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Abstract 
 
In this paper, experimental, analytical and numerical analysis are used to study and model the 

mechanical behaviour of a heat exchanger core consisting of a 3D-periodic structure. The purpose of the 

present investigation is not only to acquire knowledge on the mechanical behaviour of a given heat 

exchanger core but also to propose a simplified approach to model this behaviour. An experimental 

study is carried out in order to get an insight on the mechanical behaviour of this structure. Global static 

characteristics are obtained via analytical and finite element analysis of a unit cell of the core. Dynamic 

behaviour is studied by means of finite element calculations based on the results of the static modelling. 

The proposed approach is validated by comparison with experimental tests results.  
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1. Introduction 
 
Aircraft heat exchangers are subjected in service to a complex loading combining pressure, temperature 

and vibration. Due to this complex loading, the prediction of the lifetime of exchangers is extremely 
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difficult. Testing of such equipments under real service conditions is also very expensive and time-

consuming. An alternative solution is therefore to perform accelerated tests. However, this solution 

requires a prior understanding of the static and dynamic behaviour of the different parts of the 

exchanger, and in particular, of the core behaviour. This last point constitutes the subject of this study. 

Each part of the exchanger is designed apart according to specific criteria. For example, mechanical 

resistance is considered to dimension the inlet and outlet air stream ports as well as their attaching 

device whereas both heat transfer and fluid mechanics are mainly considered to dimension the 

exchanger core. The mechanical analysis of the core is done separately on its components (fins and 

parting sheets) considering the working pressure. However, the global mechanical behaviour of the 

exchanger core is currently extremely simplified due to its complex 3D structure and the subsequent 

difficulty to model it. On one hand, analytical solutions are difficult to obtain and, on the other hand, 

using classical finite elements methods would lead to several millions of elements and thus can not be 

considered as a valuable approach. In addition, public literature on the global mechanical behaviour of 

such aircraft heat exchanger cores is very poor. 

The purpose of the present investigation is therefore not only to acquire knowledge on the mechanical 

behaviour of a given heat exchanger core but also to propose an approach to model this behaviour in a 

simplified manner. The obtained model could then be used in the modelling of the whole exchanger 

and/or with a wider range of loading, including thermal loading.  

 

The equipment presently investigated is the core of an air-to-air compact heat exchanger. It consists of a 

block of alternating layers of fins separated by parting sheets and constitutes a 3D-periodic structure 

(Fig. 1). Several models addressing the mechanical behaviour of such structures are reported in 

literature. Models based on the classical laminate theory (CLT) [1-3] are widely used for wavy 

structures. However, these models present shortcoming for predictions of transverse moduli, E33, and 
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G13. Therefore, all the stiffness matrix elements of the core cannot be calculated by this approach, and 

thus no finite element calculations would further be possible to assess the dynamic behaviour of the 

core. Numerous methods based on homogenization or Representative Volume Element techniques 

(mean or periodic, asymptotic…) [4-8] used for heterogeneous materials could be extended to this 

structure problem [9-10]. However, these techniques demand specific numerical tools and tedious 

modelling. Subsequently they cannot answer to the request of simplicity of the present modelling. 

Nevertheless, the concept of isolating substructures behaviour to assess the global behaviour will be 

used in the present investigation. 

The first part of this paper presents the experimental study carried out in order to get an insight on the 

mechanical behaviour of this structure and to obtain results that would further be used to validate the 

proposed modelling. The second part deals with the modelling of static behaviour, presenting analytical 

and numerical (finite element) approaches, both based on the study of a unit cell whose behaviour is 

supposed to be representative of the whole core. In the last part, the so-obtained equivalent stiffness 

matrix is used in a finite element dynamic analysis. The global behaviour of tensile and dynamic 

laboratory experiments is compared with the results of the model. 

