319,483 research outputs found

    Simplified modelling of the behaviour of 3D-periodic structures such as aircraft heat exchangers

    Get PDF
    In this paper, experimental, analytical and numerical analysis are used to study and model the mechanical behaviour of a heat exchanger core consisting of a 3D-periodic structure. The purpose of the present investigation is not only to acquire knowledge on the mechanical behaviour of a given heat exchanger core but also to propose a simplified approach to model this behaviour. An experimental study is carried out in order to get an insight on the mechanical behaviour of this structure. Global static characteristics are obtained via analytical and finite element analysis of a unit cell of the core. Dynamic behaviour is studied by means of finite element calculations based on the results of the static modelling. The proposed approach is validated by comparison with experimental tests results

    Evaluation of a load cell model for dynamic calibration of the rotor systems research aircraft

    Get PDF
    The Rotor Systems Research Aircraft uses load cells to isolate the rotor/transmission system from the fuselage. An analytical model of the relationship between applied rotor loads and the resulting load cell measurements is derived by applying a force-and-moment balance to the isolated rotor/transmission system. The model is then used to estimate the applied loads from measured load cell data, as obtained from a ground-based shake test. Using nominal design values for the parameters, the estimation errors, for the case of lateral forcing, were shown to be on the order of the sensor measurement noise in all but the roll axis. An unmodeled external load appears to be the source of the error in this axis

    Resource location based on precomputed partial random walks in dynamic networks

    Full text link
    The problem of finding a resource residing in a network node (the \emph{resource location problem}) is a challenge in complex networks due to aspects as network size, unknown network topology, and network dynamics. The problem is especially difficult if no requirements on the resource placement strategy or the network structure are to be imposed, assuming of course that keeping centralized resource information is not feasible or appropriate. Under these conditions, random algorithms are useful to search the network. A possible strategy for static networks, proposed in previous work, uses short random walks precomputed at each network node as partial walks to construct longer random walks with associated resource information. In this work, we adapt the previous mechanisms to dynamic networks, where resource instances may appear in, and disappear from, network nodes, and the nodes themselves may leave and join the network, resembling realistic scenarios. We analyze the resulting resource location mechanisms, providing expressions that accurately predict average search lengths, which are validated using simulation experiments. Reduction of average search lengths compared to simple random walk searches are found to be very large, even in the face of high network volatility. We also study the cost of the mechanisms, focusing on the overhead implied by the periodic recomputation of partial walks to refresh the information on resources, concluding that the proposed mechanisms behave efficiently and robustly in dynamic networks.Comment: 39 pages, 25 figure

    Estimation of the normal contact stiffness for frictional interface in sticking and sliding conditions

    Get PDF
    Modeling of frictional contact systems with high accuracy needs the knowledge of several contact parameters, which are mainly related to the local phenomena at the contact interfaces and affect the complex dynamics of mechanical systems in a prominent way. This work presents a newer approach for identifying reliable values of the normal contact stiffness between surfaces in contact, in both sliding and sticking conditions. The combination of experimental tests, on a dedicated set-up, with finite element modeling, allowed for an indirect determination of the normal contact stiffness. The stiffness was found to increase with increasing contact pressure and decreasing roughness, while the evolution of surface topography and third-body rheology affected the contact stiffness when sliding

    Community sewage sensors towards evaluation of drug use trends: detection of cocaine in wastewater with DNA-directed immobilization aptamer sensors

    Get PDF
    Illicit drug use has a global concern and effective monitoring and interventions are highly required to combat drug abuse. Wastewater-based epidemiology (WBE) is an innovative and cost-effective approach to evaluate community-wide drug use trends, compared to traditional population surveys. Here we report for the first time, a novel quantitative community sewage sensor (namely DNA-directed immobilization of aptamer sensors, DDIAS) for rapid and cost-effective estimation of cocaine use trends via WBE. Thiolated single-stranded DNA (ssDNA) probe was hybridized with aptamer ssDNA in solution, followed by co-immobilization with 6-mercapto-hexane onto the gold electrodes to control the surface density to effectively bind with cocaine. DDIAS was optimized to detect cocaine at as low as 10 nM with a dynamic range from 10 nM to 5 μM, which were further employed for the quantification of cocaine in wastewater samples collected from a wastewater treatment plant in seven consecutive days. The concentration pattern of the sampling week is comparable with that from mass spectrometry. Our results demonstrate that the developed DDIAS can be used as community sewage sensors for rapid and cost-effective evaluation of drug use trends, and potentially implemented as a powerful tool for on-site and real-time monitoring of wastewater by un-skilled personnel

