;h
) · δ + e−β Nδ · g(Xδ, h, t0, w

Nδ
;h
)]
(3.30)

where tδn = nδ and β > 0 the discount factor. If

V δ, h(x) = sup
Nδ

Jδ, h(x,Nδ) (3.31)

is the corresponding value function for the problem, it satisfies the dynamic programming

equation:

V δ, h(x) = max
{∑

y

e−β δQ(δ)(x, y) · V δ, h(y) + k(x) · δ, g(x)
}

(3.32)

For numerical purposes, we can approximate e−βδ in (3.32) with 1
1+β·δ [31].
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Because of the discounting, the metric Jδ, h(x,Nδ) in (3.30) is finite and well de-

fined. The dynamic programming equation (3.32) is also well defined since the term

∑
y

e−β δQ(δ)(x, y) · V δ, h(y) + k(x) · δ (3.33)

is a contraction mapping.

3.5.5 Simulation Results

To solve the optimal stopping problem for the approximating Markov chainXδ, h, t0, w

we use the dynamic programming equation (3.32). Because of the contraction mapping

property of (3.33) we use a combination of iteration methods in both the value and the pol-

icy space to get the solution to the stopping problem. The value iteration method solves

for the value function V δ, h(·) and the policy iteration provides the optimal stopping set

B of (3.6) for the problem. The stopping set B defines practically our optimal policy, in

the sense that, whenever the Markov chain Xδ, h, t0, w moves into a state x ∈ B then we

stop.

The parameters that define the experiments are related to the wireless channel, the

MAC and the TCP. They are summarized in Table 3.1.

Wireless Channel MAC TCP Approximation

λbg λret Tp δ, K

λgb pmac β M

α

Table 3.1: Simulation parameters.
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We run different experiments for different values of the parameters in Table 3.1 and

compare against the standard timeout mechanism of TCP [48]. The channel capacity in

all experiments is 2Mbps.

In Fig. 3.3 and Fig. 3.4 we compare the instantaneous rate when using the timeouts

that are solutions to the optimal stopping time against the standard timeout mechanism

of TCP. In the case of Fig. 3.3, the mean waiting time before a retransmission at the

MAC layer is 0.1sec (λret = 10), and in Fig. 3.4 the corresponding mean waiting time is

0.01sec (λret = 100). In both cases, the are no losses at the wireless channel (πg = 1).

The probability of a successful transmission at the MAC layer is pmac = 0.3 and the

discount parameter β is 0.9. Also, in both cases the parameter α in the running and

final rewards is 1 when TCP is in slow-start and 10 when in congestion avoidance. As it

can be seen in both Fig. 3.3 and Fig. 3.4 the timeout mechanism that is produced from

the numerical approximation to the stopping problem has better performance than the

standard implementation of the timeout mechanism.

The case of channel losses is shown in Fig. 3.5 and Fig. 3.6. In both cases the

channel loss probability is πb = 0.5. Fig. 3.5 shows the case where the mean waiting

time after a collision is 0.1sec (λret = 10), and Fig. 3.6 corresponds to the case where the

mean waiting time after a collision at the MAC layer is 0.01sec (λret = 100). As before,

the probability pmac of not having a collision at the MAC layer is 0.3 for both cases. The

discount parameter β is 0.9, and the parameter α in the running and final rewards is 1 for

slow-start and 10 for congestion avoidance.

Finally, In Fig. 3.7 the results of the comparison are shown where the discount

factor β is 0.001. The loss probability (1 − πg) at the wireless channel is 0.3, and the
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Figure 3.3: Comparison of the instantaneous rate between the stopping problem and the

TCP mechanism in the absence of losses at the channel and mean retransmission waiting

time 0.1sec at the MAC layer.

mean waiting time before retransmission at the MAC layer is 0.01sec (λret = 100).
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Figure 3.4: Comparison of the instantaneous rate between the stopping problem and the

TCP mechanism in the absence of losses at the channel and mean retransmission waiting

time 0.01sec at the MAC layer.
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Figure 3.5: Comparison of the instantaneous rate between the stopping problem and the

TCP mechanism with a loss prob. 0.5 at the channel and mean retransmission waiting

time 0.1sec at the MAC layer.
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Figure 3.6: Comparison of the instantaneous rate between the stopping problem and the

TCP mechanism with a loss prob. 0.5 at the channel and mean retransmission waiting

time 0.01sec at the MAC layer.
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Figure 3.7: Comparison of the instantaneous rate between the stopping problem and the

TCP mechanism with a loss prob. 0.3 at the channel, mean retransmission waiting time

0.01sec at the MAC layer and discount factor β = 0.001.
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Chapter 4

Conclusions

The focus of this thesis is the flow control in wireless networks and specifically

the behavior of the Transmission Control Protocol (TCP) in conjunction with a random

access MAC protocol. The current work investigates issues that are not usually dealt with

in the research literature, namely the dynamical behavior of TCP and more specifically

the evolution of its window size and also the effect of the slow-start phase and the related

mechanism of timeouts to the TCP throughput.