 
 
2. Core structure 
 
The structure presently investigated is the core of an air-to-air compact aircraft heat exchanger. As 

mentioned earlier, the core of this heat exchanger consists of a block of alternating layers of fins. Fig. 1 

shows a sketch presentation of the core. The layers are separated from each other by parting sheets and 

sealed along the edges by means of closure bars. They are provided with inlet and outlet ports for the 

passage of cold and hot air streams. End sheets at the top and bottom bound the block. The stacked 

assembly is brazed in a vacuum furnace to grant the rigidity of the core. The core constitutes a periodic 
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structure consisting of two alternative 0 and 90 ° plies. Each ply is set-up of fins that are bounded by two 

half-plates, thus forming a 3D-wavy-sandwich structure. 

 

                       
 

Fig. 1.  A schematic presentation of the periodic structure of the heat exchanger core 
 
The sheets and the fins are made of two isotropic materials with similar mechanical properties: E, the 

Young’s modulus, ν, the Poisson’s ratio, and G, the shear modulus. 

Moreover, like sandwich structures, the core is supposed to have an orthotropic behaviour. Poisson’s 

ratios are also neglected. The numerical FEM calculations have shown that such assumption is relevant.  

 
 
3. Experimental study 
 

3.1. Experimental procedures and specimen preparation 
 
Tensile tests were conducted along two directions (y) and (z) on samples cut out from the core by 

electro-erosion. Specimens along (y) axis had either 7 hot passages and 8 cold passages (Fig. 2-b) or 15 

hot passages and 16 cold passages in length. Their section contained 12 and 10 unit cells along (x) and 

(z) axis respectively. Specimens along (z) axis had a useful length containing 40 unit cells and a section 

containing 12 unit cells along (x) axis and 1 hot and 1 cold passages along (y) axis (Fig. 2-a). Tests 

along x-axis were not performed as it was supposed that if the model is validated for z-axis, it would be 

relevant for x-axis due to the similarity in the built up of the structure along these two directions. For 

tensile tests along z-axis, the two ends of the specimens were filled with resin to better distribute the 
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clamping forces and to limit stress concentrations. Reinforcing plates were also glued at both ends (Fig. 

2-a, post-experiment photo) using a bi-component adhesive. Two extensometers were attached on the 

specimens for displacement measurement. For tensile tests along y-axis, shoulders were glued on both 

ends of the specimens (Fig. 2-b). One or more extensometers were attached on the specimens according 

to their length. Tensile to rupture tests were conducted at room temperature with a displacement rate of 

0.5 mm/min according to two loading conditions: i) Continuous loading, ii) Several loading/unloading. 

 

 

 
Fig. 2 . Tensile test samples along (a) z-axis (b) y-axis 

 
 
 
For dynamic testing, samples similar to those used in tensile tests were employed. The impulse-response 

(IR) technique was applied. It is a non-destructive sonic method generally used to determine the 

dynamic properties (frequencies, damping ratios and mode shapes) of structural systems. The technique 

consists principally of two stages; striking the specimen with a mechanical device such as a hammer and 

then monitoring the response by attaching a transducer to the specimen. The impact force produced by 

the mechanical device during a short transient period induces stress waves, which reflect back and forth 

within the structural system between boundary interfaces until the mechanically induced energy is 

consumed by material damping, dispersion and reflections. For our experiments, the samples were hung 

freely using rubber elastics. A piezo-electric accelerometer was attached to the specimen using wax to 

measure the sample acceleration. An instrumented hammer, equipped with a force transducer to capture 

the induced force, was used to strike the specimen (Fig. 3). Signals from the instrumented hammer and 

accelerometer were fed into a 2-channel frequency analyzer with a high signal storage capability. For 
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each specimen, several striking tests were performed after changing the place of the accelerometer on 

the sample. Results were then post-treated using Matlab. Fast Fourier Transforms (FFT) of specimen 

responses were obtained from signal vs. time graphs. Numerous spectral peaks, which correspond to the 

resonance frequencies of the specimen, can be readily identified.  