    Sensorless Battery Internal Temperature Estimation using a Kalman Filter with Impedance Measurement

    Full text link
    This study presents a method of estimating battery cell core and surface temperature using a thermal model coupled with electrical impedance measurement, rather than using direct surface temperature measurements. This is advantageous over previous methods of estimating temperature from impedance, which only estimate the average internal temperature. The performance of the method is demonstrated experimentally on a 2.3 Ah lithium-ion iron phosphate cell fitted with surface and core thermocouples for validation. An extended Kalman filter, consisting of a reduced order thermal model coupled with current, voltage and impedance measurements, is shown to accurately predict core and surface temperatures for a current excitation profile based on a vehicle drive cycle. A dual extended Kalman filter (DEKF) based on the same thermal model and impedance measurement input is capable of estimating the convection coefficient at the cell surface when the latter is unknown. The performance of the DEKF using impedance as the measurement input is comparable to an equivalent dual Kalman filter using a conventional surface temperature sensor as measurement input.Comment: 10 pages, 9 figures, accepted for publication in IEEE Transactions on Sustainable Energy, 201

    Fault detection, identification and accommodation techniques for unmanned airborne vehicles

    Get PDF
    Unmanned Airborne Vehicles (UAV) are assuming prominent roles in both the commercial and military aerospace industries. The promise of reduced costs and reduced risk to human life is one of their major attractions, however these low-cost systems are yet to gain acceptance as a safe alternate to manned solutions. The absence of a thinking, observing, reacting and decision making pilot reduces the UAVs capability of managing adverse situations such as faults and failures. This paper presents a review of techniques that can be used to track the system health onboard a UAV. The review is based on a year long literature review aimed at identifying approaches suitable for combating the low reliability and high attrition rates of today’s UAV. This research primarily focuses on real-time, onboard implementations for generating accurate estimations of aircraft health for fault accommodation and mission management (change of mission objectives due to deterioration in aircraft health). The major task of such systems is the process of detection, identification and accommodation of faults and failures (FDIA). A number of approaches exist, of which model-based techniques show particular promise. Model-based approaches use analytical redundancy to generate residuals for the aircraft parameters that can be used to indicate the occurrence of a fault or failure. Actions such as switching between redundant components or modifying control laws can then be taken to accommodate the fault. The paper further describes recent work in evaluating neural-network approaches to sensor failure detection and identification (SFDI). The results of simulations with a variety of sensor failures, based on a Matlab non-linear aircraft model are presented and discussed. Suggestions for improvements are made based on the limitations of this neural network approach with the aim of including a broader range of failures, while still maintaining an accurate model in the presence of these failures

    Stochastic MPC Design for a Two-Component Granulation Process

    Full text link
    We address the issue of control of a stochastic two-component granulation process in pharmaceutical applications through using Stochastic Model Predictive Control (SMPC) and model reduction to obtain the desired particle distribution. We first use the method of moments to reduce the governing integro-differential equation down to a nonlinear ordinary differential equation (ODE). This reduced-order model is employed in the SMPC formulation. The probabilistic constraints in this formulation keep the variance of particles' drug concentration in an admissible range. To solve the resulting stochastic optimization problem, we first employ polynomial chaos expansion to obtain the Probability Distribution Function (PDF) of the future state variables using the uncertain variables' distributions. As a result, the original stochastic optimization problem for a particulate system is converted to a deterministic dynamic optimization. This approximation lessens the computation burden of the controller and makes its real time application possible.Comment: American control Conference, May, 201
    • …
    corecore