29,181 research outputs found

    Neurocognitive Informatics Manifesto.

    Get PDF
    Informatics studies all aspects of the structure of natural and artificial information systems. Theoretical and abstract approaches to information have made great advances, but human information processing is still unmatched in many areas, including information management, representation and understanding. Neurocognitive informatics is a new, emerging field that should help to improve the matching of artificial and natural systems, and inspire better computational algorithms to solve problems that are still beyond the reach of machines. In this position paper examples of neurocognitive inspirations and promising directions in this area are given

    The induced 2-tuple linguistic generalized OWA operator and its application in linguistic decision making

    Get PDF
    We present the induced 2-tuple linguistic generalized ordered weighted averaging (2-TILGOWA) operator. This new aggregation operator extends previous approaches by using generalized means, order-inducing variables in the reordering of the arguments and linguistic information represented with the 2-tuple linguistic approach. Its main advantage is that it includes a wide range of linguistic aggregation operators. Thus, its analyses can be seen from different perspectives and we obtain a much more complete picture of the situation considered and are able to select the alternative that best fits with with our interests or beliefs. We further generalize the operator by using quasi-arithmetic means, and obtain the Quasi-2-TILOWA operator. We conclude this paper by analysing the applicability of this new approach in a decision-making problem concerning product management.linguistic decision making, linguistic generalized mean, 2-tuple linguistic owa operator, 2-tuple linguistic aggregation operator

    Bounded Rationality and Heuristics in Humans and in Artificial Cognitive Systems

    Get PDF
    In this paper I will present an analysis of the impact that the notion of “bounded rationality”, introduced by Herbert Simon in his book “Administrative Behavior”, produced in the field of Artificial Intelligence (AI). In particular, by focusing on the field of Automated Decision Making (ADM), I will show how the introduction of the cognitive dimension into the study of choice of a rational (natural) agent, indirectly determined - in the AI field - the development of a line of research aiming at the realisation of artificial systems whose decisions are based on the adoption of powerful shortcut strategies (known as heuristics) based on “satisficing” - i.e. non optimal - solutions to problem solving. I will show how the “heuristic approach” to problem solving allowed, in AI, to face problems of combinatorial complexity in real-life situations and still represents an important strategy for the design and implementation of intelligent systems

    Artificial Intelligence in the Context of Human Consciousness

    Get PDF
    Artificial intelligence (AI) can be defined as the ability of a machine to learn and make decisions based on acquired information. AI’s development has incited rampant public speculation regarding the singularity theory: a futuristic phase in which intelligent machines are capable of creating increasingly intelligent systems. Its implications, combined with the close relationship between humanity and their machines, make achieving understanding both natural and artificial intelligence imperative. Researchers are continuing to discover natural processes responsible for essential human skills like decision-making, understanding language, and performing multiple processes simultaneously. Artificial intelligence attempts to simulate these functions through techniques like artificial neural networks, Markov Decision Processes, Human Language Technology, and Multi-Agent Systems, which rely upon a combination of mathematical models and hardware
    • …
    corecore