 

 

 
 

Fig. 3. Dynamic testing of specimen using IR technique 
 
 
 

3.2. Experimental results 
 
 3.2.1 Tensile tests  
 
Force-Deformation diagrams are reported for tensile tests in Fig. 4. For z-axis tests samples (Fig. 4-a), 

the curves are similar to what could be obtained by tensile tests on classical monolithic metallic 

specimens.  

For y-axis tests specimens (Fig. 4-b) three different parts can be identified on the force-deformation 

curve: 

 The first part presents a mean force-deformation slope (K1) that is variable and sample 

dependant. It is assumed that the variable slope depends on the initial form of fins and 

corresponds to their unfolding at an early stage of the test.  

 The second part presents a similar slope for all samples that represents the apparent elastic 

stiffness (K2) of the tested structure. 
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 The third part describes the plastic behaviour of samples. The higher stiffness (K3) noted in this 

last part during unloading is attributed to a structural effect combined with localized plasticity. 

This phenomenon has already been observed for cellular solids [11]. 

 
Fig. 4. Force-Deformation diagrams of tensile tests (a) z-axis (b) y-axis 

 
Considering the loading experienced by the core during services and previous proof tests, the apparent 

stiffness (K2) is assumed to be representative of the mechanical behaviour of the core in its normal use 

conditions.  

 
3.2.2. Impulse-response tests 

Impulse-response tests were performed on different samples having as longitudinal direction either the 

y-axis or the z-axis (similar to tensile test samples of Fig. 2). As an example, the Fourier Transform of a 

once struck y-axis sample response is plotted in Fig. 5. Exploited results are the values of the 

frequencies where the peaks are observed and corresponding to the resonance frequencies. Damping is 

not identified. In order to obtain the complete dynamic response of the sample, it is then necessary to 

carry out the same analysis for different striking, changing each time the position of the accelerometer. 

Dynamic response of samples is not representative of the dynamic behaviour of the complete structure; 

therefore the obtained results are only exploited to validate the proposed models and will be presented in 

section 5.2 for discussion.  

 

K2

 
K3 

(a) (b) 
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Fig. 5. Example of a Fourier Transform of y-axis sample response 

 
 
 
 
 
 
4. Modelling of static behaviour 

The main purpose of this part is to propose a method to determine an equivalent stiffness matrix for the 

heat exchanger core. Due to the size and the complexity of the core shown in Fig. 1, it is clear that a 

unique model representing the whole structure would be cumbersome and unwieldy. Therefore, a unit 

cell of the core is first studied by an analytical and numerical (Finite Element Modelling) approach. It is 

assumed that the behaviour of this unit cell is representative of the behaviour of the core. The so 

obtained average local stiffness of the unit cell is then used to estimate equivalent elastic modulus of the 

core. Fig. 6 presents the unit cell that has been chosen. It consists of two alternating fins separated by a 

sheet and bounded at the top and the bottom by two half-sheets. The 3D-structure of the core can be 

obtained by assembling several unit cells in all three directions.  
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Fig. 6. Unit cell of the core 

 
 

4.1. Analytical study 
 
Formulation of equivalent tensile elastic moduli 
 
The average stiffness of the unit cell is found by dividing it into (n) substructures, each having a stiffness 

(ki) and replacing the unit cell by a spring network [12]. Hence, the estimation of the stiffness of the unit 

cell is reduced to calculate the equivalent stiffness of the spring network. 

Moreover, in order to simplify the calculations, the following assumptions are made: 

 Brazing and its effect on local stiffness and behaviour are neglected, 

 The material has a linear-elastic behaviour, 

 Perfect bonding exists between the fins and the sheets, 

 Along (x) and (z) directions, deformation of the unit cell is mainly governed by the deformation 

of the plates and the longitudinal fins. Hence the stiffness of transversal fins is neglected along 

these two directions. 