The general approach that is followed is based on the idea that taking advantage of

the dependency among quantities that characterize different layers of the protocol stack,

can improve the performance of the network. At the same time, we constrain ourselves

to a minimum number of changes to the standard TCP operation. We do that in order to

achieve interoperability between our solution and the standard TCP protocol.

4.1 TCP and Aloha

In Chapter 2 we have developed a stochastic differential equation that describes the

evolution of the TCP window size with time. The random access MAC is the pure Aloha

and the behavior of the channel is modeled through a two state Markov chain according

to the Gilbert-Elliott model.

The equation is driven by a point process that represents the arrival of acknowledg-

65



ments to the sender. We take into consideration the packet length and the finite capacity

of the channel. This introduces for each point of the process, a time interval which is

constant and during which no event occurs with probability 1. Because of this, the point

process is not a Poisson process.

We fully characterize the point process by first computing the statistics of the inter-

arrival intervals and then computing its compensator and the corresponding intensity.

Finally we compare our analytical model against simulations for different values of

the parameters that characterize the channel and the Aloha protocol. We see that although

our analysis is based on certain assumptions, our model is valid and closely matches the

simulation results.

4.2 Timeout Mechanism

Chapter 3 builds on the results of Chapter 2 and uses the dynamics of the window

size to properly tune the timeout mechanism of TCP in order to increase the throughput.

We pose the problem as an optimal stopping problem with the stochastic differen-

tial equation of Chapter 2 as a constraint. The fact that the driving point process is not a

Poisson process makes the analysis intractable. Motivated by the approximation method

of Kushner for stochastic control problems in continuous time, we develop a numerical

approximation to the original problem. Using dynamic programming we solve the dis-

crete time version of the original problem and retrieve stopping policies that define the

new timeout mechanism. We verify the performance increase by comparing our solution

to the standard TCP timeout mechanism using simulation and for different values of the
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involved parameters.
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Appendix A

Appendix to Chapter 2

This appendix provides proofs to intermediate results needed in Chapter 2.

A.1 Physical Layer

To compute the probability p0(t) the chain is in the “bad” state at time t we formu-

late a differential equation in p0(t) which we solve. For any time t ≥ 0 and h > 0 small

enough:

p0(t+ h) = p0(t)p00(h) + p1(t)p10(h)

= p0(t) [1− λbg + o(h)] + p1(t) [1− λgb + o(h)]⇒

p0(t+ h)− p0(t)

h
= −λbgp0(t) + λgbp1(t) +

o(h)

h
(p0(t) + p1(t))

Letting h ↓ 0 and using p0(t) + p1(t) = 1 for all t ≥ 0, we have:

d

dt
p0(t) = −(λbg + λgb)p0(t) + λgb, for t ≥ 0

The solution to this differential equation is:

p0(t) =
λgb

λbg + λgb
+

(
p0(0)− λgb

λbg + λgb

)
e−(λbg+λgb)t

for t ≥ 0 and some initial probabilities p0(0) and p1(0) for the chain to be in the “bad”

and the “good” state respectively, at time t = 0.
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To compute the time the chain spends in each state i ∈ P , we define the random

variable Ti as the waiting time of Pt in state i ∈ P given the process is in state i. If

P{Ti ≥ t} = Gi(t) and h ≥ 0 small enough, then for t ≥ 0,

Gi(t+ h) = P{Ti ≥ t+ h}

= P{Ti ≥ t}P{Ti ≥ h}

= Gi(t) (pii(h) + o(h))

= Gi(t) (1− νih) + o(h)⇒

Gi(t+ h)−Gi(t)

h
= −νiGi(t)

where

νi =


λbg, if i = 0

λgb, if i = 1

By letting h ↓ 0, we get

d

dt
Gi(t) = −νiGi(t), for t ≥ 0

Setting Gi(0) = 1, we get

Gi(t) = e−νit, t ≥ 0

That means, the waiting time in each state is exponentially distributed and more specifi-

cally,

P{T0 ≥ t} = e−λbgt, t ≥ 0

P{T1 ≥ t} = e−λgbt, t ≥ 0
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A.2 MAC Layer

We first compute the characteristic function of the random variable
∑K

j=1Xj in

Section 2.3.2.