2 * pf 

e 

2 * pf

t 

t/2 

hf 

hc
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 Along (y) directions, beam theory is used on each layer to estimate separately the stiffness of 

cold air layer and hot air layer. Each layer is constructed with three basic plate/beam elements 

presented in Fig. 7.  
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Fig. 7.  Substructures and their corresponding analytical stiffness used for the estimation of the stiffness 

Ky of a unit cell 
 
Equations (1), (2) and (3) give the analytical stiffness of the unit cell along (x), (z) and (y) axis 
respectively. 
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 Once the stiffness of a unit cell is calculated, equivalent elastic modulus Ex,eq (identical for the unit cell 

and for the whole core according to our hypothesis) can be estimated easily using equation (4). 

      
eqx

xx
eqx S

lK
E

,
, =       (4) 

 
where Kx, lx, and Sx,eq are respectively the average stiffness, the length and the equivalent surface of the 

unit cell having as normal the x-axis. 

The equivalent elastic moduli along (y) and (z) axes are found in a similar manner.  
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Formulation of equivalent core shear moduli Ge

xz and Ge
yz 

 
Unlike the cases of tensile elastic moduli, the estimation of the shear moduli usually requires to consider 

a complicated state of deformation. It is then relatively difficult to get an exact analytical solution. 

However, the lower and upper bound solutions can be obtained by considering an energy-based 

approach [3]. The energy theory states that the strain energy calculated from the exact displacement 

distribution is a minimum. For a given structure, elastic energy can be generally expressed in parallel 

and series models according to Voigt and Reuss: 

 
             (5) 
 
 
             (6) 
              
 
 
where k accounts for individual substructures in the initial structure, and Ub, Us, and Ua are respectively 

the bending, shear, and axial strain energies. 

 
In the present problem, the difficulty is mainly due to the alternation of the two layers of fins forming 

the unit cell where the form of the cross-section depends on the position of the cut. To overcome this 

problem, the core is simplified and considered as a laminate composed of two repetitive alternating 

layers. Therefore, two new unit cells are considered each representing a layer, and the calculation is 

performed on each unit cell separately (Fig. 8-a). To simplify calculation, an equivalent structure is 

considered (Fig. 8-b) where fillets are replaced by straight lines. 
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Fig. 8. (a) Unit cell representing a layer (b) Simplified unit cell 
 
When a shear stress τxz is applied along the x-direction, the resulting apparent distributed shear flow is as 

shown in Fig. 8-b. The equilibrium equation and compatibility requirements are written as: 

 
                (7) 
 
 
             (8) 
 
 
where G is the shear modulus of the constitutive material of the core, and θ is the angle between the fin 

and the x-axis (θ is constant in every portion of the fin), with 

 
             (9) 
 
 
Equations (7) and (8) lead to: 
 
 
 
             (10) 
 
 
 
 
 
and             (11) 
 
 
 
By applying equation (5), we obtain: 
 
 
             (12) 

(a) (b) 

t1 

t2 

τ1 

τ2 τ2

τ1 

hfh 

2t2 τ 2
0

s

∫ cosϑds+ 2t1lτ1 = hlτ xz

2 τ 2

G0

s

∫ ds = τ 2

G
l

2 cosϑ
0

s

∫ ds = l

τ1 =
2h ds

0

s

∫

lt2 + 4t1 ds
0

s

∫
τ xz

τ 2 =
lh

lt2 + 4t1 ds
0

s

∫
τ xz

Gxz
e

G
≥

lt2

2h ds
0

s

∫
+

2t1
h



 13

 
 
 
Similarly, applying a shear strain εxz and considering the corresponding compatibility conditions, 

equation (6) becomes: 

 
             (13) 
 
 
Simplifying equation (13), we obtain: 
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Following a similar analysis process, the core shear modulus, Ge

yz, can be obtained as: 
 
 
 
 
             (15) 
 
 
 
 

4.2. Finite element calculation 
 
Static behaviour of a unit cell has been evaluated via finite element numerical simulations. Two different 

structural configurations were considered: a “theoretical” geometry, similar to that used for analytical 

calculation and a “real” geometry, with initially distorted fins as observed in the real core structure. It 

should be emphasised that each fin layer has slightly different structural configuration and therefore a 

unique “real” geometry exhibiting the highest difference compared to the “theoretical” geometry has 

been arbitrarily chosen (Fig. 9). 

The stiffness matrix was found by modelling the unit cell (constituted of a cold air fin and a hot air fin as 

in Fig. 6). Shell-type quadrangle elements were used. 1778 elements and 2007 nodes were necessary to 

model the unit cell. Six simulation cases were applied: 3 tractions and 3 shears. Boundary conditions for 

shear cases were inspired from Aitharaju and al. [13] as shown in Fig. 10-b. For tensile cases, 

calculations were performed with imposed loads on nodes belonging to elements defining the surface 
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perpendicular to the investigated axis (see Fig. 10-a). Symmetry conditions (1 translation, 2 rotations 

constrained) were imposed on side elements of the unit cell.  In order to assess the validity of these 

boundary conditions, calculations were also performed on structures made of several unit cells gathered 

in all three directions as presented in Fig. 11. The tensile elastic moduli (obtained after equation (4)) 

were identical confirming the behaviour of a so modelled single unit cell is representative of the core 

behaviour. In order to compare finite element and analytical shear moduli results, calculations were also 

performed on cold air unit cell (see Fig. 9) and hot air unit cell separately. 

 

 (a)    (b) 
 

Fig. 9. Cold air fin (a) real structure, (b) finite element model with “real” geometry 
 

 

   

Fig. 10. Boundary conditions: (a) tensile case along (y) axis ; (b) shear case along (xz) 
 
 

a) 
(b) (a) 
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Fig. 11. Finite element models representing structures composed of different unit cells assembled along 

all three directions 
 
 

4.3. Results and discussion 
 

Table 1 presents the equivalent tensile elastic moduli obtained after analytical and numerical finite 

element analysis and the comparison with experimental tensile results. For finite element analysis, both 

“theoretical” and “real” unit cell elastic moduli are presented. 

 

 Experimental Analytical FEM-T FEM-R 
Ex (GPa)  10.73 11.4 11.47 
Ez (GPa) 13.54    13.47 13.24 13.97 
Ey (GPa) 0.4 0.45 0.44 0.3 

 
Table 1 : Comparison between equivalent elastic moduli obtained by tests, analytical calculation and 
finite element calculations on “theoretical” (FEM-T) and “real” geometry (FEM-R) 
 

Along (z) and (x) directions, “theoretical” and “real” models provide the same elastic modulus. This is 

not surprising considering the assumption that along (x) and (z) directions, deformation of the unit cell is 

mainly due to the deformation of the plates and the longitudinal fins; the shape of the fins more or less 

bended along the (y) axis does not influence the tensile behaviour in the two other directions. Moreover 

the good agreement between experimental, analytical and finite element results confirms the reliability 

of this assumption. Along (y) direction, the variations between the different values are more important. 
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Analytical and finite element with “theoretical” structure modelling leads to similar elastic moduli which 

are higher than experimental one. This result suggests that the modelling is relevant in both approaches 

but that the so-obtained stiffness is over-estimated compared to the real structure. On the contrary the 

finite element analysis of “real” geometry gives a lower equivalent elastic modulus than experiments. 

This is due to the fact that, even if strictly copied from real fins, this selected shape is not more 

representative of the real global structure than the theoretical one: one must remind the structural 

configuration is not exactly the same from a layer to another in the whole sample. Subsequently, the 

experimental elastic modulus which is obtained by tensile tests on a sample constituted by several layers 

is an average value of elastic moduli from different layers probably ranging from 0.3 to 0.45 GPa. 

According to these results, it appears that modelling the static tensile behaviour along (y) axis is 

difficult. Unless completely modelling the whole core by finite elements, which presents only little 

interest, the “theoretical” solution remains reasonable with a variation from approximately 15% with the 

experimental values. As a conclusion, both analytical and numerical approaches based on « theoretical » 

unit cell are completely satisfactory to estimate the elastic moduli of the core. Moreover, these 

approaches have the advantage of adapting easily to other geometries of fins.  