E
[
eis

PK
j=1 Xj

]
=

+∞∑
k=0

E
[
eis

PK
j=1 Xj | K = k

]
P{K = k}

=
+∞∑
k=0

E
[
eis

Pk
j=1Xj

]
P{K = k}

=
+∞∑
k=0

(
λret

λret − is
)k

(1− pmac)k pmac

=
λret − is

λretpmac − ispmac

where we used the fact that the random variableK is geometrically distributed with p.m.f.

P{K = k} = (1− pmac)k pmac, k = 0, 1, 2, . . .

The characteristic function of the random variable DMAC = Tp +
∑K

j=1Xj can then be

computed:

E
[
eisD

MAC

]
= E

[
eis
(
Tp+

PK
j=1 Xj

)]
= E

[
eisTp · eis

PK
j=1Xj

]
= eisTp E

[
eis

PK
j=1Xj

]
=

λret − is
λretpmac − ispmace

isTp

= pmace
isTp + (1− pmac) λretpmac

λretpmac − ise
isTp
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A.3 Negative Binomial Distribution

Let K1, K2, . . . , Kn be geometrically distributed i.i.d. random variables with pa-

rameter pmac, such that

P{Ki = k} = pmac(1− pmac)k, k = 0, 1, 2, . . .

for i = 1, 2, . . . , n. The characteristic function for Ki is E
[
eisKi

]
= pmac

1−(1−pmac)eis for

i = 1, 2, . . . , n.

If K =
∑n

j=1Kj , then the characteristic function of the random variable K can

easily be shown to be

E
[
eisK

]
=

(
pmac

1− (1− pmac)eis
)n

which corresponds to the negative binomial distribution with parameters n, pmac and

p.m.f.

P{K = k} =

(
n+ k − 1

k

)
pnmac(1− pmac)k, k = 0, 1, 2, . . .

A.4 Thinning

IfD is the generic random variable representing the interarrival time between points

in the thinned point process at the physical layer, then

D =
K∑
j=1

DMAC

j

where K is geometrically distributed with pmf,

P{K = k} = πg(1− πg)k−1, k = 1, 2, . . .
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Using the same methodology as in Appendix A.2, the characteristic function of D can be

computed,

E
[
eisD

]
= E

[
eis

PK
j=1 D

MAC
j

]
=

+∞∑
k=1

E
[
eis

PK
j=1 D

MAC
j | K = k

]
P{K = k}

=
+∞∑
k=1

(
E
[
eisD

MAC])k
πg(1− πg)k−1

=
πgE
[
eisD

MAC]
1− (1− πg)E

[
eisD

MAC]
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Appendix B

Appendix to Chapter 3

This appendix provides proofs to intermediate results needed in Chapter 3.

B.1 Computation of E
[∑K

j=1Xj

]
From (2.10) of Chapter 2 we have that

φ(s) = E
[
eis

PK
j=1Xj

]
= pnmac

n∑
k=0

(
n

k

)(
1− pmac
pmac

)k (
λretpmac

λretpmac − is
)k

We know that E
[∑K

j=1 Xj

]
= 1

i
d
ds
φ(s)|s=0. But

d

ds
φ(s) = pnmac

n∑
k=0

(
n

k

)(
1− pmac
pmac

)k
k

(
λretpmac

λretpmac − is
)k

λretpmaci

(λretpmac − is)2

= ipnmac

n∑
k=0

(
n

k

)
k

(
1− pmac
pmac

)k
(λretpmac)

k+1

(λretpmac − is)k+2

Then,

E
[∑K

j=1 Xj

]
=

1

i

d

ds
φ(s)|s=0 (B-1)

= pnmac

n∑
k=0

(
n

k

)
k

(
1− pmac
pmac

)k
1

λretpmac
(B-2)

= pnmac
1

λretpmac
S(n, pmac) (B-3)

where S(n, p) =
∑n

k=0

(
n
k

)
k
(

1−pmac
pmac

)k
.
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