 

Concerning shear moduli, results are presented in Table 2. Due to their complexity for such structures, 

no shear tests were carried out. Consequently, only analytical and numerical results are available. 

Moreover, analytical analysis can only predict shear modulus along two directions for each layer. For 

these cases, finite element simulations with “theoretical” shape give satisfactory results within the range 

predicted by analytical calculations. However, the other results can not be validated properly. In 

addition, the shape of the unit cell seems to highly influence the shear behaviour perpendicular to (y) 

axis where the deformation is mainly located in the fins.  
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 Gxy (MPa) Gyz (MPa) Gxz (MPa) 
 Analytical FEM-T FEM-R Analytical FEM-T FEM-R Analytical FEM-T FEM-R
C-L  1.17 3.43 2650-

3140 
2840 1600 1.96-2.56 2.19 4.15 

H-L 2560-
3400 

3400 2903  6.56 9.64 4.45-5.42 4.7 4.65 

Unit 
Cell 

 0.77 5.9  10.7 31.04  3.06 3.01 

 
Table 2 : Comparison between equivalent shear moduli obtained by analytical calculation and finite 
element calculations on “theoretical” (FEM-T) and “real” geometry (FEM-R) for cold air layer (C-L), 
hot air layer (H-L) and the unit cell. 
 
 
5. Modelling of dynamic behaviour 
 

5. 1. Dynamic response of specimens 
 

For dynamic behaviour, two models were considered: a) a homogenous model where samples are 

considered as a homogeneous structure with an equivalent stiffness matrix found by the above-

mentioned static calculation and b) a laminated model where specimens are considered being formed by 

stacking alternatively two plates (cold air layer and hot air layer) each having equivalent orthotropic 

properties resulting from the above-mentioned static calculation.  Fig. 12 presents both models for a 

sample similar to y-axis tensile test sample. Damping was not taken into account in calculation. A linear 

elastic dynamic calculation was performed and free vibration modes of specimens were computed. 

Equivalent densities were introduced based on samples real mass in order to take into account the weight 

of brazed joints. Samples were left free: all displacements and rotations were permitted.  In addition, for 

the laminated model, static properties from both “theoretical” and “real” shape were used to perform 

dynamic calculations.  
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(a) (b) (c)(a) (b) (c)
 

      
Fig. 12.  y-axis dynamic samples: (a) homogenous model for dynamic simulation (b) laminated model 

for dynamic simulation, (c) test sample 
 
 

5. 2. Results and discussion 
 

As an example, experimental and numerical results are compared for two types of samples in Fig. 13. 

Mode shapes were not measured experimentally but for each set of numerical frequencies compared in 

Fig. 13, the mode shape was similar. Dynamic simulations with homogeneous model only gave 

consistent resonant frequencies values for y-axis sample; for z-axis samples, calculated natural 

frequency values are much lower than experimental ones. It is supposed that, for these two types of 

specimen, the difference between the shear behaviour of cold air and hot air layers is too important to be 

correctly represented by a model using an “average” behaviour. Therefore, this homogeneous model 

cannot be relevant enough for the dynamic behaviour of the samples. The laminate model exhibits good 

results compared to experimental frequencies. However, the model using static properties from 

“theoretical” shape (LM-T) is better than the model using static behaviour of “real” shape (LM-R). 

Variations between LM-T approach and experimental results are less than 4 and 10% for respectively y-

axis and z-axis samples. For LM-R, variations range from 1 to 15% for y-axis specimen and are less 

than 10% for z-axis specimen. As a conclusion, it appears that, like for static analysis, numerical 

approach based on « theoretical » unit cell results provides a better and more relevant estimation of the 

global dynamic behaviour of the periodic structure constituting the heat exchanger core. Further 

x 
z 

y 
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experiments and numerical simulations on the whole core are currently under progress to fully assess the 

validity and the reliability of the modelling.  
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Fig. 13. Resonant frequencies for two types of specimen: comparison of experimental (Exp) and 
numerical results (HM: homogeneous model, LM-T: Laminate Model with static properties from 
“theoretical” shape, LM-R : Laminate Model with static properties from “real” shape) 
 
 
6. Conclusion 
 
Experimental, analytical and numerical approaches have been used to study and model the mechanical 

behaviour of an aircraft heat exchanger core consisting of a 3D-periodic structure. Concerning static 

characteristics, an approach based on the modelling of a unit cell (constituted of a cold air fin and a hot 

air fin) representative of the core behaviour has been proposed and validated.  The core dynamic 

behaviour has been studied by means of finite element calculations and experimental tests. Two models 

have been evaluated: a) a homogeneous model where samples are considered being constituted of an 

homogeneous material with an equivalent stiffness matrix found by static calculation on a unit cell and 

b) laminated model where samples are considered being formed by stacking alternatively two plates 

(cold air layer and hot air layer) of two different materials each having equivalent orthotropic properties 

found by static calculations. Homogeneous model was found inadequate to reproduce experimental 

impulse-response results for all tested samples whereas laminated model has been validated. In addition, 

it has been shown that the use of a “theoretical” shape for determining static characteristics via a unit 
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cell is better than trying to reproduce the slight defects of the real fins. These approaches can further be 

used in the modelling of the whole exchanger and/or with a wider range of loading, including thermal 

loading.  Moreover, it could be extended to other kind of heat exchanger with other fin geometries 

provided that it presents periodicity of the stacked layers. 
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Figure Captions 
 
Fig. 1.  A schematic presentation of the periodic structure of the heat exchanger core 

Fig. 2 . Tensile test samples along (a) z-axis (b) y-axis 

Fig. 3. Dynamic testing of specimen using IR technique 

Fig. 4. Force-Deformation diagrams of tensile tests (a) z-axis (b) y-axis 

Fig. 5. Example of a Fourier Transform of y-axis sample response 

Fig. 6. Unit cell of the core 

Fig. 7.  Substructures and their corresponding analytical stiffness used for the estimation of the stiffness 

Ky of a unit cell 

Fig. 8. (a) Unit cell representing a layer (b) Simplified unit cell 

Fig. 9. Cold air fin (a) real structure, (b) finite element model with “real” geometry 

Fig. 10. Boundary conditions: (a) tensile case along (y) axis ; (b) shear case along (xz) 

Fig. 11. Finite element models representing structures composed of different unit cells assembled along 

all three directions 

Fig. 12.  y-axis dynamic samples: (a) homogenous model for dynamic simulation (b) laminated model 

for dynamic simulation, (c) test sample 

Fig. 13. Resonant frequencies for two types of specimen: comparison of experimental (Exp) and 

numerical results (HM: homogeneous model, LM-T: Laminate Model with static properties from 

“theoretical” shape, LM-R : Laminate Model with static properties from “real” shape) 
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 Experimental Analytical FEM-T FEM-R 
Ex (GPa)  10.73 11.4 11.47 
Ez (GPa) 13.54    13.47 13.24 13.97 
Ey (GPa) 0.4 0.45 0.44 0.3 

 
Table1 : Comparison between equivalent elastic moduli obtained by tests, analytical calculation and 
finite element calculations on “theoretical” (FEM-T) and “real” geometry (FEM-R) 
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 Gxy (MPa) Gyz (MPa) Gxz (MPa) 
 Analytical FEM-T FEM-R Analytical FEM-T FEM-R Analytical FEM-T FEM-R
C-L  1.17 3.43 2650-

3140 
2840 1600 1.96-2.56 2.19 4.15 

H-L 2560-
3400 

3400 2903  6.56 9.64 4.45-5.42 4.7 4.65 

Unit 
Cell 

 0.77 5.9  10.7 31.04  3.06 3.01 

 
Table 2 : Comparison between equivalent shear moduli obtained by analytical calculation and finite 
element calculations on “theoretical” (FEM-T) and “real” geometry (FEM-R) for cold air layer (C-L), 
hot air layer (H-L) and the unit cell. 
 


